WO2020024331A1 - 一种多孔二氧化钛单晶材料及其制备方法和应用 - Google Patents

一种多孔二氧化钛单晶材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020024331A1
WO2020024331A1 PCT/CN2018/100577 CN2018100577W WO2020024331A1 WO 2020024331 A1 WO2020024331 A1 WO 2020024331A1 CN 2018100577 W CN2018100577 W CN 2018100577W WO 2020024331 A1 WO2020024331 A1 WO 2020024331A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
titanium dioxide
porous titanium
plane
dioxide single
Prior art date
Application number
PCT/CN2018/100577
Other languages
English (en)
French (fr)
Inventor
谢奎
林国明
程方圆
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Publication of WO2020024331A1 publication Critical patent/WO2020024331A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Definitions

  • the present application relates to a porous titanium dioxide single crystal material, a preparation method and application thereof, and belongs to the field of inorganic materials.
  • Titanium dioxide is a semiconductor material with a wide band gap. It has excellent chemical and thermal stability, good dielectric properties, charge transfer and photocatalytic properties, and resistance to electrochemical corrosion. Each crystal form of titanium dioxide exhibits different properties. Anatase and rutile nano-titanium dioxide have been widely used in photocatalysis, solar cells, light-emitting materials, electronic devices and other fields.
  • Porous titanium dioxide has important applications in the fields of photocatalysis, electrochemical energy storage, and solar cells.
  • Photocatalyst nanoparticles are stimulated to generate electron-hole pairs when irradiated with light of a certain wavelength.
  • Water adsorbed on the surface of the hole-decomposition catalyst generates hydroxide radicals.
  • the electrons reduce the surrounding oxygen to active ion oxygen.
  • Strong oxidation-reduction effect can destroy various pollutants on the surface of photocatalyst.
  • most of the semiconductor photocatalysts used are n-type semiconductor materials, especially titanium dioxide materials are the most widely used.
  • Anatase titanium dioxide is a wide bandgap semiconductor, which has the characteristics of high activation, good stability, stable physical and chemical properties, excellent photocatalytic performance, and low price.
  • the fundamental disadvantage of sintered or compacted anatase nanoparticles as photoanode materials is that the electron mobility of the material decreases sharply compared to single crystals. This is due to the large number of grain boundaries and the lack of direct transport channels of charge to the back electrode. In other words, a long electron diffusion path (randomly dispersed through a particle network) is introduced into the particle structure. Results The electron mobility of the sintered anatase nanoparticle layer was 6 to 8 orders of magnitude lower than that of the anatase titanium dioxide single crystal.
  • the currently prepared porous titanium dioxide electrodes are all based on amorphous or polycrystalline titanium dioxide powder, with many grain boundaries and uncertain termination atoms on the surface. Therefore, it is necessary to provide a method for preparing large-sized nano-porous titanium dioxide single crystal crystals, so as to provide high-quality large-sized nano-porous titanium dioxide single crystal materials for the fields of photocatalysis and electrochemistry.
  • a porous titanium dioxide single crystal material is provided.
  • the porous titanium dioxide single crystal material has a large size and a porous structure to solve the problems in the background art described above.
  • the present application relates to a method for preparing a large-sized porous titanium dioxide single crystal material.
  • the method mainly uses a potassium titanyl phosphate single crystal (KTiOPO 4 , hereinafter referred to as KTP) or zinc titanate (Zn 2 TiO 4 , hereinafter referred to as ZTO) single.
  • KTP potassium titanyl phosphate single crystal
  • ZTO zinc titanate
  • the crystal is used as a substrate, and a porous titanium dioxide single crystal material is prepared through a decomposition reaction.
  • Method for preparing porous titanium dioxide single crystal KTP single crystal or ZTO single crystal substrate is placed in an atmosphere containing different components at a high temperature, and the porous titanium dioxide single crystal is formed by heating and crystallization at a certain rate of heating.
  • the porous titanium dioxide single crystal material described in this application contains pores of 10 nm to 1000 nm, and the prepared porous titanium dioxide single crystal thin film and bulk have good compactness and strong bonding.
  • the preparation method of the crystalline material is simple in operation, good in reproducibility, and inexpensive, and can be produced on a large scale.
  • titanium dioxide has been widely used in photocatalysis, solar cells, sensors and other fields.
  • the porous titanium dioxide single crystal material is characterized in that the porous titanium dioxide single crystal material contains pores of 10 nm to 1000 nm.
  • the porous titanium dioxide single crystal material contains pores of 20 nm to 1000 nm.
  • the pores in the porous titanium dioxide single crystal are connected porous.
  • the titanium dioxide single crystal includes anatase titanium dioxide single crystal and rutile titanium dioxide single crystal.
  • the porous titanium dioxide single crystal material contains pores of 10 nm to 500 nm.
  • the surface of the porous titanium dioxide single crystal is at least one of the (100) plane, (110) plane, (101) plane, and (001) plane of the porous titanium dioxide single crystal.
  • the porous titanium dioxide single crystal material is a porous titanium dioxide single crystal thin film and / or a porous titanium dioxide single crystal crystal.
  • the porous titanium dioxide single crystal crystal is a self-supporting nanoporous titanium dioxide crystal.
  • the surface of the porous titanium dioxide single crystal film is at least one of the (100) plane, (110) plane, (101) plane, and (001) plane of the porous titanium dioxide single crystal;
  • the largest surface of the porous titanium dioxide single crystal is at least one of the (100) plane, (110) plane, (101) plane, and (001) plane of the porous titanium dioxide single crystal.
  • the size of the porous titanium dioxide single crystal crystal is from 0.1 cm to 30 cm;
  • the thickness of the porous titanium dioxide single crystal film is 10 nm to 100 ⁇ m.
  • the size of the porous titanium dioxide single crystal crystal is 0.5 cm to 5 cm; and the thickness of the porous titanium dioxide single crystal thin film is 10 nm to 50 ⁇ m.
  • the thickness of the porous titanium dioxide single crystal thin film is 10 nm to 10 ⁇ m.
  • the one-dimensional dimension in the largest surface of the porous titanium dioxide single crystal crystal is 0.1 cm to 30 cm.
  • the one-dimensional size of the largest surface of the porous titanium dioxide single crystal crystal is 1 cm to 5 cm.
  • Another aspect of the present application provides a method for preparing a porous titanium dioxide single crystal material according to any one of the above, which is characterized in that it includes at least:
  • the titanium source is reacted in a raw material gas containing different components at a high temperature to obtain the porous titanium dioxide single crystal material;
  • the titanium source includes at least one of a titanium salt single crystal.
  • the titanium source is selected from one of a potassium titanyl phosphate single crystal and a zinc titanate single crystal;
  • the surface of the potassium titanyl phosphate single crystal in contact with the raw material gas is at least one of the (100) plane, (001) plane, (110) plane, and (111) plane of the potassium titanate phosphate single crystal;
  • the surface of the zinc single crystal in contact with the raw material gas is at least one of the (100) surface, the (110) surface, and the (111) surface of the zinc titanate crystal.
  • the high-temperature reaction is pyrolysis.
  • the single crystal of potassium titanyl phosphate is KTiOPO 4 , hereinafter referred to as KTP.
  • the KTP single crystal is at least one of a (100) plane, a (001) plane, a (110) plane, and a (111) plane.
  • the KTP single crystal material is a KTP single wafer; the largest area of the KTP single wafer is the (100) plane, (001) plane, (110) plane, or (111) plane of the single crystal and contains different components Raw gas contact.
  • the zinc titanate single crystal is Zn 2 TiO 4 , hereinafter referred to as ZTO.
  • the ZTO single crystal is at least one of a (100) plane, a (110) plane, and a (111) plane.
  • the ZTO single crystal material is a ZTO single wafer; the largest surface area of the ZTO single wafer is the (100) plane, (110) plane, or (111) plane of the single crystal in contact with the raw material gas containing different components .
  • the titanium source is calcined in an atmosphere of different components to obtain the porous titanium dioxide single crystal material.
  • the raw material gas includes argon gas, and the flow rate of the argon gas is 0.05 SLM to 1 SLM.
  • the source gas includes at least one of oxygen, nitrogen, argon, and hydrogen;
  • the flow of oxygen is recorded as a, the flow of nitrogen is recorded as b, the flow of argon is recorded as c, and the flow of hydrogen is recorded as d;
  • the hydrogen and oxygen are not present at the same time.
  • the source gas containing different components includes at least one of oxygen, nitrogen, argon, and hydrogen; oxygen and hydrogen, and these two gases can only contain at most one;
  • the flow of oxygen is recorded as a
  • the flow of nitrogen is recorded as b
  • the flow of argon is recorded as c
  • the hydrogen d is:
  • the source gas containing different components includes at least one of oxygen and argon;
  • the upper limit of the flow range of the oxygen is selected from 0.01SLM, 0.05SLM, 0.1SLM, 0.5SLM, 1SLM, 1.5SLM, 2SLM, 3SLM, 4SLM, 5SLM, 6SLM, 7SLM, 8SLM, 9SLM, 10SLM, 20SLM, 30SLM, 40SLM, 50SLM, 60SLM, 70SLM, 80SLM, 90SLM or 100SLM; lower limit selected from 0.01SLM, 0.05SLM, 0.1SLM, 0.5SLM, 1SLM, 1.5SLM, 2SLM, 3SLM, 4SLM, 5SLM, 6SLM, 7SLM, 8SLM, 9SLM, 10SLM, 20SLM, 30SLM, 40SLM, 50SLM, 60SLM, 70SLM, 80SLM or 90SLM.
  • the upper limit of the flow range of the nitrogen gas is selected from 0.01SLM, 0.05SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 0.8SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, 80SLM, or 100SLM;
  • the lower limit is selected from 0SLM, 0.01SLM, 0.05SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 0.8SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM or 80SLM.
  • the upper limit of the flow range of the argon gas is selected from 0.05SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 0.8SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, 80SLM, or 100SLM; the lower limit is selected From 0.05SLM, 0.1SLM, 0.2SLM, 0.3SLM, 0.5SLM, 0.8SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM or 80SLM.
  • the upper limit of the flow range of the hydrogen is selected from 0.01SLM, 0.1SLM, 0.2SLM, 0.5SLM, 0.8SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM, 80SLM, or 100SLM; the lower limit is selected from 0SLM, 0.01 SLM, 0.1SLM, 0.2SLM, 0.5SLM, 0.8SLM, 1SLM, 2SLM, 5SLM, 10SLM, 20SLM, 50SLM or 80SLM.
  • the conditions for the high-temperature reaction are:
  • the reaction temperature is 1073K ⁇ 1323K
  • Heating rate is 10 ⁇ 20 °C / min
  • the reaction pressure is 0.05Torr ⁇ 1000Torr;
  • the reaction time is from 1min to 500h.
  • the reaction temperature is from 1073K to 1323K.
  • reaction time is from 1 min to 200 h.
  • reaction temperature is from 1073K to 1223K.
  • reaction temperature is from 1073K to 1173K.
  • reaction temperature is from 1173K to 1223K.
  • reaction temperature is from 1123K to 1223K.
  • reaction pressure is from 0.1 Torr to 1000 Torr.
  • the pressure of the reaction is from 10 Torr to 260 Torr.
  • reaction time is 30min to 20h.
  • reaction time is from 30 min to 100 h.
  • the upper temperature limit of the reaction is selected from 1098K, 1123K, 1148K, 1173K, 1198K, 1203K, 1223K, 1253K, 1273K, or 1323K; the lower limit is selected from 1073K, 1098K, 1123K, 1148K, 1173K, 1198K, 1203K, 1223K , 1253K, or 1273K.
  • the upper limit of the heating rate is selected from 11 ° C / min, 12 ° C / min, 15 ° C / min, 18 ° C / min, or 20 ° C / min; the lower limit is selected from 10 ° C / min, 11 ° C / min, 12 ° C / min, 15 ° C / min or 18 ° C / min.
  • the upper limit of the reaction time is selected from 2min, 10min, 20min, 30min, 50min, 1h, 2h, 5h, 10h, 20h, 30h, 50h, 100h, 120h, 150h, 200h, 300h, 400h, 450h or 500h;
  • the lower limit is selected from 1min, 10min, 20min, 30min, 50min, 1h, 2h, 5h, 10h, 20h, 30h, 50h, 100h, 120h, 150h, 200h, 300h, 400h or 450h.
  • the upper pressure limit of the reaction is selected from 0.1Torr, 0.2Torr, 0.5Torr, 10Torr, 20Torr, 50Torr, 100Torr, 200Torr, 260Torr, 300Torr, 400Torr, 500Torr, 600Torr, 700Torr, 750Torr, 800Torr, 900Torr, or 1000Torr ;
  • the lower limit is selected from 0.05Torr, 0.1Torr, 0.2Torr, 0.5Torr, 10Torr, 20Torr, 50Torr, 100Torr, 200Torr, 260Torr, 300Torr, 400Torr, 500Torr, 600Torr, 700Torr, 750Torr, 800Torr, 900Torr, or 1000Torr.
  • the method includes: reacting a potassium titanyl phosphate (KTP) single crystal or a zinc titanate (ZTO) single crystal in an atmosphere containing different components, and reacting the potassium titanyl phosphate (KTP) single crystal or phosphoric acid
  • KTP potassium titanyl phosphate
  • ZTO zinc titanate
  • the surface of the single crystal of potassium titanate (KTP) is thermally decomposed, crystallized and grown to obtain the porous titanium dioxide single crystal material.
  • the method includes: reacting a KTP single crystal in an atmosphere containing different components, thermally decomposing, crystallizing, and growing on the surface of the KTP single crystal to obtain a porous titanium dioxide single crystal thin film.
  • the method includes: reacting a KTP single crystal in an atmosphere of different components, subjecting the KTP single crystal to thermal decomposition and crystal growth, to obtain a porous titanium dioxide single crystal crystal.
  • the method includes at least: reacting at least one of the (100) plane, (001) plane, (110) plane, and (111) plane of a KTP single crystal in an atmosphere containing different components, and Crystal growth on the crystal surface yields a porous titanium dioxide single crystal thin film.
  • the method includes at least: reacting at least one of the (100) plane, (001) plane, (110) plane, and (111) plane of a KTP single crystal in an atmosphere containing different components, and in KTP The crystals on the surface of the single crystal were transformed and grown to obtain porous titanium dioxide single crystal crystals.
  • the method includes: reacting a ZTO single crystal in an atmosphere containing different components, performing thermal decomposition crystallization on the surface of the ZTO single crystal, and growing to obtain a porous titanium dioxide single crystal thin film.
  • the method includes: reacting a ZTO single crystal in an atmosphere containing different components, subjecting the surface of the ZTO single crystal to thermal decomposition and crystal growth to obtain a porous titanium dioxide single crystal crystal.
  • the method includes at least: reacting at least one of the (100) plane, (110) plane, and (111) plane of the ZTO single crystal in an atmosphere containing different components, and crystal growing on the surface of the ZTO single crystal, A porous titanium dioxide single crystal film was obtained.
  • the method includes at least: reacting at least one of the (100) plane, (110) plane, and (111) plane of the ZTO single crystal in an atmosphere containing different components, and crystallizing the surface of the ZTO single crystal. Grow and obtain porous titanium dioxide single crystal crystals.
  • the contact time between the KTP single crystal or ZTO single crystal material and the raw material gas containing different components ranges from 1 min to 20 h.
  • the lower limit of the time range of the contact reaction of the KTP single crystal or ZTO single crystal material with the raw material gas containing different components is selected from 10min, 20min, 30min, 1h, 2h, 3h, 4h, 5h, 10h, 15h, or 18h; the upper limit is selected from 20min, 30min, 1h, 2h, 3h, 4h, 5h, 10h, 15h, 18h, or 20h.
  • the upper limit of the time range for the contact reaction of the titanium dioxide single crystal material with the raw material gas containing different components is selected from 15h, 20h, 50h, 100h, 150h, 200h, 250h, 300h, 350h, 400h, 450h or 500h; the lower limit is selected from 10h, 15h, 20h, 50h, 100h, 150h, 200h, 250h, 300h, 350h, 400h or 450h.
  • the contact reaction time should be sufficient to convert all the KTP single crystal or ZTO single crystal material into the porous titanium dioxide single crystal material.
  • the contact time between the KTP single crystal or ZTO single crystal material and the raw material gas containing different components is 10h to 500h.
  • the crystal size of the obtained porous titanium dioxide single crystal crystal is equal to the size of the KTP single crystal or ZTO single crystal material used.
  • Those skilled in the art can obtain the required porous titanium dioxide single crystal crystal by selecting a KTP single crystal or ZTO single crystal material of an appropriate size according to actual needs.
  • the method includes:
  • Step 1 Use KTP single crystal or ZTO single crystal as substrate;
  • Step 2 The KTP single crystal or the ZTO single crystal is placed in a vapor phase epitaxial growth reaction chamber, and the high-quality porous titanium dioxide film is epitaxially grown in the KTP single crystal or the ZTO single crystal in a high-temperature atmosphere containing different components.
  • Step 3 With the increase of the reaction time, further epitaxial growth is performed to grow a high-quality large-size porous titanium dioxide bulk single crystal.
  • the substrate of the single crystal in the first step is a KTP (100) plane, a KTP (001) plane, a KTP (110) plane, a KTP (111) plane, a ZTO (100) plane, a ZTO (110) plane, ZTO (111) plane.
  • the porous single crystal substrate in step 1 has a size range of 0.1-30 cm.
  • the gas source of the different components in step 2 is one of oxygen, nitrogen, argon, and hydrogen.
  • the temperature range for epitaxial growth of the titanium dioxide film in the second step is 1073K to 1323K.
  • the temperature range for epitaxial growth of the titanium dioxide film in the second step is 1073K to 1198K.
  • the atmosphere containing different components uses a flow oxygen, b flow nitrogen, c flow argon, and d flow hydrogen gas flow, wherein 0SLM ⁇ a ⁇ 100SLM, 0SLM ⁇ b ⁇ 100SLM, 0.05SLM ⁇ c ⁇ 100SLM, 0SLM ⁇ d ⁇ 100SLM.
  • the pressure range of the second step 0.1Torr-760Torr.
  • the epitaxial growth time in the third step ranges from 1 min to 500 h.
  • the method for preparing a nanoporous titanium dioxide single crystal film and a self-supporting nanoporous titanium dioxide single crystal crystal includes the following steps:
  • Step (1) Use a KTP single wafer as a substrate
  • Step (2) placing a KTP single-wafer substrate in a vapor phase epitaxial growth reaction chamber, decomposing the substrate in an atmosphere containing different components at a high temperature, and crystallizing and growing a nano-porous titanium dioxide single-crystal film on the surface;
  • Step (3) With the increase of the reaction time, further crystal conversion growth is performed, and the KTP single wafer substrate is completely crystallized and transformed into a self-supporting nano-porous titanium dioxide single crystal crystal.
  • the substrate in the step (1) is one of a KTP (100) plane, a KTP (001) plane, a KTP (110) plane, and a KTP (111) plane crystal.
  • the dimension range of the step (1) or the KTP single-wafer substrate is 0.1 cm to 30 cm.
  • the temperature range for the high-temperature crystal transformation growth in the step (2) is from 1173K to 1323K.
  • the oxygen-containing atmosphere uses a flow of oxygen + b flow of nitrogen + c flow of argon + d flow of hydrogen, wherein 0SLM ⁇ a ⁇ 100SLM, 0SLM ⁇ b ⁇ 100SLM, 0.05SLM ⁇ c ⁇ 100SLM, 0SLM ⁇ d ⁇ 100SLM.
  • the crystallization time range in the step (2) is from 1 min to 500 h.
  • the pressure range of the crystallization atmosphere in the step (2) is from 0.1 Torr to 700 Torr.
  • the method for preparing a nanoporous titanium dioxide single crystal thin film and a self-supporting nanoporous titanium dioxide single crystal crystal includes the following steps:
  • the KTP single crystal substrate in (a1) is a (100) plane.
  • the scale range of the KTP single crystal substrate in (a1) 1 cm to 5 cm.
  • the oxygen-containing atmosphere in (b1) uses a flow of oxygen + b flow of nitrogen + c flow of argon + d flow of hydrogen, wherein 0SLM ⁇ a ⁇ 10SLM, 0SLM ⁇ b ⁇ 1SLM, 0.05SLM ⁇ c ⁇ 1SLM, 0SLM ⁇ d ⁇ 1SLM.
  • the crystallization time range in (b1) 30min to 20h.
  • the pressure range of the crystal atmosphere in (b1) 10 Torr to 400 Torr.
  • the nanoporous titanium dioxide single crystal crystal in (c1) is a large-sized nanoporous titanium dioxide single crystal crystal.
  • the present application provides a method for preparing a large-sized nano-porous titanium dioxide single crystal thin film and a self-supporting nano-porous titanium dioxide crystal, and relates to a method for preparing a large-sized nano-porous titanium single-crystal crystal, in particular to prepare a large-sized nano-porous titanium crystal with KTP as a precursor.
  • Method for size nano-porous titanium dioxide single crystal crystals That is, the present invention only requires one step of high-temperature roasting and crystallization. In contrast, other traditional methods require manhood, then washing and purification, and finally roasting. It can be seen that the method of the present invention can effectively shorten the reaction preparation time and control the conditions. .
  • the substrates of the porous titanium dioxide single crystal material involved in this application are KTP (100) plane, KTP (001) plane, KTP (110) plane, KTP (111) plane, ZTO (100) plane, ZTO (110) plane, ZTO
  • One of the (111) planes can prepare a titanium dioxide single crystal thin film and a bulk single crystal. Because titanium salt single crystal is used as the reaction precursor, it has good plasticity and more choice of substrate, which makes the titanium salt single crystal with more complicated structure to produce large-sized porous titanium dioxide single crystal thin film with high product purity and good economy;
  • the large-sized porous titanium dioxide single crystal thin film prepared by the present application has good compactness and strong bonding. After ultrasonic washing and repeated use detection, the large-sized porous titanium dioxide single crystal thin film prepared by the present invention is repeatedly used for many times. The structure remains intact, safe and durable.
  • the purpose of this application is to solve the problem that the existing methods for preparing nanoporous crystalline materials are complicated and are limited to micron-scale crystal preparation scales, which is not conducive to large-scale production and application.
  • it is a titanium dioxide-based material.
  • the device provides high-quality and low-cost homogeneous large-sized 100- and 110-sided nanoporous single crystal substrates, thereby greatly improving the performance of titanium dioxide-based devices.
  • the method for preparing large-sized 100- and 110-side nano-porous titanium dioxide single crystal thin films and self-supporting nano-porous titanium dioxide crystals has a simple method, low price, good repeatability, and can be produced on a large scale.
  • At least one of the porous titanium dioxide single crystal material according to any one of the foregoing, and the porous titanium dioxide single crystal material prepared according to the method according to any one of the above is used in photoelectric conversion and photocatalysis. Applications.
  • the present application develops large-size, low-cost nanoporous titanium dioxide single-crystal crystals by transforming large-sized KTP single crystals or ZTO single-crystals into nanoporous titanium dioxide single-crystal crystals of the same size.
  • SLM is the abbreviation of Standard, Litre, and Minute, which represents a flow rate of 1 L / min in the standard state.
  • the size of the crystal and the one-dimensional dimension in the largest surface of the crystal refer to the distance between the two furthest adjacent points on the largest area of a crystal.
  • KTP crystals or ZTO crystals are similar to those of titanium dioxide crystals.
  • Titanium salts such as KTP single crystals or ZTO crystals are used as titanium source substrates and contain different components, and are transformed from outer and inner crystals at high temperatures. Grow titanium dioxide crystals, the remaining products are completely volatile;
  • This application uses the feature that the titanium content in the same volume of KTP crystals or ZTO crystals is less than the titanium content in titanium dioxide crystals, so that KTP single crystal or ZTO crystal substrates are exposed from outside under different temperature, high temperature, and low pressure Crystal transformation into nano-porous titanium dioxide single crystal crystals;
  • the method for preparing a nano-porous titanium dioxide single crystal according to the present application has simple operation, good repeatability, and low price;
  • the material described in this application has a self-supporting structure. When it is a bulk single crystal, as a new material, it has potential applications in the fields of photoelectric conversion, photocatalysis, electrocatalysis, and electrochemical energy storage systems.
  • FIG. 1 is a SEM image of a sample 1 # large-sized (100) plane nano-porous titanium dioxide single crystal crystal;
  • FIG. 2 is an SEM image of a sample 2 # large-sized (110) plane nanoporous titanium dioxide single crystal crystal;
  • 3 is a SEM image of a sample 3 # large-sized (101) plane nano-porous titanium dioxide single crystal crystal;
  • FIG. 5 is a STEM-SEAD image of sample 3 # large-sized (101) plane nano-porous titanium dioxide single crystal crystal;
  • Figure 6 shows the carrier mobility of samples 1 # to 3 # at different temperatures.
  • the raw materials in the embodiments of the present application are purchased through commercial channels.
  • KTP single crystal substrate and ZTO single crystal substrate are purchased from Fujian Fujing Technology Co., Ltd.
  • Phase analysis was performed using Bruker D8 Advance X-ray diffractometer.
  • a (100) plane KTP single crystal substrate with a size of 1 cm was placed on a high-purity alumina boat, and then placed in an alumina tube reactor.
  • the raw material gas nitrogen 0.1SLM, argon 0.3SLM
  • the system is heated to 1173K (heating rate is 20 ° C / min), the system pressure is maintained at 50 Torr, and after 120 minutes of reaction, it is cooled to room temperature to obtain a porous titanium dioxide single crystal thin film sample grown on the surface of a KTP single wafer substrate. 500nm, recorded as sample M1 # .
  • a (100) plane KTP single crystal substrate with a size of 1 cm was placed on a high-purity alumina boat, and then placed in an alumina tube reactor.
  • the raw material gas nitrogen 0.1SLM, argon 0.3SLM
  • the system was heated to 1173K (heating rate was 20 ° C / min), and the system pressure was maintained at 50 Torr. After 120 hours of reaction, it was cooled to room temperature to obtain a porous titanium dioxide single crystal crystal sample, which was recorded as sample 1 # , and the crystal size of sample 1 # was 1cm.
  • a (001) plane KTP single crystal substrate with a size of 1 cm was placed on a high-purity alumina boat, then placed in an alumina tube reactor, and the raw material gas (oxygen 0.01SLM, nitrogen 0.05SLM, argon 0.3) was passed. SLM), and the system was heated to 1173K (heating rate is 10 ° C / min), the system pressure was maintained at 50 Torr, after 120 minutes of reaction, cooled to room temperature, a porous titanium dioxide single crystal thin film sample grown on the surface of the titanium dioxide single wafer substrate The thickness of the film is 1000 nm, which is recorded as sample M2 # .
  • a (001) plane KTP single crystal substrate with a size of 1 cm was placed on a high-purity alumina boat, then placed in an alumina tube reactor, and passed in (oxygen 0.01SLM, nitrogen 0.05SLM, argon 0.3SLM) , And the system was heated to 1198K (heating rate was 10 ° C / min), the system pressure was maintained at 50 Torr, after 120 hours of reaction, cooled to room temperature, a porous titanium dioxide single crystal crystal sample was obtained, recorded as sample 2 # , sample 2 # of The crystal size is 1 cm.
  • sample M3 # to sample M10 # are the same as those of sample M1 # in Example 1.
  • the substrate and reaction conditions were changed to obtain different samples.
  • the relationship between the sample number and the substrate and reaction conditions is shown in Table 1.
  • the thickness of the samples M3 # to M5 # is in a range of 10 nm to 10 ⁇ m.
  • the thickness of the sample M6 # to sample M10 # is in a range of 10 nm to 100 ⁇ m.
  • a (100) plane ZTO single crystal substrate with a size of 1 cm was placed on a high-purity alumina boat, and then placed in an alumina tube reactor.
  • the raw material gas nitrogen 10SLM, argon 15SLM
  • To 1273K heating rate is 20 ° C / min
  • maintaining the system pressure at 100 Torr maintaining the system pressure at 100 Torr
  • cooling to room temperature after 1200 minutes of reaction a porous titanium dioxide single crystal thin film sample grown on the surface of a ZTO single wafer substrate is obtained, and the film thickness is about 500 nm Record it as sample M8 # .
  • sample M9 # to sample M10 # are the same as those of sample M8 # in Example 4.
  • the substrate and reaction conditions were changed to obtain different samples.
  • the relationship between the sample number and the substrate and reaction conditions is shown in Table 1.
  • Sample # 3 Sample morphology similar to # 1 to # 1 is a typical representative of the sample, a scanning electron micrograph which nanoporous titania monocrystalline crystal shown in Figure 1, it can be seen from FIG titanium oxide having a porous skeleton structure.
  • Sample # 4 Sample # 5 Sample morphology similar to # 2 to # 2 as a typical representative sample, a scanning electron micrograph which nanoporous titania monocrystalline crystal shown in Figure 2, the porous structure can be seen from the titanium dioxide . It can be seen from the figure that the porous is a connected porous.
  • the SEM photos of samples M1 # ⁇ Sample M10 # are similar to the samples 1 # ⁇ Sample 10 # , for example, the SEM photos of sample M1 # are similar to the sample 1 # .
  • the pore ranges of the products are all in the range of 10 nm to 1000 nm.
  • Figures 3 and 4 are SEM images of the 3 # and 4 # large-sized (101) plane and (001) plane nanoporous titanium dioxide single crystal crystals, respectively. It can be seen from the figure that the surface of the titanium dioxide porous single crystal has 10nm to 500nm. Holes of varying sizes. It can be seen from the figure that the porous is a connected porous.
  • Electron beam etching combined with transmission electron microscopy and X-ray crystal diffraction were used to characterize the crystal structure of samples M1 # ⁇ sample M10 # , sample 1 # ⁇ sample 10 # , and the results showed that these samples were porous titanium dioxide single crystals. .
  • samples 1 # to 10 # are all titanium dioxide single crystal crystals
  • samples M1 # to sample M10 # are all titanium dioxide single crystal thin films.
  • FIG. 5 is a STEM-SEAD image on the transmission section skeleton of sample 3 # large-sized (101) plane nanoporous titanium dioxide single crystal crystal.
  • the brand of the instrument Carl Zeiss, name: F30 transmission electron microscope Model: JEM-3100F Manufacturer: Carl Zeiss, Germany.
  • a comprehensive physical property tester was used to test the carrier mobility of samples 1 # to 10 # at different temperatures.
  • a typical example is shown in FIG. 6, corresponding to the carrier mobility of samples 1 # to 3 # at different temperatures. It can be seen from the figure that the sample has a higher carrier mobility at normal temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本申请公开了一种多孔二氧化钛单晶材料及其制备方法和应用,所述多孔二氧化钛单晶材料中含有10nm~1000nm的孔。所述多孔二氧化钛单晶薄膜及体块的致密性好,结合牢固。该晶体材料的制备方法操作简单、重复性好、价格低廉、可规模化生产。二氧化钛作为最重要的半导体之一,已被广泛应用在光催化、太阳能电池、传感器等领域。

Description

一种多孔二氧化钛单晶材料及其制备方法和应用 技术领域
本申请涉及一种多孔二氧化钛单晶材料及其制备方法和应用,属于无机材料领域。
背景技术
二氧化钛是一种具有宽禁带的半导体材料,它具有优良的化学稳定性和热稳定性,良好的介电性质、电荷传送和光催化特性,抵抗电化学腐蚀特性等。二氧化钛每一种晶型都表现出不同的性质。锐钛矿和金红石型纳米二氧化钛在已被广泛应用到光催化、太阳能电池、发光材料、电子器件等领域。
多孔二氧化钛在光催化,电化学能源存储及太阳能电池领域具有重要的应用。光催化剂纳米粒子在一定的波长的光线照射下受激生成电子-空穴对,空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化-还原作用,将光催化剂表面的各种污染物摧毁。在光催化技术领域中,所采用的半导体光催化剂大多是n型半导体材料,尤其是以二氧化钛材料使用最为广泛。锐钛矿型二氧化钛是一种宽禁带半导体,具有活化性高、稳定性好、物理和化学性质稳定、光催化性能优异、价格低廉等特点。
在制备太阳能电池的光阳极方面,基于烧结或者压实的锐钛矿纳米粒子作为光阳极材料的根本缺点是材料的电子迁移率相比单晶急剧下降。这源于大量的晶界以及缺乏电荷向背电极的直接传输通道。换言之,长得电子扩散路径(随机的游离通过粒子网络)被引入颗粒结构中。结果烧结锐钛矿纳米颗粒层的电子迁移率比锐钛矿型二氧化钛单晶低6~8个数量级。目前制备的多孔二氧化钛电极,都是基于无定型或者多晶的二氧化钛粉末,晶界众多,表面的终止原子不确定。因此,有必要提供一种制备大尺寸纳米多孔二氧化钛单晶晶体的方法,来为光催化领域和电化学领域提供优质的大尺寸的纳米多孔二氧化钛单晶材料。
发明内容
根据本申请的一个方面,提供了一种多孔二氧化钛单晶材料,所述多孔二氧化钛单晶材料具有大尺寸,多孔结构,以解决上述背景技术中的问题。
本申请涉及一种大尺寸多孔二氧化钛单晶材料的制备方法,该方法主要是以磷酸钛氧钾单晶(KTiOPO 4,以下简称KTP)或者钛酸锌(Zn 2TiO 4,以下简称ZTO)单晶为衬底,通过分解反应,制备多孔二氧化钛单晶材料。制备多孔二氧化钛单晶的方法:将KTP单晶或者ZTO单晶衬底置于高温含不同组分的气氛中,通过一定速率的升温加热结晶生成多孔二氧化钛单晶。与现有技术相比,本申请中所述的多孔二氧化钛单晶材料中含有10nm~1000nm的孔,且制得的多孔二氧化钛单晶薄膜及体块的致密性好,结合牢固。此外,所述晶体材料的制备方法操作简单、重复性好、价格低廉可规模化生产。二氧化钛作为最重要的半导体之一,已被广泛应用在光催化、太阳能电池、传感器等领域。
所述多孔二氧化钛单晶材料,其特征在于,所述多孔二氧化钛单晶材料中含有10nm~1000nm的孔。
可选地,所述多孔二氧化钛单晶材料中含有20nm~1000nm的孔。
可选地,所述多孔二氧化钛单晶中的孔为连通多孔。
可选地,所述二氧化钛单晶包括锐钛矿型二氧化钛单晶、金红石型二氧化钛单晶。
可选地,所述多孔二氧化钛单晶材料中含有10nm~500nm的孔。
可选地,所述多孔二氧化钛单晶的表面为多孔二氧化钛单晶的(100)面、(110)面、(101)面、(001)面中的至少一面。
可选地,所述多孔二氧化钛单晶材料为多孔二氧化钛单晶薄膜和/或多孔二氧化钛单晶晶体。
可选地,所述多孔二氧化钛单晶晶体为自支撑纳米多孔二氧化钛晶体。
可选地,所述多孔二氧化钛单晶薄膜的表面为多孔二氧化钛单晶的(100)面、(110)面、(101)面、(001)面中的至少一面;
所述多孔二氧化钛单晶晶体的最大表面为多孔二氧化钛单晶的(100)面、(110)面、(101)面、(001)面中的至少一面。
可选地,所述多孔二氧化钛单晶晶体的尺寸为0.1cm~30cm;
所述多孔二氧化钛单晶薄膜的厚度为10nm~100μm。
可选地,所述多孔二氧化钛单晶晶体的尺寸为0.5cm~5cm;所述多孔二氧化钛单晶薄膜的厚度为10nm~50μm。
可选地,所述多孔二氧化钛单晶薄膜的厚度为10nm~10μm。
可选地,所述多孔二氧化钛单晶晶体的最大表面中一维的尺寸为0.1cm~30cm。
可选地,所述多孔二氧化钛单晶晶体的最大表面中一维的尺寸为1cm~5cm。
本申请的另一方面,提供了上述任一项所述的多孔二氧化钛单晶材料的制备方法,其特征在于,至少包括:
将钛源在含有不同组分的原料气中,高温反应,得到所述多孔二氧化钛单晶材料;
所述钛源包括钛盐单晶中的至少一种。
可选地,所述钛源选自磷酸钛氧钾单晶、钛酸锌单晶中的一种;
所述磷酸钛氧钾单晶与所述原料气接触的面为磷酸钛氧钾单晶的(100)面、(001)面、(110)面、(111)面中的至少一面;钛酸锌单晶与所述原料气接触的面为钛酸锌晶体的(100)面、(110)面、(111)面中的至少一面。
可选地,所述高温反应为高温分解。
所述磷酸钛氧钾单晶为KTiOPO 4,以下简称KTP。
可选地,所述KTP单晶为(100)面、(001)面、(110)面、(111)面中的至少一面。
可选地,所述KTP单晶材料是KTP单晶片;KTP单晶片面积最大的面是单晶的(100)面、(001)面、(110)面或(111)面与含有不同组分的原料气接触。
所述钛酸锌单晶为Zn 2TiO 4,以下简称ZTO。
可选地,所述ZTO单晶为(100)面、(110)面、(111)面中的至少一面。
可选地,所述ZTO单晶材料是ZTO单晶片;ZTO单晶片面积最大的面是单晶的(100)面、(110)面或(111)面中与含有不同组分的原料气接触。
可选地,将钛源在不同组分的气氛煅烧,得到所述多孔二氧化钛单晶材料。
可选地,所述原料气中包含氩气,氩气的流量为0.05SLM~1SLM。
可选地,所述原料气包括氧气和氮气、氩气、氢气中的至少一种;
氧气的流量记为a,氮气的流量记为b,氩气的流量记为c,氢气的流量记为d;满足:
0SLM≤a≤100SLM;
0SLM≤b≤100SLM;
0.05SLM≤c≤100SLM;
0SLM≤d≤100SLM;
其中,所述氢气和氧气不同时存在。
可选地,所述含有不同组分的原料气中包括氧气、氮气、氩气、氢气中的至少一种;氧气、氢气,这两种气体最多只能含有一种;
其中,氧气的流量记为a,氮气的流量记为b,氩气的流量记为c,氢气d,满足:
0SLM≤a≤100SLM;
0SLM≤b≤100SLM;
0.05SLM≤c≤100SLM;
0SLM≤d≤100SLM。
可选地,所述含有不同组分的原料气中包括氧气和氩气的至少一种;
其中,氧气的流量记为a,氩气的流量记为b,满足:
0SLM≤a≤10SLM;
0.05SLM≤b≤1SLM。
可选地,所述氧气的流量范围上限选自0.01SLM、0.05SLM、0.1SLM、0.5SLM、1SLM、1.5SLM、2SLM、3SLM、4SLM、5SLM、6SLM、7SLM、8SLM、9SLM、10SLM、20SLM、30SLM、40SLM、50SLM、60SLM、70SLM、80SLM、90SLM或100SLM;下限选自0.01SLM、 0.05SLM、0.1SLM、0.5SLM、1SLM、1.5SLM、2SLM、3SLM、4SLM、5SLM、6SLM、7SLM、8SLM、9SLM、10SLM、20SLM、30SLM、40SLM、50SLM、60SLM、70SLM、80SLM或90SLM。
可选地,所述氮气的流量范围上限选自0.01SLM、0.05SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、0.8SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM、80SLM或100SLM;下限选自0SLM、0.01SLM、0.05SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、0.8SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM或80SLM。
可选地,所述氩气的流量范围上限选自0.05SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、0.8SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM、80SLM或100SLM;下限选自0.05SLM、0.1SLM、0.2SLM、0.3SLM、0.5SLM、0.8SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM或80SLM。
可选地,所述氢气的流量范围上限选自0.01SLM、0.1SLM、0.2SLM、0.5SLM、0.8SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM、80SLM或100SLM;下限选自0SLM、0.01SLM、0.1SLM、0.2SLM、0.5SLM、0.8SLM、1SLM、2SLM、5SLM、10SLM、20SLM、50SLM或80SLM。
可选地,所述高温反应的条件为:
反应温度为1073K~1323K;
升温速率为10~20℃/min;
反应压力为0.05Torr~1000Torr;
反应时间为1min~500h。
可选地,所述反应温度为1073K~1323K。
可选地,所述反应时间为1min~200h。
可选地,所述反应的温度为1073K~1223K。
可选地,所述反应的温度为1073K~1173K。
可选地,所述反应的温度为1173K~1223K。
可选地,所述反应的温度为1123K~1223K。
可选地,所述反应的压力为0.1Torr~1000Torr。
可选地,所述反应的压力为10Torr~260Torr。
可选地,所述反应的时间为30min~20h。
可选地,所述反应的时间为30min~100h。
可选地,所述反应的温度上限选自1098K、1123K、1148K、1173K、1198K、1203K、1223K、1253K、1273K或1323K;下限选自1073K、1098K、1123K、1148K、1173K、1198K、1203K、1223K、1253K或1273K。
可选地,所述升温速率的上限选自11℃/min、12℃/min、15℃/min、18℃/min或20℃/min;下限选自10℃/min、11℃/min、12℃/min、15℃/min或18℃/min。
可选地,所述反应的时间上限选自2min、10min、20min、30min、50min、1h、2h、5h、10h、20h、30h、50h、100h、120h、150h、200h、300h、400h、450h或500h;下限选自1min、10min、20min、30min、50min、1h、2h、5h、10h、20h、30h、50h、100h、120h、150h、200h、300h、400h或450h。
可选地,所述反应的压力上限选自0.1Torr、0.2Torr、0.5Torr、10Torr、20Torr、50Torr、100Torr、200Torr、260Torr、300Torr、400Torr、500Torr、600Torr、700Torr、750Torr、800Torr、900Torr或1000Torr;下限选自0.05Torr、0.1Torr、0.2Torr、0.5Torr、10Torr、20Torr、50Torr、100Torr、200Torr、260Torr、300Torr、400Torr、500Torr、600Torr、700Torr、750Torr、800Torr、900Torr或1000Torr。
可选地,所述方法包括:将磷酸钛氧钾(KTP)单晶或者钛酸锌(ZTO)单晶在含不同组分的气氛中反应,在磷酸钛氧钾(KTP)单晶或者磷酸钛氧钾(KTP)单晶表面进行热分解结晶并生长,得到所述多孔二氧化钛单晶材料。
可选地,所述方法包括:将KTP单晶在含不同组分的气氛中反应,在KTP单晶表面进行热分解结晶并生长,得到多孔二氧化钛单晶薄膜。
可选地,所述方法包括:将KTP单晶在不同组分的气氛反应,在KTP单晶表面进行热分解并结晶生长,得到多孔二氧化钛单晶晶体。
可选地,所述方法至少包括:将KTP单晶的(100)面、(001)面、 (110)面、(111)面中至少一种在含有不同组分氛围中反应,在KTP单晶表面结晶生长,得到多孔二氧化钛单晶薄膜。
可选地,所述方法至少包括:将KTP单晶的(100)面、(001)面、(110)面、(111)面中的至少一种在含有不同组分氛围中反应,在KTP单晶表面结晶转化生长,得到多孔二氧化钛单晶晶体。
可选地,所述方法包括:将ZTO单晶在含不同组分的气氛中反应,在ZTO单晶表面进行热分解结晶并生长,得到多孔二氧化钛单晶薄膜。
可选地,所述方法包括:将ZTO单晶在含不同组分的气氛中反应,在ZTO单晶表面进行热分解并结晶生长,得到多孔二氧化钛单晶晶体。
可选地,所述方法至少包括:将ZTO单晶的(100)面、(110)面、(111)面中至少一种在含有不同组分氛围中反应,在ZTO单晶表面结晶生长,得到多孔二氧化钛单晶薄膜。
可选地,所述方法至少包括:将ZTO单晶的(100)面、(110)面、(111)面中的至少一种在含有不同组分氛围中反应,在ZTO单晶表面结晶转化生长,得到多孔二氧化钛单晶晶体。
可选地,当多孔二氧化钛单晶材料为多孔二氧化钛单晶薄膜时,所述KTP单晶或者ZTO单晶材料与含有不同组分的原料气接触反应的时间范围为1min~20h。
可选地,当多孔二氧化钛单晶材料为多孔二氧化钛单晶薄膜时,所述KTP单晶或者ZTO单晶材料与含有不同组分的原料气接触反应的时间范围下限选自10min、20min、30min、1h、2h、3h、4h、5h、10h、15h或18h;上限选自20min、30min、1h、2h、3h、4h、5h、10h、15h、18h或20h。
可选地,当多孔二氧化钛单晶材料为多孔二氧化钛单晶晶体时,所述二氧化钛单晶材料与含有不同组分的原料气接触反应的时间范围上限选自15h、20h、50h、100h、150h、200h、250h、300h、350h、400h、450h或500h;下限选自10h、15h、20h、50h、100h、150h、200h、250h、300h、350h、400h或450h。
当制备的多孔二氧化钛单晶材料为多孔二氧化钛单晶晶体时,接触反应时间应满足使KTP单晶或者ZTO单晶材料全部转化为多孔二氧化钛单 晶材料。
可选地,当多孔二氧化钛单晶材料为多孔二氧化钛单晶晶体时,所述KTP单晶或者ZTO单晶材料与含有不同组分的原料气接触反应的时间为10h~500h。
本领域技术人员可根据实际需要和所采用的KTP单晶或者ZTO单晶材料的尺寸,确定合适的接触反应时间。
采用本发明所提供的方法,所得到的多孔二氧化钛单晶晶体的晶体尺寸与所采用的KTP单晶或者ZTO单晶材料的尺寸相等。本领域技术人员可以根据实际需要,通过选择合适尺寸的KTP单晶或者ZTO单晶材料,得到所需要的多孔二氧化钛单晶晶体。
作为其中一种具体的实施方法,所述方法包括:
步骤一、采用KTP单晶或者ZTO单晶为衬底;
步骤二、将KTP单晶或者ZTO单晶置于气相外延生长反应室中,在高温含不同组分的气氛中,在KTP单晶或者ZTO单晶外延生长成高质量的多孔二氧化钛薄膜。
步骤三、随着反应时间的增加,进一步外延生长,生长出高质量大尺寸的多孔二氧化钛体块单晶。
可选地,所述步骤一中单晶的衬底为KTP(100)面、KTP(001)面KTP(110)面、KTP(111)面、ZTO(100)面、ZTO(110)面、ZTO(111)面的一种。
可选地,所述步骤一中的多孔单晶衬底尺度范围:0.1-30cm。
可选地,所述步骤二的不同组分的气源为:氧气、氮气、氩气、氢气中的一种。
可选地,所述步骤二中二氧化钛薄膜外延生长温度范围:1073K~1323K。
可选地,所述步骤二中二氧化钛薄膜外延生长温度范围:1073K~1198K。
可选地,所述步骤二含不同组分气氛采用a流量氧气+b流量氮气+c流量氩气+d流量氢气气流,其中0SLM≤a≤100SLM、0SLM≤b≤100SLM、0.05SLM≤c≤100SLM、0SLM≤d≤100SLM。
可选地,所述步骤二压力范围:0.1Torr-760Torr。
可选地,所述步骤三中外延生长时间为范围:1min-500h。
作为一种实施方式,所述制备纳米多孔二氧化钛单晶薄膜及自支撑纳米多孔二氧化钛单晶晶体的方法,包括以下步骤:
步骤(1)、采用KTP单晶片为衬底;
步骤(2)、将KTP单晶片衬底置于气相外延生长反应室中,在高温含有不同组分氛围中衬底分解,在表面结晶生长出纳米多孔二氧化钛单晶薄膜;
步骤(3)、随着反应时间的增加,进一步进行结晶转化生长,将KTP单晶片衬底完全结晶转化生长成自支撑纳米多孔二氧化钛单晶晶体。
可选地,所述步骤(1)中的衬底为KTP(100)面、KTP(001)面KTP(110)面、KTP(111)面晶体中的一种。
可选地,所述步骤(1)中的或KTP单晶片衬底的尺度范围:0.1cm~30cm。
可选地,所述步骤(2)中高温结晶转化生长温度范围:1173K~1323K。
可选地,所述步骤(2)中含氧氛围采用a流量的氧气+b流量的氮气+c流量的氩气+d流量的氢气气流,其中0SLM≤a≤100SLM、0SLM≤b≤100SLM、0.05SLM≤c≤100SLM、0SLM≤d≤100SLM。
可选地,所述步骤(2)中结晶时间范围:1min~500h。
可选地,所述步骤(2)中结晶氛围压力范围:0.1Torr~700Torr。
作为一种具体的实施方法,所述制备纳米多孔二氧化钛单晶薄膜及自支撑纳米多孔二氧化钛单晶晶体的方法,其制备方法包括以下步骤:
(a1)、采用KTP单晶片为衬底;
(b1)、将KTP单晶衬底置于气相外延生长反应室中,在高温含氧氛围中衬底表面结晶转化生长出纳米多孔二氧化钛单晶薄膜;
(c1)、随着结晶时间的增加,进一步进行结晶转化生长,将KTP单晶衬底完全结晶转化生长成自支撑纳米多孔二氧化钛单晶晶体。
所述(a1)中的KTP单晶衬底为(100)面。
所述(a1)中的KTP单晶衬底的尺度范围:1cm~5cm。
所述(b1)中高温结晶转化生长温度范围:1173K~1273K。
所述(b1)中含氧氛围采用a流量的氧气+b流量的氮气+c流量的氩气+d流量的氢气气流,其中0SLM≤a≤10SLM、0SLM≤b≤1SLM、0.05SLM≤c≤1SLM、0SLM≤d≤1SLM。
所述(b1)中结晶时间范围:30min~20h。
所述(b1)中结晶氛围压力范围:10Torr~400Torr。
所述(c1)中纳米多孔二氧化钛单晶晶体为大尺寸纳米多孔二氧化钛单晶晶体。
本申请提供一种制备大尺寸的纳米多孔二氧化钛单晶薄膜及自支撑纳米多孔二氧化钛晶体的方法,它涉及一种制备大尺寸纳米多孔单晶晶体的方法,尤其是以KTP为前躯体生长制备大尺寸纳米多孔二氧化钛单晶晶体的方法。即本发明只需要一步高温焙烧结晶过程,相比而言,传统的其他方法需要先生长,然后洗涤纯化,最后进行焙烧,由此可见,本发明方法能有效缩短反应制备时间,而且条件可控。
本申请所涉及的多孔二氧化钛单晶材料的衬底为KTP(100)面、KTP(001)面KTP(110)面、KTP(111)面、ZTO(100)面、ZTO(110)面、ZTO(111)面中的一种,可制备二氧化钛单晶薄膜及体单晶。由于采用钛盐单晶作为反应前躯体,可塑性好,基底选择更多,使得结构更加复杂的钛盐单晶制得大尺寸多孔的二氧化钛单晶薄膜,且产品纯度高,经济性好;
三、本申请制得的大尺寸多孔二氧化钛单晶薄膜的致密性好,结合牢固,经过超声洗涤和重复使用检测,采用本发明制得的大尺寸多孔二氧化钛单晶薄膜经重复使用多次,薄膜结构依旧能够保持完整,安全耐用。
四、本申请的目的一方面是要解决现有制备纳米多孔晶体材料的方法复杂且仅限微米量级的晶体制备尺度,不利于规模化生产和应用的问题;另一方面是要为二氧化钛基器件提供质优价廉的同质大尺寸100面、110面的纳米多孔单晶衬底,从而大幅提升二氧化钛基器件性能。本申请制备大尺寸100面、110面纳米多孔二氧化钛单晶薄膜及自支撑纳米多孔二氧化钛晶体的方法简单、价格低廉、重复性好、可规模化生产。
本申请的再一方面,提供了上述任一项所述的多孔二氧化钛单晶材料、根据上述任一项所述的方法制备得到的多孔二氧化钛单晶材料中的至少一种在光电转换和光催化中的应用。
本申请通过将大尺寸KTP单晶或ZTO单晶结晶转化生长成同尺寸纳米多孔二氧化钛单晶晶体,另辟蹊径开发出大尺寸、低成本纳米多孔二氧化钛单晶晶体。
上述任一项所述的多孔二氧化钛单晶材料、根据上述任一项所述方法制备得到的多孔二氧化钛单晶材料中的至少一种在光电材料中的应用。
本申请中,SLM是Standard Litre Per Minute的缩写,表示标准状态下1L/min的流量。
本申请中,所述晶体的尺寸和晶体最大表面中一维的尺寸是指一块晶体上面积最大的面上相邻最远两点的距离。
本申请能产生的有益效果包括:
(1)本申请中利用KTP晶体或者ZTO晶体与二氧化钛晶体结构相近的特点,以KTP单晶或者ZTO晶体等钛盐为钛源衬底与含有不同组分,以及高温下由外及里结晶转化生长二氧化钛晶体,其余产物完全挥发;
(2)本申请利用同体积KTP晶体或者ZTO晶体中的钛含量比二氧化钛晶体中钛的含量少的特点,使得KTP单晶或者ZTO晶体衬底与在高温,低气压,不同组分下由外及里结晶转化生成纳米多孔二氧化钛单晶晶体;
(3)本申请首次报道了纳米多孔二氧化钛单晶晶体、大尺寸纳米多孔二氧化钛单晶晶体;
(4)本申请制备纳米多孔二氧化钛单晶晶体的方法操作简单、重复性好、价格低廉;
(5)本申请中所述材料具有自支撑结构,为块状单晶时,作为一种新材料,在光电转换,光催化,电催化领域以及电化学能源存储系统中都有潜在的应用。
附图说明
图1为样品1#大尺寸(100)面纳米多孔二氧化钛单晶晶体的SEM图;
图2为样品2#大尺寸(110)面纳米多孔二氧化钛单晶晶体的SEM图;
图3为样品3#大尺寸(101)面纳米多孔二氧化钛单晶晶体的SEM图;
图4为样品4#大尺寸(001)面纳米多孔二氧化钛单晶晶体的SEM图;
图5为样品3#大尺寸(101)面纳米多孔二氧化钛单晶晶体的STEM-SEAD图;
图6为样品1 #~样品3 #在不同温度下的载流子迁移率。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买;其中,KTP单晶衬底和ZTO单晶衬底购自福建福晶科技股份有限公司。
本申请的实施例中分析方法如下:
利用JEOL JSM 6330F型扫描电镜分析。
利用布鲁克D8 Advance X射线衍射仪进行物相结构分析。
利用蔡司F30透射电子显微镜进行物相结构分析
实施例1 样品M1 #和样品1 #的制备
将尺寸为1cm的(100)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氮气0.1SLM,氩气0.3SLM)并将体系加热至1173K(升温速率为20℃/min),保持体系压力为50Torr,反应120min后,冷却至室温,即得生长在KTP单晶片衬底表面的多孔二氧化钛单晶薄膜样品,薄膜厚度约为500nm,记为样品M1 #
将尺寸为1cm的(100)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氮气0.1SLM,氩气0.3SLM)并将体系加热至1173K(升温速率为20℃/min),保持体系压力为50Torr,反应120h后,冷却至室温,即得多孔二氧化钛单晶晶体样品,记为样品1 #,样品1 #的晶体尺寸为1cm。
实施例2 样品M2 #和样品2 #的制备
将尺寸为1cm的(001)面KTP单晶衬底,置于高纯氧化铝舟上,然后 放入氧化铝管反应器中,通入原料气(氧气0.01SLM,氮气0.05SLM,氩气0.3SLM),并将体系加热至1173K(升温速率为10℃/min),保持体系压力为50Torr,反应120min后,冷却至室温,即得生长在二氧化钛单晶片衬底表面的多孔二氧化钛单晶薄膜样品,薄膜厚度为1000nm,记为样品M2 #
将尺寸为1cm的(001)面KTP单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入(氧气0.01SLM,氮气0.05SLM,氩气0.3SLM),并将体系加热至1198K(升温速率为10℃/min),保持体系压力为50Torr,反应120h后,冷却至室温,即得多孔二氧化钛单晶晶体样品,记为样品2 #,样品2 #的晶体尺寸为1cm。
实施例3 样品M3 #~样品M10 #的制备
样品M3 #~样品M10 #的基本制备步骤同实施例1中的样品M1 #,改变衬底和反应条件,得到不同的样品。样品编号与衬底和反应条件的关系如表1所示。
表1
Figure PCTCN2018100577-appb-000001
Figure PCTCN2018100577-appb-000002
其中,所述样品M3 #~样品M5 #的厚度为10nm~10μm范围内。
其中,所述样品M6 #~样品M10 #的厚度为10nm~100μm范围内。
实施例4 样品M8 #的制备
将尺寸为1cm的(100)面ZTO单晶衬底,置于高纯氧化铝舟上,然后放入氧化铝管反应器中,通入原料气(氮气10SLM,氩气15SLM)并将体系加热至1273K(升温速率为20℃/min),保持体系压力为100Torr,反应1200min后,冷却至室温,即得生长在ZTO单晶片衬底表面的多孔二氧化钛单晶薄膜样品,薄膜厚度约为500nm,记为样品M8 #
实施例5 样品M9 #~样品M10 #的制备
样品M9 #~样品M10 #的基本制备步骤同实施例4中的样品M8 #,改变衬底和反应条件,得到不同的样品。样品编号与衬底和反应条件的关系如表1所示。
实施例6 样品3 #~样品5 #的制备
样品3 #~样品5 #的基本制备步骤同实施例1中的样品1 #,改变衬底和反应条件,得到不同的样品。样品编号与衬底和反应条件的关系如表2所示。
表2
样品编号 衬底、原料气、反应温度、反应压力 反应时间
3 # 同M3 # 100h
4 # 同M4 # 100h
5 # 同M5 # 100h
6 # 同M6 # 100h
7 # 同M7 # 100h
8 # 同M8 # 100h
9 # 同M9 # 100h
10 # 同M10 # 100h
实施例7 样品M1 #~样品M10 #、样品1 #~样品10 #的形貌表征
采用扫描电镜对样品1#~样品10#的形貌进行了表征,结果显示,样品1#~样品5#均具有10nm~500nm的孔。样品3 #的形貌与样品1 #类似,以样品1 #为典型代表,其纳米多孔二氧化钛单晶晶体的扫描电镜照片如图1所示,由图可以看出二氧化钛具有多孔的骨架结构。样品4 #和样品5 #的形貌与样品2 #类似,以样品2 #为典型代表,其纳米多孔二氧化钛单晶晶体的扫描电镜照片如图2所示,由图可以看出二氧化钛的多孔结构。从图中可以看出,所述多孔为连通多孔。
样品6#~样品10#的形貌测试结果与上述类似,得到具有连通多孔结构的二氧化钛。
样品M1 #~样品M10 #的扫描电镜照片分别与样品1 #~样品10 #类似,如样品M1 #的扫描电镜照片与样品1 #类似。其中,所述产品的孔范围均在10nm~1000nm范围内。
图3和图4分别为样品3#和4#大尺寸(101)面和(001)面纳米多孔二氧化钛单晶晶体的SEM图,从图中可以看出二氧化钛多孔单晶的表面具有10nm~500nm大小不等的孔。从图中可以看出,所述多孔为连通多孔。
实施例8 样品1 #~样品10 #的结构/元素表征
采用电子束刻蚀结合透射电镜,及X射线晶体衍射的方法对样品M1 #~样品M10 #、样品1 #~样品10 #进行了晶体结构表征,结果显示,这些样品都是多孔的二氧化钛单晶。
由此可知,样品1 #~样品10 #均为二氧化钛单晶晶体,样品M1 #~样品M10 #均为二氧化钛单晶薄膜。
其中,图5为样品3#大尺寸(101)面纳米多孔二氧化钛单晶晶体透射切片骨架上的STEM-SEAD图。其中仪器的品牌:卡尔·蔡司,名称:F30透射电子显微镜型号:JEM-3100F制造商:德国卡尔蔡司公司。
实施例9 样品的载流子迁移率
采用综合物理性能测试仪对样品1 #~样品10 #进行不同温度下的载流子迁移率测试。典型的如图6所示,对应样品1 #~样品3 #进在不同温度下的载流子迁移率,从图中可以看出样品在常温下具有较高的载流子迁移率。
其他样品的测试结果与上述类似。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (14)

  1. 一种多孔二氧化钛单晶材料,其特征在于,所述多孔二氧化钛单晶材料中含有10nm~1000nm的孔。
  2. 根据权利要求1所述的多孔二氧化钛单晶材料,其特征在于,所述多孔二氧化钛单晶中的孔为连通多孔。
  3. 根据权利要求1所述的多孔二氧化钛单晶材料,其特征在于,所述多孔二氧化钛单晶的表面为多孔二氧化钛单晶的(100)面、(110)面、(101)面、(001)面中的至少一面。
  4. 根据权利要求1所述的多孔二氧化钛单晶材料,其特征在于,所述多孔二氧化钛单晶材料为多孔二氧化钛单晶薄膜和/或多孔二氧化钛单晶晶体。
  5. 根据权利要求4所述的多孔二氧化钛单晶材料,其特征在于,所述多孔二氧化钛单晶薄膜的表面为多孔二氧化钛单晶的(100)面、(110)面、(101)面、(001)面中的至少一面;
    所述多孔二氧化钛单晶晶体的最大表面为多孔二氧化钛单晶的(100)面、(110)面、(101)面、(001)面中的至少一面。
  6. 根据权利要求4所述的多孔二氧化钛单晶材料,其特征在于,所述多孔二氧化钛单晶晶体的尺寸为0.1cm~30cm;
    所述多孔二氧化钛单晶薄膜的厚度为10nm~100μm。
  7. 根据权利要求6所述的多孔二氧化钛单晶材料,其特征在于,所述多孔二氧化钛单晶晶体的尺寸为0.5cm~5cm;
    所述多孔二氧化钛单晶薄膜的厚度为10nm~50μm。
  8. 权利要求1至7任一项所述的多孔二氧化钛单晶材料的制备方法,其特征在于,至少包括:
    将钛源在含有不同组分的原料气中,高温反应,得到所述多孔二氧化 钛单晶材料;
    所述钛源包括钛盐单晶中的至少一种。
  9. 根据权利要求8所述的方法,其特征在于,所述钛源选自磷酸钛氧钾单晶、钛酸锌单晶中的一种;
    所述磷酸钛氧钾单晶与所述原料气接触的面为磷酸钛氧钾单晶的(100)面、(001)面、(110)面、(111)面中的至少一面;所述钛酸锌单晶与所述原料气接触的面为钛酸锌晶体的(100)面、(110)面、(111)面中的至少一面。
  10. 根据权利要求8所述的方法,其特征在于,所述原料气包括氧气和氮气、氩气、氢气中的至少一种;
    氧气的流量记为a,氮气的流量记为b,氩气的流量记为c,氢气的流量记为d,满足:
    0SLM≤a≤100SLM;
    0SLM≤b≤100SLM;
    0.05SLM≤c≤100SLM;
    0SLM≤d≤100SLM;
    其中,所述氢气和氧气不同时存在。
  11. 根据权利要求8所述的方法,其特征在于,所述高温反应的条件为:
    反应温度为1073K~1323K;
    升温速率为10~20℃/min;
    反应压力为0.05Torr~1000Torr;
    反应时间为1min~500h。
  12. 根据权利要求11所述的方法,其特征在于,反应温度为1123K~1223K;
    反应压力为0.1Torr~1000Torr;
    所述反应时间为1min~200h。
  13. 根据权利要求8所述的方法,其特征在于,所述方法包括:将磷酸钛氧钾单晶或者钛酸锌单晶在含不同组分的气氛中反应,在磷酸钛氧钾单晶或者钛酸锌单晶表面进行热分解结晶并生长,得到所述多孔二氧化钛单晶材料。
  14. 权利要求1至7任一项所述的多孔二氧化钛单晶材料、根据权利要求8至13任一项所述的方法制备得到的多孔二氧化钛单晶材料中的至少一种在光电转换和光催化中的应用。
PCT/CN2018/100577 2018-08-01 2018-08-15 一种多孔二氧化钛单晶材料及其制备方法和应用 WO2020024331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810864447.1A CN110791808B (zh) 2018-08-01 2018-08-01 一种多孔二氧化钛单晶材料及其制备方法和应用
CN201810864447.1 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020024331A1 true WO2020024331A1 (zh) 2020-02-06

Family

ID=69231398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100577 WO2020024331A1 (zh) 2018-08-01 2018-08-15 一种多孔二氧化钛单晶材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110791808B (zh)
WO (1) WO2020024331A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718334A (zh) * 2020-05-25 2021-11-30 中国科学院福建物质结构研究所 一种多孔氮化镓单晶材料及其制备方法和应用
CN114763624B (zh) * 2021-01-14 2023-09-08 中国科学院福建物质结构研究所 一种表面图案化的多孔单晶材料及其制备方法和应用
CN114775055B (zh) * 2022-04-21 2023-11-17 中国科学院福建物质结构研究所 一种氧化镓晶体及其制备方法和应用
CN114892271B (zh) * 2022-04-26 2023-07-25 中国科学院福建物质结构研究所 一种多孔MoO3单晶材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145692A (zh) * 2015-03-26 2016-11-23 中国科学院苏州纳米技术与纳米仿生研究所 大面积单晶多孔二氧化钛薄膜及其制备方法与应用
CN106283191A (zh) * 2015-06-19 2017-01-04 中国科学院金属研究所 一种金属氧化物多孔单晶阵列薄膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103933957B (zh) * 2014-04-30 2016-03-30 上海师范大学 一种高结晶、尺寸可控、高能面暴露的多孔单晶纳米二氧化钛光催化剂及其制备方法和应用
CN105350068A (zh) * 2015-10-29 2016-02-24 上海师范大学 一种多孔单晶TiO2薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145692A (zh) * 2015-03-26 2016-11-23 中国科学院苏州纳米技术与纳米仿生研究所 大面积单晶多孔二氧化钛薄膜及其制备方法与应用
CN106283191A (zh) * 2015-06-19 2017-01-04 中国科学院金属研究所 一种金属氧化物多孔单晶阵列薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOBERER, ERIC S.: "Hierarchically Porous Rutile Titania: Harnessing Sponta- neous Compositional Change in Mixed-Metal Oxides", CHEM. MATER., 7 December 2006 (2006-12-07), XP055681387, ISSN: 0897-4756 *

Also Published As

Publication number Publication date
CN110791808B (zh) 2021-02-19
CN110791808A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2020024331A1 (zh) 一种多孔二氧化钛单晶材料及其制备方法和应用
WO2019200599A1 (zh) 一种多孔氮化钛单晶材料及其制备方法和应用
Choudhary et al. Synthesis of large scale MoS2 for electronics and energy applications
Abeysinghe et al. Toward shape-controlled metal oxynitride and nitride particles for solar energy applications
CN108998832A (zh) 一种纳米多孔氮钽单晶材料及其制备方法
Liu et al. A facile route to synthesize titanium oxide nanowires via water-assisted chemical vapor deposition
KR20140119314A (ko) 광전기화학전지용 광전극, 이의 제조 방법 및 이를 포함하는 광전기화학전지
CN111519251B (zh) 一种二氧化钛单晶材料及其生长方法
Galan-Gonzalez et al. Controlling the growth of single crystal ZnO nanowires by tuning the atomic layer deposition parameters of the ZnO seed layer
CN112251810B (zh) 一种二氧化钛单晶外延薄膜的制备方法
Xu et al. Centimeter-scale perovskite SrTaO2N single crystals with enhanced photoelectrochemical performance
CN113943018A (zh) 一种泡沫镍上原位生长海胆状w18o49微米阵列的制备方法
CN111020692A (zh) 一种多孔Ta3N5单晶材料及其制备方法和应用
WO2020006782A1 (zh) 一种多孔氮铁单晶材料及其制备方法和应用
CN112813498A (zh) 一种钒基多孔单晶材料及其制备方法与应用
KR101437557B1 (ko) 흑연 구조의 탄소막을 코팅한 반도체 광촉매 및 제조방법
CN114164492B (zh) 大尺寸介/微孔氮化钨单晶材料及其制备方法、应用
CN114959894B (zh) 一种多孔卤氧化镧单晶材料及其制备方法和应用
CN110323126A (zh) 一种Si/SiC/石墨烯材料的制备方法
KR100665346B1 (ko) 산화티타늄 박막 및 이의 제조방법
Li et al. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays
CN117966269A (zh) 一类多孔氧化物单晶材料及其制备方法和应用
KR100862091B1 (ko) 산화티타늄 박막 및 이의 제조방법
Crespo et al. Heteroepitaxial growth of anatase (0 0 1) films on SrTiO3 (0 0 1) by PLD and MBE
CN114892271B (zh) 一种多孔MoO3单晶材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928296

Country of ref document: EP

Kind code of ref document: A1