CN113943018A - 一种泡沫镍上原位生长海胆状w18o49微米阵列的制备方法 - Google Patents
一种泡沫镍上原位生长海胆状w18o49微米阵列的制备方法 Download PDFInfo
- Publication number
- CN113943018A CN113943018A CN202111240927.9A CN202111240927A CN113943018A CN 113943018 A CN113943018 A CN 113943018A CN 202111240927 A CN202111240927 A CN 202111240927A CN 113943018 A CN113943018 A CN 113943018A
- Authority
- CN
- China
- Prior art keywords
- foamed nickel
- nickel
- sea urchin
- situ
- wcl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 338
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 142
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 79
- 238000011065 in-situ storage Methods 0.000 claims abstract description 62
- 238000002493 microarray Methods 0.000 claims abstract description 49
- 229910003091 WCl6 Inorganic materials 0.000 claims abstract description 37
- 239000006260 foam Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000005406 washing Methods 0.000 claims abstract description 29
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 20
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 15
- 238000002360 preparation method Methods 0.000 claims abstract description 13
- 239000007787 solid Substances 0.000 claims abstract description 13
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 238000007789 sealing Methods 0.000 claims abstract description 8
- 238000002791 soaking Methods 0.000 claims abstract description 8
- 238000000926 separation method Methods 0.000 claims abstract description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 230000001476 alcoholic effect Effects 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 2
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 2
- 239000012498 ultrapure water Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 31
- 229910052721 tungsten Inorganic materials 0.000 description 13
- 241000257465 Echinoidea Species 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 238000009826 distribution Methods 0.000 description 8
- 239000010937 tungsten Substances 0.000 description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000003491 array Methods 0.000 description 6
- 239000002070 nanowire Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000004626 scanning electron microscopy Methods 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 241000258149 Hemicentrotus Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- -1 tungsten alkoxide compounds Chemical class 0.000 description 1
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical compound Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical compound [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
- C01G41/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Catalysts (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明涉及一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,属于微米阵列技术领域。本发明将依次经水和乙醇超声清洗的泡沫镍置于丙酮中超声处理10~20min,泡沫镍再经水洗涤后置于盐酸溶液中超声处理10~15min,经水洗涤,干燥即得预处理泡沫镍,预处理泡沫镍置于乙醇中浸泡10~20min得到亲水性泡沫镍;将WCl6超声溶解在醇溶液中得到WCl6/醇溶液;将亲水性泡沫镍加入到此WCl6/醇中,在温度120~180℃下密封反应12~24h,冷却至室温,固液分离,固体经洗涤、干燥即得泡沫镍上原位生长的海胆状W18O49微米阵列。本发明原位生长的海胆状微米阵列均匀分布在泡沫镍骨架上,且粒径大小均匀,直径约为0.8~1.2微米。
Description
技术领域
本发明涉及一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,,属于微米阵列技术领域。
背景技术
半导体氧化物TiO2、氧化锌、钨氧化物等作为光催化材料以利于环境保护。纳米结构三氧化钨(WO3)及钨亚氧化物(WO3-x,x>0),由于其独特的物理和化学性质被广泛应用,如应用在气体传感器、光催化剂、电致变色装置、场致发射装置和太阳能装置、生物光热治疗、超级电容器、电催化、光催化等领域。
然而,相对较为稳定的W18O49材料合成领域研究中仍有很多不足:一方面是氧化钨具有很多种化学计量比,所以在进行纯相制造过程中很困难,对其物理化学应用有一定的影响。另一方面,在所以的制备方法中化学气相沉积法、溶胶凝胶法、溶剂热法,由于制备条件不同,钨亚氧化合物的形貌、纯度大有差异,造成制造的可重复性降低。还有就是,对于W18O49纳米晶的合成与结构调控研究报道,但目前多为一维结构的纳米丝状和棒状结构的合成,直接在泡沫镍上原位生长海胆状三维W18O49材料还没有报道。
发明内容
本发明针对现有技术中钨亚氧化物(WO3-x,x>0)的制备问题,提出了一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,即钨的前驱体溶液与泡沫镍均匀地接触,进行水热反应,钨亚氧化物直接原位生长在泡沫镍的骨架上,均匀覆盖在泡沫镍的表面形成具备较大的比表面泡沫镍海胆状W18O49微米阵列复合材料。
一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,具体步骤如下:
(1)将依次经水和乙醇超声清洗的泡沫镍置于丙酮中超声处理10~20min,泡沫镍再经水洗涤后置于盐酸溶液中超声处理10~15min,经水洗涤,干燥即得预处理泡沫镍,预处理泡沫镍置于乙醇中浸泡10~20min得到亲水性泡沫镍;
(2)将WCl6超声溶解在乙醇中得到WCl6/醇溶液;
(3)将亲水性泡沫镍加入到WCl6/醇溶液中,在温度120~180℃下密封反应12~24h,冷却至室温,固液分离,固体经洗涤、干燥即得泡沫镍上原位生长的海胆状W18O49微米阵列;
所述步骤(1)水为去离子水、超纯水或蒸馏水;
所述步骤(1)盐酸溶液的浓度为0.5~3mol/L;
所述步骤(2)醇溶液为甲醇、乙醇或异丙醇,WCl6/醇溶液中WCl6的浓度为1~8g/L;
所述步骤(3)亲水性泡沫镍与WCl6/醇溶液的固液比g:mL为0.08~1:100。
泡沫镍上原位生长海胆状W18O49微米阵列的原理:将六氯化钨放入醇溶液内,在加热保温条件下,通过缩聚反应二个醇钨化物发生缩聚形成由氧桥连接的钨氧化物和醚分子,而在形核过程中以泡沫镍骨架为基底能够均匀的长大,并且在保温时间内无数纳米线互相缠绕成海胆状。
本发明的有益效果是:
(1)本发明采用一步水热合成法直接在泡沫镍上原位生长海胆状的W18O49微米阵列,海胆状的W18O49微米阵列的粒径分布均匀,其操作过程简单,重复性高,条件温和,节省能源,对环境友好;
(2)本发明钨的前驱体溶液与泡沫镍均匀地接触,进行水热反应,钨亚氧化物直接原位生长在泡沫镍的骨架上,均匀覆盖在泡沫镍的表面,形成具备较大的比表面泡沫镍/海胆状W18O49微米阵列复合材料;
(3)本发明海胆状的W18O49相比于单纯的W18O49粉体,不仅可以提供更大的有效的接触面积,且三维度的海胆状形貌还可以缩短电子、离子扩散通道,提升反应动力学;
(4)本发明以泡沫镍为基底,海胆状的W18O49直接原位生长在泡沫镍上,可以直接应用于超级电容器上,不需要粘结剂和导电剂,节省工艺过程,相比于直接涂敷在泡沫镍上,稳定性要更强。
附图说明
图1为实施例1泡沫镍上原位生长的海胆状W18O49微米阵列的X射线衍射图;
图2为实施例1泡沫镍上原位生长的海胆状W18O49微米阵列的扫描电子显微镜图(200倍);
图3为实施例1泡沫镍上原位生长的海胆状W18O49微米阵列的扫描电子显微镜图(1500倍);
图4为实施例1泡沫镍上原位生长的海胆状W18O49微米阵列的单颗粒扫描电子显微镜图(6500倍);
图5为实施例1泡沫镍上原位生长的海胆状W18O49微米阵列的能谱图;
图6为实施例1泡沫镍上原位生长的海胆状W18O49微米阵列的粒径分布图;
图7为实施例2泡沫镍上原位生长的海胆状W18O49微米阵列的扫描电子显微镜图(2000倍)。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,具体步骤如下:
(1)裁剪厚度为1.5mm、面积为1cm2的泡沫镍,分别用去离子水、乙醇在强度为35KHz的超声波设备中洗涤30min,泡沫镍经丙酮超声10min,再经去离子水洗涤后置于浓度为1mol/L的盐酸溶液超声10min,经去离子水洗涤后干燥即得预处理泡沫镍,预处理泡沫镍置于乙醇中浸泡10min得到亲水性泡沫镍;
(2)将WCl6超声溶解在乙醇中得到黄色透明的WCl6/乙醇溶液;其中WCl6/乙醇溶液中WCl6浓度为3g/L;
(3)将亲水性泡沫镍加入到WCl6/乙醇溶液中,在温度140℃下密封反应24h,冷却至室温,固液分离,固体经无水乙醇洗涤3次、真空干燥即得泡沫镍上原位生长的海胆状W18O49微米阵列;其中亲水性泡沫镍与WCl6/乙醇溶液的固液比g:mL为0.5:100;
本实施例泡沫镍上原位生长的海胆状W18O49微米阵列的X射线衍射图见图1,产物在除了最强峰Ni,在23°附近出现一个峰,表明是在泡沫镍上原位生长的海胆状W18O49微米阵列;
泡沫镍上原位生长的海胆状W18O49微米阵列的扫描电子显微镜图(200倍)见图2,扫描电子显微镜图(1500倍)见图3,在泡沫镍的表面均匀的附着一层W18O49微米阵列,海胆状W18O49微米阵列之间相互关联,相互连接,且粒径均匀在1微米左右;
泡沫镍上原位生长的海胆状W18O49微米阵列的单颗粒扫描电子显微镜图见图4,海胆状W18O49球晶粒外是由纳米线所组成的晶须;
泡沫镍上原位生长的海胆状W18O49微米阵列的能谱图见图5,产物所含有的元素除了基底泡沫镍中的Ni元素外,只含有W、O两种元素,且根据面扫的结果看W18O49分布均匀,没有团聚现象;
泡沫镍上原位生长的海胆状W18O49微米阵列的粒径分布图见图6,海胆状W18O49粒径十分均匀,平均粒径1.01微米,最大的粒径1.23微米,最小粒径0.80微米。
实施例2:一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,具体步骤如下:
(1)裁剪厚度为1.5mm、面积为1cm2的泡沫镍,分别用去离子水、乙醇在强度为35KHz的超声波设备中洗涤30min,泡沫镍经丙酮超声30min,再经去离子水洗涤后置于浓度为1mol/L的盐酸溶液超声30min,经去离子水洗涤后干燥即得预处理泡沫镍,预处理泡沫镍置于乙醇中浸泡10min得到亲水性泡沫镍;
(2)将WCl6超声溶解在乙醇中得到黄色透明的WCl6/乙醇溶液;其中WCl6/乙醇溶液中WCl6浓度为3g/L;
(3)将亲水性泡沫镍加入到WCl6/乙醇溶液中,在温度180℃下密封反应16h,冷却至室温,固液分离,固体经无水乙醇洗涤4次、真空干燥即得泡沫镍上原位生长的海胆状W18O49微米阵列;其中亲水性泡沫镍与WCl6/乙醇溶液的固液比g:mL为0.1:100;
本实施例泡沫镍上原位生长的海胆状W18O49微米阵列的X射线衍射图可知,产物在除了最强峰Ni,在23°附近出现一个峰,表明是在泡沫镍上原位生长的海胆状W18O49微米阵列;
泡沫镍上原位生长的海胆状W18O49微米阵列的扫描电子显微镜图见图7,在泡沫镍的表面均匀的附着一层W18O49微米阵列,海胆状W18O49微米阵列之间相互关联,相互连接,且粒径均匀在1微米左右;
泡沫镍上原位生长的海胆状W18O49微米阵列中海胆状W18O49球晶粒外是由纳米线所组成的晶须;
产物(泡沫镍上原位生长的海胆状W18O49微米阵列)所含有的元素除了基底泡沫镍中的Ni元素外,只含有W、O两种元素,且根据面扫的结果看W18O49分布均匀,没有团聚现象;海胆状W18O49粒径十分均匀,平均粒径1.10微米,最大的粒径1.20微米,最小粒径0.90微米。
实施例3:一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,具体步骤如下:
(1)裁剪厚度为1.5mm、面积为1cm2的泡沫镍,分别用去离子水、乙醇在强度为35KHz的超声波设备中洗涤30min,泡沫镍经丙酮超声30min,再经去离子水洗涤后置于浓度为1mol/L的盐酸溶液超声30min,经去离子水洗涤后干燥即得预处理泡沫镍,预处理泡沫镍置于乙醇中浸泡10min得到亲水性泡沫镍;
(2)将WCl6超声溶解在异丙醇中得到黄色透明的WCl6/异丙醇溶液;其中WCl6/异丙醇溶液中WCl6浓度为3g/L;
(3)将亲水性泡沫镍加入到WCl6/异丙醇溶液中,在温度140℃下密封反应20h,冷却至室温,固液分离,固体经无水乙醇洗涤4次、真空干燥即得泡沫镍上原位生长的海胆状W18O49微米阵列;其中亲水性泡沫镍与WCl6/异丙醇溶液的固液比g:mL为0.2:100;
本实施例泡沫镍上原位生长的海胆状W18O49微米阵列的X射线衍射图可知,产物在除了最强峰Ni,在23°附近出现一个峰,表明是在泡沫镍上原位生长的海胆状W18O49微米阵列;
泡沫镍上原位生长的海胆状W18O49微米阵列的扫描电子显微镜图可知,在泡沫镍的表面均匀的附着一层W18O49微米阵列,海胆状W18O49微米阵列之间相互关联,相互连接,且粒径均匀在1微米左右;
泡沫镍上原位生长的海胆状W18O49微米阵列中海胆状W18O49球晶粒外是由纳米线所组成的晶须;
产物(泡沫镍上原位生长的海胆状W18O49微米阵列)所含有的元素除了基底泡沫镍中的Ni元素外,只含有W、O两种元素,且根据面扫的结果看W18O49分布均匀,没有团聚现象;海胆状W18O49粒径十分均匀,平均粒径1.05微米,最大的粒径1.1微米,最小粒径1.0微米。
实施例4:一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,具体步骤如下:
(1)裁剪厚度为1.5mm、面积为1cm2的泡沫镍,分别用去离子水、乙醇在强度为35KHz的超声波设备中洗涤30min,泡沫镍经丙酮超声30min,再经去离子水洗涤后置于浓度为1mol/L的盐酸溶液超声30min,经去离子水洗涤后干燥即得预处理泡沫镍,预处理泡沫镍置于乙醇中浸泡10min得到亲水性泡沫镍;
(2)将WCl6超声溶解在乙醇中得到黄色透明的WCl6/乙醇溶液;其中WCl6/乙醇溶液中WCl6浓度为3g/L;
(3)将亲水性泡沫镍加入到WCl6/乙醇溶液中,在温度160℃下密封反应24h,冷却至室温,固液分离,固体经无水乙醇洗涤3次、真空干燥即得泡沫镍上原位生长的海胆状W18O49微米阵列;其中亲水性泡沫镍与WCl6/乙醇溶液的固液比g:mL为0.5:100;
本实施例泡沫镍上原位生长的海胆状W18O49微米阵列的X射线衍射图可知,产物在除了最强峰Ni,在23°附近出现一个峰,表明是在泡沫镍上原位生长的海胆状W18O49微米阵列;
泡沫镍上原位生长的海胆状W18O49微米阵列的扫描电子显微镜图可知,在泡沫镍的表面均匀的附着一层W18O49微米阵列,海胆状W18O49微米阵列之间相互关联,相互连接,且粒径均匀在1微米左右;
泡沫镍上原位生长的海胆状W18O49微米阵列中海胆状W18O49球晶粒外是由纳米线所组成的晶须;
产物(泡沫镍上原位生长的海胆状W18O49微米阵列)所含有的元素除了基底泡沫镍中的Ni元素外,只含有W、O两种元素,且根据面扫的结果看W18O49分布均匀,没有团聚现象;海胆状W18O49粒径十分均匀,平均粒径0.96微米,最大的粒径1.12微米,最小粒径0.8微米。
实施例5:一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,具体步骤如下:
(1)裁剪厚度为1.5mm、面积为1cm2的泡沫镍,分别用去离子水、乙醇在强度为35KHz的超声波设备中洗涤30min,泡沫镍经丙酮超声30min,再经去离子水洗涤后置于浓度为1mol/L的盐酸溶液超声30min,经去离子水洗涤后干燥即得预处理泡沫镍,预处理泡沫镍置于乙醇中浸泡10min得到亲水性泡沫镍;
(2)将WCl6超声溶解在甲醇中得到黄色透明的WCl6/甲醇溶液;其中WCl6/甲醇溶液中WCl6浓度为3g/L;
(3)将亲水性泡沫镍加入到WCl6/甲醇溶液中,在温度1800℃下密封反应24h,冷却至室温,固液分离,固体经无水乙醇洗涤3次、真空干燥即得泡沫镍上原位生长的海胆状W18O49微米阵列;其中亲水性泡沫镍与WCl6/甲醇溶液的固液比g:mL为0.9:100;
本实施例泡沫镍上原位生长的海胆状W18O49微米阵列的X射线衍射图可知,产物在除了最强峰Ni,在23°附近出现一个峰,表明是在泡沫镍上原位生长的海胆状W18O49微米阵列;
泡沫镍上原位生长的海胆状W18O49微米阵列的扫描电子显微镜图可知,在泡沫镍的表面均匀的附着一层W18O49微米阵列,海胆状W18O49微米阵列之间相互关联,相互连接,且粒径均匀在1微米左右;
泡沫镍上原位生长的海胆状W18O49微米阵列中海胆状W18O49球晶粒外是由纳米线所组成的晶须;
产物(泡沫镍上原位生长的海胆状W18O49微米阵列)所含有的元素除了基底泡沫镍中的Ni元素外,只含有W、O两种元素,且根据面扫的结果看W18O49分布均匀,没有团聚现象;海胆状W18O49粒径十分均匀,平均粒径0.90微米,最大的粒径1.12微米,最小粒径0.68微米。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
Claims (5)
1.一种泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,其特征在于,具体步骤如下:
(1)将依次经水和乙醇超声清洗的泡沫镍置于丙酮中超声处理10~20min,泡沫镍再经水洗涤后置于盐酸溶液中超声处理10~15min,经水洗涤,干燥即得预处理泡沫镍,预处理泡沫镍置于乙醇中浸泡10~20min得到亲水性泡沫镍;
(2)将WCl6超声溶解在醇溶液中得到WCl6/醇溶液;
(3)将亲水性泡沫镍加入到WCl6/醇溶液中,在温度120~180℃下密封反应12~24h,冷却至室温,固液分离,固体经洗涤、干燥即得泡沫镍上原位生长的海胆状W18O49微米阵列。
2.根据权利要求1所述泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,其特征在于:步骤(1)水为去离子水、超纯水或蒸馏水。
3.根据权利要求1所述泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,其特征在于:步骤(1)盐酸溶液的浓度为0.5~3mol/L。
4.根据权利要求1所述泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,其特征在于:步骤(2)醇溶液为甲醇、乙醇或异丙醇,WCl6/醇溶液中WCl6的浓度为1~8g/L。
5.根据权利要求1所述泡沫镍上原位生长海胆状W18O49微米阵列的制备方法,其特征在于:亲水性泡沫镍与WCl6/醇溶液的固液比g:mL为0.08~1:100。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111240927.9A CN113943018A (zh) | 2021-10-25 | 2021-10-25 | 一种泡沫镍上原位生长海胆状w18o49微米阵列的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111240927.9A CN113943018A (zh) | 2021-10-25 | 2021-10-25 | 一种泡沫镍上原位生长海胆状w18o49微米阵列的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113943018A true CN113943018A (zh) | 2022-01-18 |
Family
ID=79332336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111240927.9A Pending CN113943018A (zh) | 2021-10-25 | 2021-10-25 | 一种泡沫镍上原位生长海胆状w18o49微米阵列的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113943018A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115346803A (zh) * | 2022-08-03 | 2022-11-15 | 昆明理工大学 | 一种w18o49/碳纸复合电极材料及其制备方法 |
CN115770566A (zh) * | 2022-11-23 | 2023-03-10 | 昆明理工大学 | 一种TiO2/W18O49复合光催化材料及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109731580A (zh) * | 2019-02-28 | 2019-05-10 | 陕西科技大学 | 一种w18o49/nf自支撑电催化材料的制备方法 |
CN109806902A (zh) * | 2019-02-28 | 2019-05-28 | 陕西科技大学 | 一种W18O49/NiWO4/NF自支撑电催化材料的制备方法 |
CN110282661A (zh) * | 2019-07-09 | 2019-09-27 | 王干 | 一种用于气体检测分级多孔w18o49纳米片制备方法 |
-
2021
- 2021-10-25 CN CN202111240927.9A patent/CN113943018A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109731580A (zh) * | 2019-02-28 | 2019-05-10 | 陕西科技大学 | 一种w18o49/nf自支撑电催化材料的制备方法 |
CN109806902A (zh) * | 2019-02-28 | 2019-05-28 | 陕西科技大学 | 一种W18O49/NiWO4/NF自支撑电催化材料的制备方法 |
CN110282661A (zh) * | 2019-07-09 | 2019-09-27 | 王干 | 一种用于气体检测分级多孔w18o49纳米片制备方法 |
Non-Patent Citations (3)
Title |
---|
GUOJUAN HAI等: "Activation of urchin-like Ni-doped W18O49/NF by electrochemical tuning for efficient water splitting", 《JOURNAL OF ENERGY CHEMISTRY》 * |
GUOJUAN HAI等: "Fe,Ni-codoped W18O49 grown on nickel foam as a bifunctional electrocatalyst for boosted water splitting", 《DALTON TRANS.》 * |
SANGBAEK PARK等: "High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes", 《NANO RESEARCH》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115346803A (zh) * | 2022-08-03 | 2022-11-15 | 昆明理工大学 | 一种w18o49/碳纸复合电极材料及其制备方法 |
CN115770566A (zh) * | 2022-11-23 | 2023-03-10 | 昆明理工大学 | 一种TiO2/W18O49复合光催化材料及其制备方法和应用 |
CN115770566B (zh) * | 2022-11-23 | 2024-03-29 | 昆明理工大学 | 一种TiO2/W18O49复合光催化材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zeng et al. | Fabrication of pn heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties | |
Zhang et al. | Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites | |
Wei et al. | Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting | |
Moghri Moazzen et al. | Change in the morphology of ZnO nanoparticles upon changing the reactant concentration | |
CN113943018A (zh) | 一种泡沫镍上原位生长海胆状w18o49微米阵列的制备方法 | |
JP4880598B2 (ja) | 針状結晶の配列体を含む複合体およびその製造方法、ならびに光電変換素子、発光素子およびキャパシタ | |
CN100352970C (zh) | 金属钛表面制备定向排列二氧化钛纳米棒阵列的方法 | |
CN101823759A (zh) | 连续大面积氧化锌纳米薄片及其制备方法 | |
CN106861733B (zh) | 核壳结构氧化钛纳米片/碳化硅纳米纤维及制备方法 | |
Wang et al. | Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization | |
CN113387326B (zh) | 二硫化锡纳米催化剂在压电催化分解水产氢中的应用 | |
CN102895963A (zh) | 一种在钛丝网表面负载二氧化钛纳米棒阵列的方法 | |
CN102728289A (zh) | 一种二氧化锡-二氧化钛核壳纳米结构的制备方法 | |
WO2020024331A1 (zh) | 一种多孔二氧化钛单晶材料及其制备方法和应用 | |
Prathan et al. | Hydrothermal growth of well-aligned TiO2 nanorods on fluorine-doped tin oxide glass | |
KR20140119314A (ko) | 광전기화학전지용 광전극, 이의 제조 방법 및 이를 포함하는 광전기화학전지 | |
CN102557130A (zh) | 一种制备二氧化钛纳米花阵列薄膜的方法 | |
CN104628263A (zh) | 一种制备氧化铟八面体纳米晶薄膜的方法 | |
Nayeri et al. | Influence of seed layers on the vertical growth of ZnO nanowires by low-temperature wet chemical bath deposition on ITO-coated glass substrate | |
Mbulanga et al. | Effect of surface properties of ZnO rods on the formation of anatase-phase TiO 2 tubes prepared by liquid deposition method | |
CN101994154A (zh) | 一种腰鼓形单晶锐钛矿二氧化钛及其聚集微球的制备方法 | |
Takeuchi et al. | Fabrication of Ag/ZnO nanowire thin films and their photocatalytic reactivities | |
KR100864230B1 (ko) | 티타니아 나노와이어 형성방법 | |
Ding et al. | Synthesis of anatase titanium dioxide nanocaps via hydrofluoric acid etching towards enhanced photocatalysis | |
Zhang et al. | Synthesize TiO2 microspheres self-assembled from nanorods via hydrothermal treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220118 |
|
RJ01 | Rejection of invention patent application after publication |