WO2018181369A1 - 電池用非水電解液及びリチウム二次電池 - Google Patents

電池用非水電解液及びリチウム二次電池 Download PDF

Info

Publication number
WO2018181369A1
WO2018181369A1 PCT/JP2018/012525 JP2018012525W WO2018181369A1 WO 2018181369 A1 WO2018181369 A1 WO 2018181369A1 JP 2018012525 W JP2018012525 W JP 2018012525W WO 2018181369 A1 WO2018181369 A1 WO 2018181369A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
additive
mass
battery
lithium
Prior art date
Application number
PCT/JP2018/012525
Other languages
English (en)
French (fr)
Inventor
藤山 聡子
敬 菅原
仁志 大西
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP18777991.3A priority Critical patent/EP3605707A4/en
Priority to CN201880020936.7A priority patent/CN110506358B/zh
Priority to JP2019509919A priority patent/JP6913159B2/ja
Priority to US16/498,466 priority patent/US20210043971A1/en
Publication of WO2018181369A1 publication Critical patent/WO2018181369A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a non-aqueous electrolyte for a battery and a lithium secondary battery.
  • the lithium secondary battery includes, for example, a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, and a non-aqueous electrolyte for a battery containing a lithium salt and a non-aqueous solvent.
  • a positive electrode active material used for the positive electrode for example, lithium metal oxides such as LiCoO 2 , LiMnO 2 , LiNiO 2 , and LiFePO 4 are used.
  • non-aqueous electrolyte for batteries a mixed solvent (non-aqueous solvent) of carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2.
  • a Li electrolyte such as LiN (SO 2 CF 2 CF 3 ) 2 is mixed is used.
  • negative electrode active materials used for negative electrodes include metal lithium, metal compounds capable of occluding and releasing lithium (metal simple substance, oxide, alloy with lithium, etc.) and carbon materials, particularly lithium. Lithium secondary batteries using coke, artificial graphite, and natural graphite that can be occluded and released have been put into practical use.
  • a battery for example, a lithium secondary battery
  • various additives are added to the battery non-aqueous electrolyte.
  • a battery non-aqueous electrolyte containing at least one of lithium monofluorophosphate and lithium difluorophosphate as an additive is known as a battery non-aqueous electrolyte capable of improving storage characteristics after charging of the battery.
  • a battery non-aqueous electrolyte capable of improving storage characteristics after charging of the battery.
  • a battery non-aqueous electrolyte capable of improving battery cycle characteristics and storage characteristics
  • a battery non-aqueous electrolyte containing lithium bis (oxalato) borate as an additive is known (for example, the following patent document). 2).
  • Patent Document 1 Japanese Patent No. 3439085
  • Patent Document 2 Japanese Patent No. 3730855
  • the subject of this indication is providing the non-aqueous electrolyte for batteries which can reduce the battery resistance after a preservation
  • Means for solving the above problems include the following aspects. ⁇ 1> Additive A which is at least one selected from the group consisting of compounds represented by the following formula (A); An additive B that is at least one selected from the group consisting of lithium monofluorophosphate and lithium difluorophosphate; An additive C that is at least one selected from the group consisting of compounds represented by the following formula (C); An electrolyte that is a lithium salt other than the additive A, the additive B, and the additive C; A non-aqueous electrolyte for batteries containing
  • R 1 represents a hydrocarbon group having 1 to 6 carbon atoms substituted with at least one fluorine atom, a hydrocarbon oxy group having 1 to 6 carbon atoms substituted with at least one fluorine atom, or Represents a fluorine atom.
  • M represents a boron atom or a phosphorus atom
  • X represents a halogen atom
  • R represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, a carbon number
  • m is 1 to 3
  • N represents an integer of 0 to 4, and q represents 0 or 1.
  • M represents a boron atom or a phosphorus atom
  • X represents a halogen atom
  • m represents an integer of 1 to 3
  • n represents an integer of 0 to 4.
  • ⁇ 3> The non-aqueous battery according to ⁇ 1> or ⁇ 2>, wherein the additive C is at least one selected from the group consisting of lithium bis (oxalato) borate and lithium difluoro (oxalato) borate. Electrolytic solution.
  • the content of the additive A is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte for a battery
  • the content of the additive B is 0.001% by mass to 10% by mass with respect to the total amount of the battery non-aqueous electrolyte
  • the nonaqueous battery for battery according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the additive C is 0.001% by mass to 10% by mass with respect to the total amount of the nonaqueous electrolytic solution for battery.
  • Electrolytic solution is 0.001% by mass to 10% by mass with respect to the total amount of the nonaqueous electrolytic solution for battery.
  • the content of the additive A is 0.1% by mass to 2.0% by mass with respect to the total amount of the non-aqueous electrolyte for a battery
  • the content of the additive B is 0.1% by mass to 2.0% by mass with respect to the total amount of the non-aqueous electrolyte for a battery
  • the content of the additive C is 0.1% by mass to 2.0% by mass with respect to the total amount of the nonaqueous electrolytic solution for battery.
  • the ratio of the content of the additive A to the content of the additive B is 0.1 to 2.0
  • Y 1 and Y 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • ⁇ 8> The battery non-aqueous electrolyte according to ⁇ 7>, wherein the content of the additive D is 0.001% by mass to 10% by mass with respect to the total amount of the battery non-aqueous electrolyte.
  • ⁇ 9> a positive electrode; Lithium metal, lithium-containing alloys, metals or alloys that can be alloyed with lithium, oxides that can be doped / undoped with lithium ions, transition metal nitrides that can be doped / undoped with lithium ions, and lithium A negative electrode containing, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of ion doping and dedoping; ⁇ 1> to the nonaqueous electrolyte for battery according to any one of ⁇ 8>, Including lithium secondary battery.
  • ⁇ 10> A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to ⁇ 9>.
  • a non-aqueous electrolyte for a battery that can reduce battery resistance after storage, and a lithium secondary battery using the non-aqueous electrolyte for a battery.
  • FIG. 1 It is a schematic perspective view which shows an example of the laminate type battery which is an example of the lithium secondary battery of this indication. It is a schematic sectional drawing of the thickness direction of the laminated electrode body accommodated in the laminate type battery shown in FIG. It is a schematic sectional drawing which shows an example of the coin-type battery which is another example of the lithium secondary battery of this indication.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means.
  • Non-aqueous electrolyte for batteries The non-aqueous electrolyte for battery of the present disclosure (hereinafter also simply referred to as “non-aqueous electrolyte”)
  • An additive A that is at least one selected from the group consisting of compounds represented by the following formula (A);
  • An additive B that is at least one selected from the group consisting of lithium monofluorophosphate and lithium difluorophosphate;
  • An additive C that is at least one selected from the group consisting of compounds represented by the following formula (C);
  • R 1 represents a hydrocarbon group having 1 to 6 carbon atoms substituted with at least one fluorine atom, a hydrocarbon oxy group having 1 to 6 carbon atoms substituted with at least one fluorine atom, or Represents a fluorine atom.
  • M represents a boron atom or a phosphorus atom
  • X represents a halogen atom
  • R represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, a carbon number
  • m is 1 to 3
  • N represents an integer of 0 to 4, and q represents 0 or 1.
  • nonaqueous electrolytic solution of the present disclosure battery resistance after storage can be reduced.
  • the reason why such an effect is achieved is not clear, but it is thought that the combination of additive A, additive B, and additive C forms a high-quality film with low resistance after battery storage on the electrode surface. It is done.
  • Additive A is thought to contribute to the reduction of battery resistance before storage (see Example 1 and Comparative Example 3 below).
  • Additive B is thought to contribute to the reduction of battery resistance before storage (see Example 1 and Comparative Example 2 described later).
  • Additive C is thought to contribute to the suppression of battery resistance increase due to storage (see Example 1 and Comparative Example 1 described later).
  • the functions of the additive A, the additive B, and the additive C are combined to reduce the battery resistance before storage to some extent, and the battery resistance due to storage can be reduced. It is considered that the rise is suppressed, and as a result, the effect of reducing the battery resistance after storage is realized.
  • the nonaqueous electrolytic solution of the present disclosure is not limited by the above estimation reason.
  • nonaqueous electrolytic solution of the present disclosure can be expected to improve the capacity recovery rate of the battery after storage.
  • Additive A is at least one selected from the group consisting of compounds represented by the following formula (A).
  • R 1 represents a hydrocarbon group having 1 to 6 carbon atoms substituted with at least one fluorine atom, a hydrocarbon oxy group having 1 to 6 carbon atoms substituted with at least one fluorine atom, or Represents a fluorine atom.
  • the “C1-C6 hydrocarbon group substituted with at least one fluorine atom” represented by R 1 has an unsubstituted C1-C6 hydrocarbon group substituted with at least one fluorine atom. It has a structure.
  • the unsubstituted hydrocarbon group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a 1-ethylpropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, tert-butyl, 2-methylbutyl, 3,3-dimethylbutyl, n-pentyl, isopentyl, neopentyl, 1-methylpentyl, n-hexyl, isohexyl, sec-hexyl, tert- Alkyl group such as hexyl group; vinyl group, 1-propenyl group, ally
  • Examples of the “C 1-6 hydrocarbon group substituted with at least one fluorine atom” represented by R 1 include, for example, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, 2,2,2- Fluoroalkyl groups such as trifluoroethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroisopropyl group, perfluoroisobutyl group; 2-fluoroethenyl Group, 2,2-difluoroethenyl group, 2-fluoro-2-propenyl group, 3,3-difluoro-2-propenyl group, 2,3-difluoro-2-propenyl group, 3,3-difluoro-2- Methyl-2-propenyl group, 3-fluoro-2-butenyl group, perfluorovin
  • the “C 1-6 hydrocarbon group substituted with at least one fluorine atom” represented by R 1 is an alkyl group substituted with at least one fluorine atom or at least one fluorine atom. Alkenyl groups are preferred, and alkyl groups substituted with at least one fluorine atom are more preferred.
  • the “C 1-6 hydrocarbon group substituted with at least one fluorine atom” represented by R 1 may be a perfluoro hydrocarbon group, as long as it is substituted with at least one fluorine atom. Is preferred.
  • the number of carbon atoms of the “hydrocarbon group having 1 to 6 carbon atoms substituted with at least one fluorine atom” represented by R 1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the hydrocarbon oxy group having 1 to 6 carbon atoms substituted by at least one fluorine atom represented by R 1 is an unsubstituted hydrocarbon oxy group having 1 to 6 carbon atoms substituted by at least one fluorine atom.
  • R 1 is an unsubstituted hydrocarbon oxy group having 1 to 6 carbon atoms substituted by at least one fluorine atom.
  • Examples of the unsubstituted hydrocarbon oxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, 2-butoxy group, tert-butoxy group, cyclopropyloxy group, cyclopentyl
  • An alkoxy group such as an oxy group; an alkenyloxy group such as an allyloxy group and a vinyloxy group;
  • the “C 1-6 hydrocarbon oxy group substituted with at least one fluorine atom” represented by R 1 is an alkoxy group substituted with at least one fluorine atom or substituted with at least one fluorine atom. An alkenyloxy group is preferred, and an alkoxy group substituted with at least one fluorine atom is more preferred.
  • the “hydrocarbon oxy group having 1 to 6 carbon atoms substituted with at least one fluorine atom” represented by R 1 may be substituted with at least one fluorine atom, but may be a perfluoro hydrocarbon oxy group. Preferably there is.
  • the carbon number of the “hydrocarbon oxy group having 1 to 6 carbon atoms substituted by at least one fluorine atom” represented by R 1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • R 1 is preferably a hydrocarbon group having 1 to 6 carbon atoms substituted with at least one fluorine atom, more preferably an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine atom, 6 to 6 are more preferable, a perfluoromethyl group (also known as trifluoromethyl group) or a perfluoroethyl group (also known as pentafluoroethyl group) is more preferable, and a perfluoromethyl group (also known as trifluoromethyl group). Group) is particularly preferred.
  • the compound represented by the formula (A) is preferably lithium trifluoromethanesulfonate (also known as lithium trifluoromethylsulfonate) or lithium pentafluoroethanesulfonate (also known as lithium pentafluoroethylsulfonate), and trifluoromethanesulfone. It is particularly preferable that lithium acid is included.
  • the content of the additive A is preferably 0.001% by mass to 10% by mass, more preferably 0.001% by mass to 5.0% by mass with respect to the total amount of the nonaqueous electrolytic solution, and 0.001% by mass to It is more preferably 3.0% by mass, still more preferably 0.01% by mass to 3.0% by mass, still more preferably 0.1% by mass to 3.0% by mass, and The content is more preferably 1% by mass to 2.0% by mass, and particularly preferably 0.1% by mass to 1.0% by mass.
  • the additive B is at least one selected from the group consisting of lithium monofluorophosphate (Li 2 PO 3 F) and lithium difluorophosphate (LiPO 2 F 2 ).
  • Additive B preferably contains lithium difluorophosphate.
  • the content of the additive B is preferably 0.001% by mass to 10% by mass, more preferably 0.001% by mass to 5.0% by mass with respect to the total amount of the nonaqueous electrolytic solution, and 0.001% by mass to It is more preferably 3.0% by mass, further preferably 0.01% by mass to 3.0% by mass, further preferably 0.1% to 3.0% by mass, and more preferably 0.1% to 3.0% by mass.
  • the content is more preferably 2.0% by mass, and particularly preferably 0.1 to 1.0% by mass.
  • the ratio of the content mass of the additive A to the mass content of the additive B (that is, the content mass ratio [additive A / additive B]) is more effectively achieved by the effect of the nonaqueous electrolytic solution of the present disclosure. From the viewpoint, it is preferably 0.1 to 2.0, more preferably 0.1 to 1.0, still more preferably 0.1 or more and less than 1.0, still more preferably 0.2 to 0. .8, more preferably 0.3 to 0.7.
  • the additive C is at least one selected from the group consisting of compounds represented by the following formula (C).
  • M represents a boron atom or a phosphorus atom
  • X represents a halogen atom
  • R represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, a carbon number
  • m is 1 to 3
  • N represents an integer of 0 to 4, and q represents 0 or 1.
  • examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is particularly preferable.
  • R represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms.
  • R represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms.
  • a halogen atom in place of the hydrogen atom of these groups, as a substituent, a halogen atom, a chain or cyclic alkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, a sulfonyl group, an amino group, a cyano group , A carbonyl group, an acyl group, an amide group, or a hydroxyl group.
  • a structure in which a nitrogen atom, a sulfur atom, or an oxygen atom is introduced as a hetero atom may be used.
  • m Rs may be bonded to each other. Examples thereof include a ligand such as ethylenediaminetetraacetic acid.
  • the carbon number of the alkylene group having 1 to 10 carbon atoms in R is preferably 1 to 6, more preferably 1 to 3, and particularly preferably 1.
  • the alkylene group having 1 carbon atom is a methylene group (that is, —CH 2 — group).
  • the halogenated alkylene group having 1 to 10 carbon atoms in R is a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom) at least one hydrogen atom contained in the alkylene group having 1 to 10 carbon atoms. Atom, preferably a fluorine atom).
  • the number of carbon atoms of the halogenated alkylene group having 1 to 10 carbon atoms is preferably 1 to 6, more preferably 1 to 3, and particularly preferably 1.
  • the carbon number of the arylene group having 6 to 20 carbon atoms in R is preferably 6 to 12.
  • the halogenated arylene group having 6 to 20 carbon atoms in R means that at least one hydrogen atom contained in the arylene group having 6 to 20 carbon atoms is a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine) Atom, preferably a fluorine atom).
  • the carbon number of the halogenated arylene group having 6 to 20 carbon atoms is preferably 6 to 12.
  • R is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, still more preferably an alkylene group having 1 to 3 carbon atoms, and an alkylene group having 1 carbon atom (that is, a methylene group). Is particularly preferred.
  • m represents an integer of 1 to 3
  • n represents an integer of 0 to 4
  • q represents 0 or 1.
  • the compound in which q in formula (C) is 0 is specifically an oxalato compound represented by the following formula (C2).
  • M, X, m, and n have the same meanings as M, X, m, and n in the formula (C), respectively.
  • Specific examples of the compound represented by the formula (C) include Lithium difluorobis (oxalato) phosphate, Lithium tetrafluoro (oxalato) phosphate, Tris (oxalato) lithium phosphate, Lithium difluoro (oxalato) borate, Oxalate compounds such as bis (oxalato) lithium borate (compounds where q is 0); Difluorobis (malonate) lithium phosphate, Tetrafluoro (malonate) lithium phosphate, Tris (malonate) lithium phosphate, Difluoro (malonate) lithium borate, Malonate compounds such as bis (malonate) lithium borate (compounds wherein q is 1 and R is a methylene group); Etc.
  • the compound represented by Formula (C) is selected from the group consisting of lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate, lithium difluoro (oxalato) borate, and lithium bis (oxalato) borate. And at least one selected from the group consisting of lithium bis (oxalato) borate and lithium difluoro (oxalato) borate, and more preferably lithium bis (oxalato) borate (Hereinafter sometimes referred to as “LiBOB”) is particularly preferable.
  • LiBOB lithium bis (oxalato) borate
  • the content of the additive C is preferably 0.001% by mass to 10% by mass, more preferably 0.001% by mass to 5.0% by mass with respect to the total amount of the non-aqueous electrolyte, and 0.001% by mass to It is more preferably 3.0% by mass, still more preferably 0.01% by mass to 3.0% by mass, still more preferably 0.1% by mass to 3.0% by mass, and The content is more preferably 1% by mass to 2.0% by mass, and particularly preferably 0.1% by mass to 1.0% by mass.
  • the ratio of the content mass of the additive C to the content mass of the additive B exhibits the effect of the nonaqueous electrolytic solution of the present disclosure more effectively. From the viewpoint, it is preferably 0.1 to 2.0, more preferably 0.1 to 1.0, still more preferably 0.1 or more and less than 1.0, still more preferably 0.2 to 0. .8, more preferably 0.3 to 0.7.
  • the total content of additive A, additive B, and additive C is preferably 0.003% by mass to 10% by mass, and more preferably 0.003% by mass to 5% by mass with respect to the total amount of the non-aqueous electrolyte.
  • the content is more preferably 0.003 to 3% by mass, further preferably 0.03 to 3% by mass, and further preferably 0.3 to 3% by mass.
  • the nonaqueous electrolytic solution of the present disclosure contains an electrolyte that is a lithium salt other than the additive A, the additive B, and the additive C (hereinafter also referred to as “specific lithium salt”).
  • the specific lithium salt as the electrolyte may be only one kind or two or more kinds.
  • the lithium salt represented by the following general formula can also be used.
  • the specific lithium salt preferably includes at least one of LiPF 6 and LiBF 4 , and more preferably includes LiPF 6 . If a particular lithium salt containing LiPF 6, the proportion of LiPF 6 occupied in particular the lithium salt is preferably from 10 mass% to 100 mass%, more preferably from 50 wt% to 100 wt%, 70 wt% to 100 wt% Is particularly preferred.
  • the concentration of the electrolyte in the nonaqueous electrolytic solution is preferably 0.1 mol / L to 3 mol / L, and more preferably 0.5 mol / L to 2 mol / L.
  • the nonaqueous electrolytic solution of the present disclosure may contain an additive D.
  • the additive D is at least one selected from the group consisting of compounds represented by the following formula (D).
  • D the group consisting of compounds represented by the following formula (D).
  • the non-aqueous electrolyte of the present disclosure includes the additive D, the combination of the additives A to C has an effect of reducing the battery resistance after storage compared to the battery resistance before storage. The Therefore, when the nonaqueous electrolytic solution of the present disclosure includes the additive D, the battery resistance after storage can be reduced despite the nonaqueous electrolytic solution containing the additive D. .
  • Y 1 and Y 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • Examples of the compound represented by the formula (D) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, and dipropyl vinylene carbonate. Of these, vinylene carbonate is most preferred.
  • the content of the additive D is preferably 0.001% by mass to 10% by mass, and 0.001% by mass with respect to the total amount of the non-aqueous electrolyte. -5.0% by mass is more preferable, 0.001% by mass to 3.0% by mass is more preferable, 0.01% by mass to 3.0% by mass is still more preferable, and 0.1% by mass % To 3.0% by mass is more preferable, 0.1% to 2.0% by mass is further preferable, and 0.1% to 1.0% by mass is particularly preferable.
  • the ratio of the content of the additive D to the content of the additive B is From the viewpoint of more effectively exerting the effect of the disclosed nonaqueous electrolyte, it is preferably 0.1 to 2.0, more preferably 0.1 to 1.0, and still more preferably 0.1. It is more than 1.0 and more preferably 0.1 to 0.5.
  • the nonaqueous electrolytic solution of the present disclosure may contain at least one selected from the group consisting of compounds represented by the following formula (I) as the additive E.
  • the compound represented by the formula (I) is a cyclic sulfate as shown below.
  • R 1 and R 2 are each independently represented by a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a group represented by formula (II), or formula (III) Represents a group, or R 1 and R 2 together represent a group that forms a benzene ring or a cyclohexyl ring together with the carbon atom to which R 1 is bonded and the carbon atom to which R 2 is bonded.
  • R 3 is represented by a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or the formula (IV).
  • the wavy line in Formula (II), Formula (III), and Formula (IV) represents the bonding position.
  • the two groups represented by the formula (II) may be the same or different from each other. Also good.
  • examples of the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom is preferable.
  • an alkyl group having 1 to 6 carbon atoms is a linear or branched alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, or a propyl group.
  • an alkyl group having 1 to 3 carbon atoms is more preferable.
  • the “halogenated alkyl group having 1 to 6 carbon atoms” is a linear or branched halogenated alkyl group having 1 to 6 carbon atoms, such as a fluoromethyl group, a difluoromethyl group, Trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroisopropyl group, perfluoroisobutyl group Specific examples include chloromethyl group, chloroethyl group, chloropropyl group, bromomethyl group, bromoethyl group, bromopropyl group, methyl iodide group, ethyl iodide group, and propyl iodide group.
  • the halogenated alkyl group having 1 to 6 carbon atoms is more preferably
  • the “C 1-6 alkoxy group” is a linear or branched alkoxy group having 1 to 6 carbon atoms, and includes a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group.
  • the alkoxy group having 1 to 6 carbon atoms is more preferably an alkoxy group having 1 to 3 carbon atoms.
  • R 1 is a group represented by formula (II) (in formula (II), R 3 is a fluorine atom, an alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms.
  • R 1 is a group that forms a benzene ring or a cyclohexyl ring together with the carbon atom to which R 1 is bonded and the carbon atom to which R 2 is bonded.
  • R 2 in formula (I) is more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a group represented by formula (II) (in formula (II), R 3 represents a fluorine atom, carbon It is more preferably an alkyl group having 1 to 3 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV). And a group represented by (III), more preferably a hydrogen atom or a methyl group.
  • R 3 in the formula (II) is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a carbon number of 1 as described above.
  • R 3 is more preferably a fluorine atom, an alkyl group having 1 to 3 carbon atoms,
  • a halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV) more preferably a fluorine atom, a methyl group, an ethyl group, or trifluoromethyl.
  • R 1 in formula (I) is preferably represented by formula (II) for the preferred range of R 3 in formula (II). This is the same as the preferred range of R 3 in the case of the represented group.
  • R 1 is a group represented by formula (II) (in formula (II), R 3 is a fluorine atom, an alkyl group having 1 to 3 carbon atoms) A halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by formula (IV)), or a group represented by formula (III)
  • R 2 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the formula (II) (in the formula (II), R 3 is a fluorine atom, an alkyl group having 1 to 3 carbon atoms, a carbon number A halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by formula (IV)), or a combination of groups represented by formula (III) is there.
  • R 1 is a group represented by the formula (II) (in the formula (II), R 3 is a fluorine atom, a methyl group, an ethyl group, trifluoro A methyl group, a methoxy group, an ethoxy group, or a group represented by formula (IV)) or a group represented by formula (III), and a combination in which R 2 is a hydrogen atom or a methyl group. is there.
  • Examples of the compound represented by the formula (I) include catechol sulfate, 1,2-cyclohexyl sulfate, and compounds represented by the following exemplified compounds 1 to 30.
  • the compound represented by the formula (I) is not limited thereto.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • iPr represents an isopropyl group
  • Bu represents a butyl group
  • tBu Is a tertiary butyl group
  • Pent is a pentyl group
  • Hex is a hexyl group
  • OMe is a methoxy group
  • OEt is an ethoxy group
  • OPr is a propoxy group
  • OBu Represents a butoxy group
  • OPTent represents a pentyloxy group
  • OHex represents a hexyloxy group.
  • “wavy lines” in R 1 to R 3 represent coupling positions.
  • stereoisomers derived from substituents at the 4-position and 5-position of the 2,2-dioxo-1,3,2-dioxathiolane ring may occur, both of which are compounds included in the present disclosure.
  • stereoisomers when two or more asymmetric carbons are present in the molecule, stereoisomers (diastereomers) exist, respectively, unless otherwise specified. , Is a mixture of the corresponding diastereomers.
  • stereoisomers when two or more asymmetric carbons are present in the molecule, stereoisomers (diastereomers) exist, respectively. A mixture of stereomers.
  • the method for synthesizing the compound represented by the formula (I) is not particularly limited, and for example, it can be synthesized by the synthesis method described in Paragraphs 0062 to 0068 of International Publication No. 2012/053644.
  • the content of the additive E is preferably 0.001% by mass to 10% by mass, and 0.001% by mass with respect to the total amount of the nonaqueous electrolytic solution.
  • -5.0% by mass is more preferable, 0.001% by mass to 3.0% by mass is more preferable, 0.01% by mass to 3.0% by mass is still more preferable, and 0.1% by mass %
  • 0.1% to 3.0% by mass is more preferable, 0.1% to 2.0% by mass is further preferable, and 0.1% to 1.0% by mass is particularly preferable.
  • a non-aqueous electrolyte generally contains a non-aqueous solvent.
  • Various known solvents can be appropriately selected as the non-aqueous solvent, but at least one selected from a cyclic aprotic solvent and a chain aprotic solvent is preferably used.
  • a cyclic aprotic solvent as the non-aqueous solvent.
  • cyclic aprotic solvent cyclic carbonate, cyclic carboxylic acid ester, cyclic sulfone, and cyclic ether can be used.
  • the cyclic aprotic solvent may be used alone or in combination of two or more.
  • the mixing ratio of the cyclic aprotic solvent in the non-aqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting it as such a ratio, the electroconductivity of the electrolyte solution relating to the charge / discharge characteristics of the battery can be increased.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and the like.
  • ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used.
  • ethylene carbonate is more preferable.
  • cyclic carboxylic acid ester examples include ⁇ -butyrolactone, ⁇ -valerolactone, alkyl substitution products such as methyl ⁇ -butyrolactone, ethyl ⁇ -butyrolactone, and ethyl ⁇ -valerolactone.
  • the cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, a high dielectric constant, and can lower the viscosity of the electrolytic solution without lowering the degree of dissociation between the flash point of the electrolytic solution and the electrolyte. For this reason, since it has the feature that the conductivity of the electrolytic solution, which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolytic solution, when aiming to improve the flash point of the solvent, It is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent. Of the cyclic carboxylic acid esters, ⁇ -butyrolactone is most preferred.
  • the cyclic carboxylic acid ester is preferably used by mixing with another cyclic aprotic solvent.
  • a mixture of a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate can be mentioned.
  • cyclic sulfone examples include sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, dimethyl sulfone, diethyl sulfone, dipropyl sulfone, methyl ethyl sulfone, methyl propyl sulfone and the like.
  • An example of a cyclic ether is dioxolane.
  • Chain aprotic solvent a chain carbonate, a chain carboxylic acid ester, a chain ether, a chain phosphate, or the like can be used.
  • the mixing ratio of the chain aprotic solvent in the non-aqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Examples include ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, and methyltrifluoroethyl carbonate.
  • These chain carbonates may be used as a mixture of two or more.
  • chain carboxylic acid ester examples include methyl pivalate.
  • chain ether examples include dimethoxyethane.
  • chain phosphate ester examples include trimethyl phosphate.
  • the nonaqueous solvent used in the nonaqueous electrolytic solution of the present disclosure may be used alone or in combination. Further, only one or more types of cyclic aprotic solvents may be used, or only one or more types of chain aprotic solvents may be used, or cyclic aprotic solvents and chain proticity may be used. You may mix and use a solvent. When the load characteristics and low temperature characteristics of the battery are particularly intended to be improved, it is preferable to use a combination of a cyclic aprotic solvent and a chain aprotic solvent as the nonaqueous solvent.
  • a cyclic carbonate to the cyclic aprotic solvent and a chain carbonate to the chain aprotic solvent from the electrochemical stability of the electrolytic solution.
  • the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can be increased by a combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.
  • cyclic carbonate and chain carbonate specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate
  • the mixing ratio of the cyclic carbonate and the chain carbonate is expressed by mass ratio, and the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, particularly preferably 15:85. ⁇ 55: 45.
  • the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, particularly preferably 15:85. ⁇ 55: 45.
  • cyclic carboxylic acid esters and cyclic carbonates and / or chain carbonates include ⁇ -butyrolactone and ethylene carbonate, ⁇ -butyrolactone and ethylene carbonate and dimethyl carbonate, and ⁇ -butyrolactone and ethylene carbonate and methylethyl.
  • non-aqueous solvent examples include other solvents other than those described above.
  • specific examples of other solvents include amides such as dimethylformamide, chain carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone, and the like.
  • examples thereof include boron compounds such as cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
  • the non-aqueous electrolyte of the present disclosure is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, and an electric double layer capacitor. It can also be used as an electrolytic solution for aluminum electrolytic capacitors.
  • the lithium secondary battery of the present disclosure includes a positive electrode, a negative electrode, and the nonaqueous electrolytic solution of the present disclosure.
  • the negative electrode may include a negative electrode active material and a negative electrode current collector.
  • the negative electrode active material in the negative electrode is metal lithium, lithium-containing alloy, metal or alloy that can be alloyed with lithium, oxide that can be doped / undoped with lithium ions, and lithium ion doped / undoped
  • At least one selected from the group consisting of transition metal nitrides and carbon materials capable of doping and undoping lithium ions (may be used alone or a mixture containing two or more of these may be used) Good) can be used.
  • Examples of metals or alloys that can be alloyed with lithium (or lithium ions) include silicon, silicon alloys, tin, and tin alloys. Further, lithium titanate may be used.
  • carbon materials that can be doped / undoped with lithium ions are preferable.
  • examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like.
  • the form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
  • amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or less, and mesophase pitch carbon fiber (MCF).
  • the graphite material examples include natural graphite and artificial graphite. As artificial graphite, graphitized MCMB, graphitized MCF, and the like are used. Further, as the graphite material, a material containing boron can be used. As the graphite material, those coated with a metal such as gold, platinum, silver, copper and tin, those coated with amorphous carbon, and those obtained by mixing amorphous carbon and graphite can be used.
  • carbon materials may be used alone or in combination of two or more.
  • a carbon material having a (002) plane distance d (002) of 0.340 nm or less as measured by X-ray analysis is particularly preferable.
  • graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having properties close thereto is also preferable.
  • the energy density of the battery can be further increased.
  • the negative electrode electrical power collector in a negative electrode there is no restriction
  • Specific examples of the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is particularly preferable from the viewpoint of ease of processing.
  • the positive electrode may include a positive electrode active material and a positive electrode current collector.
  • a composite oxide composed of lithium and a transition metal is particularly preferable.
  • the negative electrode is lithium metal or a lithium alloy
  • a carbon material can be used as the positive electrode.
  • a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
  • a positive electrode active material may be used by 1 type, and may mix and use 2 or more types. When the positive electrode active material has insufficient conductivity, it can be used together with a conductive auxiliary agent to constitute a positive electrode.
  • the conductive assistant include carbon materials such as carbon black, amorphous whiskers, and graphite.
  • the positive electrode electrical power collector in a positive electrode
  • the positive electrode current collector include metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium, and tantalum; carbon materials such as carbon cloth and carbon paper;
  • the lithium secondary battery of the present disclosure preferably includes a separator between the negative electrode and the positive electrode.
  • the separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
  • a microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
  • porous polyolefin is preferable.
  • a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film can be exemplified.
  • porous polyolefin film On the porous polyolefin film, other resin excellent in thermal stability may be coated.
  • the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like.
  • the nonaqueous electrolytic solution of the present disclosure may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
  • the lithium secondary battery of the present disclosure can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a laminate shape, a film shape, or any other shape.
  • the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
  • FIG. 1 is a schematic perspective view showing an example of a laminated battery that is an example of the lithium secondary battery of the present disclosure
  • FIG. 2 shows the thickness of the laminated electrode body accommodated in the laminated battery shown in FIG. It is a schematic sectional drawing of a direction.
  • the laminate type battery shown in FIG. 1 contains a non-aqueous electrolyte (not shown in FIG. 1) and a laminated electrode body (not shown in FIG. 1) inside, and the periphery is sealed.
  • the laminate outer package 1 is sealed inside.
  • As the laminate exterior body 1 for example, an aluminum laminate exterior body is used. As shown in FIG.
  • the laminated electrode body accommodated in the laminate outer package 1 includes a laminated body in which positive plates 5 and negative plates 6 are alternately laminated with separators 7 interposed therebetween. And a separator 8 surrounding the periphery.
  • the positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8 are impregnated with the nonaqueous electrolytic solution of the present disclosure.
  • the plurality of positive electrode plates 5 in the laminated electrode body are all electrically connected to the positive electrode terminal 2 via a positive electrode tab (not shown), and a part of the positive electrode terminal 2 is part of the laminate outer package 1. It protrudes outward from the peripheral end (FIG. 1).
  • each of the plurality of negative electrode plates 6 in the laminated electrode body is electrically connected to the negative electrode terminal 3 through a negative electrode tab (not shown), and a part of the negative electrode terminal 3 is part of the laminate exterior. It protrudes outward from the peripheral edge of the body 1 (FIG. 1).
  • the portion where the negative electrode terminal 3 protrudes at the peripheral end of the laminate outer package 1 is sealed with an insulating seal 4.
  • the number of the positive plates 5 is 5 and the number of the negative plates 6 is 6, and the positive plates 5 and the negative plates 6 are separated from each other through the separators 7. All the outer layers are laminated in an arrangement to be the negative electrode plate 6.
  • the number of positive plates, the number of negative plates, and the arrangement in the laminated battery are not limited to this example, and various changes may be made.
  • FIG. 3 is a schematic perspective view illustrating an example of a coin-type battery that is another example of the lithium secondary battery of the present disclosure.
  • a disc-shaped negative electrode 12 a separator 15 into which a non-aqueous electrolyte is injected, a disc-shaped positive electrode 11, and spacer plates 17 and 18 such as stainless steel or aluminum as necessary are arranged in this order.
  • the positive electrode can 13 hereinafter also referred to as “battery can”
  • a sealing plate 14 hereinafter also referred to as “battery can lid” are accommodated.
  • the positive electrode can 13 and the sealing plate 14 are caulked and sealed via a gasket 16.
  • the nonaqueous electrolytic solution of the present disclosure is used as the nonaqueous electrolytic solution injected into the separator 15.
  • the lithium secondary battery of this indication is obtained by charging / discharging a lithium secondary battery (lithium secondary battery before charging / discharging) containing a negative electrode, a positive electrode, and the non-aqueous electrolyte of the said indication.
  • Lithium secondary batteries may be used. That is, a lithium secondary battery according to the present disclosure is prepared by first preparing a lithium secondary battery before charge / discharge including a negative electrode, a positive electrode, and the non-aqueous electrolyte according to the present disclosure, and then, before the charge / discharge. It may be a lithium secondary battery (charged / discharged lithium secondary battery) produced by charging / discharging the lithium secondary battery one or more times.
  • the use of the lithium secondary battery of the present disclosure is not particularly limited, and can be used for various known uses.
  • notebook computers, mobile computers, mobile phones, headphone stereos, video movies, LCD TVs, handy cleaners, electronic notebooks, calculators, radios, backup power applications, motors, automobiles, electric cars, motorcycles, electric bikes, bicycles, electric motors Bicycles, lighting fixtures, game machines, watches, electric tools, cameras, etc. can be widely used regardless of small portable devices or large devices.
  • addition amount represents the content in the finally obtained non-aqueous electrolyte (that is, the amount relative to the total amount of the finally obtained non-aqueous electrolyte).
  • Wt% means mass%.
  • ⁇ Production of negative electrode> A paste-like negative electrode mixture slurry was prepared by kneading 98 parts by mass of natural graphite, 1 part by mass of carboxymethyl cellulose, and 1 part by mass of SBR latex with an aqueous solvent. Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m, dried, and then compressed by a roll press to form a sheet-like material comprising a negative electrode current collector and a negative electrode active material layer. A negative electrode was obtained. The coating density of the negative electrode active material layer at this time was 10 mg / cm 2 , and the packing density was 1.5 g / ml.
  • a positive electrode mixture slurry was prepared.
  • this positive electrode mixture slurry is applied to a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 20 ⁇ m, dried, and then compressed by a roll press to form a sheet-like positive electrode comprising a positive electrode current collector and a positive electrode active material layer Got.
  • the coating density of the positive electrode active material layer at this time was 30 mg / cm 2 , and the packing density was 2.7 g / ml.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC methyl ethyl carbonate
  • LiPF 6 as an electrolyte was dissolved so that the electrolyte concentration in the finally obtained nonaqueous electrolytic solution was 1 mol / liter.
  • Additive A as lithium trifluoromethanesulfonate (hereinafter also referred to as “TFMSLi”) (addition amount 0.5 mass%), Additive B as lithium difluorophosphate (hereinafter also referred to as “LiDFP”) (addition amount 1.0 mass%) and additive C as lithium bis (oxalato) borate (hereinafter also referred to as “LiBOB”) (addition) (0.5% by mass) was added to obtain a non-aqueous electrolyte.
  • TFMSLi lithium trifluoromethanesulfonate
  • Additive B as lithium difluorophosphate
  • LiBOB lithium bis (oxalato) borate
  • the above-mentioned negative electrode was 14 mm in diameter and the above-mentioned positive electrode was 13 mm in diameter, and each was punched into a disk shape to obtain coin-shaped electrodes (negative electrode and positive electrode). Further, a microporous polyethylene film having a thickness of 20 ⁇ m was punched into a disk shape having a diameter of 17 mm to obtain a separator.
  • the obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode are laminated in this order in a battery can (2032 size) made of stainless steel, and 20 ⁇ l of the non-aqueous electrolyte is injected to be contained in the separator, the positive electrode, and the negative electrode. Soaked.
  • a coin-type lithium secondary battery (hereinafter referred to as a test battery) having a configuration of 3.2 mm shown in FIG. 3 was produced.
  • the increase rate (%) of DC resistance due to storage may be a negative value.
  • a negative value of the increase rate (%) of the DC resistance due to storage means that the DC resistance has been reduced by storage.
  • Example 1 As shown in Table 1, in Example 1 using the non-aqueous electrolyte containing all of Additive A, Additive B and Additive C, the battery after storage was compared with Comparative Examples 1 to 3. DC resistance was reduced.
  • Example 1 in Comparative Example 1 using the non-aqueous electrolyte containing no additive C, although the DC resistance before storage is low, the DC resistance increases due to storage, and as a result, the DC resistance after storage increases. It was. In Example 1, an increase in DC resistance due to storage can be suppressed by replacing 0.5 wt% of additive B (1.5 wt%) in Comparative Example 1 with additive C, and as a result, storage Later DC resistance could be lowered.
  • Example 1 by replacing 0.5 wt% of additive B (1.5 wt%) in Comparative Example 3 using a non-aqueous electrolyte solution that does not contain additive A with additive A, Reducing both the DC resistance before storage and the DC resistance after storage could result in a lower DC resistance after storage.
  • Example 101 In the preparation of the non-aqueous electrolyte, the same operation as in Example 1 was performed except that vinylene carbonate (hereinafter also referred to as “VC”) (addition amount: 0.3 mass%) as additive D was added. It was. The results are shown in Table 2.
  • VC vinylene carbonate
  • Example 101 using the non-aqueous electrolyte containing additive D the DC resistance before storage was increased, but the DC resistance could be reduced by storage, and as a result The DC resistance of the battery after storage could be lowered to some extent.
  • the effect of reducing direct current resistance by storage is considered to be an effect obtained by the addition of additive A, additive B, and additive C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

化合物(A)である添加剤Aと、モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群から選択される少なくとも1種である添加剤Bと、化合物(C)である添加剤Cと、添加剤A、添加剤B及び添加剤B以外のリチウム塩である電解質と、を含有する電池用非水電解液。R1は、Fで置換されたC1~6炭化水素基、Fで置換されたC1~6炭化水素オキシ基、又はFを表し、MはB又はPを表し、Xはハロゲンを表し、RはC1~10アルキレン、C1~10ハロアルキレン、C6~20アリーレン、又はC6~20ハロアリーレン(Rは、構造中に置換基又はヘテロ原子を含んでいてもよい。)を表し、mは1~3を表し、nは0~4を表し、qは0又は1を表す。

Description

電池用非水電解液及びリチウム二次電池
 本開示は、電池用非水電解液及びリチウム二次電池に関する。
 近年、リチウム二次電池は、携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く使用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。
 リチウム二次電池は、例えば、リチウムを吸蔵放出可能な材料を含有する正極及び負極、並びに、リチウム塩と非水溶媒とを含有する電池用非水電解液を含む。
 正極に用いられる正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiFePOのようなリチウム金属酸化物が用いられる。
 また、電池用非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどのカーボネート類の混合溶媒(非水溶媒)に、LiPF、LiBF、LiN(SOCF、LiN(SOCFCFのようなLi電解質を混合した溶液が用いられている。
 一方、負極に用いられる負極用活物質としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金など)や炭素材料が知られており、特にリチウムを吸蔵、放出が可能なコークス、人造黒鉛、天然黒鉛を採用したリチウム二次電池が実用化されている。
 電池用非水電解液を含む電池(例えばリチウム二次電池)の性能を改善するために、電池用非水電解液に対し、種々の添加剤を含有させることが行われている。
 例えば、電池の充電後の保存特性を改善できる電池用非水電解液として、モノフルオロリン酸リチウム及びジフルオロリン酸リチウムの少なくとも一方を添加剤として含有する電池用非水電解液が知られている(例えば、下記特許文献1参照)。
 また、電池のサイクル特性及び保存特性を改善できる電池用非水電解液として、ビス(オキサラト)ホウ酸リチウムを添加剤として含有する電池用非水電解液が知られている(例えば、下記特許文献2参照)。
 特許文献1:特許第3439085号公報
 特許文献2:特許第3730855号公報
 しかし、従来の電池用非水電解液及び電池に対し、保存後の電池抵抗を更に低減することが求められる場合がある。
 従って、本開示の課題は、保存後の電池抵抗を低減できる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 下記式(A)で表される化合物からなる群から選択される少なくとも1種である添加剤Aと、
 モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群から選択される少なくとも1種である添加剤Bと、
 下記式(C)で表される化合物からなる群から選択される少なくとも1種である添加剤Cと、
 前記添加剤A、前記添加剤B及び前記添加剤C以外のリチウム塩である電解質と、
を含有する電池用非水電解液。
Figure JPOXMLDOC01-appb-C000005
 式(A)中、Rは、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素オキシ基、又はフッ素原子を表す。
Figure JPOXMLDOC01-appb-C000006
 式(C)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、Rは、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよい。)を表し、mは、1~3の整数を表し、nは、0~4の整数を表し、qは、0又は1を表す。
<2> 前記添加剤Cは、下記式(C2)で表される化合物からなる群から選択される少なくとも1種である<1>に記載の電池用非水電解液。
Figure JPOXMLDOC01-appb-C000007
 式(C2)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、mは、1~3の整数を表し、nは、0~4の整数を表す。
<3> 前記添加剤Cは、ビス(オキサラト)ホウ酸リチウム及びジフルオロ(オキサラト)ホウ酸リチウムからなる群から選択される少なくとも1種である<1>又は<2>に記載の電池用非水電解液。
<4> 前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.001質量%~10質量%であり、
 前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.001質量%~10質量%であり、
 前記添加剤Cの含有量が、電池用非水電解液の全量に対し、0.001質量%~10質量%である<1>~<3>のいずれか1つに記載の電池用非水電解液。
<5> 前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.1質量%~2.0質量%であり、
 前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.1質量%~2.0質量%であり、
 前記添加剤Cの含有量が、電池用非水電解液の全量に対し、0.1質量%~2.0質量%である<1>~<4>のいずれか1つに記載の電池用非水電解液。
<6> 前記添加剤Bの含有質量に対する前記添加剤Aの含有質量の比が、0.1~2.0であり、
 前記添加剤Bの含有質量に対する前記添加剤Cの含有質量の比が、0.1~2.0である<1>~<5>のいずれか1つに記載の電池用非水電解液。
<7> 更に、下記式(D)で表される化合物からなる群から選択される少なくとも1種である添加剤Dを含有する<1>~<6>のいずれか1つに記載の電池用非水電解液。
Figure JPOXMLDOC01-appb-C000008
 式(D)中、Y及びYは、各々独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。
<8> 前記添加剤Dの含有量が、電池用非水電解液の全量に対し、0.001質量%~10質量%である<7>に記載の電池用非水電解液。
<9> 正極と、
 金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
 <1>~<8>のいずれか1つに記載の電池用非水電解液と、
を含むリチウム二次電池。
<10> <9>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
 本開示によれば、保存後の電池抵抗を低減できる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池が提供される。
本開示のリチウム二次電池の一例である、ラミネート型電池の一例を示す概略斜視図である。 図1に示すラミネート型電池に収容される積層型電極体の、厚さ方向の概略断面図である。 本開示のリチウム二次電池の別の一例である、コイン型電池の一例を示す概略断面図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
〔電池用非水電解液〕
 本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、
 下記式(A)で表される化合物からなる群から選択される少なくとも1種である添加剤Aと、
 モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群から選択される少なくとも1種である添加剤Bと、
 下記式(C)で表される化合物からなる群から選択される少なくとも1種である添加剤Cと、
 前記添加剤A、前記添加剤B及び前記添加剤C以外のリチウム塩である電解質と、
を含有する。
Figure JPOXMLDOC01-appb-C000009
 式(A)中、Rは、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素オキシ基、又はフッ素原子を表す。
Figure JPOXMLDOC01-appb-C000010
 式(C)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、Rは、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよい。)を表し、mは、1~3の整数を表し、nは、0~4の整数を表し、qは、0又は1を表す。
 本開示の非水電解液によれば、保存後の電池抵抗を低減できる。
 かかる効果が奏される理由は明らかではないが、添加剤A、添加剤B、及び添加剤Cの組み合わせにより、電極表面に、電池保存後における抵抗が低い良質な被膜が形成されるためと考えられる。
 以下、上記効果が奏される推定理由について、より詳細に説明する。
 添加剤Aは、保存前の電池抵抗の低減に寄与していると考えられる(後述の実施例1及び比較例3参照)。
 添加剤Bは、保存前の電池抵抗の低減に寄与していると考えられる(後述の実施例1及び比較例2参照)。
 添加剤Cは、保存による電池抵抗の上昇抑制に寄与していると考えられる(後述の実施例1及び比較例1参照)。
 本開示の非水電解液を用いた電池では、これら添加剤A、添加剤B、及び添加剤Cの各々の機能が相まって、保存前の電池抵抗がある程度低減され、かつ、保存による電池抵抗の上昇が抑制され、その結果として、保存後の電池抵抗を低減する効果が実現されると考えられる。
 但し、本開示の非水電解液は、以上の推定理由によって限定されるものではない。
 また、本開示の非水電解液では、保存後の電池の容量回復率を改善する効果も期待できる。
 以下、本開示の非水電解液の各成分について説明する。
<添加剤A>
 添加剤Aは、下記式(A)で表される化合物からなる群から選択される少なくとも1種である。
Figure JPOXMLDOC01-appb-C000011
 式(A)中、Rは、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素オキシ基、又はフッ素原子を表す。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基」は、無置換の炭素数1~6の炭化水素基が少なくとも1つのフッ素原子によって置換された構造を有する。
 無置換の炭素数1~6の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、1-エチルプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-メチルブチル基、3,3-ジメチルブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1-メチルペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基等のアルキル基;ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ペンテニル基、ヘキセニル基、イソプロペニル基、2-メチル-2-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基等のアルケニル基;等が挙げられる。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基」としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロイソプロピル基、パーフルオロイソブチル基等のフルオロアルキル基;2-フルオロエテニル基、2,2-ジフルオロエテニル基、2-フルオロ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、2,3-ジフルオロ-2-プロペニル基、3,3-ジフルオロ-2-メチル-2-プロペニル基、3-フルオロ-2-ブテニル基、パーフルオロビニル基、パーフルオロプロペニル基、パーフルオロブテニル基等のフルオロアルケニル基;等が挙げられる。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基」としては、少なくとも1つのフッ素原子で置換されたアルキル基又は少なくとも1つのフッ素原子で置換されたアルケニル基が好ましく、少なくとも1つのフッ素原子で置換されたアルキル基がより好ましい。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基」は、少なくとも1つのフッ素原子で置換されていればよいが、パーフルオロ炭化水素基であることが好ましい。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基」の炭素数は、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素オキシ基」は、無置換の炭素数1~6の炭化水素オキシ基が少なくとも1つのフッ素原子によって置換された構造を有する。
 無置換の炭素数1~6の炭化水素オキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、2-ブトキシ基、tert-ブトキシ基、シクロプロピルオキシ基、シクロペンチルオキシ基等のアルコキシ基;アリルオキシ基、ビニルオキシ基等のアルケニルオキシ基;等が挙げられる。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素オキシ基」としては、少なくとも1つのフッ素原子で置換されたアルコキシ基又は少なくとも1つのフッ素原子で置換されたアルケニルオキシ基が好ましく、少なくとも1つのフッ素原子で置換されたアルコキシ基がより好ましい。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素オキシ基」は、少なくとも1つのフッ素原子で置換されていればよいが、パーフルオロ炭化水素オキシ基であることが好ましい。
 Rで表される「少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素オキシ基」の炭素数は、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
 Rとしては、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基が好ましく、少なくとも1つのフッ素原子で置換された炭素数1~6のアルキル基がより好ましく、炭素数1~6のパーフルオロアルキル基が更に好ましく、パーフルオロメチル基(別名:トリフルオロメチル基)又はパーフルオロエチル基(別名:ペンタフルオロエチル基)が更に好ましく、パーフルオロメチル基(別名:トリフルオロメチル基)が特に好ましい。
 式(A)で表される化合物としては、トリフルオロメタンスルホン酸リチウム(別名:トリフルオロメチルスルホン酸リチウム)又はペンタフルオロエタンスルホン酸リチウム(別名:ペンタフルオロエチルスルホン酸リチウム)が好ましく、トリフルオロメタンスルホン酸リチウムを含むことが特に好ましい。
 添加剤Aの含有量は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.001質量%~5.0質量%がより好ましく、0.001質量%~3.0質量%であることが更に好ましく、0.01質量%~3.0質量%であることが更に好ましく、0.1質量%~3.0質量%であることが更に好ましく、0.1質量%~2.0質量%であることが更に好ましく、0.1質量%~1.0質量%であることが特に好ましい。
<添加剤B>
 添加剤Bは、モノフルオロリン酸リチウム(LiPOF)及びジフルオロリン酸リチウム(LiPO)からなる群から選択される少なくとも1種である。
 添加剤Bは、ジフルオロリン酸リチウムを含むことが好ましい。
 添加剤Bの含有量は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.001質量%~5.0質量%がより好ましく、0.001質量%~3.0質量%であることが更に好ましく、0.01質量%~3.0質量%であることが更に好ましく、0.1~3.0質量%であることが更に好ましく、0.1~2.0質量%であることが更に好ましく、0.1~1.0質量%であることが特に好ましい。
 添加剤Bの含有質量に対する添加剤Aの含有質量の比(即ち、含有質量比〔添加剤A/添加剤B〕)は、本開示の非水電解液による効果がより効果的に奏される観点から、好ましくは0.1~2.0であり、より好ましくは0.1~1.0であり、更に好ましくは0.1以上1.0未満であり、更に好ましくは0.2~0.8であり、更に好ましくは0.3~0.7である。
<添加剤C>
 添加剤Cは、下記式(C)で表される化合物からなる群から選択される少なくとも1種である。
Figure JPOXMLDOC01-appb-C000012
 式(C)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、Rは、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよい。)を表し、mは、1~3の整数を表し、nは、0~4の整数を表し、qは、0又は1を表す。
 式(C)中、Xで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が具体例として挙げられ、フッ素原子が特に好ましい。
 式(C)中、Rは、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基を表す。
 Rで表されるこれらの基(即ち、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、及び炭素数6~20のハロゲン化アリーレン基)は、構造中に置換基又はヘテロ原子を含んでいてもよい。
 具体的には、これらの基の水素原子の代わりに、置換基として、ハロゲン原子、鎖状若しくは環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、又は水酸基を含んでいてもよい。
 また、これらの基の炭素元素の代わりに、ヘテロ原子として、窒素原子、硫黄原子、又は酸素原子が導入された構造であってもよい。
 また、qが1でmが2~4であるときには、m個のRはそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。
 Rにおける、炭素数1~10のアルキレン基の炭素数としては、1~6が好ましく、1~3がより好ましく、1が特に好ましい。なお、炭素数1のアルキレン基は、メチレン基(即ち、-CH-基)である。
 Rにおける、炭素数1~10のハロゲン化アルキレン基とは、炭素数1~10のアルキレン基に含まれる水素原子の少なくとも1つをハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、又はヨウ素原子、好ましくはフッ素原子)に置き換えた基を意味する。
 炭素数1~10のハロゲン化アルキレン基の炭素数としては、1~6が好ましく、1~3がより好ましく、1が特に好ましい。
 Rにおける、炭素数6~20のアリーレン基の炭素数としては、6~12が好ましい。
 Rにおける、炭素数6~20のハロゲン化アリーレン基とは、炭素数6~20のアリーレン基に含まれる水素原子の少なくとも1つをハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、又はヨウ素原子、好ましくはフッ素原子)に置き換えた基を意味する。
 炭素数6~20のハロゲン化アリーレン基の炭素数としては、6~12が好ましい。
 Rとしては、炭素数1~10のアルキレン基が好ましく、炭素数1~6のアルキレン基がより好ましく、炭素数1~3のアルキレン基が更に好ましく、炭素数1のアルキレン基(即ち、メチレン基)が特に好ましい。
 式(C)中、mは、1~3の整数を表し、nは、0~4の整数を表し、qは0又は1を表す。
 式(C)中のqが0である化合物は、具体的には、下記式(C2)で表されるオキサラト化合物である。
Figure JPOXMLDOC01-appb-C000013
 式(C2)中、M、X、m、及びnは、それぞれ、式(C)中、M、X、m、及びnと同義である。
 式(C)で表される化合物(式(C2)で表される化合物である場合を含む。以下同じ。)の具体例としては、
ジフルオロビス(オキサラト)リン酸リチウム、
テトラフルオロ(オキサラト)リン酸リチウム、
トリス(オキサラト)リン酸リチウム、
ジフルオロ(オキサラト)ホウ酸リチウム、
ビス(オキサラト)ホウ酸リチウムなどのオキサラト化合物(以上、qが0である化合物);
ジフルオロビス(マロネート)リン酸リチウム、
テトラフルオロ(マロネート)リン酸リチウム、
トリス(マロネート)リン酸リチウム、
ジフルオロ(マロネート)ホウ酸リチウム、
ビス(マロネート)ホウ酸リチウムなどのマロネート化合物(以上、qが1であり、Rがメチレン基である化合物);
等が挙げられる。
 式(C)で表される化合物は、ジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、及びビス(オキサラト)ホウ酸リチウムからなる群から選択される少なくとも1種を含むことが好ましく、ビス(オキサラト)ホウ酸リチウム及びジフルオロ(オキサラト)ホウ酸リチウムからなる群から選択される少なくとも1種を含むことがより好ましく、ビス(オキサラト)ホウ酸リチウム(以下、「LiBOB」と称することがある)を含むことが特に好ましい。
 添加剤Cの含有量は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.001質量%~5.0質量%がより好ましく、0.001質量%~3.0質量%であることが更に好ましく、0.01質量%~3.0質量%であることが更に好ましく、0.1質量%~3.0質量%であることが更に好ましく、0.1質量%~2.0質量%であることが更に好ましく、0.1質量%~1.0質量%であることが特に好ましい。
 添加剤Bの含有質量に対する添加剤Cの含有質量の比(即ち、含有質量比〔添加剤C/添加剤B〕)は、本開示の非水電解液による効果がより効果的に奏される観点から、好ましくは0.1~2.0であり、より好ましくは0.1~1.0であり、更に好ましくは0.1以上1.0未満であり、更に好ましくは0.2~0.8であり、更に好ましくは0.3~0.7である。
 添加剤A、添加剤B及び添加剤Cの合計含有量は、非水電解液の全量に対し、0.003質量%~10質量%が好ましく、0.003質量%~5質量%がより好ましく、0.003質量%~3質量%であることが更に好ましく、0.03質量%~3質量%であることが更に好ましく、0.3~3質量%であることが更に好ましい。
<電解質>
 本開示の非水電解液は、添加剤A、添加剤B及び添加剤C以外のリチウム塩(以下、「特定リチウム塩」ともいう)である電解質を含有する。
 電解質としての特定リチウム塩は、1種のみであってもよいし、2種以上であってもよい。
 特定リチウム塩の具体例としては、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)などのリチウム塩が挙げられる。
 また、次の一般式で表されるリチウム塩も使用することができる。
 LiC(SO27)(SO28)(SO29)、LiN(SOOR30)(SOOR31)、LiN(SO32)(SO33)(ここでR27~R33は互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。
 特定リチウム塩は、LiPF及びLiBFの少なくとも一方を含むことが好ましく、LiPFを含むことがより好ましい。
 特定リチウム塩がLiPFを含む場合、特定リチウム塩中に占めるLiPFの比率は、10質量%~100質量%が好ましく、50質量%~100質量%がより好ましく、70質量%~100質量%が特に好ましい。
 非水電解液中における電解質の濃度は、0.1mol/L~3mol/Lであることが好ましく、0.5mol/L~2mol/Lであることがより好ましい。
<添加剤D>
 本開示の非水電解液は、添加剤Dを含有してもよい。
 添加剤Dは、下記式(D)で表される化合物からなる群から選択される少なくとも1種である。
 一般に、添加剤Dを含有する非水電解液を用いた電池では、電池抵抗が高くなる傾向がある。
 この点に関し、本開示の非水電解液が添加剤Dを含む場合には、添加剤A~Cの組み合わせにより、保存前の電池抵抗と比較して保存後の電池抵抗が下がる効果が奏される。
 従って、本開示の非水電解液が添加剤Dを含む場合には、添加剤Dを含有する非水電解液であるにもかかわらず、保存後の電池抵抗を低減できるという効果が奏される。
Figure JPOXMLDOC01-appb-C000014
 式(D)中、Y及びYは、各々独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。
 式(D)で表される化合物としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、ブロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどが例示される。これらのうちでビニレンカーボネートが最も好ましい。
 本開示の非水電解液が添加剤Dを含有する場合、添加剤Dの含有量は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.001質量%~5.0質量%がより好ましく、0.001質量%~3.0質量%であることが更に好ましく、0.01質量%~3.0質量%であることが更に好ましく、0.1質量%~3.0質量%であることが更に好ましく、0.1質量%~2.0質量%であることが更に好ましく、0.1質量%~1.0質量%であることが特に好ましい。
 本開示の非水電解液が添加剤Dを含有する場合、添加剤Bの含有質量に対する添加剤Dの含有質量の比(即ち、含有質量比〔添加剤D/添加剤B〕)は、本開示の非水電解液による効果がより効果的に奏される観点から、好ましくは0.1~2.0であり、より好ましくは0.1~1.0であり、更に好ましくは0.1以上1.0未満であり、更に好ましくは0.1~0.5である。
<添加剤E>
 本開示の非水電解液は、添加剤Eとして、下記式(I)で表される化合物からなる群から選択される少なくとも1種を含有し得る。
 式(I)で表される化合物は、以下に示すとおり、環状硫酸エステルである。
Figure JPOXMLDOC01-appb-C000015
 式(I)中、R及びRが、それぞれ独立に、水素原子、炭素数1~6のアルキル基、フェニル基、式(II)で表される基若しくは式(III)で表される基を表すか、又は、R及びRが一体となって、Rが結合する炭素原子及びRが結合する炭素原子と共に、ベンゼン環若しくはシクロヘキシル環を形成する基を表す。
 式(II)中、Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロゲン化アルキル基、炭素数1~6のアルコキシ基、又は式(IV)で表される基を表す。式(II)、式(III)、及び式(IV)における波線は、結合位置を表す。
 式(I)で表される化合物中に、式(II)で表される基が2つ含まれる場合、2つの式(II)で表される基は、同一であっても互いに異なっていてもよい。
 式(II)中、「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が具体例として挙げられる。
 ハロゲン原子としては、フッ素原子が好ましい。
 式(I)及び(II)中、「炭素数1~6のアルキル基」とは、炭素数が1以上6以下である直鎖又は分岐鎖のアルキル基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、2-メチルブチル基、1-メチルペンチル基、ネオペンチル基、1-エチルプロピル基、ヘキシル基、3,3-ジメチルブチル基などが具体例として挙げられる。
 炭素数1~6のアルキル基としては、炭素数1~3のアルキル基がより好ましい。
 式(II)中、「炭素数1~6のハロゲン化アルキル基」とは、炭素数が1~6である直鎖又は分岐鎖のハロゲン化アルキル基であり、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロイソプロピル基、パーフルオロイソブチル基、クロロメチル基、クロロエチル基、クロロプロピル基、ブロモメチル基、ブロモエチル基、ブロモプロピル基、ヨウ化メチル基、ヨウ化エチル基、ヨウ化プロピル基などが具体例として挙げられる。
 炭素数1~6のハロゲン化アルキル基としては、炭素数1~3のハロゲン化アルキル基がより好ましい。
 式(II)中、「炭素数1~6のアルコキシ基」とは、炭素数が1以上6以下である直鎖又は分岐鎖のアルコキシ基であり、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、2-メチルブトキシ基、1-メチルペンチルオキシ基、ネオペンチルオキシ基、1-エチルプロポキシ基、ヘキシルオキシ基、3,3-ジメチルブトキシ基などが具体例として挙げられる。
 炭素数1~6のアルコキシ基としては、炭素数1~3のアルコキシ基がより好ましい。
 式(I)における好ましい態様は、Rが、式(II)で表される基(式(II)において、Rは、フッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のアルコキシ基、又は式(IV)で表される基であることが好ましい。)若しくは式(III)で表される基であり、かつ、Rが、水素原子、炭素数1~3のアルキル基、式(II)で表される基、若しくは式(III)で表される基であるか、又は、R及びRが一体となって、Rが結合する炭素原子及びRが結合する炭素原子と共に、ベンゼン環若しくはシクロヘキシル環を形成する基である態様である。
 式(I)中のRとして、より好ましくは、水素原子、炭素数1~3のアルキル基、式(II)で表される基(式(II)において、Rは、フッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のアルコキシ基、又は、式(IV)で表される基であることがさらに好ましい。)、又は式(III)で表される基であり、さらに好ましくは水素原子又はメチル基である。
 式(I)中のRが式(II)で表される基である場合、式(II)中のRは前述のとおり、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロゲン化アルキル基、炭素数1~6のアルコキシ基、又は式(IV)で表される基であるが、Rとしてより好ましくは、フッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のアルコキシ基、又は、式(IV)で表される基であり、更に好ましくは、フッ素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、又は、式(IV)で表される基である。
 式(I)中のRが式(II)で表される基である場合、式(II)中のRの好ましい範囲については、式(I)中のRが式(II)で表される基である場合におけるRの好ましい範囲と同様である。
 式(I)におけるR及びRの好ましい組み合わせとしては、Rが、式(II)で表される基(式(II)中、Rはフッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のアルコキシ基、又は式(IV)で表される基であることが好ましい)、又は式(III)で表される基であり、Rが、水素原子、炭素数1~3のアルキル基、式(II)で表される基(式(II)中、Rはフッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロゲン化アルキル基、炭素数1~3のアルコキシ基、又は式(IV)で表される基であることが好ましい。)、又は式(III)で表される基である組み合わせである。
 式(I)におけるR及びRのより好ましい組み合わせとしては、Rが式(II)で表される基(式(II)中、Rはフッ素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、又は式(IV)で表される基であることが好ましい)又は式(III)で表される基であり、Rが水素原子又はメチル基である組み合わせである。
 式(I)で表される化合物としては、例えば、カテコールサルフェート、1,2-シクロヘキシルサルフェート、及び下記例示化合物1~30で示される化合物が挙げられる。但し、式(I)で表される化合物は、これらに限られない。
 下記例示化合物の構造中、「Me」はメチル基を、「Et」はエチル基を、「Pr」はプロピル基を、「iPr」はイソプロピル基を、「Bu」はブチル基を、「tBu」はターシャリーブチル基を、「Pent」はペンチル基を、「Hex」はヘキシル基を、「OMe」はメトキシ基を、「OEt」はエトキシ基を、「OPr」はプロポキシ基を、「OBu」はブトキシ基を、「OPent」はペンチルオキシ基を、「OHex」はヘキシルオキシ基を、それぞれ表す。また、R~Rにおける「波線」は、結合位置を表す。
 なお、2,2-ジオキソ-1,3,2-ジオキサチオラン環の4位及び5位の置換基に由来する立体異性体が生じる場合があるが、両者とも本開示に含まれる化合物である。
 また、式(I)で表される硫酸エステル化合物のうち、分子内に2個以上の不斉炭素が存在する場合はそれぞれ立体異性体(ジアステレオマー)が存在するが、特に記載しない限りは,対応するジアステレオマーの混合物である。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式(I)で表される化合物のうち、分子内に2個以上の不斉炭素が存在する場合はそれぞれ立体異性体(ジアステレオマー)が存在するが、特に記載しない限りは、対応するジアステレオマーの混合物である。
 式(I)で表される化合物を合成する方法には特に制限はないが、例えば、国際公開第2012/053644号の段落0062~0068に記載の合成方法によって合成することができる。
 本開示の非水電解液が添加剤Eを含有する場合、添加剤Eの含有量は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.001質量%~5.0質量%がより好ましく、0.001質量%~3.0質量%であることが更に好ましく、0.01質量%~3.0質量%であることが更に好ましく、0.1質量%~3.0質量%であることが更に好ましく、0.1質量%~2.0質量%であることが更に好ましく、0.1質量%~1.0質量%であることが特に好ましい。
<非水溶媒>
 非水電解液は、一般的に、非水溶媒を含有する。
 非水溶媒としては、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び鎖状の非プロトン性溶媒から選ばれる少なくとも一方を用いることが好ましい。
 電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。
(環状の非プロトン性溶媒)
 環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
 環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
 環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
 環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。
 環状カルボン酸エステルとして、具体的にはγ-ブチロラクトン、δ-バレロラクトン、あるいはメチルγ-ブチロラクトン、エチルγ-ブチロラクトン、エチルδ-バレロラクトンなどのアルキル置換体などを例示することができる。
 環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、上記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。環状カルボン酸エステルの中でも、γ-ブチロラクトンが最も好ましい。
 また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/又は鎖状カーボネートとの混合物が挙げられる。
 環状スルホンの例としては、スルホラン、2-メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
 環状エーテルの例としてジオキソランを挙げることができる。
(鎖状の非プロトン性溶媒)
 鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
 鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。
 鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。
 鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
 鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
 鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
(溶媒の組み合わせ)
 本開示の非水電解液で使用する非水溶媒は、1種類でも複数種類を混合して用いてもよい。また、環状の非プロトン性溶媒のみを1種類又は複数種類用いても、鎖状の非プロトン性溶媒のみを1種類又は複数種類用いても、又は環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
 さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。
 環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。
 環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95~80:20、さらに好ましくは10:90~70:30、特に好ましくは15:85~55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温又は低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。
 環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせの例として、具体的には、γ-ブチロラクトンとエチレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとスルホラン、γ-ブチロラクトンとエチレンカーボネートとスルホラン、γ-ブチロラクトンとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。
(その他の溶媒)
 非水溶媒としては、上記以外のその他の溶媒も挙げられる。
 その他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル-N,N-ジメチルカーバメートなどの鎖状カーバメート、N-メチルピロリドンなどの環状アミド、N,N-ジメチルイミダゾリジノンなどの環状ウレア、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリオクチル、ホウ酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
 HO(CHCHO)
 HO[CHCH(CH)O]
 CHO(CHCHO)
 CHO[CHCH(CH)O]
 CHO(CHCHO)CH
 CHO[CHCH(CH)O]CH
 C19PhO(CHCHO)[CH(CH)O]CH
 (Phはフェニル基)
 CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
 上記式中、a~fは、5~250の整数、g~jは2~249の整数、5≦g+h≦250、5≦i+j≦250である。
 本開示の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。
〔リチウム二次電池〕
 本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液と、を含む。
(負極)
 負極は、負極活物質及び負極集電体を含んでもよい。
 負極における負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
 リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
 これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
 上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
 上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
 これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
 負極における負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
(正極)
 正極は、正極活物質及び正極集電体を含んでもよい。
 正極における正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1-X)〔0<X<1〕、α-NaFeO型結晶構造を有するLi1+αMe1-α(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1-α)≦1.6)、LiNiCoMn〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3等)、LiFePO、LiMnPOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
 正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
 正極における正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
(セパレータ)
 本開示のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
 セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
 多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
 特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(電池の構成)
 本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
 本開示のリチウム二次電池(非水電解液二次電池)の例として、ラミネート型電池が挙げられる。
 図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
 図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
 ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。
 上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
 同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
 なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。
 本開示のリチウム二次電池の別の一例として、コイン型電池も挙げられる。
 図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
 図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
 この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いる。
 なお、本開示のリチウム二次電池は、負極と、正極と、上記本開示の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
 即ち、本開示のリチウム二次電池は、まず、負極と、正極と、上記本開示の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
 本開示のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。
 以下、本開示の実施例を示すが、本開示は以下の実施例によって制限されるものではない。
 なお、以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を表す。
 また、「wt%」は、質量%を意味する。
〔実施例1〕
 以下の手順にて、リチウム二次電池であるコイン型電池(試験用電池)を作製した。
<負極の作製>
 天然黒鉛系黒鉛98質量部、カルボキシメチルセルロース1質量部及びSBRラテックス1質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層とからなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
<正極の作製>
 LiNi0.5Mn0.3Co0.2を96.5質量部、アセチレンブラック2質量部及びポリフッ化ビニリデン1.5質量部を、N-メチルピロリジノンを溶媒として混練してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.7g/mlであった。
<非水電解液の調製>
 非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:35:35(質量比)の割合で混合し、混合溶媒を得た。
 得られた混合溶媒中に、電解質であるLiPFを、最終的に得られる非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
 上記で得られた溶液に対して、
添加剤Aとしてトリフルオロメタンスルホン酸リチウム(以下、「TFMSLi」ともいう)(添加量0.5質量%)、
添加剤Bとしてジフルオロリン酸リチウム(以下、「LiDFP」ともいう)(添加量1.0質量%)、及び
添加剤Cとしてビス(オキサラト)ホウ酸リチウム(以下、「LiBOB」ともいう)(添加量0.5質量%)
を添加し、非水電解液を得た。
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜いて、コイン状の電極(負極及び正極)を得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜きセパレータを得た。
 得られたコイン状の負極、セパレータ及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、上記非水電解液20μlを注入してセパレータと正極と負極に含漬させた。
 さらに、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封し、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型のリチウム二次電池(以下、試験用電池と称する)を作製した。
[評価]
 得られたコイン型電池(試験用電池)について、以下の評価を実施した。
<保存前の直流抵抗(-20℃)>
 コイン型電池を定電圧4.2Vで充放電を3回繰り返した後、定電圧3.9Vまで充電し、次いで、この充電後のコイン型電池を恒温槽内で-20℃に冷却した。-20℃に冷却されたコイン型電池を、-20℃において0.2mA定電流で放電し、放電開始から10秒間における電位低下を測定することにより、コイン型電池の直流抵抗[Ω]を測定した。得られた測定値を、保存前の直流抵抗(-20℃)(Ω)とした。
 結果を表1に示す。
<保存後の直流抵抗(-20℃)>
 保存前の直流抵抗(-20℃)を測定したコイン型電池を、定電圧4.25Vで充電し、充電したコイン型電池を60℃の恒温槽内に5日間保存した。
 5日間の保存後、コイン型電池を定電圧3.9Vまで充電し、次いで、この充電後のコイン型電池を恒温槽内で-20℃に冷却した。-20℃に冷却されたコイン型電池を、-20℃において0.2mA定電流で放電し、放電開始から10秒間における電位低下を測定することにより、コイン型電池の直流抵抗[Ω]を測定した。得られた測定値を、保存後の直流抵抗(-20℃)(Ω)とした。
 結果を表1に示す。
<保存による直流抵抗の上昇率(%)>
 保存前の直流抵抗(-20℃)及び保存後の直流抵抗(-20℃)に基づき、下記式により、保存による直流抵抗の上昇率(%)を求めた。
 結果を表1に示す。
 保存による直流抵抗の上昇率(%)=(保存後の直流抵抗(-20℃)-保存前の直流抵抗(-20℃)/保存前の直流抵抗(-20℃))×100
 保存による直流抵抗の上昇率(%)(以下、単に「上昇率」ともいう)は、マイナスの値となる場合がある。
 言うまでもないが、保存による直流抵抗の上昇率(%)がマイナスの値であることは、保存によって、直流抵抗が低減されたことを意味する。
〔比較例1~3〕
 非水電解液の調製において、添加剤の種類及び量を、表1に示すように変更したこと以外は実施例1と同様の操作を行った。
 結果を表1に示す。
 表1中、各添加剤欄の「-」との表記は、該当する添加剤を添加しなかったこと(即ち、添加量0質量%)を意味する。
Figure JPOXMLDOC01-appb-T000019
 表1に示すように、添加剤A、添加剤B及び添加剤Cの全てを含有する非水電解液を用いた実施例1では、比較例1~3と比較して、保存後の電池の直流抵抗が低減されていた。
 より詳細には、添加剤Cを含有しない非水電解液を用いた比較例1では、保存前の直流抵抗は低いものの、保存によって直流抵抗が上昇し、結果として保存後の直流抵抗が高くなった。
 実施例1では、この比較例1における添加剤B(1.5wt%)のうちの0.5wt%分を添加剤Cに置き換えることにより、保存による直流抵抗の上昇を抑制でき、その結果、保存後の直流抵抗をより低くすることができた。
 また、添加剤Bを含有しない非水電解液を用いた比較例2では、保存前及び保存後のいずれにおいても、高い直流抵抗を示した。
 実施例1では、この比較例2における添加剤C(1.5wt%)のうちの0.5wt%分を添加剤Bに置き換えることにより、保存前の直流抵抗及び保存後の直流抵抗を両方とも大幅に低減することができ、その結果、保存後の直流抵抗をより低くすることができた。
 また、実施例1では、添加剤Aを含有しない非水電解液を用いた比較例3における添加剤B(1.5wt%)のうちの0.5wt%分を添加剤Aに置き換えることにより、保存前の直流抵抗及び保存後の直流抵抗を両方とも低減することが、その結果、保存後の直流抵抗をより低くすることができた。
〔実施例101〕
 非水電解液の調製において、更に、添加剤Dとしてのビニレンカーボネート(以下、「VC」ともいう)(添加量0.3質量%)を添加したこと以外は実施例1と同様の操作を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000020
 表2に示すように、添加剤Dを含有する非水電解液を用いた実施例101では、保存前の直流抵抗が高くなったが、保存により、直流抵抗を低減させることができ、結果として、保存後の電池の直流抵抗をある程度低くすることができた。保存による直流抵抗低減の効果は、添加剤A、添加剤B及び添加剤Cの添加によって得られた効果であると考えられる。
 2017年3月30日に出願された日本国特許出願2017-068365の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (10)

  1.  下記式(A)で表される化合物からなる群から選択される少なくとも1種である添加剤Aと、
     モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群から選択される少なくとも1種である添加剤Bと、
     下記式(C)で表される化合物からなる群から選択される少なくとも1種である添加剤Cと、
     前記添加剤A、前記添加剤B及び前記添加剤C以外のリチウム塩である電解質と、
    を含有する電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    〔式(A)中、Rは、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素基、少なくとも1つのフッ素原子で置換された炭素数1~6の炭化水素オキシ基、又はフッ素原子を表す。〕
    Figure JPOXMLDOC01-appb-C000002

    〔式(C)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、Rは、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよい。)を表し、mは、1~3の整数を表し、nは、0~4の整数を表し、qは、0又は1を表す。〕
  2.  前記添加剤Cは、下記式(C2)で表される化合物からなる群から選択される少なくとも1種である請求項1に記載の電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000003

    〔式(C2)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、mは、1~3の整数を表し、nは、0~4の整数を表す。〕
  3.  前記添加剤Cは、ビス(オキサラト)ホウ酸リチウム及びジフルオロ(オキサラト)ホウ酸リチウムからなる群から選択される少なくとも1種である請求項1又は請求項2に記載の電池用非水電解液。
  4.  前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.001質量%~10質量%であり、
     前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.001質量%~10質量%であり、
     前記添加剤Cの含有量が、電池用非水電解液の全量に対し、0.001質量%~10質量%である請求項1~請求項3のいずれか1項に記載の電池用非水電解液。
  5.  前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.1質量%~2.0質量%であり、
     前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.1質量%~2.0質量%であり、
     前記添加剤Cの含有量が、電池用非水電解液の全量に対し、0.1質量%~2.0質量%である請求項1~請求項4のいずれか1項に記載の電池用非水電解液。
  6.  前記添加剤Bの含有質量に対する前記添加剤Aの含有質量の比が、0.1~2.0であり、
     前記添加剤Bの含有質量に対する前記添加剤Cの含有質量の比が、0.1~2.0である請求項1~請求項5のいずれか1項に記載の電池用非水電解液。
  7.  更に、下記式(D)で表される化合物からなる群から選択される少なくとも1種である添加剤Dを含有する請求項1~請求項6のいずれか1項に記載の電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000004

    〔式(D)中、Y及びYは、各々独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。〕
  8.  前記添加剤Dの含有量が、電池用非水電解液の全量に対し、0.001質量%~10質量%である請求項7に記載の電池用非水電解液。
  9.  正極と、
     金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
     請求項1~請求項8のいずれか1項に記載の電池用非水電解液と、
    を含むリチウム二次電池。
  10.  請求項9に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
PCT/JP2018/012525 2017-03-30 2018-03-27 電池用非水電解液及びリチウム二次電池 WO2018181369A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18777991.3A EP3605707A4 (en) 2017-03-30 2018-03-27 WATER-FREE ELECTROLYTE SOLUTION FOR BATTERY AND LITHIUM SECONDARY BATTERY
CN201880020936.7A CN110506358B (zh) 2017-03-30 2018-03-27 电池用非水电解液及锂二次电池
JP2019509919A JP6913159B2 (ja) 2017-03-30 2018-03-27 電池用非水電解液及びリチウム二次電池
US16/498,466 US20210043971A1 (en) 2017-03-30 2018-03-27 Nonaqueous electrolytic solution for battery and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068365 2017-03-30
JP2017-068365 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181369A1 true WO2018181369A1 (ja) 2018-10-04

Family

ID=63676014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012525 WO2018181369A1 (ja) 2017-03-30 2018-03-27 電池用非水電解液及びリチウム二次電池

Country Status (5)

Country Link
US (1) US20210043971A1 (ja)
EP (1) EP3605707A4 (ja)
JP (1) JP6913159B2 (ja)
CN (1) CN110506358B (ja)
WO (1) WO2018181369A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020156282A1 (zh) * 2019-01-31 2020-08-06 珠海冠宇电池股份有限公司 非水电解液及含有该非水电解液的锂离子电池
WO2022168584A1 (ja) * 2021-02-02 2022-08-11 三井化学株式会社 リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326796B (zh) * 2020-03-09 2022-04-08 东莞维科电池有限公司 一种高温锂离子电池电解液及锂离子电池
CN112117493B (zh) * 2020-10-19 2022-05-06 珠海冠宇电池股份有限公司 一种锂离子电池用电解液及包括该电解液的锂离子电池
CN113078355A (zh) * 2021-02-07 2021-07-06 东莞市杉杉电池材料有限公司 一种三元锂离子电池电解液及其离子电池
KR102660938B1 (ko) * 2021-11-11 2024-04-25 주식회사 엘지에너지솔루션 리튬 이차전지

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439085B2 (ja) 1997-08-21 2003-08-25 三洋電機株式会社 非水系電解液二次電池
JP3730855B2 (ja) 2000-11-28 2006-01-05 セントラル硝子株式会社 電気化学ディバイス用電解質、その電解液または固体電解質並びに電池
WO2011070964A1 (ja) * 2009-12-07 2011-06-16 ソニー株式会社 二次電池、電解液、電池パック、電子機器および電動車両
WO2012053644A1 (ja) 2010-10-22 2012-04-26 三井化学株式会社 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
WO2016009994A1 (ja) * 2014-07-15 2016-01-21 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2016017809A1 (ja) * 2014-08-01 2016-02-04 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
JP2016146341A (ja) * 2015-02-02 2016-08-12 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP2016184462A (ja) * 2015-03-25 2016-10-20 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
WO2016190404A1 (ja) * 2015-05-26 2016-12-01 三井化学株式会社 電池用非水電解液及びリチウム二次電池
JP2017068365A (ja) 2015-09-28 2017-04-06 東芝テック株式会社 情報処理装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530822B2 (ja) * 2004-11-30 2010-08-25 三洋電機株式会社 非水電解質二次電池及びその充電方法
US20080026297A1 (en) * 2005-01-11 2008-01-31 Air Products And Chemicals, Inc. Electrolytes, cells and methods of forming passivaton layers
JP2009302022A (ja) * 2008-06-17 2009-12-24 Sony Corp 非水電解液二次電池
JP5277043B2 (ja) * 2009-03-31 2013-08-28 三和油化工業株式会社 非水電解液
JP5678539B2 (ja) * 2009-09-29 2015-03-04 三菱化学株式会社 非水系電解液電池
EP2571089A4 (en) * 2010-05-12 2017-03-15 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery
KR102188220B1 (ko) * 2013-04-01 2020-12-08 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 축전 디바이스
JP6382641B2 (ja) * 2013-09-11 2018-08-29 株式会社東芝 非水電解質電池及び非水電解質電池の製造方法
CN105474452B (zh) * 2013-09-25 2018-07-27 三井化学株式会社 电池用非水电解液及锂二次电池
US20170271091A1 (en) * 2014-05-14 2017-09-21 Ube Industries, Ltd. Non-aqueous electrolyte, power storage device using same, and lithium salt used for same
JP6693200B2 (ja) * 2015-03-24 2020-05-13 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池
KR20160117961A (ko) * 2015-04-01 2016-10-11 에스케이케미칼주식회사 이차 전지용 전해액 조성물 및 이를 포함하는 이차 전지
CN105047993A (zh) * 2015-07-28 2015-11-11 东莞市凯欣电池材料有限公司 一种促进石墨负极成膜的电解液及使用该电解液的电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439085B2 (ja) 1997-08-21 2003-08-25 三洋電機株式会社 非水系電解液二次電池
JP3730855B2 (ja) 2000-11-28 2006-01-05 セントラル硝子株式会社 電気化学ディバイス用電解質、その電解液または固体電解質並びに電池
WO2011070964A1 (ja) * 2009-12-07 2011-06-16 ソニー株式会社 二次電池、電解液、電池パック、電子機器および電動車両
WO2012053644A1 (ja) 2010-10-22 2012-04-26 三井化学株式会社 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
WO2016009994A1 (ja) * 2014-07-15 2016-01-21 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2016017809A1 (ja) * 2014-08-01 2016-02-04 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
JP2016146341A (ja) * 2015-02-02 2016-08-12 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP2016184462A (ja) * 2015-03-25 2016-10-20 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
WO2016190404A1 (ja) * 2015-05-26 2016-12-01 三井化学株式会社 電池用非水電解液及びリチウム二次電池
JP2017068365A (ja) 2015-09-28 2017-04-06 東芝テック株式会社 情報処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605707A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020156282A1 (zh) * 2019-01-31 2020-08-06 珠海冠宇电池股份有限公司 非水电解液及含有该非水电解液的锂离子电池
WO2022168584A1 (ja) * 2021-02-02 2022-08-11 三井化学株式会社 リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法

Also Published As

Publication number Publication date
US20210043971A1 (en) 2021-02-11
JP6913159B2 (ja) 2021-08-04
CN110506358A (zh) 2019-11-26
CN110506358B (zh) 2022-09-30
EP3605707A4 (en) 2020-12-16
EP3605707A1 (en) 2020-02-05
JPWO2018181369A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5524347B2 (ja) 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
WO2016190404A1 (ja) 電池用非水電解液及びリチウム二次電池
JP6913159B2 (ja) 電池用非水電解液及びリチウム二次電池
JP5956680B2 (ja) 電池用非水電解液、新規化合物、高分子電解質、及びリチウム二次電池
JP2014170689A (ja) 非水電解液及びリチウム二次電池
JP6368501B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP2018156761A (ja) 電池用非水電解液及びリチウム二次電池
JP7247112B2 (ja) 電池用非水電解液及びリチウム二次電池
WO2017038406A1 (ja) 電池用非水電解液及びリチウム二次電池
JP6607695B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP2017045724A (ja) 電池用非水電解液及びリチウム二次電池
JP7103713B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7115724B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2022126851A (ja) 電池用非水電解液及びリチウム二次電池
JP2017045723A (ja) 電池用非水電解液及びリチウム二次電池
JP2017017002A (ja) 電池用非水電解液及びリチウム二次電池
JP6879799B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6957179B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7160461B2 (ja) リチウム二次電池の製造方法
JP2019179609A (ja) 電池用非水電解液及びリチウム二次電池
JP2018170236A (ja) 電池用非水電解液及びリチウム二次電池
JP2017045722A (ja) 電池用非水電解液及びリチウム二次電池
JP6980502B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6894751B2 (ja) 電池用非水電解液、電池用添加剤、及びリチウム二次電池
JP2019179614A (ja) 電池用非水電解液及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777991

Country of ref document: EP

Effective date: 20191030