WO2020155212A1 - 二氧化钛单晶材料及其生长方法 - Google Patents

二氧化钛单晶材料及其生长方法 Download PDF

Info

Publication number
WO2020155212A1
WO2020155212A1 PCT/CN2019/075481 CN2019075481W WO2020155212A1 WO 2020155212 A1 WO2020155212 A1 WO 2020155212A1 CN 2019075481 W CN2019075481 W CN 2019075481W WO 2020155212 A1 WO2020155212 A1 WO 2020155212A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
titanium dioxide
anatase
dioxide single
planes
Prior art date
Application number
PCT/CN2019/075481
Other languages
English (en)
French (fr)
Inventor
谢奎
金路
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Publication of WO2020155212A1 publication Critical patent/WO2020155212A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes

Definitions

  • the application relates to a large-size anatase-type titanium dioxide single crystal and a growth method thereof, and belongs to the field of inorganic materials.
  • Titanium dioxide is a typical semiconductor material that is chemically stable, low-toxic, inexpensive, and has a wide range of sources. It is widely used in the fields of photocatalysis, dye-sensitized solar cells, photochromic devices, and gas sensing. As a photocatalytic material, titanium dioxide is currently the only photocatalytic material that has entered the practical stage. Titanium dioxide has many crystal types.
  • anatase phase titanium dioxide (Anatase TiO 2 , tetragonal system), rutile phase titanium dioxide (Rutile TiO 2 , tetragonal system), and brookite phase titanium dioxide (Brookite TiO 2 , orthorhombic system) and titanium dioxide (B) phase (monoclinic system).
  • the rutile phase titanium dioxide is a thermodynamically stable crystal phase, and other crystal types will be transformed into rutile phase at a certain temperature, and the phase transformation is an irreversible process.
  • the photocatalytic effect of rutile phase titanium dioxide is very poor, and the anatase phase titanium dioxide has better photocatalytic performance than other crystal types of titanium dioxide.
  • anatase-type titanium dioxide materials have been studied very extensively, but anatase-type titanium dioxide catalysts and supporting electrodes are mainly based on amorphous or polycrystalline titanium dioxide nanoparticles.
  • the fundamental disadvantage is that there are many grain boundaries, resulting in the material's electron mobility. The sharp drop compared to single crystal ultimately limits the catalyst performance.
  • the termination atoms on the surface of anatase titanium dioxide nanomaterials are uncertain, which severely limits the in-depth study of the catalytic mechanism.
  • the growth of large-size anatase titanium dioxide single crystals has always been a challenging problem.
  • an anatase-type titanium dioxide single crystal material there is provided an anatase-type titanium dioxide single crystal material.
  • the anatase-type titanium dioxide single crystal has a large size.
  • the purpose of this application is to solve the growth problem of large-size anatase-type titanium dioxide.
  • titanium dioxide nanoparticles are not conducive to large-scale production and applications.
  • This application relates to a method for growing a large-size anatase titanium dioxide single crystal material.
  • the method is mainly potassium titanyl phosphate single crystal (KTiOPO 4 , hereinafter referred to as KTP) or zinc titanate (Zn 2 TiO 4 , hereinafter referred to as ZTO) single crystal or strontium titanate (SrTiO 4 , hereinafter referred to as STO) and other titanium-containing single crystals are used as substrates, and anatase-type titanium dioxide single crystal materials are grown through decomposition reaction.
  • KTP potassium titanyl phosphate single crystal
  • ZTO zinc titanate
  • STO strontium titanate
  • the method of preparing anatase-type titanium dioxide single crystal Place a titanium-containing substrate such as KTP single crystal or ZTO single crystal or STO single crystal in a high-temperature atmosphere containing different components, and heat and crystallize the titanium dioxide single crystal by heating at a certain rate .
  • the size of the anatase type titanium dioxide single crystal material described in this application is 0.5 cm to 5 cm, and the prepared anatase type titanium dioxide single crystal film and bulk have good compactness, and firm.
  • the preparation method of the crystal material has simple operation, good repeatability, low price and large-scale production.
  • the titanium dioxide single crystal material is characterized in that the titanium dioxide single crystal material is an anatase type titanium dioxide single crystal material; the size of the titanium dioxide single crystal material is 0.1 cm to 30 cm.
  • the size of the titanium dioxide single crystal material is 0.5 cm to 5 cm.
  • the titanium dioxide single crystal material is an anatase type titanium dioxide single crystal film and/or an anatase type titanium dioxide single crystal crystal.
  • the thickness of the anatase-type titanium dioxide single crystal film is 10 nm to 500 ⁇ m.
  • the thickness of the anatase-type titanium dioxide single crystal film is 10 nm-50 ⁇ m.
  • the size of the anatase-type titanium dioxide single crystal crystal is 0.1 cm-30 cm.
  • the one-dimensional size in the largest surface of the anatase-type titanium dioxide single crystal crystal is 0.1 cm-30 cm.
  • the size of the anatase-type titanium dioxide single crystal crystal is 0.5 cm to 5 cm.
  • the crystal faces of the anatase titanium dioxide single crystal material are the (100) plane, (110) plane, (101) plane, (001) plane, and (111) plane of the anatase titanium dioxide single crystal , At least one of (010) plane, (011) plane, and (200) plane.
  • the surface of the anatase titanium dioxide single crystal thin film is the (100) plane, (110) plane, (101) plane, (001) plane, and (111) plane of the anatase titanium dioxide single crystal. At least one of (010) plane, (011) plane, and (200) plane.
  • the surface of the anatase titanium dioxide single crystal is the (100) plane, (110) plane, (101) plane, (001) plane, and (111) plane of the anatase titanium dioxide single crystal. At least one of (010) plane, (011) plane, and (200) plane.
  • a method for preparing the titanium dioxide single crystal material which is characterized in that it at least includes:
  • the titanium source is selected from at least one of titanium-containing single crystals.
  • the titanium source is selected from potassium titanate single crystal, potassium titanate arsenate single crystal, zinc titanate single crystal, strontium titanate single crystal, lithium titanate single crystal, potassium titanate single crystal, titanium Barium oxide single crystal, magnesium titanate single crystal, lead titanate single crystal, sodium bismuth titanate single crystal, sodium titanate single crystal, nickel titanate single crystal, cadmium titanate single crystal, manganese titanate single crystal, titanic acid Aluminum single crystal, titanium nitrate single crystal, titanium oxychloride single crystal, titanium oxyfluoride single crystal, titanyl bromide single crystal, ammonium titanate fluoride single crystal, titanium lithium fluoride single crystal, titanium sodium phosphate single crystal, titanium cesium sulfate At least one of single crystals.
  • the surface of the potassium titanyl phosphate single crystal in contact with the raw material gas is at least one of the (100), (001), (110), and (111) planes of the potassium titanyl phosphate single crystal. one side.
  • the surface of the zinc titanate single crystal in contact with the raw material gas is at least one of the (100) surface, (110) surface, and (111) surface of the zinc titanate crystal.
  • the surface of the strontium titanate single crystal in contact with the raw material gas is at least one of the (100), (110), and (111) surfaces of the strontium titanate crystal.
  • the contact reaction is pyrolysis.
  • the potassium titanyl phosphate single crystal is KTiOPO 4 , hereinafter referred to as KTP.
  • the KTP single crystal is at least one of the (100) plane, (001) plane, (110) plane, (111) plane and the like.
  • the KTP single crystal material is a KTP single wafer; the surface of the KTP single crystal with the largest area is the (100), (001), (110) or (111) surface of the single crystal and contains different components The raw material gas contact.
  • the zinc titanate single crystal is Zn 2 TiO 4 , hereinafter referred to as ZTO.
  • the ZTO single crystal is at least one of the (100) plane, the (110) plane, and the (111) plane.
  • the ZTO single crystal material is a ZTO single wafer; the surface with the largest area of the ZTO single crystal is the (100), (110) or (111) surface of the single crystal in contact with the raw material gas containing different components.
  • the strontium titanate single crystal is SrTiO 4 , hereinafter referred to as STO.
  • the STO single crystal has at least one of (100) plane, (110) plane, and (111) plane.
  • the STO single crystal material is an STO single wafer; the surface of the STO single crystal with the largest area is the (100), (110) or (111) surface of the single crystal in contact with the raw material gas containing different components.
  • the raw material gas includes at least one of air, oxygen, nitrogen, ammonia, argon, and hydrogen;
  • the flow rate of air is denoted as a
  • the flow rate of oxygen is denoted as b
  • the flow rate of nitrogen is denoted as c
  • the flow rate of ammonia is denoted as d
  • the flow rate of argon is denoted as e
  • the flow rate of hydrogen is denoted as f, satisfying:
  • a, b, c, d, e, f are not 0 at the same time;
  • the raw material gas when the raw material gas includes hydrogen, the raw material gas does not include oxygen and air;
  • the raw material gas when the raw material gas includes oxygen and/or air, the raw material gas does not include hydrogen.
  • the hydrogen, hydrogen argon, oxygen, and air do not exist at the same time.
  • the raw material gas containing different components includes at least one of air, oxygen, nitrogen, ammonia, argon, hydrogen, and hydrogen argon; hydrogen, hydrogen, argon, oxygen, and air are at most Can contain one class.
  • Hydrogen argon is a mixed gas containing hydrogen with a volume fraction of 5% hydrogen and argon with a volume fraction of 95%. Hydrogen argon can be a commercial gas.
  • the upper limit of the flow rate range of the air is selected from 0.01SLM, 0.05SLM, 0.1SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 4SLM, 6SLM, 8SLM, 10SLM, 20SLM, 40SLM, 60SLM, 80SLM or 100SLM;
  • the lower limit is selected from 0SLM, 0.05SLM, 0.1SLM, 0.3SLM, 0.5SLM, 1SLM, 1.5SLM, 3SLM, 5SLM, 7SLM, 9SLM, 10SLM, 30SLM, 50SLM, 70SLM, or 90SLM.
  • the upper limit of the oxygen flow range is selected from 0.01SLM, 0.1SLM, 0.3SLM, 0.5SLM, 1.5SLM, 3SLM, 5SLM, 7SLM, 9SLM, 10SLM, 20SLM, 40SLM, 60SLM, 80SLM, or 100SLM; the lower limit is selected From 0SLM, 0.05SLM, 0.1SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 4SLM, 6SLM, 8SLM, 10SLM, 20SLM, 40SLM, 60SLM, 80SLM or 90SLM.
  • the upper limit of the flow range of the nitrogen gas is selected from 0.01SLM, 0.05SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, 80SLM or 100SLM; the lower limit is selected from 0SLM, 0.01SLM, 0.05SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, or 80SLM.
  • the upper limit of the flow range of the ammonia gas is selected from 0.01SLM, 0.05SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, 80SLM or 100SLM; the lower limit is selected From 0SLM, 0.01SLM, 0.05SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM or 80SLM.
  • the upper limit of the flow range of the argon gas is selected from 0.01SLM, 0.05SLM, 0.1SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 4SLM, 6SLM, 8SLM, 10SLM, 20SLM, 40SLM, 60SLM, 80SLM, or 100SLM ;
  • the lower limit is selected from 0SLM, 0.05SLM, 0.1SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 4SLM, 6SLM, 8SLM, 9SLM, 10SLM, 20SLM, 40SLM, 60SLM, 80SLM or 90SLM.
  • the upper limit of the flow rate range of the hydrogen is selected from 0.01SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, 80SLM, or 100SLM; the lower limit is selected from 0SLM, 0.01 SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, or 80SLM.
  • the upper limit of the flow range of the hydrogen and argon gas is selected from 0.01SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, 80SLM or 100SLM; the lower limit is selected from 0SLM , 0.01SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, or 80SLM.
  • the raw material gas is fed in two stages; the first stage is for feeding at least one of air, oxygen, nitrogen, ammonia, argon, and hydrogen; the second stage is for feeding air, oxygen, and nitrogen. , At least one of ammonia, argon, and hydrogen;
  • the feed gas in this section does not include oxygen and air;
  • the feed gas in this stage does not include hydrogen.
  • the feed gas is fed in two stages; the first stage is fed with hydrogen; the second stage is fed with oxygen.
  • the conditions of the reaction are:
  • the reaction temperature is 773K ⁇ 1873K
  • the heating rate is 5 ⁇ 20°C/min
  • the reaction pressure is 0.05 Torr ⁇ 1000 Torr;
  • the reaction time is 1min ⁇ 500h.
  • the conditions of the reaction are:
  • the reaction temperature is 1123K ⁇ 1223K
  • the reaction pressure is 0.1 Torr ⁇ 760 Torr;
  • the reaction time is 1 min-200h.
  • the reaction temperature is 1073K to 1323K.
  • reaction time is 1 min to 200 h.
  • the temperature of the reaction is 1073K to 1123K.
  • the temperature of the reaction is 1073K to 1173K.
  • the temperature of the reaction is 1173K-1223K.
  • the temperature of the reaction is 1123K-1273K.
  • the pressure of the reaction is 0.1 Torr to 1000 Torr.
  • the pressure of the reaction is 10 Torr to 260 Torr.
  • reaction time is 20 minutes to 20 hours.
  • reaction time is 20 min to 100 h.
  • the upper limit of the reaction temperature is selected from 1173K, 1273K, 1373K, 1473K, 1573K, 1673K, 1773K or 1873K; the lower limit is selected from 773K, 873K, 973K, 1073K, 1173K or 1273K.
  • the upper limit of the heating rate is selected from 10°C/min, 15°C/min or 20°C/min; the lower limit is selected from 5°C/min, 10°C/min or 15°C/min.
  • the upper limit of the reaction time is selected from 2min, 20min, 50min, 1h, 2h, 5h, 10h, 30h, 50h, 100h, 150h, 200h, 300h, 400h, 450h or 500h;
  • the lower limit is selected from 1min, 10min , 20min, 50min, 1h, 2h, 5h, 10h, 20h, 30h, 50h, 100h, 120h, 150h, 200h, 300h, 400h or 450h.
  • the upper limit of the pressure of the reaction is selected from 0.1 Torr, 0.5 Torr, 10 Torr, 20 Torr, 50 Torr, 100 Torr, 200 Torr, 400 Torr, 600 Torr, 700 Torr, 760 Torr, 800 Torr, 850 Torr, 900 Torr, or 1000 Torr; the lower limit is selected from 0.05 Torr, 0.2 Torr, 0.5 Torr, 10 Torr, 20 Torr, 50 Torr, 100 Torr, 300 Torr, 500 Torr, 700 Torr, or 750 Torr.
  • the method includes: reacting at least one of the titanium-containing single crystals in a raw material gas, thermally decomposing and crystallizing the surface of the titanium-containing single crystals, to obtain the anatase-type titanium dioxide single crystal material.
  • the method includes: reacting single crystals such as potassium titanyl phosphate (KTP) or zinc titanate (ZTO) or strontium titanate (STO) in an atmosphere containing different components, and then reacting in KTP
  • KTP potassium titanyl phosphate
  • ZTO zinc titanate
  • STO strontium titanate
  • the surface of the single crystal or the ZTO single crystal or the STO single crystal is thermally decomposed and crystallized and grown to obtain the anatase-type titanium dioxide single crystal material.
  • the method includes: reacting the KTP single crystal in an atmosphere containing different components, thermally decomposing and growing the KTP single crystal on the surface to obtain an anatase type titanium dioxide single crystal film.
  • the method includes: reacting the KTP single crystal in an atmosphere of different components, thermally decomposing the surface of the KTP single crystal and crystalline growth, to obtain anatase type titanium dioxide single crystal crystal.
  • the method at least includes: reacting at least one of the (100) plane, (001) plane, (110) plane, (111) plane, etc., of the KTP single crystal in an atmosphere containing different components, and The surface of the KTP single crystal crystal grows, and an anatase-type titanium dioxide single crystal film is obtained.
  • the method at least includes: reacting at least one of the (100) plane, (001) plane, (110) plane, (111) plane and other planes of the KTP single crystal in an atmosphere containing different components, The crystals are transformed and grown on the surface of the KTP single crystal to obtain anatase type titanium dioxide single crystals.
  • the method includes: reacting the ZTO single crystal in an atmosphere containing different components, thermally decomposing the crystal and growing on the surface of the ZTO single crystal, to obtain an anatase titanium dioxide single crystal thin film.
  • the method includes: reacting the ZTO single crystal in an atmosphere of different components, thermally decomposing and crystal growth on the surface of the ZTO single crystal, to obtain an anatase type titanium dioxide single crystal crystal.
  • the method at least includes: reacting at least one of the (100), (110), (111) and other planes of the ZTO single crystal in an atmosphere containing different components to crystallize on the surface of the ZTO single crystal Grow to obtain anatase titanium dioxide single crystal thin film.
  • the method at least includes: reacting at least one of the (100) plane, (110) plane, (111) plane and other planes of the ZTO single crystal in an atmosphere containing different components, and reacting on the surface of the ZTO single crystal The crystal is transformed and grown to obtain a ZTO titanium dioxide single crystal crystal.
  • the method includes: reacting the STO single crystal in an atmosphere containing different components, thermally decomposing the crystal on the surface of the STO single crystal and growing, to obtain an anatase type titanium dioxide single crystal film.
  • the method includes: reacting the STO single crystal in an atmosphere of different components, thermally decomposing the surface of the STO single crystal and crystal growth, to obtain an anatase type titanium dioxide single crystal.
  • the method at least includes: reacting at least one of the (100), (110), and (111) planes of the STO single crystal in an atmosphere containing different components to crystallize on the surface of the STO single crystal Grow to obtain anatase titanium dioxide single crystal thin film.
  • the method at least includes: reacting at least one of the (100) plane, (110) plane, (111) plane and other planes of the STO single crystal in an atmosphere containing different components, and reacting on the surface of the STO single crystal The crystal is transformed and grown to obtain anatase-type titanium dioxide single crystal crystals.
  • the KTP single crystal or ZTO single crystal or STO single crystal and other materials contact and react with the raw material gas containing different components
  • the time range is 1min ⁇ 20h.
  • the time for the KTP single crystal or ZTO single crystal material or STO single crystal to contact and react with the raw material gas containing different components is selected from 20min, 30min, 1h, 2h, 4h, 10h or 20h; the lower limit is selected from 10min, 20min, 30min, 1h, 3h, 5h, 10h or 18h.
  • the upper limit of the time range of the contact reaction of the titanium dioxide single crystal material and the raw gas containing different components is selected from 15h, 20h, 50h, 100h, 200h, 300h, 400h or 500h; the lower limit is selected from 10h, 15h, 20h, 50h, 100h, 150h, 250h, 350h or 450h.
  • the contact reaction time should be sufficient to make KTP single crystal or ZTO single crystal or STO single crystal all convert into anatase-type titanium dioxide single crystal. ⁇ Crystal material.
  • the anatase titanium dioxide single crystal material is an anatase titanium dioxide single crystal crystal
  • the material such as the KTP single crystal or the ZTO single crystal or the STO single crystal reacts with the raw material gas containing different components.
  • the time is 10h ⁇ 500h.
  • the crystal size of the obtained anatase-type titanium dioxide single crystal is equal to the size of the KTP single crystal or ZTO single crystal or STO single crystal material used.
  • Those skilled in the art can obtain the required anatase-type titanium dioxide single crystal by selecting materials such as KTP single crystal or ZTO single crystal or STO single crystal of a suitable size according to actual needs.
  • the method includes:
  • Step 1 Use KTP single crystal or ZTO single crystal or STO single crystal as the substrate;
  • Step 2 Place the KTP single crystal or ZTO single crystal or STO single crystal in the vapor phase epitaxial growth reaction chamber, and in a high temperature atmosphere containing different components, the KTP single crystal or ZTO single crystal or STO single crystal is epitaxially grown to high Quality anatase titanium dioxide film.
  • Step 3 As the reaction time increases, further epitaxial growth is performed to grow high-quality large-size anatase-type titanium dioxide single crystals.
  • the substrate of the single crystal in the first step is KTP (100) plane, KTP (001) plane, KTP (110) plane, KTP (111) plane, ZTO (100) plane, ZTO (110) plane, One of ZTO (111) surface, STO (100) surface, STO (110) surface, STO (111) surface, etc.
  • the size range of the anatase single crystal substrate in the first step 0.1 cm-30 cm.
  • the gas source of different components in the second step is: one of air, oxygen, nitrogen, ammonia, argon, hydrogen, hydrogen and argon.
  • the epitaxial growth temperature of the titanium dioxide film in the second step ranges from 1073K to 1323K.
  • the atmosphere containing different components adopts a flow of air + b flow of oxygen + c flow of nitrogen + d flow of ammonia + e flow of argon + f flow of hydrogen + g flow of hydrogen and argon, where 0SLM ⁇ a ⁇ 100SLM, 0SLM ⁇ b ⁇ 100SLM, 0.00SLM ⁇ c ⁇ 100SLM, 0SLM ⁇ d ⁇ 100SLM, 0SLM ⁇ d ⁇ 100SLM, 0SLM ⁇ d ⁇ 100SLM.
  • the pressure range of the second step 0.1 Torr-1000 Torr.
  • the epitaxial growth time in the step three is in the range of 1 min-500 h.
  • the method for preparing anatase-type titanium dioxide single crystal film and anatase-type titanium dioxide single crystal crystal includes the following steps:
  • Step (1) using KTP single wafer as the substrate
  • Step (2) the KTP single wafer substrate is placed in a vapor phase epitaxial growth reaction chamber, the substrate is decomposed in an atmosphere containing different components at a high temperature, and anatase type titanium dioxide single crystal film is crystallized and grown on the surface;
  • Step (3) as the reaction time increases, further crystallization transformation growth is performed, and the KTP single wafer substrate is completely crystallized and transformed into anatase-type titanium dioxide single crystal crystals.
  • the substrate in the step (1) is one of KTP (100) plane, KTP (001) plane, KTP (110) plane, and KTP (111) plane crystals.
  • the scale range of the KTP single wafer substrate in the step (1) 0.1 cm to 30 cm.
  • the high-temperature crystal transformation growth temperature range in the step (2) 1173K to 1873K.
  • the oxygen-containing atmosphere in the step (2) adopts a flow of air + b flow of oxygen + c flow of nitrogen + d flow of ammonia + e flow of argon + f flow of hydrogen + g flow of hydrogen and argon, where 0SLM ⁇ a ⁇ 100SLM, 0SLM ⁇ b ⁇ 100SLM, 0.00SLM ⁇ c ⁇ 100SLM, 0SLM ⁇ d ⁇ 100SLM, 0SLM ⁇ e ⁇ 100SLM, 0SLM ⁇ f ⁇ 100SLM, 0SLM ⁇ g ⁇ 100SLM.
  • the crystallization time in the step (2) ranges from 1 min to 500 h.
  • the crystallization atmosphere pressure in the step (2) ranges from 0.1 Torr to 1000 Torr.
  • the method for preparing anatase-type titanium dioxide single crystal film and anatase-type titanium dioxide single crystal crystal includes the following steps:
  • the KTP single crystal substrate is placed in a vapor phase epitaxial growth reaction chamber, and an anatase-type titanium dioxide single crystal film is crystallized and grown on the surface of the substrate in a high-temperature oxygen-containing atmosphere;
  • the KTP single crystal substrate in (a) is (100) plane.
  • the scale range of the KTP single crystal substrate in (a) 0.5 cm to 5 cm.
  • the (b) medium and high temperature crystal transformation growth temperature range: 1173K to 1873K.
  • the oxygen-containing atmosphere in (b) uses a flow air + b flow oxygen + c flow nitrogen + d flow ammonia + e flow argon + f flow hydrogen + g flow hydrogen and argon flow, where 0SLM ⁇ a ⁇ 100SLM, 0SLM ⁇ b ⁇ 100SLM, 0.00SLM ⁇ c ⁇ 100SLM, 0SLM ⁇ d ⁇ 100SLM, 0SLM ⁇ e ⁇ 100SLM, 0SLM ⁇ f ⁇ 100SLM, 0SLM ⁇ g ⁇ 100SLM.
  • the pressure range of the crystallization atmosphere in (b) 10 Torr to 300 Torr.
  • the anatase-type titanium dioxide single crystal crystal in (c) is a large-size anatase-type titanium dioxide single crystal crystal.
  • This application provides a method for preparing large-size anatase-type titanium dioxide single crystal films and anatase-type titanium dioxide crystals. It relates to a method for preparing large-size single-crystal crystals, especially using KTP as the precursor to grow and prepare large Method of size anatase type titanium dioxide single crystal crystal. That is, the present invention only needs a high-temperature baking crystallization process. In contrast, other traditional methods require a long time, then washing and purifying, and finally baking. It can be seen that the method of the present invention can effectively reduce the growth process and the conditions are controllable.
  • the substrates of the anatase titanium dioxide single crystal material involved in this application are KTP (100) plane, KTP (001) plane, KTP (110) plane, KTP (111) plane, ZTO (100) plane, ZTO (110)
  • One of the) plane, ZTO(111) plane, STO(100) plane, STO(110) plane, STO(111) plane, etc. can prepare anatase-type titanium dioxide single crystal thin films and bulk single crystals.
  • the titanium salt single crystal is used as the reaction precursor, the plasticity is good, and the choice of substrates is more, so that the titanium salt single crystal with more complex structure grows into large-size anatase-type titanium dioxide single crystal film and bulk single crystal, and the product purity is high. The economy is good.
  • At least one of the anatase-type titanium dioxide single crystal material and the anatase-type titanium dioxide single crystal material prepared according to the method in terms of photocatalysis and dye-sensitivity are provided.
  • SLM is the abbreviation of Standard Litre Per Minute, which means the flow rate of 1L/min in the standard state.
  • the size of the crystal and the one-dimensional size of the largest surface of the crystal refer to the distance between two adjacent points on the largest surface of a crystal.
  • KTP single crystal or ZTO single crystal or STO single crystal, etc. are similar to the crystalline structure of titanium dioxide.
  • Titanium salt such as KTP single crystal or ZTO single crystal or STO single crystal is used as the titanium source substrate and it is different from containing
  • the component gas transforms and grows anatase-type titanium dioxide crystals from the outside and inside at high temperature, and the remaining products are completely volatilized;
  • This application uses the feature that the titanium content in the same volume of KTP single crystal or ZTO single crystal or STO single crystal is less than the titanium content in the titanium dioxide crystal, so that substrates such as KTP single crystal or ZTO single crystal STO single crystal are At high temperature, under the atmosphere of different components, the crystals transform from the outside and inside to form anatase-type titanium dioxide single crystal crystals;
  • This application provides anatase-type titanium dioxide single crystal crystals and large-size anatase-type titanium dioxide single crystal crystals;
  • the method for preparing anatase-type titanium dioxide single crystal crystals according to this application has simple operation, good reproducibility, low price, and is suitable for large-scale production;
  • the materials mentioned in this application include anatase titanium dioxide thin films and single crystal crystals. As a new material, it has potential applications in the fields of photocatalysis, electrocatalysis and photoelectrochemical energy storage systems.
  • Figure 1 is the XRD pattern of sample 1 # large size (101) facet anatase titanium dioxide single crystal crystal;
  • Figure 2 is the SEM image of sample 1 # large-size anatase titanium dioxide single crystal crystal
  • Figure 3 is the SEM image of sample 2 # large-size anatase titanium dioxide single crystal crystal
  • Figure 4 is the SEM image of sample 3 # large-size anatase titanium dioxide single crystal crystal.
  • KTP single crystal is based on the literature [J. Rajeev Khan, B. Vijayalakshmi, M. Rathnakumari, P. Sureshkumar. Growth of Pure and Mo Doped Potassium Titanyl Phosphate (KTP) Crystals: Influence of the Growth of the Growth: Influence .Journal of Minerals&Materials Characterization&Engineering,2011,10(8):683-691].
  • STP single crystals are based on literature [Christo Guguschev, Zbigniew Galazka, Dirk J. Kok, Uta Juda, Albert Kwasniewski and Reinhard Uecker.Growth of SrTiO 3 bulk single crystals using edge-defined film-fed growth and the Czochralski methods.CrystEngComm, 2015 , 17(25):4662-4668].
  • ZTO single crystal was purchased from Fujian Forking Technology Co., Ltd., and the size can be selected arbitrarily according to needs, and can be cut by yourself, mainly ranging from 0.5cm to 5cm.
  • sample M5 # to sample M10 # are the same as that of sample M1 # in Example 1.
  • the substrate and reaction conditions are changed to obtain different samples.
  • the relationship between sample number, substrate and reaction conditions is shown in Table 1.
  • the thickness of the sample M5 # to the sample M7 # is in the range of 10 nm to 10 ⁇ m.
  • the thickness of the sample M8 # to the sample M10 # is in the range of 10 nm to 100 ⁇ m.
  • sample 5 # to sample 10 # are the same as that of sample 1 # in Example 1.
  • the substrate and reaction conditions are changed to obtain different samples.
  • the relationship between sample number, substrate and reaction conditions is shown in Table 2.
  • Example 7 Morphology/structure characterization of sample M1 # ⁇ sample M10 # and sample 1 # ⁇ sample 10 #
  • samples M1 # to sample M10 # are all anatase titanium dioxide single crystal films, and samples 1 # to sample 10 # are all anatase titanium dioxide single crystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

公开了一种二氧化钛单晶材料,所述二氧化钛单晶材料为锐钛矿型二氧化钛单晶材料;所述二氧化钛单晶材料的尺寸为0.1cm~30cm。以及一种大尺寸锐钛矿型二氧化钛单晶的生长方法。所述二氧化钛单晶材料的致密性好,结晶程度高。该晶体材料的生长方法操作简单、重复性好、价格低廉、可规模化生产。这种锐钛矿型二氧化钛单晶作为最重要的半导体之一,其优异的光电特性及自身稳定、低毒等优点,使其在光催化、染料敏化太阳能电池、光致变色器件和气体感测等领域具有广泛应用。

Description

[根据细则37.2由ISA制定的发明名称] 二氧化钛单晶材料及其生长方法 技术领域
本申请涉及一种大尺寸锐钛矿型二氧化钛单晶及其生长方法,属于无机材料领域。
背景技术
二氧化钛是一种化学稳定、低毒、廉价、来源广泛的典型半导体材料,被广泛应用于光催化、染料敏化太阳能电池、光致变色器件和气体感测等领域。作为光催化材料,二氧化钛是目前唯一进入实用化阶段的光催化材料。二氧化钛具有多种晶型,常见的晶型有四种,分别为锐钛矿相二氧化钛(Anatase TiO 2,四方晶系)、金红石相二氧化钛(Rutile TiO 2,四方晶系)、板钛矿相二氧化钛(Brookite TiO 2,正交晶系)以及二氧化钛(B)相(单斜晶系)。在这些晶相中,金红石相二氧化钛为热力学稳定晶相,其他晶型均会在一定温度下转化为金红石相,且相转变为不可逆过程。但是,金红石相二氧化钛的光催化效果很差,而锐钛矿相二氧化钛相较其他晶型的二氧化钛,具有更好光催化性能。
目前,锐钛矿型二氧化钛材料已经研究非常广泛,但锐钛矿型二氧化钛催化剂和支撑电极主要是基于无定型或者多晶的二氧化钛纳米粒子,根本缺点是晶界众多,导致材料的电子迁移率相比单晶急剧下降,最终限制催化剂性能。此外,锐钛矿型二氧化钛纳米材料表面的终止原子不确定,严重限制了催化机理的深入研究。而大尺寸锐钛矿型二氧化钛单晶的生长一直是具有挑战性的难题。
因此,有必要提供一种生长大尺寸锐钛矿型二氧化钛单晶的方法,来为光催化领域和光电化学领域提供优质的大尺寸的锐钛矿型二氧化钛单晶材料。
发明内容
根据本申请的一个方面,提供了一种锐钛矿型二氧化钛单晶材料, 所述锐钛矿型二氧化钛单晶具有大的尺寸,本申请的目的在于解决大尺寸锐钛矿型二氧化钛的生长难题及二氧化钛纳米粒子不利于规模化生产和应用等问题。
本申请涉及一种大尺寸锐钛矿型二氧化钛单晶材料的生长方法,该方法主要是以磷酸钛氧钾单晶(KTiOPO 4,以下简称KTP)或者钛酸锌(Zn 2TiO 4,以下简称ZTO)单晶或者钛酸锶(SrTiO 4,以下简称STO)等含钛单晶为衬底,通过分解反应,生长锐钛矿型二氧化钛单晶材料。制备锐钛矿型二氧化钛单晶的方法:将KTP单晶或者ZTO单晶或者STO单晶等含钛衬底置于高温含不同组分的气氛中,通过一定速率的升温加热结晶生成二氧化钛单晶。与现有技术相比,本申请中所述的锐钛矿型二氧化钛单晶材料中尺寸为0.5cm~5cm,且制得的锐钛矿型二氧化钛单晶薄膜及体块的致密性好,结合牢固。此外,所述晶体材料的制备方法操作简单、重复性好、价格低廉可规模化生产。
所述二氧化钛单晶材料,其特征在于,所述二氧化钛单晶材料为锐钛矿型二氧化钛单晶材料;所述二氧化钛单晶材料的尺寸为0.1cm~30cm。
可选地,所述二氧化钛单晶材料的尺寸为0.5cm~5cm。
可选地,所述二氧化钛单晶材料为锐钛矿型二氧化钛单晶薄膜和/或锐钛矿型二氧化钛单晶晶体。
可选地,所述锐钛矿型二氧化钛单晶薄膜的厚度为10nm~500μm。
可选地,所述锐钛矿型二氧化钛单晶薄膜的厚度为10nm~50μm。
可选地,所述锐钛矿型二氧化钛单晶晶体的尺寸为0.1cm~30cm。
可选地,所述锐钛矿型二氧化钛单晶晶体的最大表面中一维的尺寸为0.1cm~30cm。
可选地,所述锐钛矿型二氧化钛单晶晶体的尺寸为0.5cm~5cm。
可选地,所述锐钛矿型二氧化钛单晶材料的晶面为锐钛矿型二氧 化钛单晶的(100)面、(110)面、(101)面、(001)面、(111)面、(010)面、(011)面、(200)面中的至少一面。
可选地,所述锐钛矿型二氧化钛单晶薄膜的表面为锐钛矿型二氧化钛单晶的(100)面、(110)面、(101)面、(001)面、(111)面、(010)面、(011)面、(200)面中的至少一面。
可选地,所述锐钛矿型二氧化钛单晶晶体的表面为锐钛矿型二氧化钛单晶的(100)面、(110)面、(101)面、(001)面、(111)面、(010)面、(011)面、(200)面中的至少一面。
根据本申请的另一个方面,提供一种所述的二氧化钛单晶材料的制备方法,其特征在于,至少包括:
将钛源与原料气接触反应,得到所述锐钛矿型二氧化钛单晶材料;
所述钛源选自含钛单晶中的至少一种。
可选地,所述钛源选自磷酸钛氧钾单晶、砷酸钛氧钾单晶、钛酸锌单晶、钛酸锶单晶、钛酸锂单晶、钛酸钾单晶、钛酸钡单晶、钛酸镁单晶、钛酸铅单晶、钛酸铋钠单晶、钛酸钠单晶、钛酸镍单晶、钛酸镉单晶、钛酸锰单晶、钛酸铝单晶、硝酸钛单晶、钛氧氯单晶、钛氧氟单晶、钛氧溴单晶、钛氟酸氨单晶、钛氟化锂单晶、磷酸钛钠单晶、钛硫酸铯单晶中的至少一种。
可选地,所述磷酸钛氧钾单晶与所述原料气接触的面为磷酸钛氧钾单晶的(100)面、(001)面、(110)面、(111)面中的至少一面。
可选地,所述钛酸锌单晶与所述原料气接触的面为钛酸锌晶体的(100)面、(110)面、(111)面中的至少一面。
可选地,所述钛酸锶单晶与所述原料气接触的面为钛酸锶晶体的(100)面、(110)面、(111)面中的至少一面。
可选地,所述接触反应为高温分解。
所述磷酸钛氧钾单晶为KTiOPO 4,以下简称KTP。
可选地,所述KTP单晶为(100)面、(001)面、(110)面、(111)面等面中的至少一面。
可选地,所述KTP单晶材料是KTP单晶片;KTP单晶片面积最 大的面是单晶的(100)面、(001)面、(110)面或(111)面与含有不同组分的原料气接触。
所述钛酸锌单晶为Zn 2TiO 4,以下简称ZTO。
可选地,所述ZTO单晶为(100)面、(110)面、(111)面等面中的至少一面。
可选地,所述ZTO单晶材料是ZTO单晶片;ZTO单晶片面积最大的面是单晶的(100)面、(110)面或(111)面与含有不同组分的原料气接触。
可选地,所述钛酸锶单晶为SrTiO 4,以下简称STO。
可选地,所述STO单晶为(100)面、(110)面、(111)面中的至少一面。
可选地,所述STO单晶材料是STO单晶片;STO单晶片面积最大的面是单晶的(100)面、(110)面或(111)面与含有不同组分的原料气接触。
可选地,所述原料气包括空气、氧气、氮气、氨气、氩气、氢气中的至少一种;
空气的流量记为a,氧气的流量记为b,氮气的流量记为c,氨气的流量记为d,氩气的流量记为e,氢气的流量记为f,满足:
0SLM≤a≤100SLM;
0SLM≤b≤100SLM;
0SLM≤c≤100SLM;
0SLM≤d≤100SLM;
0SLM≤e≤100SLM;
0SLM≤f≤100SLM;
其中,a、b、c、d、e、f不同时为0;
所述原料气中包括氢气时,所述原料气中不包括氧气和空气;
所述原料气中包括氧气和/或空气时,所述原料气中不包括氢气。
可选地,所述氢气、氢氩和氧气、空气不同时存在。
可选地,所述含有不同组分的原料气包括空气、氧气、氮气、氨气、氩气、氢气和氢氩中的至少一种;氢气、氢氩和氧气、空气这两 类气体最多只能含有一类。
氢氩为含有氢气体积分数5%的氢气和体积分数为95%的氩气的混合气。氢氩可以为商品化的气体。
可选地,所述空气的流量范围上限选自0.01SLM、0.05SLM、0.1SLM、0.3SLM、0.5SLM、1SLM、2SLM、4SLM、6SLM、8SLM、10SLM、20SLM、40SLM、60SLM、80SLM或100SLM;下限选自0SLM、0.05SLM、0.1SLM、0.3SLM、0.5SLM、1SLM、1.5SLM、3SLM、5SLM、7SLM、9SLM、10SLM、30SLM、50SLM、70SLM或90SLM。
可选地,所述氧气的流量范围上限选自0.01SLM、0.1SLM、0.3SLM、0.5SLM、1.5SLM、3SLM、5SLM、7SLM、9SLM、10SLM、20SLM、40SLM、60SLM、80SLM或100SLM;下限选自0SLM、0.05SLM、0.1SLM、0.3SLM、0.5SLM、1SLM、2SLM、4SLM、6SLM、8SLM、10SLM、20SLM、40SLM、60SLM、80SLM或90SLM。
可选地,所述氮气的流量范围上限选自0.01SLM、0.05SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM、80SLM或100SLM;下限选自0SLM、0.01SLM、0.05SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM或80SLM。
可选地,所述氨气的流量范围上限选自0.01SLM、0.05SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM、80SLM或100SLM;下限选自0SLM、0.01SLM、0.05SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM或80SLM。
可选地,所述氩气的流量范围上限选自0.01SLM、0.05SLM、0.1SLM、0.3SLM、0.5SLM、1SLM、2SLM、4SLM、6SLM、8SLM、10SLM、20SLM、40SLM、60SLM、80SLM或100SLM;下限选自0SLM、0.05SLM、0.1SLM、0.3SLM、0.5SLM、1SLM、2SLM、4SLM、6SLM、8SLM、9SLM、10SLM、20SLM、40SLM、60SLM、 80SLM或90SLM。
可选地,所述氢气的流量范围上限选自0.01SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM、80SLM或100SLM;下限选自0SLM、0.01SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM或80SLM。
可选地,所述氢氩气体的流量范围上限选自0.01SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM、80SLM或100SLM;下限选自0SLM、0.01SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM或80SLM。
可选地,所述原料气分两段进料;第一段为通入空气、氧气、氮气、氨气、氩气、氢气中的至少一种;第二段为通入空气、氧气、氮气、氨气、氩气、氢气中的至少一种;
同一段原料气中包括氢气时,则该段原料气中不包括氧气和空气;
同一段原料气中包括氧气和/或空气时,则该段原料气中不包括氢气。
可选地,所述原料气分两段进料;第一段通入氢气;第二段通入氧气。
可选地,所述反应的条件为:
反应温度为773K~1873K;
升温速率为5~20℃/min;
反应压力为0.05Torr~1000Torr;
反应时间为1min~500h。
可选地,所述反应的条件为:
反应温度为1123K~1223K;
反应压力为0.1Torr~760Torr;
所述反应时间为1min~200h。
可选地,所述反应温度为1073K~1323K。
可选地,所述反应时间为1min~200h。
可选地,所述反应的温度为1073K~1123K。
可选地,所述反应的温度为1073K~1173K。
可选地,所述反应的温度为1173K~1223K。
可选地,所述反应的温度为1123K~1273K。
可选地,所述反应的压力为0.1Torr~1000Torr。
可选地,所述反应的压力为10Torr~260Torr。
可选地,所述反应的时间为20min~20h。
可选地,所述反应的时间为20min~100h。
可选地,所述反应的温度上限选自1173K、1273K、1373K、1473K、1573K、1673K、1773K或1873K;下限选自773K、873K、973K、1073K、1173K或1273K。
可选地,所述升温速率的上限选自10℃/min、15℃/min或20℃/min;下限选自5℃/min、10℃/min或15℃/min。
可选地,所述反应的时间上限选自2min、20min、50min、1h、2h、5h、10h、30h、50h、100h、150h、200h、300h、400h、450h或500h;下限选自1min、10min、20min、50min、1h、2h、5h、10h、20h、30h、50h、100h、120h、150h、200h、300h、400h或450h。
可选地,所述反应的压力上限选自0.1Torr、0.5Torr、10Torr、20Torr、50Torr、100Torr、200Torr、400Torr、600Torr、700Torr、760Torr、800Torr、850Torr、900Torr或1000Torr;下限选自0.05Torr、0.2Torr、0.5Torr、10Torr、20Torr、50Torr、100Torr、300Torr、500Torr、700Torr、或750Torr。
可选地,所述方法包括:将含钛单晶中的至少一种在原料气中反应,在含钛单晶表面进行热分解结晶并生长,得到所述锐钛矿型二氧化钛单晶材料。
可选地,所述方法包括:将磷酸钛氧钾(KTP)单晶或者钛酸锌(ZTO)单晶或者钛酸锶(STO)等单晶在含不同组分的气氛中反应,在KTP单晶或者ZTO单晶或者STO单晶表面进行热分解结晶并生长,得到所述锐钛矿型二氧化钛单晶材料。
可选地,所述方法包括:将KTP单晶在含不同组分的气氛中反应,在KTP单晶表面进行热分解结晶并生长,得到锐钛矿型二氧化钛单晶薄膜。
可选地,所述方法包括:将KTP单晶在不同组分的气氛反应,在KTP单晶表面进行热分解并结晶生长,得到锐钛矿型二氧化钛单晶晶体。
可选地,所述方法至少包括:将KTP单晶的(100)面、(001)面、(110)面、(111)面等面中至少一种在含有不同组分氛围中反应,在KTP单晶表面结晶生长,得到锐钛矿型二氧化钛单晶薄膜。
可选地,所述方法至少包括:将KTP单晶的(100)面、(001)面、(110)面、(111)面等面中的至少一种在含有不同组分氛围中反应,在KTP单晶表面结晶转化生长,得到锐钛矿型二氧化钛单晶晶体。
可选地,所述方法包括:将ZTO单晶在含不同组分的气氛中反应,在ZTO单晶表面进行热分解结晶并生长,得到锐钛矿型二氧化钛单晶薄膜。
可选地,所述方法包括:将ZTO单晶在不同组分的气氛反应,在ZTO单晶表面进行热分解并结晶生长,得到锐钛矿型二氧化钛单晶晶体。
可选地,所述方法至少包括:将ZTO单晶的(100)面、(110)面、(111)面等面中至少一种在含有不同组分氛围中反应,在ZTO单晶表面结晶生长,得到锐钛矿型二氧化钛单晶薄膜。
可选地,所述方法至少包括:将ZTO单晶的(100)面、(110)面、(111)面等面中的至少一种在含有不同组分氛围中反应,在ZTO单晶表面结晶转化生长,得到ZTO二氧化钛单晶晶体。
可选地,所述方法包括:将STO单晶在含不同组分的气氛中反应,在STO单晶表面进行热分解结晶并生长,得到锐钛矿型二氧化钛单晶薄膜。
可选地,所述方法包括:将STO单晶在不同组分的气氛反应,在STO单晶表面进行热分解并结晶生长,得到锐钛矿型二氧化钛单 晶晶体。
可选地,所述方法至少包括:将STO单晶的(100)面、(110)面、(111)面等面中至少一种在含有不同组分氛围中反应,在STO单晶表面结晶生长,得到锐钛矿型二氧化钛单晶薄膜。
可选地,所述方法至少包括:将STO单晶的(100)面、(110)面、(111)面等面中的至少一种在含有不同组分氛围中反应,在STO单晶表面结晶转化生长,得到锐钛矿型二氧化钛单晶晶体。
可选地,当锐钛矿型二氧化钛单晶材料为锐钛矿型二氧化钛单晶薄膜时,所述KTP单晶或者ZTO单晶或者STO单晶等材料与含有不同组分的原料气接触反应的时间范围为1min~20h。
可选地,当锐钛矿型二氧化钛单晶材料为锐钛矿型二氧化钛单晶薄膜时,所述KTP单晶或者ZTO单晶材料或者STO单晶与含有不同组分的原料气接触反应的时间范围上限选自20min、30min、1h、2h、4h、10h或20h;下限选自10min、20min、30min、1h、3h、5h、10h或18h。
可选地,当锐钛矿型二氧化钛单晶材料为锐钛矿型二氧化钛单晶晶体时,所述二氧化钛单晶材料与含有不同组分的原料气接触反应的时间范围上限选自15h、20h、50h、100h、200h、300h、400h或500h;下限选自10h、15h、20h、50h、100h、150h、250h、350h或450h。
当制备的锐钛矿型二氧化钛单晶材料为锐钛矿型二氧化钛单晶晶体时,接触反应时间应满足使KTP单晶或者ZTO单晶或者STO单晶等材料全部转化为锐钛矿型二氧化钛单晶材料。
可选地,当锐钛矿型二氧化钛单晶材料为锐钛矿型二氧化钛单晶晶体时,所述KTP单晶或者ZTO单晶或者STO单晶等材料与含有不同组分的原料气接触反应的时间为10h~500h。
本领域技术人员可根据实际需要和所采用的KTP单晶或者ZTO单晶或者STO单晶等材料的尺寸,确定合适的接触反应时间。
采用本发明所提供的方法,所得到的锐钛矿型二氧化钛单晶晶体的晶体尺寸与所采用的KTP单晶或者ZTO单晶或者STO单晶材料 的尺寸相等。本领域技术人员可以根据实际需要,通过选择合适尺寸的KTP单晶或者ZTO单晶或者STO单晶等材料,得到所需要的锐钛矿型二氧化钛单晶晶体。
作为其中一种具体的实施方法,所述方法包括:
步骤一、采用KTP单晶或者ZTO单晶或者STO单晶为衬底;
步骤二、将KTP单晶或者ZTO单晶或者STO单晶置于气相外延生长反应室中,在高温含不同组分的气氛中,在KTP单晶或者ZTO单晶或者STO单晶外延生长成高质量的锐钛矿型二氧化钛薄膜。
步骤三、随着反应时间的增加,进一步外延生长,生长出高质量大尺寸的锐钛矿型二氧化钛单晶晶体。
可选地,所述步骤一中单晶的衬底为KTP(100)面、KTP(001)面KTP(110)面、KTP(111)面、ZTO(100)面、ZTO(110)面、ZTO(111)面、STO(100)面、STO(110)面、STO(111)面等面的一种。
可选地,所述步骤一中的锐钛矿型单晶衬底尺度范围:0.1cm-30cm。
可选地,所述步骤二的不同组分的气源为:空气、氧气、氮气、氨气、氩气、氢气、氢氩中的一种。
可选地,所述步骤二中二氧化钛薄膜外延生长温度范围:1073K~1323K。
可选地,所述步骤二含不同组分气氛采用a流量空气+b流量氧气+c流量氮气+d流量氨气+e流量氩气+f流量氢气+g流量氢氩气流,其中0SLM≤a≤100SLM、0SLM≤b≤100SLM、0.00SLM≤c≤100SLM、0SLM≤d≤100SLM、0SLM≤d≤100SLM、0SLM≤d≤100SLM。
可选地,所述步骤二压力范围:0.1Torr-1000Torr。
可选地,所述步骤三中外延生长时间为范围:1min-500h。
作为一种实施方式,所述制备锐钛矿型二氧化钛单晶薄膜及锐钛矿型二氧化钛单晶晶体的方法,包括以下步骤:
步骤(1)、采用KTP单晶片为衬底;
步骤(2)、将KTP单晶片衬底置于气相外延生长反应室中,在高温含有不同组分氛围中衬底分解,在表面结晶生长锐钛矿型二氧化钛单晶薄膜;
步骤(3)、随着反应时间的增加,进一步进行结晶转化生长,将KTP单晶片衬底完全结晶转化生长成锐钛矿型二氧化钛单晶晶体。
可选地,所述步骤(1)中的衬底为KTP(100)面、KTP(001)面KTP(110)面、KTP(111)面晶体中的一种。
可选地,所述步骤(1)中的或KTP单晶片衬底的尺度范围:0.1cm~30cm。
可选地,所述步骤(2)中高温结晶转化生长温度范围:1173K~1873K。
可选地,所述步骤(2)中含氧氛围采用a流量空气+b流量氧气+c流量氮气+d流量氨气+e流量氩气+f流量氢气+g流量氢氩气流,其中0SLM≤a≤100SLM、0SLM≤b≤100SLM、0.00SLM≤c≤100SLM、0SLM≤d≤100SLM、0SLM≤e≤100SLM、0SLM≤f≤100SLM、0SLM≤g≤100SLM。
可选地,所述步骤(2)中结晶时间范围:1min~500h。
可选地,所述步骤(2)中结晶氛围压力范围:0.1Torr~1000Torr。
作为一种具体的实施方法,所述制备锐钛矿型二氧化钛单晶薄膜及锐钛矿型二氧化钛单晶晶体的方法,其制备方法包括以下步骤:
(a)采用KTP单晶片为衬底;
(b)将KTP单晶衬底置于气相外延生长反应室中,在高温含氧氛围中衬底表面结晶转化生长出锐钛矿型二氧化钛单晶薄膜;
(c)随着结晶时间的增加,进一步进行结晶转化生长,将KTP单晶衬底完全结晶转化生长成锐钛矿型二氧化钛单晶晶体。
所述(a)中的KTP单晶衬底为(100)面。
所述(a)中的KTP单晶衬底的尺度范围:0.5cm~5cm。
所述(b)中高温结晶转化生长温度范围:1173K~1873K。
所述(b)中含氧氛围采用a流量空气+b流量氧气+c流量氮气+d流量氨气+e流量氩气+f流量氢气+g流量氢氩气流,其中0SLM≤a ≤100SLM、0SLM≤b≤100SLM、0.00SLM≤c≤100SLM、0SLM≤d≤100SLM、0SLM≤e≤100SLM、0SLM≤f≤100SLM、0SLM≤g≤100SLM。
所述(b)中结晶时间范围:30min~20h。
所述(b)中结晶氛围压力范围:10Torr~300Torr。
所述(c)中锐钛矿型二氧化钛单晶晶体为大尺寸锐钛矿型二氧化钛单晶晶体。
本申请提供一种制备大尺寸的锐钛矿型二氧化钛单晶薄膜及锐钛矿型二氧化钛晶体的方法,它涉及一种制备大尺寸单晶晶体的方法,尤其是以KTP为前躯体生长制备大尺寸锐钛矿型二氧化钛单晶晶体的方法。即本发明只需要高温焙烧结晶过程,相比而言,传统的其他方法需要先生长,然后洗涤纯化,最后进行焙烧,由此可见,本发明方法能有效减少生长工序,而且条件可控。
本申请所涉及的锐钛矿型二氧化钛单晶材料的衬底为KTP(100)面、KTP(001)面、KTP(110)面、KTP(111)面、ZTO(100)面、ZTO(110)面、ZTO(111)面、STO(100)面、STO(110)面、STO(111)面等面中的一种,可制备锐钛矿型二氧化钛单晶薄膜及体单晶。由于采用钛盐单晶作为反应前躯体,可塑性好,基底选择更多,使得结构更加复杂的钛盐单晶生长成大尺寸锐钛矿型二氧化钛单晶薄膜及体单晶,且产品纯度高,经济性好。
根据本申请的又一方面,提供一种所述的锐钛矿型二氧化钛单晶材料、根据所述的方法制备得到的锐钛矿型二氧化钛单晶材料中的至少一种在光催化、染料敏化太阳能电池、光致变色器件和气体感测领域的应用。
本申请通过将大尺寸KTP单晶或ZTO单晶或STO单晶等结晶转化生长成同尺寸锐钛矿型二氧化钛单晶晶体,另辟蹊径开发出大尺寸、低成本锐钛矿型二氧化钛单晶晶体。
本申请中,SLM是Standard Litre Per Minute的缩写,表示标准 状态下1L/min的流量。
本申请中,所述晶体的尺寸和晶体最大表面中一维的尺寸是指一块晶体上面积最大的面上相邻最远两点的距离。
本申请能产生的有益效果包括:
(1)本申请中利用KTP单晶或者ZTO单晶或者STO单晶等与二氧化钛晶体结构相近的特点,以KTP单晶或者ZTO单晶或者STO单晶等钛盐为钛源衬底与含有不同组分气体在高温下由外及里结晶转化生长锐钛矿型二氧化钛晶体,其余产物完全挥发;
(2)本申请利用同体积KTP单晶或者ZTO单晶或者STO单晶等中的钛含量比二氧化钛晶体中钛的含量少的特点,使得KTP单晶或者ZTO单晶STO单晶等衬底在高温,不同组分气氛下由外及里结晶转化生成锐钛矿型二氧化钛单晶晶体;
(3)本申请中提供了锐钛矿型二氧化钛单晶晶体、大尺寸锐钛矿型二氧化钛单晶晶体;
(4)本申请制备锐钛矿型二氧化钛单晶晶体的方法操作简单、重复性好、价格低廉,适合规模化生产;
(5)本申请中所述材料包含锐钛矿型二氧化钛薄膜和单晶晶体,作为一种新材料,在光催化,电催化领域以及光电化学能源存储系统中都有潜在的应用。
附图说明
图1为样品1 #大尺寸(101)面锐钛矿型二氧化钛单晶晶体的XRD图;
图2为样品1 #大尺寸锐钛矿型二氧化钛单晶晶体的SEM图;
图3为样品2 #大尺寸锐钛矿型二氧化钛单晶晶体的SEM图;
图4为样品3 #大尺寸锐钛矿型二氧化钛单晶晶体的SEM图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。其中,KTP单晶为根据文献【J.Rajeev Gandhi,B.Vijayalakshmi,M.Rathnakumari,P.Sureshkumar.Growth of Pure and Mo Doped Potassium Titanyl Phosphate(KTP)Crystals:Influence of KTP/Flux Ratios on the Growth Morphology.Journal of Minerals&Materials Characterization&Engineering,2011,10(8):683-691】中的方法制备得到。
STP单晶为根据文献【Christo Guguschev,Zbigniew Galazka,Dirk J.Kok,Uta Juda,Albert Kwasniewski and Reinhard Uecker.Growth of SrTiO 3bulk single crystals using edge-defined film-fed growth and the Czochralski methods.CrystEngComm,2015,17(25):4662-4668】中的方法制备得到。
ZTO单晶购自福建福晶科技股份有限公司,尺寸根据需求任意选择,可自行切割,主要0.5cm-5cm不等。
本申请的实施例中分析方法如下:
利用X'Pert Pro衍射仪进行物相结构分析。
利用JEOL JSM 6330F型扫描电镜进行表面形貌分析。
实施例1 样品M1 #和样品1 #的制备
将尺寸为1cm的(100)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氩气0.3SLM)并将体系加热至1173K(升温速率为5℃/min),保持体系压力为200Torr,反应120min后,冷却至室温,即得生长在KTP单晶片衬底表面的晶面为(101)面锐钛矿型二氧化钛单晶薄膜样品,薄膜厚度约为500nm,记为样品M1 #
将尺寸为1cm的(100)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氩气0.3SLM)并将体系加热至1173K(升温速率为5℃/min),保持体系压力为200Torr,反应120h后,冷却至室温,即得(101)面的锐钛矿型二氧化钛单晶晶体样品,记为样品1 #,样品1 #的晶体尺寸为1cm。
实施例2 样品M2 #和样品2 #的制备
将尺寸为1cm的(100)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氮气0.1SLM,氩气0.2SLM)并将体系加热至1173K(升温速率为5℃/min),保持体系压力为130Torr,反应120min后,冷却至室温,即得生长在KTP单晶片衬底表面的晶面为(200)面锐钛矿型二氧化钛单晶薄膜样品,薄膜厚度约为500nm,记为样品M2 #
将尺寸为1cm的(100)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氮气0.1SLM,氩气0.2SLM)并将体系加热至1173K(升温速率为5℃/min),保持体系压力为200Torr,反应120h后,冷却至室温,即得晶面为(200)面锐钛矿型二氧化钛单晶晶体样品,记为样品2 #,样品2 #的晶体尺寸为1cm。
实施例3 样品M3 #和样品3 #的制备
将尺寸为1cm的(110)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氩气0.3SLM)并将体系加热至1173K(升温速率为5℃/min),保持体系压力为200Torr,反应120min后,冷却至室温,即得生长在KTP单晶片衬底表面的晶面为(101)锐钛矿型二氧化钛单晶薄膜样品,薄膜厚度约为500nm,记为样品M3 #
将尺寸为1cm的(110)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氩气0.3SLM)并将体系加热至1173K(升温速率为5℃/min),保持体系压力为200Torr,反应120h后,冷却至室温,即得晶面为(101)面锐钛矿型二氧化钛单晶晶体样品,记为样品3 #,样品3 #的晶体尺寸为1cm。
实施例4 样品M4 #和样品4 #的制备
将尺寸为1cm的(111)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氩气0.3SLM)并将体系加热至1173K(升温速率为5℃/min),保持体系压力为200Torr, 反应120min后,冷却至室温,即得生长在KTP单晶片衬底表面的晶面为(101)面锐钛矿型二氧化钛单晶薄膜样品,薄膜厚度约为500nm,记为样品M4 #
将尺寸为1cm的(111)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氩气0.3SLM)并将体系加热至1173K(升温速率为5℃/min),保持体系压力为200Torr,反应120h后,冷却至室温,即得晶面为(101)面锐钛矿型二氧化钛单晶晶体样品,记为样品4 #,样品4 #的晶体尺寸为1cm。
实施例5 样品M5 #~样品M10 #的制备
样品M5 #~样品M10 #的基本制备步骤同实施例1中的样品M1 #,改变衬底和反应条件,得到不同的样品。样品编号与衬底和反应条件的关系如表1所示。
表1
Figure PCTCN2019075481-appb-000001
Figure PCTCN2019075481-appb-000002
其中,所述样品M5 #~样品M7 #的厚度为10nm~10μm范围内。
其中,所述样品M8 #~样品M10 #的厚度为10nm~100μm范围内。
实施例6 样品5 #~样品10 #的制备
样品5 #~样品10 #的基本制备步骤同实施例1中的样品1 #,改变衬底和反应条件,得到不同的样品。样品编号与衬底和反应条件的关系如表2所示。
表2
样品编号 衬底、原料气、反应温度、反应压力 反应时间
5 # 同M5 # 120h
6 # 同M6 # 120h
7 # 同M7 # 120h
8 # 同M8 # 120h
9 # 同M9 # 120h
10 # 同M10 # 120h
实施例7 样品M1 #~样品M10 #、样品1 #~样品10 #的形貌/结构表征
采用X射线衍射的方法对样品M1 #~样品M10 #、样品1 #~样品10 #进行了晶体结构表征,结果显示,这些样品都是锐钛矿型二氧化钛单晶。典型的XRD图如图1所示,对应样品1 #。图1中,在2θ为25.28处峰为锐钛矿型二氧化钛单晶特征峰,晶面为(101)面。
由此可知,样品M1 #~样品M10 #均为锐钛矿型二氧化钛单晶薄膜,样品1 #~样品10 #均为锐钛矿型二氧化钛单晶晶体。
采用扫描电子显微镜对样品M1 #~样品M10 #、样品1 #~样品10 #进行了形貌表征。典型的SEM图如图2至图4所示,其中,图2对应样品1 #,图3对应样品2 #,图3对应样品3 #。图2至4显示二氧化钛单晶晶体具有台阶形貌。
图2至图4结果表明这些锐钛矿型二氧化钛单晶致密性好,结晶性好。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (18)

  1. 一种二氧化钛单晶材料,其特征在于,所述二氧化钛单晶材料为锐钛矿型二氧化钛单晶材料;所述二氧化钛单晶材料的尺寸为0.1cm~30cm。
  2. 根据权利要求1所述的二氧化钛单晶材料,其特征在于,所述二氧化钛单晶材料的尺寸为0.5cm~5cm。
  3. 根据权利要求1所述的二氧化钛单晶材料,其特征在于,所述二氧化钛单晶材料为锐钛矿型二氧化钛单晶薄膜和/或锐钛矿型二氧化钛单晶晶体。
  4. 根据权利要求3所述的二氧化钛单晶材料,其特征在于,所述锐钛矿型二氧化钛单晶薄膜的厚度为10nm~500μm。
  5. 根据权利要求3所述的二氧化钛单晶材料,其特征在于,所述锐钛矿型二氧化钛单晶薄膜的厚度为10nm~50μm。
  6. 根据权利要求3所述的二氧化钛单晶材料,其特征在于,所述锐钛矿型二氧化钛单晶晶体的尺寸为0.1cm~30cm。
  7. 根据权利要求3所述的二氧化钛单晶材料,其特征在于,所述锐钛矿型二氧化钛单晶晶体的尺寸为0.5cm~5cm。
  8. 根据权利要求1所述的二氧化钛单晶材料,其特征在于,所述锐钛矿型二氧化钛单晶材料的表面为锐钛矿型二氧化钛单晶的(100)面、(110)面、(101)面、(001)面、(111)面、(010)面、(011)面、(200)面中的至少一面。
  9. 根据权利要求3所述的二氧化钛单晶材料,其特征在于,所述锐钛矿型二氧化钛单晶薄膜的表面为锐钛矿型二氧化钛单晶的(100)面、(110)面、(101)面、(001)面、(111)面、(010)面、(011)面、(200)面中的至少一面。
  10. 根据权利要求3所述的二氧化钛单晶材料,其特征在于,所述锐钛矿型二氧化钛单晶晶体的表面为锐钛矿型二氧化钛单晶的(100)面、(110)面、(101)面、(001)面、(111)面、(010)面、(011)面、(200)面中的至少一面。
  11. 权利要求1至10任一项所述的二氧化钛单晶材料的制备方法,其特征在于,至少包括:
    将钛源与原料气接触反应,得到所述锐钛矿型二氧化钛单晶材料;
    所述钛源选自含钛单晶中的至少一种。
  12. 根据权利要求11所述的方法,其特征在于,所述钛源选自磷酸钛氧钾单晶、砷酸钛氧钾单晶、钛酸锌单晶、钛酸锶单晶、钛酸锂单晶、钛酸钾单晶、钛酸钡单晶、钛酸镁单晶、钛酸铅单晶、钛酸铋钠单晶、钛酸钠单晶、钛酸镍单晶、钛酸镉单晶、钛酸锰单晶、钛酸铝单晶、硝酸钛单晶、钛氧氯单晶、钛氧氟单晶、钛氧溴单晶、钛氟酸氨单晶、钛氟化锂单晶、磷酸钛钠单晶、钛硫酸铯单晶中的至少一种。
  13. 根据权利要求11所述的方法,其特征在于,所述原料气包括空气、氧气、氮气、氨气、氩气、氢气中的至少一种;
    空气的流量记为a,氧气的流量记为b,氮气的流量记为c,氨气的流量记为d,氩气的流量记为e,氢气的流量记为f,满足:
    0SLM≤a≤100SLM;
    0SLM≤b≤100SLM;
    0SLM≤c≤100SLM;
    0SLM≤d≤100SLM;
    0SLM≤e≤100SLM;
    0SLM≤f≤100SLM;
    其中,a、b、c、d、e、f不同时为0;
    所述原料气中包括氢气时,所述原料气中不包括氧气和空气;
    所述原料气中包括氧气和/或空气时,所述原料气中不包括氢气。
  14. 根据权利要求13所述的方法,其特征在于,所述原料气分两段进料;第一段通入空气、氧气、氮气、氨气、氩气、氢气中的至少一种;第二段通入空气、氧气、氮气、氨气、氩气、氢气中的至少一种;
    同一段原料气中包括氢气时,则该段原料气中不包括氧气和空气;
    同一段原料气中包括氧气和/或空气时,则该段原料气中不包括氢气。
  15. 根据权利要求11所述的方法,其特征在于,所述反应的条件为:
    反应温度为773K~1873K;
    升温速率为5~20℃/min;
    反应压力为0.05Torr~1000Torr;
    反应时间为1min~500h。
  16. 根据权利要求11所述的方法,其特征在于,所述反应的条件为:
    反应温度为1123K~1223K;
    反应压力为0.1Torr~760Torr;
    所述反应时间为1min~200h。
  17. 根据权利要求11所述的方法,其特征在于,所述方法包括:将钛源在原料气中反应,在钛源表面进行热分解结晶并生长,得到所 述锐钛矿型二氧化钛单晶材料。
  18. 权利要求1至10任一项所述的锐钛矿型二氧化钛单晶材料、根据权利要求11至17任一项所述的方法制备得到的锐钛矿型二氧化钛单晶材料中的至少一种在光催化、染料敏化太阳能电池、光致变色器件和气体感测领域的应用。
PCT/CN2019/075481 2019-02-01 2019-02-19 二氧化钛单晶材料及其生长方法 WO2020155212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910103343.3A CN111519251B (zh) 2019-02-01 2019-02-01 一种二氧化钛单晶材料及其生长方法
CN201910103343.3 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020155212A1 true WO2020155212A1 (zh) 2020-08-06

Family

ID=71840774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075481 WO2020155212A1 (zh) 2019-02-01 2019-02-19 二氧化钛单晶材料及其生长方法

Country Status (2)

Country Link
CN (1) CN111519251B (zh)
WO (1) WO2020155212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164492A (zh) * 2020-09-11 2022-03-11 中国科学院福建物质结构研究所 大尺寸介/微孔氮化钨单晶材料及其制备方法、应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114775055B (zh) * 2022-04-21 2023-11-17 中国科学院福建物质结构研究所 一种氧化镓晶体及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030417A (ja) * 2000-07-14 2002-01-31 Japan Atom Energy Res Inst アナターゼ型結晶構造の酸化チタン単結晶薄膜の作製法
CN101538713A (zh) * 2009-03-19 2009-09-23 浙江大学 一种双层纳米有序结构二氧化钛薄膜及其制备方法
CN102634842A (zh) * 2012-05-10 2012-08-15 中国科学院新疆理化技术研究所 一种制备{001}和{100}面暴露的锐钛矿TiO2纳米单晶的方法
CN102828227A (zh) * 2011-06-14 2012-12-19 中国科学院金属研究所 一种制备富含{010}/{101}晶面锐钛矿TiO2单晶的方法
CN102995120A (zh) * 2012-12-12 2013-03-27 国家纳米科学中心 一种纳米TiO2单晶材料、其制备方法及用途
CN107253736A (zh) * 2017-08-16 2017-10-17 四川理工学院 一种锐钛矿型二氧化钛单晶的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761013B2 (ja) * 2000-08-17 2011-08-31 独立行政法人 日本原子力研究開発機構 シリコン単結晶基板上にアナターゼ型の二酸化チタン結晶配向膜を作製する方法
CN100465332C (zh) * 2006-12-14 2009-03-04 上海交通大学 低温下制备锐钛矿晶相二氧化钛薄膜的方法
CN101949054B (zh) * 2010-08-17 2012-12-12 浙江大学 一种单晶锐钛矿二氧化钛膜的制备方法
CN103903860A (zh) * 2012-12-28 2014-07-02 中国科学院上海硅酸盐研究所 单层三元纳晶二氧化钛薄膜光阳极及其制备方法
CN103225104A (zh) * 2013-04-10 2013-07-31 华南理工大学 一种单晶锐钛矿二氧化钛纳米管阵列及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030417A (ja) * 2000-07-14 2002-01-31 Japan Atom Energy Res Inst アナターゼ型結晶構造の酸化チタン単結晶薄膜の作製法
CN101538713A (zh) * 2009-03-19 2009-09-23 浙江大学 一种双层纳米有序结构二氧化钛薄膜及其制备方法
CN102828227A (zh) * 2011-06-14 2012-12-19 中国科学院金属研究所 一种制备富含{010}/{101}晶面锐钛矿TiO2单晶的方法
CN102634842A (zh) * 2012-05-10 2012-08-15 中国科学院新疆理化技术研究所 一种制备{001}和{100}面暴露的锐钛矿TiO2纳米单晶的方法
CN102995120A (zh) * 2012-12-12 2013-03-27 国家纳米科学中心 一种纳米TiO2单晶材料、其制备方法及用途
CN107253736A (zh) * 2017-08-16 2017-10-17 四川理工学院 一种锐钛矿型二氧化钛单晶的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164492A (zh) * 2020-09-11 2022-03-11 中国科学院福建物质结构研究所 大尺寸介/微孔氮化钨单晶材料及其制备方法、应用

Also Published As

Publication number Publication date
CN111519251A (zh) 2020-08-11
CN111519251B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
JP5397794B1 (ja) 酸化物結晶薄膜の製造方法
WO2020024331A1 (zh) 一种多孔二氧化钛单晶材料及其制备方法和应用
WO2019200599A1 (zh) 一种多孔氮化钛单晶材料及其制备方法和应用
JP5403497B2 (ja) 結晶成長用基板とこれを用いた結晶成長方法
US20190127222A1 (en) Boron Nitride Nanomaterial, and Preparation Method and Use Thereof
WO2020155212A1 (zh) 二氧化钛单晶材料及其生长方法
WO2009117770A1 (en) Crystalline inorganic species having optimised reactivity
CN108615672A (zh) 一种半导体结晶膜的制备方法及其半导体结晶膜
JP2015017027A (ja) 半導体装置及びその製造方法、並びに結晶及びその製造方法
CN108597985B (zh) 一种叠层结构
JP2014234344A (ja) 酸化物結晶薄膜の製造方法
CN112251810B (zh) 一种二氧化钛单晶外延薄膜的制备方法
US20020060319A1 (en) Crystal thin film and production method therefor
CN112813498B (zh) 一种钒基多孔单晶材料及其制备方法与应用
WO2020006782A1 (zh) 一种多孔氮铁单晶材料及其制备方法和应用
CN109896543B (zh) 一种远程外延生长可转移钛酸钡单晶薄膜的方法
CN111020692A (zh) 一种多孔Ta3N5单晶材料及其制备方法和应用
CN110359271B (zh) 一种钴镍双金属羟基亚磷酸盐片状晶体薄膜及其制备方法
CN113718334A (zh) 一种多孔氮化镓单晶材料及其制备方法和应用
CN107641789B (zh) 氮化硼纳米片连续薄膜、其制备方法与应用
CN115341272B (zh) 一种毫米级二维拓扑材料硒化铋单晶的制备方法
CN117966269A (zh) 一类多孔氧化物单晶材料及其制备方法和应用
CN117661115A (zh) 一类多孔氧化物单晶材料及其制备方法和应用
CN117051474A (zh) 一种多孔稀土磷酸盐单晶材料及其制备方法和应用
CN114164492B (zh) 大尺寸介/微孔氮化钨单晶材料及其制备方法、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913077

Country of ref document: EP

Kind code of ref document: A1