WO2020156282A1 - 非水电解液及含有该非水电解液的锂离子电池 - Google Patents

非水电解液及含有该非水电解液的锂离子电池 Download PDF

Info

Publication number
WO2020156282A1
WO2020156282A1 PCT/CN2020/073012 CN2020073012W WO2020156282A1 WO 2020156282 A1 WO2020156282 A1 WO 2020156282A1 CN 2020073012 W CN2020073012 W CN 2020073012W WO 2020156282 A1 WO2020156282 A1 WO 2020156282A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
lithium
phosphate
carbonate
lithium salt
Prior art date
Application number
PCT/CN2020/073012
Other languages
English (en)
French (fr)
Inventor
廖波
李素丽
王海
徐延铭
李俊义
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2020156282A1 publication Critical patent/WO2020156282A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of lithium ion batteries, and in particular to a non-aqueous electrolyte and a lithium ion battery containing the non-aqueous electrolyte.
  • lithium-ion batteries have been widely used as energy storage devices in electronic devices such as smart phones, tablet computers, and Bluetooth headsets.
  • electronic devices such as smart phones, tablet computers, and Bluetooth headsets.
  • consumers have higher and higher requirements for the endurance of electronic devices. Therefore, improving the energy density of lithium-ion batteries is a current research focus.
  • the improvement of energy density is to increase the charging voltage of the battery to obtain higher capacity; on the other hand, the use of high-capacity positive or negative materials.
  • the application of film-forming electrolyte additives is an important means to solve electrolyte decomposition.
  • current electrolyte additives are often difficult to take into account both high and low temperature performance. Therefore, it is indeed necessary to develop an electrolyte that can be applied to high-energy-density batteries to promote the wider use of lithium-ion batteries.
  • the purpose of this application is to solve the problem of unsatisfactory high and low temperature performance of the existing electrolyte additives, and to provide a non-aqueous electrolyte and a lithium ion battery containing the non-aqueous electrolyte.
  • the electrolyte can be formed on the surface of the positive electrode and the negative electrode.
  • the interface film with high conductivity of lithium ions and high stability enables the battery to have a long cycle life at high temperatures and good performance at low temperatures.
  • Non-aqueous electrolyte including a non-aqueous organic solvent, a conductive lithium salt, and an additive.
  • phosphate-type lithium salt compound has the general structural formula shown in formula (I):
  • R 1 and R 4 are independently selected from hydrogen, C 1-4 alkylene, C 1-4 haloalkylene or C 1-4 alkenylene;
  • R 2 , R 3 are independently selected from hydrogen, Halogen, C 1-4 alkyl, C 1-4 haloalkyl, C 6-10 aryl, C 6-10 haloaryl, C 1 -C 4 nitrile group, C 1 -C 6 alkenyl, alkane Oxy or carboxy.
  • the phosphate-type lithium salt compound is lithium divinyl bis (malonic acid) phosphate, lithium diphenyl bis (malonic acid) phosphate, lithium difluorobis (malonic acid) phosphate or difluoro bis (4-fluoromalonic acid) one or a mixture of several kinds of lithium phosphate, the mass of the phosphate ester type lithium salt compound accounts for 0.1% to 10% of the total mass of the non-aqueous electrolyte.
  • the non-aqueous organic solvent is composed of a cyclic solvent and a linear solvent, wherein the cyclic solvent is ethylene carbonate, propylene carbonate, fluoroethylene carbonate, ⁇ -butyrolactone and ⁇ -pentyl One or more combinations of lactones; the linear solvent is dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propionate, ethyl propionate, 1,1 , 2,3-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether one or more combinations, the mass of the non-aqueous organic solvent is the total mass of the non-aqueous electrolyte 55% ⁇ 89.8%.
  • the conductive lithium salt is one or more of lithium hexafluorophosphate, lithium bisfluorosulfonimide, lithium difluorooxalate, lithium bis(trifluoromethylsulfonyl)imide and lithium bisoxalate,
  • the mass of the conductive lithium salt is 10%-25% of the total mass of the non-aqueous electrolyte.
  • a lithium ion battery which includes any of the non-aqueous electrolyte described above, a positive electrode sheet, a negative electrode sheet, and a separator.
  • the beneficial effect of this application is: the non-aqueous electrolyte of this application, the phosphate ester type lithium salt additive can form lithium-containing organic matter on the surface of the positive electrode and the negative electrode, which has high lithium ion conductivity;
  • a non-aqueous electrolyte consisting of a non-aqueous organic solvent, conductive lithium salt and additives.
  • the non-aqueous organic solvent accounts for 84.9% of the total mass of the non-aqueous electrolyte. It consists of a cyclic solvent (ethylene carbonate) and a linear solvent (methyl carbonate). (Ethyl) composition, the mass ratio of ethylene carbonate and ethyl methyl carbonate is 1:2.
  • the conductive lithium salt is lithium hexafluorophosphate, which accounts for 10% of the total mass of the non-aqueous electrolyte.
  • the electrolyte additives are 0.1% of the total mass of the non-aqueous electrolyte, lithium divinylbis(malonic acid) phosphate and 5% of the total mass of the non-aqueous electrolyte, methylene disulfonate.
  • the electrolyte of this embodiment is used in LiNi 0.6 Co 0.2 Mn 0.2 O 2 /graphite soft pack battery.
  • the non-aqueous organic solvent accounts for 72.9% of the total mass of the non-aqueous electrolyte, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), ethylene carbonate and carbonic acid
  • a cyclic solvent ethylene carbonate
  • a linear solvent ethyl methyl carbonate
  • the mass ratio of ethyl methyl is 1:2.
  • the conductive lithium salt is lithium hexafluorophosphate, which accounts for 25% of the total mass of the non-aqueous electrolyte.
  • the electrolyte additives are lithium diphenylbis(malonic acid) phosphate accounting for 2% of the total mass of the non-aqueous electrolyte and 1,4-butane sultone accounting for 0.1% of the total mass of the non-aqueous electrolyte.
  • the electrolyte of this embodiment is used in LiNi 0.5 Co 0.2 Mn 0.3 O 2 /graphite soft pack battery.
  • the non-aqueous organic solvent accounts for 80% of the total mass of the non-aqueous electrolyte, and consists of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate, dimethyl carbonate) ,
  • a cyclic solvent ethylene carbonate
  • a linear solvent ethyl methyl carbonate, dimethyl carbonate
  • the mass ratio of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate is 1:1:1.
  • Lithium hexafluorophosphate accounts for 15% of the total mass of the non-aqueous electrolyte.
  • the electrolyte additives are lithium difluorobis(malonic acid) phosphate accounting for 0.5% of the total mass of the non-aqueous electrolyte, lithium difluorobis(4-fluoromalonate) phosphate accounting for 0.5% of the total mass of the non-aqueous electrolyte, and The total mass of non-aqueous electrolyte is 4% ethylene sultone.
  • the electrolyte of this embodiment is used in LiNi 0.8 Co 0.15 Al 0.05 O 2 /graphite soft pack battery.
  • the non-aqueous organic solvent accounts for 87% of the total mass of the non-aqueous electrolyte, and consists of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate, diethyl carbonate) ,
  • a cyclic solvent ethylene carbonate
  • a linear solvent ethyl methyl carbonate, diethyl carbonate
  • the mass ratio of ethylene carbonate, ethyl methyl carbonate and diethyl carbonate is 1:1:1.
  • Lithium hexafluorophosphate accounts for 12% of the total mass of the non-aqueous electrolyte.
  • the electrolyte additives are lithium difluorobis(4-fluoromalonic acid) phosphate accounting for 0.3% of the total mass of the non-aqueous electrolyte, and vinyl sulfate accounting for 0.7% of the total mass of the non-aqueous electrolyte.
  • the electrolyte of this embodiment is used in LiNi 0.5 Co 0.2 Mn 0.3 O 2 /silicon-carbon composite soft pack battery.
  • the electrolytic solution of this comparative example is different from Example 1 in that it does not use lithium divinylbis(malonic acid) phosphate compound.
  • the electrolytic solution is applied to the battery according to the same method as in Example 1 to test its performance.
  • the electrolytic solution of this comparative example is different from Example 1 in that it does not use methylene disulfonate.
  • the electrolytic solution is applied to the battery according to the same method as in Example 1 to test its performance.
  • the electrolyte of this comparative example is different from Example 2 in that it does not use lithium diphenylbis(malonic acid) phosphate, and the electrolyte is applied to the battery in the same method as in Example 2 to test its performance.
  • the electrolytic solution of this comparative example is different from Example 2 in that it does not use 1,4-butane sultone, and the electrolytic solution is applied to the battery according to the same method as in Example 2 to test its performance.
  • the electrolyte of this comparative example is different from Example 3 in that ethylene sultone is not used, and the electrolyte is applied to the battery according to the same method as in Example 3 to test its performance.
  • the electrolyte of this comparative example is different from Example 3 in that it does not use lithium difluorobis(malonic acid)phosphate and lithium difluorobis(4-fluoromalonic acid)phosphate. The same method is applied to the battery to test its performance.
  • the electrolytic solution of this comparative example is different from Example 4 in that it does not use lithium difluorobis(4-fluoromalonic acid) phosphate.
  • the electrolytic solution is applied to the battery according to the same method as in Example 4 to test its performance.
  • the electrolytic solution of this comparative example is different from Example 4 in that it does not use vinyl sulfate, and the electrolytic solution is applied to the battery according to the same method as in Example 4 to test its performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种非水电解液及含有该非水电解液的锂离子电池。非水电解液包括非水有机溶剂、导电锂盐和添加剂,其中,添加剂由至少一种磷酸酯型锂盐化合物和至少一种含S=O的化合物组成。

Description

非水电解液及含有该非水电解液的锂离子电池
本申请要求于2019年1月31日提交中国专利局、申请号为201910100098.0、申请名称为“非水电解液及含有该非水电解液的锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池技术领域,具体涉及一种非水电解液及含有该非水电解液的锂离子电池。
背景技术
近年来,锂离子电池作为储能装置在智能手机、平板电脑、蓝牙耳机等电子设备中被广泛使用。但是随着电子设备的多元化和功能的多样化,消费者对电子设备的续航能力要求也越来越高。因此,提高锂离子电池的能量密度是当前的研究热点。
能量密度的提升,一方面是通过提高电池充电电压以获得更高的容量;另一方面是使用高容量的正极或者负极材料。不幸的是,不管是电池电压的提高还是新型正极或负极材料的应用,都会带来电解液严重分解的问题。目前,成膜电解液添加剂的应用是解决电解液分解的重要手段。但是,当前的电解液添加剂往往难以同时兼顾高低温性能。因此,确有必要开发一种能够应用在高能量密度电池上的电解液,促进锂离子电池有更广泛的使用。
发明内容
本申请的目的是为了解决现有的电解液添加剂高低温性能不理想的问题,提供一种非水电解液及含有该非水电解液的锂离子电池,该电解液可以在正极和负极表面形成高导锂离子且高稳定性的界面膜,使得电池在高温下具有长的循环寿命,在低温下具有良好的性能。
为实现上述目的,本申请采取的技术方案如下:
本申请一方面提供一种非水电解液,包括非水有机溶剂、导电锂盐和添加剂,所述添加剂由至少一种磷酸酯型锂盐化合物和至少一种含S=O的化合物组成。
进一步地,所述磷酸酯型锂盐化合物具有式(I)所示的结构通式:
Figure PCTCN2020073012-appb-000001
其中,R 1、R 4独立地选自氢、C 1~4亚烷基、C 1~4卤代亚烷基或C 1~4亚烯基;R 2、R 3独立地选自氢、卤素、C 1~4烷基、C 1~4卤代烷基、C 6~10芳基、C 6~10卤代芳基、C 1-C 4腈基、C 1-C 6的烯基、烷氧基或羧基。
优选地,所述磷酸酯型锂盐化合物为二乙烯基双(丙二酸)磷酸锂、二苯基双(丙二酸)磷酸锂、二氟双(丙二酸)磷酸锂或二氟双(4-氟丙二酸)磷酸锂中的一种或几种的混合物,所述磷酸酯型锂盐化合物的质量占所述非水电解液总质量的0.1%~10%。
优选地,所述含S=O的化合物为甲烷二磺酸亚甲酯、硫酸乙烯酯、硫酸丙烯酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、乙烯磺酸内酯、1,3-丙烯磺酸内酯、1,4-丁烯磺酸内酯、1-甲基-1,3-丙烯磺酸内酯、二乙烯基砜、二甲基砜、二乙基砜、甲基乙基砜或甲基乙烯基砜中的一种或几种的混合物,所述含S=O的化合物的质量占所述非水电解液总质量的0.1%~10%。
优选地,所述非水有机溶剂由环状溶剂和线型溶剂组成,其中,所述环状溶剂为碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、γ-丁内酯和γ-戊內酯中的一种或多种组合;所述线型溶剂为碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯、丙酸乙酯、丙酸乙酯、1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚中的一种或多种组合,所述非水有机溶剂的质量为所述非水电解液总质量的55%~89.8%。
优选地,所述导电锂盐为六氟磷酸锂、双氟磺酰亚胺锂、二氟草酸硼酸锂、双(三氟甲基磺酰)亚胺锂和双草酸硼酸锂中的一种或多种,所述导电 锂盐的质量为所述非水电解液总质量的10%~25%。
本申请另一方面提供一种锂离子电池,所述锂离子电池包括上述任一所述的非水电解液、正极片、负极片及隔膜。
本申请相对于现有技术的有益效果是:本申请的非水电解液,磷酸酯型锂盐添加剂可以在正极和负极表面形成含锂的有机物,其具有高的导锂离子性;同时,含S=O化合物在电极表面形成高稳定的无机物。两者的协同作用,使得电池具有在高温下长的循环寿命和低温下良好的性能。
具体实施方式
下面结合实施例对本申请的技术方案作进一步的说明,但并不局限于此,凡是对本申请技术方案进行修正或等同替换,而不脱离本申请技术方案的精神范围,均应涵盖在本申请的保护范围之中。
实施例1
一种非水电解液,由非水有机溶剂、导电锂盐和添加剂构成,非水有机溶剂占非水电解液总质量的84.9%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。导电锂盐为六氟磷酸锂,占非水电解液总质量的10%。电解液添加剂为占非水电解液总质量0.1%的二乙烯基双(丙二酸)磷酸锂和占非水电解液总质量5%的甲烷二磺酸亚甲酯。将本实施例的电解液用于LiNi 0.6Co 0.2Mn 0.2O 2/石墨软包电池中。
实施例2
本实施例的非水电解液中,非水有机溶剂占非水电解液总质量的72.9%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。导电锂盐为六氟磷酸锂,占非水电解液总质量的25%。电解液添加剂为占非水电解液总质量2%的二苯基双(丙二酸)磷酸锂和占非水电解液总质量0.1%的1,4-丁磺酸内酯。将本实施例的电解液用于LiNi 0.5Co 0.2Mn 0.3O 2/石墨软包电池中。
实施例3
本实施例的非水电解液中,非水有机溶剂占非水电解液总质量的80%, 由环状溶剂(碳酸乙烯酯)和线型溶剂(碳酸甲乙酯、碳酸二甲酯)组成,碳酸乙烯酯、碳酸甲乙酯和碳酸二甲酯的质量比为1:1:1。六氟磷酸锂占非水电解液总质量的15%。电解液添加剂为占非水电解液总质量0.5%的二氟双(丙二酸)磷酸锂、占非水电解液总质量0.5%的二氟双(4-氟丙二酸)磷酸锂、占非水电解液总质量4%的乙烯磺酸内酯。将本实施例的电解液用于LiNi 0.8Co 0.15Al 0.05O 2/石墨软包电池中。
实施例4
本实施例的非水电解液中,非水有机溶剂占非水电解液总质量的87%,由环状溶剂(碳酸乙烯酯)和线型溶剂(碳酸甲乙酯、碳酸二乙酯)组成,碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯的质量比为1:1:1。六氟磷酸锂占非水电解液总质量的12%。电解液添加剂为占非水电解液总质量0.3%的二氟双(4-氟丙二酸)磷酸锂、占非水电解液总质量0.7%的硫酸乙烯酯。将本实施例的电解液用于LiNi 0.5Co 0.2Mn 0.3O 2/硅碳复合软包电池中。
对比例1
本对比例的电解液与实施例1不同的是,不使用二乙烯基双(丙二酸)磷酸锂化合物,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
对比例2
本对比例的电解液与实施例1不同的是,不使用甲烷二磺酸亚甲酯,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
对比例3
本对比例的电解液与实施例2不同的是,不使用二苯基双(丙二酸)磷酸锂,将此电解液按照与实施例2相同的方法应用于电池中测试其性能。
对比例4
本对比例的电解液与实施例2不同的是,不使用1,4-丁磺酸内酯,将此电解液按照与实施例2相同的方法应用于电池中测试其性能。
对比例5
本对比例的电解液与实施例3不同的是,不使用乙烯磺酸内酯,将此电解液按照与实施例3相同的方法应用于电池中测试其性能。
对比例6
本对比例的电解液与实施例3不同的是,不使用二氟双(丙二酸)磷酸锂和二氟双(4-氟丙二酸)磷酸锂,将此电解液按照与实施例3相同的方法应用于电池中测试其性能。
对比例7
本对比例的电解液与实施例4不同的是,不使用二氟双(4-氟丙二酸)磷酸锂,将此电解液按照与实施例4相同的方法应用于电池中测试其性能。
对比例8
本对比例的电解液与实施例4不同的是,不使用硫酸乙烯酯,将此电解液按照与实施例4相同的方法应用于电池中测试其性能。
实施例和对比例的应用实验:
45度循环测试:为了测量使用本申请非水电解液制得的锂离子电池的高温性能,进行以下操作:电池置于45度以2.75~4.35V 1C倍率下充放电循环。
低温放电测试:为了测量本申请制得的锂离子电池的低温性能,进行以下操作:将电池常温循环一周,放电容量记Q 0;随后将电池充满电后置于-30度搁置4小时后0.5C倍率放电,容量记Q 1。放电容量保持率=Q 1/Q 0
表1 实施例和对比例的高温循环性能和低温放电测试结果表
测试指标 45度下循环500周后容量保持率 低温容量保持率
实施例1 85.64% 60.28%
实施例2 85.83% 58.28%
实施例3 86.42% 59.17%
实施例4 86.79% 59.27%
对比例1 73.56% 38.42%
对比例2 73.70% 39.15%
对比例3 75.96% 40.54%
对比例4 71.70% 41.38%
对比例5 72.61% 36.35%
对比例6 72.13% 36.87%
对比例7 72.07% 36.20%
对比例8 72.17% 37.73%
由表1可以看出,当磷酸酯型锂盐化合物和含S=O的化合物同时使用时,电池的高温稳定性和低温性能得到明显的改善,本申请采用磷酸酯型锂盐化合物和含S=O的化合物组合制备的锂离子电池具有突出的优势,主要表现在改善电池的高温循环容量保持率和提升电池低温放电容量保持率。实施例1~4明显优于其对比例。因此应用本申请的非水电解液,可使电池具有极高的低温性能和耐用性能,具有极高的市场价值和社会效益。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (7)

  1. 一种非水电解液,包括非水有机溶剂、导电锂盐和添加剂,其中,所述添加剂由至少一种磷酸酯型锂盐化合物和至少一种含S=O的化合物组成。
  2. 根据权利要求1所述的非水电解液,其中,所述磷酸酯型锂盐化合物具有式(I)所示的结构通式:
    Figure PCTCN2020073012-appb-100001
    其中,R 1、R 4独立地选自氢、C 1~4亚烷基、C 1~4卤代亚烷基或C 1~4亚烯基;R 2、R 3独立地选自氢、卤素、C 1~4烷基、C 1~4卤代烷基、C 6~10芳基、C 6~10卤代芳基、C 1-C 4腈基、C 1-C 6的烯基、烷氧基或羧基。
  3. 根据权利要求2所述的非水电解液,其中,所述磷酸酯型锂盐化合物为二乙烯基双(丙二酸)磷酸锂、二苯基双(丙二酸)磷酸锂、二氟双(丙二酸)磷酸锂或二氟双(4-氟丙二酸)磷酸锂中的一种或几种的混合物,所述磷酸酯型锂盐化合物的质量占所述非水电解液总质量的0.1%~10%。
  4. 根据权利要求1所述的非水电解液,其中,所述含S=O的化合物为甲烷二磺酸亚甲酯、硫酸乙烯酯、硫酸丙烯酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、乙烯磺酸内酯、1,3-丙烯磺酸内酯、1,4-丁烯磺酸内酯、1-甲基-1,3-丙烯磺酸内酯、二乙烯基砜、二甲基砜、二乙基砜、甲基乙基砜或甲基乙烯基砜中的一种或几种的混合物,所述含S=O的化合物的质量占所述非水电解液总质量的0.1%~10%。
  5. 根据权利要求1所述的非水电解液,其中,所述非水有机溶剂由环状溶剂和线型溶剂组成,其中,所述环状溶剂为碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、γ-丁内酯和γ-戊內酯中的一种或多种组合;所述线型溶剂为碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯、丙酸乙酯、丙酸乙酯、1,1,2,3-四氟乙基-2,2,3,3-四氟丙基醚中的一种或多种 组合,所述非水有机溶剂的质量为所述非水电解液总质量的55%~89.8%。
  6. 根据权利要求1所述的非水电解液,其中,所述导电锂盐为六氟磷酸锂、双氟磺酰亚胺锂、二氟草酸硼酸锂、双(三氟甲基磺酰)亚胺锂和双草酸硼酸锂中的一种或多种,所述导电锂盐的质量为所述非水电解液总质量的10%~25%。
  7. 一种锂离子电池,其中,所述锂离子电池包括权利要求1~6任一项所述的非水电解液、正极片、负极片及隔膜。
PCT/CN2020/073012 2019-01-31 2020-01-19 非水电解液及含有该非水电解液的锂离子电池 WO2020156282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910100098.0 2019-01-31
CN201910100098.0A CN109818060A (zh) 2019-01-31 2019-01-31 非水电解液及含有该非水电解液的锂离子电池

Publications (1)

Publication Number Publication Date
WO2020156282A1 true WO2020156282A1 (zh) 2020-08-06

Family

ID=66606280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073012 WO2020156282A1 (zh) 2019-01-31 2020-01-19 非水电解液及含有该非水电解液的锂离子电池

Country Status (2)

Country Link
CN (1) CN109818060A (zh)
WO (1) WO2020156282A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109818060A (zh) * 2019-01-31 2019-05-28 珠海光宇电池有限公司 非水电解液及含有该非水电解液的锂离子电池
CN111293362A (zh) * 2020-04-08 2020-06-16 河南华瑞高新材料有限公司 一种适用于镍锰体系的电解液
CN111883842A (zh) * 2020-08-07 2020-11-03 香河昆仑化学制品有限公司 一种非水电解液用功能非水性有机添加剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032300A (ja) * 2004-07-21 2006-02-02 Sony Corp 電解質および電池
WO2018181369A1 (ja) * 2017-03-30 2018-10-04 三井化学株式会社 電池用非水電解液及びリチウム二次電池
CN109818060A (zh) * 2019-01-31 2019-05-28 珠海光宇电池有限公司 非水电解液及含有该非水电解液的锂离子电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893442A (zh) * 2010-05-12 2013-01-23 三菱化学株式会社 非水系电解液及非水系电解液二次电池
JP5524347B2 (ja) * 2010-10-22 2014-06-18 三井化学株式会社 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
US20180138551A1 (en) * 2015-05-26 2018-05-17 Mitsui Chemicals, Inc. Non-aqueous electrolyte solution for battery and lithium secondary battery
JP2017016752A (ja) * 2015-06-26 2017-01-19 セントラル硝子株式会社 非水系電解液用添加剤及びその製法、非水系電解液、非水系電解液二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032300A (ja) * 2004-07-21 2006-02-02 Sony Corp 電解質および電池
WO2018181369A1 (ja) * 2017-03-30 2018-10-04 三井化学株式会社 電池用非水電解液及びリチウム二次電池
CN109818060A (zh) * 2019-01-31 2019-05-28 珠海光宇电池有限公司 非水电解液及含有该非水电解液的锂离子电池

Also Published As

Publication number Publication date
CN109818060A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
CN110336078B (zh) 一种硅基负极电解液及锂离子动力电池
CN103401020B (zh) 一种高电压锂离子电池电解液
CN103078140B (zh) 锂离子二次电池及其电解液
CN109818064A (zh) 一种高温高电压非水电解液及含该非水电解液的锂离子电池
CN110707360B (zh) 一种锂离子电池电解液、锂离子电池及应用
CN102610790B (zh) 锂离子二次电池及其正极片
WO2020156282A1 (zh) 非水电解液及含有该非水电解液的锂离子电池
CN107017432A (zh) 非水电解液及锂离子电池
WO2022267391A1 (zh) 电解液添加剂、非水电解液及其锂离子电池
CN109687026B (zh) 一种高压三元锂离子电池电解液及含该电解液的锂离子电池
CN105789611A (zh) 一种兼顾电池高低温循环性能的电解液及锂离子电池
CN111682264A (zh) 电解液添加剂、电解液和锂离子电池
WO2020098238A1 (zh) 一种锂二次电池电解液及含有该电解液的锂二次电池
CN107579301B (zh) 一种磷酸铁锂动力电池的化成工艺
CN108336408A (zh) 一种锂离子电池用非水电解液
CN109449489A (zh) 一种非水电解液及含有该非水电解液的锂离子电池
CN110085911B (zh) 非水电解液及含有该非水电解液的锂离子电池
US20230026621A1 (en) Secondary battery
CN108963336A (zh) 锂离子电池非水电解液及锂离子电池
WO2024001427A1 (zh) 一种电解液和含有该电解液的电池
CN114497738B (zh) 一种高温高电压型电解液及含有该电解液的电池
CN113964385B (zh) 电解液及其制备方法和用途
CN102593514B (zh) 一种锂离子电池高电压电解液添加剂及其电解液
WO2023020314A1 (zh) 一种非水电解液及锂电池
CN112467205B (zh) 一种高电压非水电解液及含有该电解液的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748151

Country of ref document: EP

Kind code of ref document: A1