WO2020098238A1 - 一种锂二次电池电解液及含有该电解液的锂二次电池 - Google Patents
一种锂二次电池电解液及含有该电解液的锂二次电池 Download PDFInfo
- Publication number
- WO2020098238A1 WO2020098238A1 PCT/CN2019/087217 CN2019087217W WO2020098238A1 WO 2020098238 A1 WO2020098238 A1 WO 2020098238A1 CN 2019087217 W CN2019087217 W CN 2019087217W WO 2020098238 A1 WO2020098238 A1 WO 2020098238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- lithium
- secondary battery
- phosphate
- lithium secondary
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the technical field of lithium secondary batteries, in particular to a lithium secondary battery electrolyte and a lithium secondary battery containing the electrolyte.
- lithium secondary batteries have been widely used in military, digital and civilian small electrical appliances due to their advantages such as high specific energy, high operating voltage, environmental friendliness, and long cycle life.
- advantages such as high specific energy, high operating voltage, environmental friendliness, and long cycle life.
- new high-capacity positive and negative electrode materials such as: high-nickel positive electrode, lithium-rich manganese-based positive electrode, silicon-based negative electrode
- methods of improving the charging voltage to improve the endurance of lithium secondary batteries have attracted more and more attention.
- these new positive and negative electrode materials are very easy to catalyze the decomposition of the electrolyte; on the other hand, under high pressure, the transition metal element in the positive electrode material of the lithium secondary battery is in a higher oxidation state and has a higher The oxidation activity makes the electrolyte easily oxidize on the positive electrode side to generate a large amount of gaseous substances, which in turn leads to battery flattening. At the same time, the transition metal in the high oxidation state has a small ionic radius and is easily dissolved out of the positive electrode body phase.
- the electrolyte phase deposits on the negative electrode side and destroys the solid electrolyte interface protective film (commonly known as SEI film) on the negative electrode surface, which in turn causes the battery capacity to rapidly decrease. Therefore, it is indeed necessary to develop an electrolyte that has high stability in lithium secondary batteries and can maintain excellent cycle performance.
- SEI film solid electrolyte interface protective film
- the purpose of the present invention is to solve the problems of low stability and poor cycle performance of the existing lithium battery electrolyte at high pressure and high temperature, and to provide a lithium secondary battery electrolyte and a lithium secondary battery containing the electrolyte.
- the electrolyte contains a small amount of phosphate-type lithium salt, which can preferentially form a stable and low-impedance electrode interface protective film on the surface of the positive electrode and the negative electrode, thereby improving the cycle performance of the lithium secondary battery and improving the performance of the lithium secondary battery.
- the service life can also improve the low temperature performance of the battery.
- the electrolyte for a lithium secondary battery is composed of an organic solvent, a conductive lithium salt, and an additive.
- the additive is a phosphate-type lithium salt.
- the phosphate-type lithium salt has the formula ( I) Structural formula shown,
- R 1 and R 4 are each independently a substituted or unsubstituted C 1-4 alkylene or halogenated alkylene or alkenylene;
- R 2 and R 3 are each independently hydrogen, halogen, Substituted or unsubstituted C 1-4 alkyl group or its halogenated alkyl group, substituted or unsubstituted C 6-10 aryl group or its halogenated aryl group, C 1 -C 4 nitrile group, C 1 -C 6 alkenyl group, Any one of alkoxy and carboxyl.
- a lithium secondary battery containing the above lithium secondary battery electrolyte the lithium secondary battery includes a positive electrode sheet containing a positive electrode active material, a negative electrode sheet containing a negative electrode active material, a separator, and a lithium secondary battery electrolyte.
- the electrolyte of the present invention can form a stable interface film on the surface of the positive electrode and the negative electrode by adding a phosphate-type lithium salt, thereby improving the cycle stability of the battery, and at the same time suppressing the gas produced by the battery at high temperature storage;
- the electrolyte of the present invention can form a low-impedance interface film on the surfaces of the positive electrode and the negative electrode by adding phosphate-type lithium salts, thereby improving the low-temperature performance of the battery.
- This embodiment describes an electrolyte for a lithium secondary battery.
- the electrolyte for a lithium secondary battery is composed of an organic solvent, a conductive lithium salt, and an additive.
- the additive is a phosphate-type lithium salt.
- the phosphate-type lithium salt has the structural formula shown in formula (I),
- R 1 and R 4 are each independently a substituted or unsubstituted C 1-4 alkylene or halogenated alkylene or alkenylene;
- R 2 and R 3 are each independently hydrogen, halogen, Substituted or unsubstituted C 1-4 alkyl or haloalkyl, substituted or unsubstituted C 6-10 aryl or haloaryl, C 1 -C 4 nitrile, C 1 -C 6 alkenyl, Any one of alkoxy and carboxyl.
- Embodiment 2 The lithium secondary battery electrolyte according to Embodiment 1, wherein the phosphate-type lithium salt is lithium divinyl bis (malonate) phosphate and diphenyl bis (malonate ) A mixture of one or more of lithium phosphate, lithium difluorobis (malonate) phosphate, and lithium difluorobis (4-fluoromalonate) phosphate.
- the phosphate-type lithium salt is lithium divinyl bis (malonate) phosphate and diphenyl bis (malonate )
- Embodiment 3 The lithium secondary battery electrolyte described in Embodiment 1 or 2, wherein the phosphate-type lithium salt accounts for 0.01% to 10.00% of the electrolyte.
- Embodiment 4 The lithium secondary battery electrolyte according to Embodiment 1, wherein the conductive lithium salt is lithium hexafluorophosphate and / or lithium difluorosulfonimide; the conductive lithium salt accounts for The quality score is 8.00% ⁇ 20.00%.
- Embodiment 5 The lithium secondary battery electrolyte according to Embodiment 1, wherein the mass fraction of the organic solvent in the electrolyte is 70.00% to 91.99%.
- Embodiment 6 The lithium secondary battery electrolyte according to Embodiment 5, wherein the organic solvent is composed of a ring solvent and a linear solvent; the mass ratio of the ring solvent and the linear solvent is (1-2): 3; the cyclic solvent is one or more combinations of ethylene carbonate, propylene carbonate, fluoroethylene carbonate, ⁇ -butyrolactone and ⁇ -valerolactone; The linear solvent is one or more combinations of dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, propyl methyl carbonate, and propyl propionate.
- the organic solvent is composed of a ring solvent and a linear solvent
- the mass ratio of the ring solvent and the linear solvent is (1-2): 3
- the cyclic solvent is one or more combinations of ethylene carbonate, propylene carbonate, fluoroethylene carbonate, ⁇ -butyrolactone and ⁇ -valerolactone
- the linear solvent is one
- Embodiment 7 A lithium secondary battery containing the lithium secondary battery electrolyte according to any one of Embodiments 1 to 6, the lithium secondary battery includes a positive electrode sheet containing a positive electrode active material, containing Negative electrode sheet of negative electrode active material, separator and electrolyte of lithium secondary battery.
- An electrolyte for a lithium secondary battery is composed of an organic solvent, a conductive lithium salt and an additive, the organic solvent accounts for 91.99% of the total mass of the electrolyte of the lithium secondary battery, and is composed of a ring solvent (ethylene carbonate) and a linear solvent ( Ethyl methyl carbonate), the mass ratio of ethylene carbonate and ethyl methyl carbonate is 1: 2.
- the lithium hexafluorophosphate accounts for 8.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium divinyl bis (malonate) phosphate with an amount of 0.01%.
- the electrolyte of this example was used for LiNi 0.6 Co 0.2 Mn 0.2 O 2 / graphite soft-pack battery.
- the organic solvent described in this example accounts for 85.00% of the total mass of the electrolyte of the lithium secondary battery, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass of ethylene carbonate and ethyl methyl carbonate The ratio is 1: 2.
- the lithium hexafluorophosphate accounts for 12.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium divinyl bis (malonate) phosphate in an amount of 3.00%.
- the electrolyte of this example was used for LiNi 0.5 Co 0.2 Mn 0.3 O 2 / graphite soft-pack battery.
- the organic solvent described in this example accounts for 82.00% of the total mass of the electrolyte of the lithium secondary battery.
- the mass ratio of ethyl methyl carbonate and dimethyl carbonate is 1: 1: 1.
- the lithium hexafluorophosphate accounts for 8.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium divinyl bis (malonate) phosphate in an amount of 10.00%.
- the electrolyte of this example was used for LiNi 0.8 Co 0.15 Al 0.05 O 2 / graphite soft pack battery.
- the organic solvent described in this example occupies 91.00% of the total mass of the electrolyte of the lithium secondary battery.
- the mass ratio of ethyl methyl carbonate and diethyl carbonate is 1: 1: 1.
- the lithium hexafluorophosphate accounts for 8.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium diphenyl bis (malonate) phosphate with an amount of 1.00%.
- the electrolytic solution of this example was used in a LiNi 0.5 Co 0.2 Mn 0.3 O 2 / silicon-carbon composite soft-pack battery.
- the organic solvent described in this example accounts for 85.00% of the total mass of the electrolyte of the lithium secondary battery. It is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate and diethyl carbonate). The mass ratio of ethyl methyl carbonate to diethyl carbonate is 3: 5: 2.
- the lithium hexafluorophosphate accounts for 12.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium diphenyl bis (malonate) phosphate, the amount is 3.00%.
- the electrolyte of this example was used for LiNi 0.6 Co 0.2 Mn 0.2 O 2 / graphite soft-pack battery.
- the organic solvent described in this example accounts for 81.00% of the total mass of the electrolyte of the lithium secondary battery.
- the mass ratio of ethyl methyl carbonate to diethyl carbonate is 3: 5: 2.
- the lithium hexafluorophosphate accounts for 14.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium diphenyl bis (malonate) phosphate in an amount of 5.00%.
- the electrolyte of this example was used for LiNi 0.5 Co 0.2 Mn 0.3 O 2 / graphite soft-pack battery.
- the organic solvent described in this example accounts for 82.00% of the total mass of the electrolyte of the lithium secondary battery, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass of ethylene carbonate and ethyl methyl carbonate The ratio is 1: 2.
- the lithium hexafluorophosphate accounts for 16.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium difluorobis (malonate) phosphate with an amount of 2.00%.
- the electrolyte of this example was used for LiCoO 2 / graphite soft-pack batteries.
- the organic solvent described in this example accounts for 85.00% of the total mass of the electrolyte of the lithium secondary battery, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass of ethylene carbonate and ethyl methyl carbonate The ratio is 1: 2.
- the lithium hexafluorophosphate accounts for 12.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium difluorobis (malonate) phosphate, the amount is 3.00%.
- the electrolyte of this example was used for LiCoO 2 / graphite soft-pack batteries.
- the organic solvent described in this example accounts for 74.00% of the total mass of the electrolyte of the lithium secondary battery, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass of ethylene carbonate and ethyl methyl carbonate The ratio is 1: 2.
- the lithium hexafluorophosphate accounts for 16.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium difluorobis (malonate) phosphate, the dosage is 10.00%.
- the electrolyte of this example was used for LiNi 1/3 Co 1/3 Mn 1/3 O 2 / graphite soft-pack battery.
- the organic solvent described in this example accounts for 83.99% of the total mass of the electrolyte of the lithium secondary battery, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate). The ratio is 1: 2.
- the lithium hexafluorophosphate accounts for 16.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium difluorobis (4-fluoromalonate) phosphate, and the amount is 0.01%.
- the electrolyte of this example was used for LiCoO 2 / graphite soft-pack batteries.
- the organic solvent described in this example accounts for 87.00% of the total mass of the electrolyte of the lithium secondary battery, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass of ethylene carbonate and ethyl methyl carbonate The ratio is 1: 2.
- the lithium hexafluorophosphate accounts for 8.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium difluorobis (4-fluoromalonate) phosphate, the amount is 5.00%.
- the electrolyte of this example was used for LiCoO 2 / graphite soft-pack batteries.
- the organic solvent described in this example accounts for 82.00% of the total mass of the electrolyte of the lithium secondary battery, and is composed of a cyclic solvent (ethylene carbonate) and a linear solvent (ethyl methyl carbonate), and the mass of ethylene carbonate and ethyl methyl carbonate The ratio is 1: 2.
- the lithium hexafluorophosphate accounts for 12.00% of the total mass of the electrolyte of the lithium secondary battery.
- the electrolyte additive is lithium difluorobis (4-fluoromalonate) phosphate, the amount is 6.00%.
- the electrolyte of this example was used for LiNi 0.8 Co 0.1 Mn 0.1 O 2 / graphite soft-pack battery.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 1, except that lithium divinyl bis (malonate) phosphate is not used, and this electrolyte is applied to the battery according to the same method as Example 1. Test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 2, except that the lithium divinyl bis (malonate) phosphate compound is not used, and this electrolyte is applied to the battery according to the same method as Example 2 To test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 3, except that lithium divinyl bis (malonate) phosphate is not used, and this electrolyte is applied to the battery according to the same method as Example 3 Test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 4, except that the lithium diphenyl bis (malonate) phosphate compound is not used, and this electrolyte is applied to the battery in the same way as Example To test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 5, except that the lithium diphenylbis (malonate) phosphate compound is not used, and this electrolyte is applied to the battery according to the same method as Example 5. To test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 6, except that the lithium diphenyl bis (malonate) phosphate compound is not used, and this electrolyte is applied to the battery according to the same method as Example 6 To test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 7, except that the lithium difluorobis (malonate) phosphate compound is not used, and this electrolyte is applied to the battery according to the same method as Example 7 Test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 8, except that the lithium difluorobis (malonate) phosphate compound is not used, and this electrolyte is applied to the battery according to the same method as that of Example 8. Test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 9, except that the lithium difluorobis (malonate) phosphate compound is not used, and this electrolyte is applied to the battery according to the same method as Example 9 Test its performance.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 10, except that lithium difluorobis (4-fluoromalonate) phosphate compound is not used, and this electrolyte is applied in the same way as Example 10 Test its performance in the battery.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 11, except that lithium difluorobis (4-fluoromalonate) phosphate compound is not used, and this electrolyte is applied in the same manner as in Example 11. Test its performance in the battery.
- the preparation method of the electrolyte of this comparative example is the same as that of Example 12, except that the lithium difluorobis (4-fluoromalonate) phosphate compound is not used, and this electrolyte is applied in the same manner as in Example 12. Test its performance in the battery.
- the positive and negative electrode plates are prepared according to the conventional method, and the electrolyte prepared in each example is used to inject liquid in the glove box using the above
- the 785075 soft pack battery was prepared by the pole piece, and the charge and discharge test of the prepared 785075 battery was performed with the Xinwei (BS-9300R) battery test system, and compared with the battery prepared by the corresponding comparative electrolyte.
- the battery is charged and discharged at room temperature at a rate of 2.5 to 4.3V1C and stored at 60 ° C when fully charged.
- the expansion rate is calculated as follows:
- T is the thickness of the battery after high-temperature storage
- T 0 is the thickness of the battery before high-temperature storage. See Table 1 for the results of the lithium secondary battery test.
- Example 1 89.3% 1.93%
- Example 2 92.3% 0.98%
- Example 3 85.5% 0.98%
- Example 4 91.9% 1.36%
- Example 5 95.1% 1.36%
- Example 6 89.3% 1.97%
- Example 7 85.1% 1.27%
- Example 8 90.4% 0.96%
- Example 9 84.1% 1.03%
- Example 10 95.3% 1.04%
- Example 11 84,9% 1.26%
- Comparative Example 7 75.9% 15.38% Comparative Example 8 78.0% 14.38% Comparative Example 9 79.1% 18.83% Comparative Example 10 74.7% 16.83% Comparative Example 11 76.7% 9.73% Comparative Example 12 76.5% 10.37%
- the additive has a significant beneficial effect on the capacity retention rate of the lithium secondary battery at normal temperature cycle and the expansion rate of the high-temperature full-charge storage.
- the addition of the phosphate ester lithium salt to the electrolyte has outstanding advantages
- the main performance is to improve the battery's cycle capacity retention rate and reduce the battery expansion rate at high temperature when fully charged.
- Examples 1-12 are clearly superior to their comparative examples. Therefore, the battery using the electrolyte of the present invention has extremely high safety performance and durability, and has extremely high market value and social benefits.
- the above is a specific description of possible embodiments of the present invention, but it does not limit the protection scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
一种锂二次电池电解液及含有该电解液的锂二次电池,属于锂二次电池技术领域。本发明的电解液包括有机溶剂、导电锂盐和添加剂,添加剂包括磷酸酯型锂盐。所述的磷酸酯型锂盐为二乙烯基双(丙二酸)磷酸锂、二苯基双(丙二酸)磷酸锂、二氟双(丙二酸)磷酸锂、二氟双(4-氟丙二酸)磷酸锂中的一种或多种的混合物。所述的磷酸酯型锂盐占电解液的质量分数为0.01%~10.00%。所述的导电锂盐为六氟磷酸锂和/或双氟磺酰亚胺锂;所述的导电锂盐占电解液的质量分数为8.00%~20.00%。所述的有机溶剂占电解液的质量分数为70.00%~91.99%。本发明的电解液通过添加磷酸酯型锂盐,在正极和负极表面形成稳定且阻抗低的界面膜,从而提高电池的常温和低温循环稳定性,同时抑制电池高温存储产气。
Description
本发明属于锂二次电池技术领域,具体涉及一种锂二次电池电解液及含有该电解液的锂二次电池。
目前,锂二次电池由于具有高比能量、高工作电压、环境友好、循环寿命长等优点,在军事、数码和民用小型电器等领域已经得到了广泛的应用。但是,随着电子产品和电动汽车的快速发展,对锂二次电池的续航能力提出了更高的要求。因此,新型的高容量正负极材料(如:高镍正极,富锂锰基正极、硅基负极)和提高充电电压等提高锂二次电池续航能力的方法越来越受到人们的关注。
然而,一方面,这些新型的正负极材料极易催化电解液的分解;另一方面,在高压下,锂二次电池正极材料中的过渡金属元素处于较高的氧化态,具有较高的氧化活性,使得电解液在正极侧极易氧化而产生大量的气体物质,进而导致电池胀气;同时,高价氧化态的过渡金属由于具有较小的离子半径,极易从正极本体相中溶出,经电解液相沉积到负极侧而破坏负极表面的固体电解质界面保护膜(俗称SEI膜),进而导致电池容量急剧衰减。因此,确有必要开发一种在锂二次电池中具有高的稳定性且能保持优异的循环性能的电解液。
发明内容
本发明的目的是为了解决现有的锂电池电解液在高压和高温下稳定性低、循环性能差的问题,提供一种锂二次电池电解液及含有该电解液的锂二次电池,所述的电解液中含有少量的磷酸酯型锂盐,其可以优先在正极和负极电极表面形成稳定且低阻抗的电极界面保护膜,从而改善锂二次电池的循环性能,提高锂二次电池的使用寿命,同时可以改善电池的低温性能。
为实现上述目的,本发明采取的技术方案如下:
一种锂二次电池电解液,所述的锂二次电池电解液由有机溶剂、导电锂盐和添加剂组成,所述的添加剂为磷酸酯型锂盐;所述磷酸酯型锂盐具有式(I)所示的结构通式,
其中,R
1、R
4各自独立地分别为取代或未取代的C
1~4亚烷基或其卤代亚烷基、亚烯基;R
2、R
3各自独立地分别为氢、卤素、取代或未取代的C
1~4烷基或其卤代烷基、取代或未取代C
6~10芳基或其卤代芳基、C
1-C
4腈基、C
1-C
6的烯基、烷氧基和羧基中的任一种。
一种含有上述的锂二次电池电解液的锂二次电池,所述的锂二次电池包括含有正极活性材料的正极片、含有负极活性材料的负极片、隔膜和锂二次电池电解液。
本发明相对于现有技术的有益效果是:
(1)本发明的电解液通过添加磷酸酯型锂盐,能够在正极和负极表面形成稳定的界面膜,从而提高电池的循环稳定性,同时抑制电池高温存储产气;
(2)本发明的电解液通过添加磷酸酯型锂盐,能够在正极和负极表面形成低阻抗的界面膜,从而改善电池的低温性能。
下面结合实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
具体实施方式一:本实施方式记载的是一种锂二次电池电解液,所述的锂二次电池电解液由有机溶剂、导电锂盐和添加剂组成,所述的添加剂为磷酸酯型锂盐;所述磷酸酯型锂盐具有式(I)所示的结构通式,
其中,R
1、R
4各自独立地分别为取代或未取代的C
1~4亚烷基或其卤代亚烷基、亚烯基; R
2、R
3各自独立地分别为氢、卤素、取代或未取代的C
1~4烷基或其卤代烷基、取代或未取代C
6~10芳基或其卤代芳基、C
1-C
4腈基、C
1-C
6的烯基、烷氧基和羧基中的任一种。
具体实施方式二:具体实施方式一所述的一种锂二次电池电解液,所述的磷酸酯型锂盐为二乙烯基双(丙二酸)磷酸锂、二苯基双(丙二酸)磷酸锂、二氟双(丙二酸)磷酸锂、二氟双(4-氟丙二酸)磷酸锂中的一种或多种的混合物。
具体实施方式三:具体实施方式一或二所述的一种锂二次电池电解液,所述的磷酸酯型锂盐占电解液的质量分数为0.01%~10.00%。
具体实施方式四:具体实施方式一所述的一种锂二次电池电解液,所述的导电锂盐为六氟磷酸锂和/或双氟磺酰亚胺锂;所述的导电锂盐占电解液的质量分数为8.00%~20.00%。
具体实施方式五:具体实施方式一所述的一种锂二次电池电解液,所述的有机溶剂占电解液的质量分数为70.00%~91.99%。
具体实施方式六:具体实施方式五所述的一种锂二次电池电解液,所述的有机溶剂由环状溶剂和线型溶剂组成;所述的环状溶剂和线型溶剂的质量比为(1~2):3;所述的环状溶剂为碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、γ-丁内酯和γ-戊內酯中的一种或多种组合;所述的线型溶剂为碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯、碳酸甲丙酯、丙酸丙酯中的一种或多种组合。
具体实施方式七:一种含有具体实施方式一至六任一具体实施方式所述的锂二次电池电解液的锂二次电池,所述的锂二次电池包括含有正极活性材料的正极片、含有负极活性材料的负极片、隔膜和锂二次电池电解液。
实施例1
一种锂二次电池电解液,由有机溶剂、导电锂盐和添加剂构成,所述有机溶剂占锂二次电池电解液总质量的91.99%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。所述六氟磷酸锂占锂二次电池电解液总质量的8.00%。所述电解液添加剂为二乙烯基双(丙二酸)磷酸锂,用量0.01%。将本实施例的电解液用于LiNi
0.6Co
0.2Mn
0.2O
2/石墨软包电池。
实施例2
本实施例所述有机溶剂占锂二次电池电解液总质量的85.00%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。所述六氟磷酸锂占锂二次电池电解液总质量的12.00%。所述电解液添加剂为二乙烯基双(丙二酸)磷酸锂,用量3.00%。将本实施例的电解液用于LiNi
0.5Co
0.2Mn
0.3O
2/石墨软包电池。
实施例3
本实施例所述有机溶剂占锂二次电池电解液总质量的82.00%,由环状溶剂(碳酸乙烯酯)和线型溶剂(碳酸甲乙酯、碳酸二甲酯)组成,碳酸乙烯酯、碳酸甲乙酯和碳酸二甲酯的质量比为1:1:1。所述六氟磷酸锂占锂二次电池电解液总质量的8.00%。所述电解液添加剂为二乙烯基双(丙二酸)磷酸锂,用量10.00%。将本实施例的电解液用于LiNi
0.8Co
0.15Al
0.05O
2/石墨软包电池。
实施例4
本实施例所述有机溶剂占锂二次电池电解液总质量的91.00%,由环状溶剂(碳酸乙烯酯)和线型溶剂(碳酸甲乙酯、碳酸二乙酯)组成,碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯的质量比为1:1:1。所述六氟磷酸锂占锂二次电池电解液总质量的8.00%。所述电解液添加剂为二苯基双(丙二酸)磷酸锂,用量1.00%。将本实施例的电解液用于LiNi
0.5Co
0.2Mn
0.3O
2/硅碳复合软包电池。
实施例5
本实施例所述有机溶剂占锂二次电池电解液总质量的85.00%,由环状溶剂(碳酸乙烯酯)和线型溶剂(碳酸甲乙酯和碳酸二乙酯)组成,碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯的质量比为3:5:2。所述六氟磷酸锂占锂二次电池电解液总质量的12.00%。所述电解液添加剂为二苯基双(丙二酸)磷酸锂,用量3.00%。将本实施例的电解液用于LiNi
0.6Co
0.2Mn
0.2O
2/石墨软包电池。
实施例6
本实施例所述有机溶剂占锂二次电池电解液总质量的81.00%,由环状溶剂(碳酸乙烯酯)和线型溶剂(碳酸甲乙酯和碳酸二乙酯)组成,碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯的质量比为3:5:2。所述六氟磷酸锂占锂二次电池电解液总质量的14.00%。所述电解液添加剂为二苯基双(丙二酸)磷酸锂,用量5.00%。将本实施例的电解液用于LiNi
0.5Co
0.2Mn
0.3O
2/石墨软包电池。
实施例7
本实施例所述有机溶剂占锂二次电池电解液总质量的82.00%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。所述六氟磷酸锂占锂二次电池电解液总质量的16.00%。所述电解液添加剂为二氟双(丙二酸)磷酸锂,用量2.00%。将本实施例的电解液用于LiCoO
2/石墨软包电池。
实施例8
本实施例所述有机溶剂占锂二次电池电解液总质量的85.00%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。所述六氟磷酸锂占锂二次电池电解液总质量的12.00%。所述电解液添加剂为二氟双(丙二酸)磷酸锂,用量3.00%。将本实施例的电解液用于LiCoO
2/石墨软包电池。
实施例9
本实施例所述有机溶剂占锂二次电池电解液总质量的74.00%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。所述六氟磷酸锂占锂二次电池电解液总质量的16.00%。所述电解液添加剂为二氟双(丙二酸)磷酸锂,用量10.00%。将本实施例的电解液用于LiNi
1/3Co
1/3Mn
1/3O
2/石墨软包电池。
实施例10
本实施例所述有机溶剂占锂二次电池电解液总质量的83.99%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。所述六氟磷酸锂占锂二次电池电解液总质量的16.00%。所述电解液添加剂为二氟双(4-氟丙二酸)磷酸锂,用量0.01%。将本实施例的电解液用于LiCoO
2/石墨软包电池。
实施例11
本实施例所述有机溶剂占锂二次电池电解液总质量的87.00%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。所述六氟磷酸锂占锂二次电池电解液总质量的8.00%。所述电解液添加剂为二氟双(4-氟丙二酸)磷酸锂,用量5.00%。将本实施例的电解液用于LiCoO
2/石墨软包电池。
实施例12
本实施例所述有机溶剂占锂二次电池电解液总质量的82.00%,由环状溶剂(碳酸乙烯酯)和线性溶剂(碳酸甲乙酯)组成,碳酸乙烯酯和碳酸甲乙酯的质量比为1:2。所述六氟磷酸锂占锂二次电池电解液总质量的12.00%。所述电解液添加剂为二氟双(4-氟丙二酸)磷酸锂,用量6.00%。将本实施例的电解液用于LiNi
0.8Co
0.1Mn
0.1O
2/石墨软包电池。
对比例1
本对比例的电解液的制备方法与实施例1相同,所不同的是,不使用二乙烯基双(丙二酸)磷酸锂,将此电解液按照与实施例1相同的方法应用于电池中测试其性能。
对比例2
本对比例的电解液的制备方法与实施例2相同,所不同的是,不使用二乙烯基双(丙二酸)磷酸锂化合物,将此电解液按照与实施例2相同的方法应用于电池中测试其性能。
对比例3
本对比例的电解液的制备方法与实施例3相同,所不同的是,不使用二乙烯基双(丙二酸)磷酸锂,将此电解液按照与实施例3相同的方法应用于电池中测试其性能。
对比例4
本对比例的电解液的制备方法与实施例4相同,所不同的是,不使用二苯基双(丙二酸)磷酸锂化合物,将此电解液按照与实施例4相同的方法应用于电池中测试其性能。
对比例5
本对比例的电解液的制备方法与实施例5相同,所不同的是,不使用二苯基双(丙二酸)磷酸锂化合物,将此电解液按照与实施例5相同的方法应用于电池中测试其性能。
对比例6
本对比例的电解液的制备方法与实施例6相同,所不同的是,不使用二苯基双(丙二酸)磷酸锂化合物,将此电解液按照与实施例6相同的方法应用于电池中测试其性能。
对比例7
本对比例的电解液的制备方法与实施例7相同,所不同的是,不使用二氟双(丙二酸)磷酸锂化合物,将此电解液按照与实施例7相同的方法应用于电池中测试其性能。
对比例8
本对比例的电解液的制备方法与实施例8相同,所不同的是,不使用二氟双(丙二酸)磷酸锂化合物,将此电解液按照与实施例8相同的方法应用于电池中测试其性能。
对比例9
本对比例的电解液的制备方法与实施例9相同,所不同的是,不使用二氟双(丙二酸)磷酸锂化合物,将此电解液按照与实施例9相同的方法应用于电池中测试其性能。
对比例10
本对比例的电解液的制备方法与实施例10相同,所不同的是,不使用二氟双(4-氟丙二酸)磷酸锂化合物,将此电解液按照与实施例10相同的方法应用于电池中测试其性能。
对比例11
本对比例的电解液的制备方法与实施例11相同,所不同的是,不使用二氟双(4-氟丙二酸)磷酸锂化合物,将此电解液按照与实施例11相同的方法应用于电池中测试其性能。
对比例12
本对比例的电解液的制备方法与实施例12相同,所不同的是,不使用二氟双(4-氟丙二酸)磷酸锂化合物,将此电解液按照与实施例12相同的方法应用于电池中测试其性能。
实施例和对比例的应用实验:
充放电测试条件:为了测量使用本发明制得的电解液的电池充放电性能,进行以下操作:按照常规方法制备正负极片,使用各实施例制备的电解液在手套箱中注液使用上述极片制备785075型软包电池,用新威(BS-9300R型)电池测试系统对制备的785075型电池进行充放电测试,同时与对应的对比例电解液制备的电池进行比较。电池置于常温以2.5~4.3V1C倍率下充放电循环和置于60℃满电存储。膨胀率计算方式为下式:
其中,T为高温存储后的电池厚度,T
0为高温存储前的电池厚度。锂二次电池测试部分结果参见表1。
表1实施例和对比例的充放电循环和高温存储后测试结果:
测试指标 | 常温下循环300周后容量保持率 | 高温存储后电池膨胀率 |
实施例1 | 89.3% | 1.93% |
实施例2 | 92.3% | 0.98% |
实施例3 | 85.5% | 0.98% |
实施例4 | 91.9% | 1.36% |
实施例5 | 95.1% | 1.36% |
实施例6 | 89.3% | 1.97% |
实施例7 | 85.1% | 1.27% |
实施例8 | 90.4% | 0.96% |
实施例9 | 84.1% | 1.03% |
实施例10 | 95.3% | 1.04% |
实施例11 | 84,9% | 1.26% |
实施例12 | 89.9% | 1.64% |
对比例1 | 73.2% | 8.93% |
对比例2 | 71.4% | 10.78% |
对比例3 | 74.3% | 6.8% |
对比例4 | 72.4% | 9.53% |
对比例5 | 70.3% | 10.97% |
对比例6 | 72.6% | 12.85% |
对比例7 | 75.9% | 15.38% |
对比例8 | 78.0% | 14.38% |
对比例9 | 79.1% | 18.83% |
对比例10 | 74.7% | 16.83% |
对比例11 | 76.7% | 9.73% |
对比例12 | 76.5% | 10.37% |
由表1可以看出,添加剂对锂二次电池常温循环的容量保持率和高温满电存储的膨胀率有明显的有利效果,本发明将磷酸酯型锂盐添加到电解液中具有突出的优势,主要表现在提升电池的循环容量保持率和降低高温下满电存储的电池膨胀率。实施例1-12明显优于其对比例。因此应用本发明电解液的电池具有极高的安全性能和耐用性能,具有极高的市场价值和社会效益。以上是针对本发明的可行实施例的具体说明,但并不能限制本发明的保护范围。
Claims (7)
- 根据权利要求1所述的一种锂二次电池电解液,其特征在于:所述的磷酸酯型锂盐为二乙烯基双(丙二酸)磷酸锂、二苯基双(丙二酸)磷酸锂、二氟双(丙二酸)磷酸锂、二氟双(4-氟丙二酸)磷酸锂中的一种或多种的混合物。
- 根据权利要求1或2所述的一种锂二次电池电解液,其特征在于:所述的磷酸酯型锂盐占电解液的质量分数为0.01%~10.00%。
- 根据权利要求1所述的一种锂二次电池电解液,其特征在于:所述的导电锂盐为六氟磷酸锂和/或双氟磺酰亚胺锂;所述的导电锂盐占电解液的质量分数为8.00%~20.00%。
- 根据权利要求1所述的一种锂二次电池电解液,其特征在于:所述的有机溶剂占电解液的质量分数为70.00%~91.99%。
- 根据权利要求5所述的一种锂二次电池电解液,其特征在于:所述的有机溶剂由环状溶剂和线型溶剂组成;所述的环状溶剂和线型溶剂的质量比为(1~2):3;所述的环状溶剂为碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、γ-丁内酯和γ-戊內酯中的一种或多种组合;所述的线型溶剂为碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯、碳酸甲丙酯、丙酸丙酯中的一种或多种组合。
- 一种含有权利要求1~6任一权利要求所述的锂二次电池电解液的锂二次电池,其特征在于:所述的锂二次电池包括含有正极活性材料的正极片、含有负极活性材料的负极片、隔膜和锂二次电池电解液。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811368144.7A CN109301330A (zh) | 2018-11-16 | 2018-11-16 | 一种锂二次电池电解液及含有该电解液的锂二次电池 |
CN201811368144.7 | 2018-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020098238A1 true WO2020098238A1 (zh) | 2020-05-22 |
Family
ID=65144246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/087217 WO2020098238A1 (zh) | 2018-11-16 | 2019-05-16 | 一种锂二次电池电解液及含有该电解液的锂二次电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109301330A (zh) |
WO (1) | WO2020098238A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109301330A (zh) * | 2018-11-16 | 2019-02-01 | 珠海光宇电池有限公司 | 一种锂二次电池电解液及含有该电解液的锂二次电池 |
CN109687026B (zh) * | 2019-03-04 | 2020-12-01 | 杉杉新材料(衢州)有限公司 | 一种高压三元锂离子电池电解液及含该电解液的锂离子电池 |
JP7260676B2 (ja) * | 2019-05-23 | 2023-04-18 | 株式会社厚成 | 二次電池用電解質添加剤、その製造方法、前記添加剤を含む電解質組成物及び二次電池 |
JP7463501B2 (ja) * | 2019-12-25 | 2024-04-08 | 寧徳新能源科技有限公司 | 電気化学装置及びそれを含む電子装置 |
CN112186252B (zh) * | 2020-09-30 | 2022-11-22 | 香河昆仑新能源材料股份有限公司 | 一种含双氟代丙二酸磷酰亚胺锂的电解液、使用该电解液的锂离子电池 |
CN112186249B (zh) * | 2020-09-30 | 2022-11-15 | 香河昆仑新能源材料股份有限公司 | 一种含氟代丙二酸二氟磷酸亚胺锂的电解液、含有该电解液的锂离子电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101432910A (zh) * | 2005-04-25 | 2009-05-13 | 费罗公司 | 非水电解液 |
CN101755354A (zh) * | 2007-07-11 | 2010-06-23 | 诺莱特科技有限公司 | 非水电解溶液以及包含该电解溶液的电化学电池系统 |
CN102893441A (zh) * | 2010-05-12 | 2013-01-23 | 三菱化学株式会社 | 非水系电解液二次电池 |
CN106030889A (zh) * | 2014-02-25 | 2016-10-12 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质二次电池 |
CN107534185A (zh) * | 2015-05-26 | 2018-01-02 | 三井化学株式会社 | 电池用非水电解液及锂二次电池 |
CN109301330A (zh) * | 2018-11-16 | 2019-02-01 | 珠海光宇电池有限公司 | 一种锂二次电池电解液及含有该电解液的锂二次电池 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2571089A4 (en) * | 2010-05-12 | 2017-03-15 | Mitsubishi Chemical Corporation | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery |
CN106450438A (zh) * | 2016-10-17 | 2017-02-22 | 广州天赐高新材料股份有限公司 | 一种锂离子电池电解液及使用该电解液的锂离子电池 |
-
2018
- 2018-11-16 CN CN201811368144.7A patent/CN109301330A/zh active Pending
-
2019
- 2019-05-16 WO PCT/CN2019/087217 patent/WO2020098238A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101432910A (zh) * | 2005-04-25 | 2009-05-13 | 费罗公司 | 非水电解液 |
CN101755354A (zh) * | 2007-07-11 | 2010-06-23 | 诺莱特科技有限公司 | 非水电解溶液以及包含该电解溶液的电化学电池系统 |
CN102893441A (zh) * | 2010-05-12 | 2013-01-23 | 三菱化学株式会社 | 非水系电解液二次电池 |
CN106030889A (zh) * | 2014-02-25 | 2016-10-12 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质二次电池 |
CN107534185A (zh) * | 2015-05-26 | 2018-01-02 | 三井化学株式会社 | 电池用非水电解液及锂二次电池 |
CN109301330A (zh) * | 2018-11-16 | 2019-02-01 | 珠海光宇电池有限公司 | 一种锂二次电池电解液及含有该电解液的锂二次电池 |
Also Published As
Publication number | Publication date |
---|---|
CN109301330A (zh) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020098238A1 (zh) | 一种锂二次电池电解液及含有该电解液的锂二次电池 | |
WO2021110165A1 (zh) | 一种低内阻的锂二次电池电解液及锂二次电池 | |
WO2021109687A1 (zh) | 一种高温型锂二次电池电解液及电池 | |
WO2018006563A1 (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
WO2018099091A1 (zh) | 一种电解液及二次电池 | |
WO2018103335A1 (zh) | 一种二次电池及注液方法 | |
WO2020238191A1 (zh) | 一种降低电池阻抗的锂二次电池电解液及锂二次电池 | |
CN105206874A (zh) | 一种含有炔基硅烷的锂离子电池电解液及使用该电解液的锂离子电池 | |
CN102610790B (zh) | 锂离子二次电池及其正极片 | |
WO2019080258A1 (zh) | 锂二次电池电解液及其锂二次电池 | |
WO2022143189A1 (zh) | 一种锂离子电池 | |
WO2019153635A1 (zh) | 一种用于稳定锂金属电池的醚酯复合电解液 | |
WO2022267391A1 (zh) | 电解液添加剂、非水电解液及其锂离子电池 | |
WO2018099092A1 (zh) | 一种非水电解液及锂离子电池 | |
WO2018094818A1 (zh) | 锂离子电池非水电解液及锂离子电池 | |
WO2019200656A1 (zh) | 锂二次电池电解液及其锂二次电池 | |
WO2017020430A1 (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
WO2022160464A1 (zh) | 一种锂离子电解液及其制备方法和应用 | |
CN108987808A (zh) | 一种高电压锂离子电池非水电解液及锂离子电池 | |
WO2020156282A1 (zh) | 非水电解液及含有该非水电解液的锂离子电池 | |
WO2020087667A1 (zh) | 一种锂离子电池非水电解液及使用该电解液的锂离子电池 | |
WO2023015791A1 (zh) | 一种电解液及包含该电解液的电池 | |
CN113299996A (zh) | 一种三元正极材料与负极硅氧-碳复合负极材料锂离子电池用非水电解液 | |
KR102412568B1 (ko) | 리튬이온 배터리 비수전해액 및 리튬이온 배터리 | |
WO2023123673A1 (zh) | 一种非水电解液及含有该非水电解液的锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19885355 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19885355 Country of ref document: EP Kind code of ref document: A1 |