WO2020153255A1 - 変性セルロース繊維配合樹脂組成物の製造方法 - Google Patents

変性セルロース繊維配合樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2020153255A1
WO2020153255A1 PCT/JP2020/001506 JP2020001506W WO2020153255A1 WO 2020153255 A1 WO2020153255 A1 WO 2020153255A1 JP 2020001506 W JP2020001506 W JP 2020001506W WO 2020153255 A1 WO2020153255 A1 WO 2020153255A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose fiber
resin composition
mass
modified cellulose
modified
Prior art date
Application number
PCT/JP2020/001506
Other languages
English (en)
French (fr)
Inventor
知章 吉村
山田 修平
崇 河端
隆三郎 中桐
雄也 寺尾
Original Assignee
星光Pmc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 星光Pmc株式会社 filed Critical 星光Pmc株式会社
Priority to JP2020526046A priority Critical patent/JP6787533B1/ja
Priority to CN202080003964.5A priority patent/CN112424265A/zh
Priority to US17/258,444 priority patent/US20210292492A1/en
Publication of WO2020153255A1 publication Critical patent/WO2020153255A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/20Esterification with maintenance of the fibrous structure of the cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/02Chemical after-treatment of artificial filaments or the like during manufacture of cellulose, cellulose derivatives, or proteins

Definitions

  • the present invention relates to a method for producing a resin composition containing a modified cellulose fiber.
  • carbon fiber, glass fiber, etc. have been widely and generally used as a reinforcing material used for resin for molding material.
  • carbon fiber is difficult to burn, it is not suitable for thermal recycling and is expensive.
  • glass fiber is relatively inexpensive, there is a problem in disposal in thermal recycling.
  • Patent Document 2 As a method that is particularly industrially useful, as in Patent Document 2, while chemically modifying the plant fiber with a hydrophobizing agent and kneading and blending this with the resin, while defibrating the plant fiber, Techniques for uniformly dispersing cellulose nanofibers in a resin have been developed.
  • An object of the present invention is to produce a modified cellulose fiber-containing resin composition which is brighter in color than conventional one while taking a method of uniformly dispersing modified cellulose fibers in a resin while defibrating the cellulose fibers. ..
  • the present invention 5 to 45 parts by mass of water is added to 100 parts by mass of ⁇ 1>(i) the cellulose fiber (A) modified with the hydrophobizing agent (a) to obtain a hydrous cellulose fiber (A′). And (ii) the modified cellulose fibers are defibrated while kneading the hydrous cellulose fibers (A′) and the thermoplastic resin and/or rubber (B), and the water content after kneading is 1%.
  • a method for producing a modified cellulose fiber-containing resin composition ⁇ 2> Use of the cellulose fiber (A) modified with the hydrophobizing agent (a), wherein the fixing ratio of the hydrophobizing agent (a) to the cellulose fiber is 5 to 50% by mass based on the cellulose fiber.
  • thermoplastic resin and/or rubber (B) is at least one selected from polyethylene resin, polypropylene resin, polystyrene resin, ethylene-vinyl acetate resin, ethylene-propylene-diene rubber, and ⁇ 1> to ⁇ 4>
  • step (i) water-containing cellulose fibers (A′) are obtained by adding 5 to 45 parts by mass of water to 100 parts by mass of the cellulose fibers (A) modified with the hydrophobizing agent (a).
  • step (i) modified cellulose fiber while kneading the hydrous cellulose fiber (A') and the thermoplastic resin and/or rubber
  • step (ii) While defibrating, the step of removing the water content after kneading to 1% or less.
  • the cellulose fiber (A) modified with the hydrophobizing agent (a) is one in which the hydrophobizing agent (a) is fixed to the hydroxyl group of the cellulose fiber by a chemical bond (hereinafter, simply referred to as the modified cellulose fiber (A). Sometimes referred to).
  • the hydrophobizing agent (a) By replacing the hydroxyl groups of the cellulose fibers with the hydrophobizing agent (a), hydrogen bonds between the cellulose fibers are inhibited, and the fibers are easily defibrated when kneading with the resin.
  • the raw materials used to obtain the cellulose fibers include plant-derived fibers contained in wood, bamboo, hemp, jute, kenaf, cotton, beet, and the like. Wood is mentioned as a preferable cellulose fiber raw material, for example, pine, cedar, cypress, eucalyptus, acacia, etc. Moreover, the paper obtained from these, or used paper can also be used.
  • the plant-derived fibers may be used alone or in combination of two or more selected from them.
  • the cellulose fiber may also include pulp obtained from a raw material containing the above-mentioned plant-derived fiber, mercerized cellulose fiber, regenerated cellulose fiber such as rayon, cellophane and lyocell.
  • Examples of the pulp include chemical pulp (unbleached kraft pulp (UKP), bleached kraft pulp (BKP), sulfite pulp ( SP)), semi-chemical pulp (SCP), chemi-ground pulp (CGP), chemi-mechanical pulp (CMP), groundwood pulp (GP), refiner mechanical pulp (RMP), thermomechanical pulp (TMP), chemi-thermo-mechanical pulp (SP). CTMP) and the like.
  • chemical pulp unbleached kraft pulp (UKP), bleached kraft pulp (BKP), sulfite pulp ( SP)
  • SCP semi-chemical pulp
  • CGP chemi-ground pulp
  • CMP chemi-mechanical pulp
  • GP groundwood pulp
  • RMP refiner mechanical pulp
  • TMP thermomechanical pulp
  • SP chemi-thermo-mechanical pulp
  • CTMP chemi-thermo-mechanical pulp
  • the hydrophobizing agent (a) is a compound having at least one reaction site capable of reacting with the hydroxyl group of cellulose fiber.
  • the hydrophobizing agent reacts with the hydroxyl groups of the cellulose fibers to inhibit hydrogen bonding within the cellulose fibers or between the cellulose fibers, and it becomes possible to defibrate the cellulose fibers to the nano order during kneading.
  • Specific examples of the hydrophobizing agent (a) include a compound having a functional group capable of reacting with a hydroxyl group of cellulose fiber such as a carboxyl group, an isocyanate group, a halogen group, an epoxy group, a silanol group and an aldehyde group, and an acid halide.
  • Acid anhydrides and polybasic acid anhydrides, but acid anhydrides, polybasic acid anhydrides, and epoxy group-containing compounds are preferred from the viewpoint of cost and ease of introduction.
  • the hydrophobizing agents (a) can be used alone or in combination of two or more.
  • Examples of the acid anhydride include acetic anhydride, butyric anhydride, propionic anhydride, benzoic anhydride, stearic anhydride. Of these, acetic anhydride is preferable because it is easily available and introduced.
  • polybasic acid anhydrides examples include alkyl or alkenyl succinic anhydrides, maleic anhydrides, phthalic anhydrides, succinic anhydrides, maleic anhydride modified polyolefins, maleic anhydride modified polybutadienes, and the like.
  • alkyl or alkenyl succinic anhydride and maleic anhydride-modified polybutadiene are preferable from the viewpoint of compatibility with the resin.
  • epoxy group-containing compound examples include glycidyl ether, glycidyl (meth)acrylate, glycidyl ester, epichlorohydrin, and glycidyltrimethylammonium chloride.
  • the fixing ratio of the hydrophobizing agent (a) to the cellulose fiber is calculated from the following formula.
  • Fixing rate (%) (dry mass of modified cellulose fiber (A) ⁇ dry mass of cellulose fiber)/(dry mass of cellulose fiber) ⁇ 100
  • the fixing ratio is preferably 5 to 50% by mass, and more preferably 5 to 30% by mass with respect to the cellulose fibers.
  • Fourier transform infrared spectroscopy (FT-IR) for example, is used to confirm the fixation of the hydrophobizing agent (a) by the chemical bond.
  • thermoplastic resin and/or rubber (B) used in the present invention is not particularly limited as long as it is one that is usually used for molding material applications.
  • thermoplastic resin polyamide resin such as nylon; polyolefin resin such as polyethylene, polypropylene, ethylene-propylene copolymer and ethylene vinyl acetate copolymer; polyester resin such as polyethylene terephthalate and polybutylene terephthalate; polymethyl methacrylate and poly Acrylic resin such as ethyl methacrylate; polystyrene, styrene resin such as (meth)acrylic acid ester-styrene resin; other resins such as polyurethane resin, ionomer resin, cellulose resin, and olefin elastomer, vinyl chloride elastomer, styrene elastomer, Examples of the resin include thermoplastic elastomers such as urethane elastomers, polyester elastomers, and polyamide elastomers.
  • polyethylene resin polypropylene resin, polystyrene resin, ethylene-vinyl acetate resin, and polyurethane resin
  • polyethylene resin polypropylene resin, and ethylene-vinyl acetate resin.
  • Examples of the rubber include diene rubber, and specific examples thereof include natural rubber, butadiene rubber, ethylene-propylene-diene rubber, styrene-butadiene copolymer rubber, isoprene rubber, butyl rubber, acrylonitrile-butadiene rubber, acrylonitrile-styrene- Examples thereof include butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, hydrogenated natural rubber and deproteinized natural rubber.
  • ethylene-propylene copolymer rubber ethylene-propylene copolymer rubber, nitrile rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluororubber, urethane rubber and two or more of these
  • butadiene rubber natural rubber, ethylene-propylene copolymer rubber and ethylene-propylene-diene rubber, and more preferred is ethylene-propylene-diene rubber.
  • thermoplastic resin and the rubber may be mixed at an arbitrary mixing ratio and used depending on the required physical properties of the molded product.
  • Step (i)> water of 5 to 45 parts by mass is added to 100 parts by mass of the modified cellulose fiber (A) to obtain a hydrous cellulose fiber (A′).
  • the water to be used is not particularly limited, but the pH of water is preferably 3 to 11, more preferably 4 to 10, and further preferably 5 to 9 in order to prevent the modified cellulose fiber (A) from deteriorating.
  • the method of adding water to the modified cellulose fiber (A) is not particularly limited, but it is preferable to mix it in a container having a stirrer in order to prevent the localization of water.
  • the amount of water added needs to be 5 to 45 parts by mass with respect to 100 parts by mass of the modified cellulose fiber (A). If the amount of water added is less than 5 parts by mass, the effect of the present invention cannot be obtained, and if it is more than 45 parts by mass, it becomes difficult to remove water in the step (ii), and as a result, the quality is unstable or obtained. There is a possibility that problems such as unnecessary water remaining in the resin composition may occur.
  • the temperature of the modified cellulose fiber (A) when water is added is preferably 80° C. or lower, more preferably 60° C. or lower, even more preferably 40° C. or lower to prevent evaporation of the added water. Further, in order to prevent the added water from freezing, the temperature is preferably 0°C or higher, more preferably 5°C or higher.
  • a compatibilizer in the step (i), a compatibilizer, a dispersant, a surfactant, an antioxidant, a flame retardant, a pigment, an inorganic filler, a plasticizer, a crystal nucleating agent, a foaming aid, in the range that does not impair the effects of the present invention.
  • You may mix
  • the hydrous cellulose fiber (A') may be shaped or formed into a shape that is easy to handle, such as a tablet shape or a plate shape, as long as the effect of the present invention is not impaired.
  • Step (ii)> In the step (ii), the hydrated cellulose fibers (A′) and the thermoplastic resin and/or the rubber (B) are kneaded to defibrate the modified cellulose fibers, and the water content after kneading is 1% or less. Water is removed to obtain a modified cellulose fiber-containing resin composition.
  • the equipment used for kneading uses a single-screw or multi-screw kneader, but since a cellulose fiber is defibrated when kneading with a resin, a multi-screw kneader is preferable, and a twin-screw kneader is more preferable in terms of equipment.
  • the kneading machine may be either a batch type or a continuous type, but a kneading machine having a facility for removing water in the hydrous cellulose fibers (A′), a vent hole, etc. is preferable.
  • the temperature during kneading is preferably a temperature at which the water in (A') can be removed and a temperature at which the cellulose fibers are not deteriorated by heat. Specifically, it is preferable to knead in the range of 100 to 200°C.
  • the modified cellulose fiber (A) may be fibrillated into nanofibers to the extent that the desired physical properties are obtained in the molding material after kneading.
  • the nanofibers are usually cellulose fibers defibrated to have an average fiber diameter of 4 to 800 nm.
  • coarse particles of 0.5 mm or more that can be visually recognized are not visible in the press film created in the confirmation of the defibration state, it is assumed that the nano-particles are sufficiently nanosized and uniformly dispersed.
  • the water in the obtained modified cellulose fiber-containing resin composition is preferably removed to 1% or less during kneading. If water remains in the final composition, it tends to cause deterioration of quality such as coloring over time.
  • a compatibilizer like the step (i), a compatibilizer, a dispersant, a surfactant, an antioxidant, a flame retardant, a pigment, an inorganic filler, a plasticizer, as long as the effects of the present invention are not impaired.
  • Various additives such as a crystal nucleating agent and a foaming aid may be blended simultaneously.
  • the modified cellulose fiber-containing resin composition thus obtained can be formed into a desired molded product by adding various additives depending on the intended use and molding.
  • Fixing rate (%) (dry mass of modified cellulose fiber (A) ⁇ dry mass of cellulose fiber)/(dry mass of cellulose fiber) ⁇ 100
  • the dry mass of the modified cellulose fiber (A) was measured by the following method.
  • a dispersion liquid was prepared by adding 100 times the mass of tetrahydrofuran to the total amount of the modified cellulose fibers (A) obtained by the methods of Production Examples 1 to 4, and a homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.) was operated at 10000 rpm for 1 minute. After stirring for minutes, the dispersion was suction filtered.
  • the filtration residue was dried with an electric dryer at 110° C., and the dry mass was measured.
  • a Fourier transform infrared spectrophotometer (manufactured by JASCO Corporation) was used to confirm the fixation of the hydrophobizing agent (a) to the cellulose by chemical bonding.
  • a spectral absorption not found in the unmodified cellulose fiber is observed at 1500 to 2000 cm ⁇ 1 .
  • Color relative values ⁇ 100 (L * of the resin composition obtained by the method including no water) / (L * of the resin composition obtained by the manufacturing method including water) The higher the relative value of the color is, the brighter the color is and the higher the degree of improvement is.
  • Example 2 The modified cellulose fiber used in step (i) of Example 1 was changed to (A-2), and the amount of water added was changed to 31 parts by mass to give a hydrous cellulose fiber (A′-2-1).
  • a modified cellulose fiber-containing resin composition was obtained by performing the same operation as in Example 1 except that the water-containing cellulose fiber used in the step (ii) was changed to 131 parts by mass of (A′-2-1). The water content in the obtained modified cellulose fiber-containing resin composition was 0.3%.
  • Example 3 The modified cellulose fiber used in step (i) of Example 1 was changed to (A-2), and the amount of water added was changed to 11 parts by mass to give a hydrous cellulose fiber (A'-2-2).
  • a modified cellulose fiber-containing resin composition was obtained by performing the same operation as in Example 1 except that the hydrous cellulose fiber used in the step (ii) was changed to 111 parts by mass of (A′-2-2).
  • the water content of the obtained modified cellulose fiber-containing resin composition was 0.2%.
  • Example 4 The modified cellulose fiber used in the step (i) of Example 1 was changed to (A-3), and the amount of water added was changed to 11 parts by mass to give a hydrous cellulose fiber (A′-3-1).
  • a modified cellulose fiber-containing resin composition was obtained by performing the same operation as in Example 1 except that the hydrous cellulose fiber used in the step (ii) was changed to 111 parts by mass of (A′-3-1).
  • the water content in the obtained modified cellulose fiber-containing resin composition was 0.3%.
  • Example 5 The modified cellulose fiber used in the step (i) of Example 1 was changed to (A-3), and the amount of water added was changed to 42 parts by mass to obtain the hydrous cellulose fiber (A′-3-2).
  • a modified cellulose fiber-containing resin composition was obtained by performing the same operation as in Example 1 except that the amount of the hydrous cellulose fiber used in the step (ii) was changed to 142 parts by mass of (A′-3-2).
  • the modified cellulose fiber-containing resin composition thus obtained had a water content of 0.5%.
  • Example 1 The modified cellulose fiber used in the step (i) of Example 1 was changed to unmodified softwood kraft pulp (NBKP) (A-5), and the amount of water added was changed to 30 parts by mass to give water-containing cellulose. A fiber (A'-5-1) was obtained. Further, an unmodified cellulose fiber-containing resin composition was obtained by performing the same operation as in Example 1 except that the hydrous cellulose fiber used in the step (ii) was changed to 130 parts by mass of (A′-5-1). Obtained. The water content in the obtained unmodified cellulose fiber-containing resin composition was 0.5%.
  • Example 2 A modified cellulose fiber-containing resin composition was obtained in the same manner as in Example 1 except that 100 parts by mass of the modified cellulose fiber (A-1) was used as it was without adding water in the step (i) of Example 1. It was The water content in the obtained modified cellulose fiber-containing resin composition was 0%.
  • Example 3 A modified cellulose fiber-containing resin composition was obtained in the same manner as in Example 6 except that 100 parts by mass of the modified cellulose fiber (A-3) was used as it was in step (i) of Example 6 without adding water. It was The water content in the obtained modified cellulose fiber-containing resin composition was 0%.
  • Example 4 A modified cellulose fiber-containing resin composition was obtained in the same manner as in Example 7, except that 100 parts by mass of the modified cellulose fiber (A-1) was used as it was without adding water in the step (i) of Example 7. It was The water content in the obtained modified cellulose fiber-containing resin composition was 0%.
  • Example 8 Process (i) 100 parts by mass of the modified cellulose fiber (A-4) and 5 parts by mass of water were added to a container equipped with a stirrer, and stirred at 1500 rpm for 15 minutes to obtain a hydrous cellulose fiber (A′-4-1). Process (ii) 105 parts by weight of hydrous cellulose fiber (A'-4-1) and 100 parts by weight of ethylene-propylene-diene rubber (B-4: EP24, manufactured by JSR Corporation) were used as a batch type kneader Labo Plastomill ((shares ) Made by Toyo Seiki) at 140° C. to obtain a modified cellulose fiber-containing resin composition. The water content in the obtained modified cellulose fiber-containing resin composition was 0.1%.
  • Example 5 A modified cellulose fiber-containing resin composition was obtained in the same manner as in Example 8 except that 100 parts by mass of the modified cellulose fiber (A-4) was used as it was in step (i) of Example 8 without adding water. It was The water content in the obtained modified cellulose fiber-containing resin composition was 0%.
  • the color tone after manufacturing is improved as compared with the conventional manufacturing method. It has also been shown that various thermoplastic resins and rubbers have the effect of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明は、セルロース繊維を解繊しながら、セルロースナノファイバーを樹脂中に均一分散させる手法をとりつつ、従来よりも簡易に色目の明るいセルロース繊維配合樹脂組成物を製造することを目的とする。(i)疎水化剤(a)で変性された変性セルロース繊維(A)100質量部に対して、水5~45質量部添加し、含水セルロース繊維(A')とする工程と、(ii)前記含水セルロース繊維(A')と、熱可塑性樹脂および/またはゴム(B)とを混練しながら変性セルロース繊維を解繊しつつ、混練後の水分含有率を1%以下まで除去する工程とを有することを特徴とする、変性セルロース繊維配合樹脂組成物の製造方法。

Description

変性セルロース繊維配合樹脂組成物の製造方法
 本発明は変性セルロース繊維配合樹脂組成物の製造方法に関する。
 従来、成形材料用樹脂に用いられる補強材料として、炭素繊維やガラス繊維等が広く一般的に使用されている。しかしながら、炭素繊維は燃え難いため、サーマルリサイクルに不向きで、かつ価格が高い。また、ガラス繊維は比較的安価であるが、サーマルリサイクルにおいては廃棄に問題がある。
 一方、植物繊維は、無機繊維や炭素繊維では困難であったサーマルリサイクルも容易であるため、環境に優しい材料として注目を集めている。例えば、特許文献1では樹脂材料に植物繊維を配合することで樹脂単独に比べて材料強度を高めることができることが確認されている。
 近年では、より材料強度を高めることのできる、植物繊維をナノオーダーまで解きほぐしたセルロースナノファイバーの活用が積極的に進められている。しかしながら、セルロースナノファイバーは極めて親水性が高く、疎水性の樹脂とはなじみがたいため、その分散方法については各種研究がなされている。
 なかでも、特に工業的に有益とされる方法として、特許文献2のように、植物繊維を疎水化剤で化学修飾し、これを樹脂と混練、配合する際に植物繊維を解繊しながら、セルロースナノファイバーを樹脂中に均一分散させる手法が開発されてきた。
特開2015-209439号公報 特開2017-025338号公報
 しかしながら、特許文献2の方法においてセルロース繊維を解繊しながら樹脂中に均一分散させるためには、配合量や混練条件の細かな調整が必要であり、より簡便な製造方法が望まれていた。また、用いる原料や混練条件によっては、十分解繊、均一分散させるまでに製造物が変色するなど色目が悪化するため、用途によっては使用できなくなるという問題を有していた。
 本発明は、セルロース繊維を解繊しながら、変性セルロース繊維を樹脂中に均一分散させる手法をとりつつ、従来よりも簡易に色目の明るい変性セルロース繊維配合樹脂組成物を製造することを目的とする。
 すなわち、本発明は
<1>(i)疎水化剤(a)で変性されたセルロース繊維(A)100質量部に対して、水5~45質量部添加し、含水セルロース繊維(A’)とする工程と、(ii)前記含水セルロース繊維(A’)と、熱可塑性樹脂および/またはゴム(B)とを混練しながら変性セルロース繊維を解繊しつつ、混練後の水分含有率を1%以下まで除去する工程とを有することを特徴とする、変性セルロース繊維配合樹脂組成物の製造方法、
<2>疎水化剤(a)のセルロース繊維への定着率がセルロース繊維に対して5~50質量%である、疎水化剤(a)で変性されたセルロース繊維(A)を用いることを特徴とする、前記<1>に記載の変性セルロース繊維配合樹脂組成物の製造方法、
<3>疎水化剤(a)が、酸無水物及びその誘導体から選ばれる少なくとも1種であることを特徴とする、前記<1>または<2>に記載の変性セルロース繊維配合樹脂組成物の製造方法、
<4>含水セルロース繊維(A’)と、熱可塑性樹脂および/またはゴム(B)とを質量比で(A’)/(B)=105~145/100~250となるように配合することを特徴とする、前記<1>~<3>いずれか一項に記載の変性セルロース繊維配合樹脂組成物の製造方法、
<5>熱可塑性樹脂および/またはゴム(B)が、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、エチレン-酢酸ビニル樹脂、エチレン-プロピレン-ジエンゴムから選ばれる少なくとも1種であることを特徴とする、前記<1>~<4>いずれか一項に記載の変性セルロース繊維配合樹脂組成物の製造方法、
<6>疎水化剤(a)で変性されたセルロース繊維(A)が、前記(ii)の工程においてナノファイバーまで解繊されることを特徴とする、前記<1>~<5>いずれか一項に記載の変性セルロース繊維配合樹脂組成物の製造方法、
である。
 本発明の製造方法によれば、従来よりも簡易な操作条件で色目の明るい変性セルロース繊維配合樹脂組成物を製造することができる。
 本発明の製造方法は、(i)疎水化剤(a)で変性されたセルロース繊維(A)100質量部に対して、水5~45質量部添加し、含水セルロース繊維(A’)とする工程(以下、「工程(i)」と記載することがある)と、(ii)前記含水セルロース繊維(A’)と、熱可塑性樹脂および/またはゴム(B)とを混練しながら変性セルロース繊維を解繊しつつ、混練後の水分含有率を1%以下まで除去する工程(以下、「工程(ii)」と記載することがある)とを有する。
 <疎水化剤(a)で変性されたセルロース繊維(A)>
 疎水化剤(a)で変性されたセルロース繊維(A)とは、セルロース繊維の水酸基に化学結合で疎水化剤(a)を定着させたものである(以下、単に変性セルロース繊維(A)と称することがある)。セルロース繊維の水酸基を疎水化剤(a)で置き換えることで、セルロース繊維同士の水素結合を阻害し、樹脂と混練する際に解繊しやすくなる。
 セルロース繊維を得るのに使用する原料としては、木材、竹、麻、ジュート、ケナフ、綿、ビートなどに含まれる植物由来の繊維が挙げられる。好ましいセルロース繊維原料としては木材が挙げられ、例えば、マツ、スギ、ヒノキ、ユーカリ、アカシアなどが挙げられ、また、これらを原料として得られる紙、あるいは古紙なども用いることができる。植物由来の繊維は、1種単独で用いてもよく、これらから選ばれた2種以上を用いてもよい。
 セルロース繊維としては、前記した植物由来の繊維を含有する原料から得られるパルプ、マーセル化を施したセルロース繊維、レーヨンやセロファン、リヨセル等の再生セルロース繊維などを含むものも挙げられる。
 前記パルプとしては、植物原料を化学的、若しくは機械的に、又は両者を併用してパルプ化することで得られるケミカルパルプ(未晒クラフトパルプ(UKP)、漂白クラフトパルプ(BKP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等が挙げられる。
 疎水化剤(a)は、セルロース繊維の水酸基と反応しうる少なくとも1つの反応部位を有している化合物である。疎水化剤がセルロース繊維の水酸基と反応することでセルロース繊維内やセルロース繊維同士の水素結合を阻害し、混練中にセルロース繊維をナノオーダーまで解繊することができるようになる。疎水化剤(a)の具体例としては、例えばカルボキシル基、イソシアネート基、ハロゲン基、エポキシ基、シラノール基、アルデヒド基などのセルロース繊維の水酸基と反応しうる官能基を有する化合物や、酸ハロゲン化物、酸無水物、多価塩基酸無水物が挙げられるが、コスト面や導入の容易さから酸無水物や多価塩基酸無水物、エポキシ基含有化合物が好ましい。疎水化剤(a)は、1種単独または2種以上を併用して用いることができる。
 酸無水物としては、例えば無水酢酸、無水酪酸、無水プロピオン酸、無水安息香酸、無水ステアリン酸が挙げられる。なかでも、入手のしやすさや導入の容易さから無水酢酸が好ましい。
 多価塩基酸無水物としては、例えばアルキル若しくはアルケニルコハク酸無水物、マレイン酸無水物、フタル酸無水物、コハク酸無水物、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリブタジエンなどが挙げられる。なかでも樹脂との相溶性の観点から、アルキル若しくはアルケニルコハク酸無水物、無水マレイン酸変性ポリブタジエンが好ましい。
 エポキシ基含有化合物としては、例えばグリシジルエーテル、(メタ)アクリル酸グリシジル、グリシジルエステル、エピクロロヒドリン、グリシジルトリメチルアンモニウムクロライドが挙げられる。
 疎水化剤(a)のセルロース繊維への定着率は、以下の式から算出する。
定着率(%)=(変性セルロース繊維(A)の乾燥質量-セルロース繊維の乾燥質量)/ (セルロース繊維の乾燥質量)×100
混練における繊維の十分な解繊と生産コストとの兼ね合いから、前記定着率はセルロース繊維に対し質量比で5~50質量%であることが好ましく、5~30質量%であることがより好ましい。疎水化剤(a)の化学結合による定着の確認には、例えばフーリエ変換赤外分光法(FT-IR)を用いる。
 <熱可塑性樹脂および/またはゴム(B)>
 本発明に用いられる熱可塑性樹脂及び/又はゴム(B)は、成形材料用途に通常用いられているものであれば特に限定されない。
 熱可塑性樹脂としては、ナイロンなどのポリアミド樹脂;ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン酢酸ビニル共重合体などのポリオレフィン樹脂;ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル樹脂;ポリメチルメタクリレートやポリエチルメタクリレートなどのアクリル樹脂;ポリスチレン、(メタ)アクリル酸エステル-スチレン樹脂などのスチレン樹脂;ポリウレタン樹脂、アイオノマー樹脂、セルロース樹脂等のその他樹脂、ならびにオレフィン系エラストマー、塩化ビニル系エラストマー、スチレン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマー等の樹脂が挙げられる。これらは単独一種または二種以上の混合物としてもよい。好ましくはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、エチレン-酢酸ビニル樹脂、ポリウレタン樹脂であり、より好ましくは、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル樹脂である。
 ゴムとしては、ジエン系ゴムが挙げられ、具体的には、天然ゴム、ブタジエンゴム、エチレン-プロピレン-ジエンゴム、スチレン-ブタジエン共重合体ゴム、イソプレンゴム、ブチルゴム、アクリロニトリル-ブタジエンゴム、アクリロニトリル-スチレン-ブタジエン共重合体ゴム、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム、水素化天然ゴム、脱タンパク天然ゴム等が挙げられる。また、ジエン系ゴム成分以外のゴム成分としては、エチレン-プロピレン共重合体ゴム、ニトリルゴム、アクリルゴム、エピクロロヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム及びこれらの二種以上の混合物が挙げられる。好ましくは、ブタジエンゴム、天然ゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエンゴムであり、より好ましくは、エチレン-プロピレン-ジエンゴムである。
 また、求められる成形体の物性に応じて、熱可塑性樹脂とゴムとを任意の配合比で混合して用いてもよい。
 <工程(i)>
 工程(i)においては、変性セルロース繊維(A)100質量部に対して、水5~45質量部添加し、含水セルロース繊維(A’)を得る。使用する水は特に限定されないが、変性セルロース繊維(A)の変質を避けるため、水のpHは3~11が好ましく、4~10がより好ましく、5~9がさらに好ましい。
 変性セルロース繊維(A)に水を添加する方法は特に限定されないが、水の局在化を防ぐために撹拌機を有する容器内で混合するのが好ましい。
 水の添加量は、変性セルロース繊維(A)100質量部に対して5~45質量部である必要がある。水の添加量が5質量部より少ないと本発明の効果が得られず、45質量部より多いと工程(ii)での水分除去がし難くなり、結果として品質が安定しない、あるいは得られた樹脂組成物中に不要な水分が残ってしまうなどの問題を生じるおそれがある。
 水を添加する際の変性セルロース繊維(A)の温度は、添加した水の蒸発を防ぐため80℃以下が好ましく、60℃がより好ましく、40℃以下がさらに好ましい。また、添加した水が凍結してしまうのを防ぐため、0℃以上が好ましく、5℃以上がより好ましい。
 工程(i)において、本発明の効果を妨げない範囲で、相溶化剤、分散剤、界面活性剤、酸化防止剤、難燃剤、顔料、無機充填剤、可塑剤、結晶核剤、発泡助剤など各種添加剤を同時に配合してもよい。また、本発明の効果を妨げない範囲で含水セルロース繊維(A’)は取扱いしやすい形状、例えば錠剤状や板状に賦形、あるいは成形してもよい。
 <工程(ii)>
 工程(ii)においては、含水セルロース繊維(A’)と、熱可塑性樹脂および/またはゴム(B)とを混練しながら変性セルロース繊維を解繊しつつ、混練後の水分含有率を1%以下まで水を除去して、変性セルロース繊維配合樹脂組成物を得る。
 含水セルロース繊維(A’)と、熱可塑性樹脂および/またはゴム(B)の配合割合は、特に限定されないが、変性セルロース繊維配合樹脂組成物を用いた成形体において目的の強度を得るのに必要なセルロース含有率と、混練時のセルロース繊維の解繊のし易さの両方の観点から、(A’)/(B)=105~145/100~250なる質量比で配合するのが好ましい。
 混練に用いる設備は一軸又は多軸混練機を用いるが、樹脂との混練時にセルロース繊維の解繊を行うので多軸混練機の方が好ましく、設備の点から二軸混練機がより好ましい。混練機はバッチ式、連続式いずれでもよいが、含水セルロース繊維(A’)中の水分を除去できる設備やベント孔等を有しているものが好ましい。
 混練時の温度は、前記(A’)中の水分を除去できる温度で、かつセルロース繊維が熱により劣化しない温度が好ましい。具体的には100~200℃の範囲で混練するのが好ましい。
 変性セルロース繊維(A)は、混練後の成形材料中で所望の物性が得られる程度にナノファイバーまで解繊されていれば良い。ここでナノファイバーとは通常、平均繊維径が4~800nmまで解繊されたセルロース繊維をいう。本発明においては、解繊状況の確認において作成したプレスフィルム中に目視で視認できる0.5mm以上の粗大な粒が見えなければ、十分にナノ化、均一分散されているものとする。
 得られる変性セルロース繊維配合樹脂組成物中の水は、混練中に1%以下まで除去するのが好ましい。水が最終組成物中に残っていると経時的に着色するなど、品質の劣化を引き起こしやすくなる。
 工程(ii)においては、工程(i)同様に、本発明の効果を妨げない範囲で、相溶化剤、分散剤、界面活性剤、酸化防止剤、難燃剤、顔料、無機充填剤、可塑剤、結晶核剤、発泡助剤など各種添加剤を同時に配合してもよい。
 こうして得られる変性セルロース繊維配合樹脂組成物は、用いられる用途に応じて各種添加剤を加え、成形することで所望の成形体とすることができる。
 以下、本発明の実施例について説明する。なお、本発明はこれらの実施例に限定されるものではない。なお、特にことわりのないかぎり、「部」とあるのは「質量部」を示す。
 <物性値測定法>
 これらの実施例の一部で用いられた物性値測定法は、以下のとおりである。
 疎水化剤(a)のセルロース繊維への定着率の算出
 以下の式より算出した。
 定着率(%)=(変性セルロース繊維(A)の乾燥質量-セルロース繊維の乾燥質量)/ (セルロース繊維の乾燥質量)×100
また、変性セルロース繊維(A)の乾燥質量は、以下の方法で測定した。製造例1~4の方法で得られる変性セルロース繊維(A)全量に、100倍の質量のテトラヒドロフランを加えた分散液を調製し、ホモジェナイザー((株)日本精機製作所製)で10000rpmで1分間撹拌した後、この分散液を吸引濾過した。濾過残さを110℃の電気乾燥機で乾燥し、乾燥質量を測定した。
疎水化剤(a)のセルロースへの化学結合による定着の確認には、フーリエ変換赤外分光光度計(日本分光(株)製)を使用した。乾燥質量を測定した変性セルロース繊維(A)では、1500~2000cm-1に未変性セルロース繊維には無いスペクトル吸収が見られる。
 変性セルロース繊維配合樹脂組成物の水分含有率の算出
 工程(ii)で得られた混練直後の変性セルロース繊維配合樹脂組成物を5g取り、乾燥前の質量を精秤した。その後、150℃の電気乾燥機で30分乾燥した後、デシケータ内で15分間放冷したものを乾燥後の質量として精秤し、以下の式より算出した。
 水分含有率(%)=[(乾燥前の質量)-(乾燥後の質量)]/(乾燥前の質量)×100
 解繊状況の確認
 実施例、比較例で得られた変性セルロース繊維配合樹脂組成物を0.5gとり、熱プレス機(アズワン(株)製)でポリプロピレン樹脂組成物については190℃、20MPa、それ以外の樹脂組成物については160℃、20MPaの圧力をかけてプレスフィルムを作成した。目視で0.5mm以上の粗大な粒が見えるものを×、見えないものを〇とした。
 色目の確認
 実施例、比較例で得られた変性セルロース繊維配合樹脂組成物を5gとり、熱プレス機でポリプロピレン樹脂組成物については190℃、10MPa、それ以外の樹脂組成物については160℃、10MPaの圧力をかけて、厚さ1mmのプレスフィルムを合計4枚作成した。これらを重ね合わせたものを、測色計(コニカミノルタ(株)製CM-600d)を用いて明度(L)を測定した。色目の相対値として下記の式を用いて算出した。
色目の相対値=(水を含む製造方法で得られた樹脂組成物のL)/(水を含まない製造方法で得られた樹脂組成物のL)×100
色目の相対値が高いほど、色目が明るく改善度合いが高いことを示している。
 <変性セルロース繊維(A)の製造>
 (製造例1)
 清浄な容器へ固形分20質量%の針葉樹晒クラフトパルプ(NBKP)500質量部とN-メチルピロリドン(NMP)150質量部を仕込み、減圧により水を留去した後、ヘキサデセニルコハク酸無水物19.9質量部を投入し、80℃で4時間反応した。反応後減圧することでNMPを留去し、変性セルロース繊維(A-1)を得た。疎水化剤(a)の定着率は8.6%であった。
 (製造例2)
 清浄な容器へ固形分20質量%の針葉樹晒クラフトパルプ(NBKP)500質量部とN-メチルピロリドン(NMP)150質量部を仕込み、減圧により水を留去した後、無水酢酸300質量部を投入し、80℃で4時間反応した。反応後減圧することでNMPを留去し、変性セルロース繊維(A-2)を得た。疎水化剤(a)の定着率は14.2%であった。
 (製造例3)
 清浄な容器へ固形分20質量%の針葉樹晒クラフトパルプ(NBKP)500質量部とN-メチルピロリドン(NMP)150質量部を仕込み、減圧により水を留去した後、ヘキサデセニルコハク酸無水物19.9質量部を投入し、80℃で4時間反応した。次いでメタクリル酸グリシジル10質量部を加えて130℃で3時間反応した。反応後減圧することでNMPを留去し、変性セルロース繊維(A-3)を得た。疎水化剤(a)の定着率は16.0%であった。
 (製造例4)
 清浄な容器へ固形分20質量%の針葉樹晒クラフトパルプ(NBKP)500質量部とN-メチルピロリドン(NMP)150質量部を仕込み、減圧により水を留去した後、無水マレイン酸変性ポリブタジエン35質量部を投入し、80℃で4時間反応した。反応後減圧することでNMPを留去し、変性セルロース繊維(A-4)を得た。疎水化剤(a)の定着率は28.0%であった。
 なお、未変性の針葉樹パルプ(NBKP)を乾固して比較用「未変性セルロース」(A-5)とした。
Figure JPOXMLDOC01-appb-T000001
 <ポリエチレン樹脂との配合>
 (実施例1)
 工程(i)
 撹拌機の付いた容器に、変性セルロース繊維(A-1)を100質量部と水を7.5質量部加え、1500rpmで15分撹拌して含水セルロース繊維(A’-1-1)を得た。
 工程(ii)
 含水セルロース繊維(A’-1-1)を107.5質量部とポリエチレン樹脂(B-1:ウルトゼックス(登録商標)4020L、(株)プライムポリマー製)を150質量部とを二軸押出機(軸径15mm、L/D=45、(株)テクノベル製)にて減圧しながら170℃で混練し、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0.2%であった。
 (実施例2)
 実施例1の工程(i)で使用した変性セルロース繊維を(A-2)に変更し、加えた水の量を31質量部に変更することで、含水セルロース繊維(A’-2-1)を得た。さらに、工程(ii)で使用した含水セルロース繊維を(A’-2-1)131質量部に変更した以外は実施例1と同様の操作を行い、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0.3%であった。
 (実施例3)
 実施例1の工程(i)で使用した変性セルロース繊維を(A-2)に変更し、加えた水の量を11質量部に変更することで、含水セルロース繊維(A’-2-2)を得た。さらに、工程(ii)で使用した含水セルロース繊維を(A’-2-2)111質量部に変更した以外は実施例1と同様の操作を行い、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0.2%であった。
 (実施例4)
 実施例1の工程(i)で使用した変性セルロース繊維を(A-3)に変更し、加えた水の量を11質量部に変更することで、含水セルロース繊維(A’-3-1)を得た。さらに、工程(ii)で使用した含水セルロース繊維を(A’-3-1)111質量部に変更した以外は実施例1と同様の操作を行い、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0.3%であった。
 (実施例5)
 実施例1の工程(i)で使用した変性セルロース繊維を(A-3)に変更し、加えた水の量を42質量部に変更することで、含水セルロース繊維(A’-3-2)を得た。さらに、工程(ii)で使用した含水セルロース繊維を(A’-3-2)142質量部に変更した以外は実施例1と同様の操作を行い、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0.5%であった。
 (比較例1)
 実施例1の工程(i)で使用した変性セルロース繊維を未変性の針葉樹クラフトパルプ(NBKP)(A-5)に変更し、加えた水の量を30質量部に変更することで、含水セルロース繊維(A’-5-1)を得た。さらにし、工程(ii)で使用した含水セルロース繊維を(A’-5-1)130質量部に変更した以外は実施例1と同様の操作を行い、未変性のセルロース繊維配合樹脂組成物を得た。得られた未変性のセルロース繊維配合樹脂組成物中の水分含有率は0.5%であった。
 (比較例2)
 実施例1の工程(i)で水を加えずに変性セルロース繊維(A-1)100質量部をそのまま用いた以外は実施例1と同様の操作を行い、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0%であった。
Figure JPOXMLDOC01-appb-T000002
 <エチレン-酢酸ビニル樹脂との配合>
 (実施例6)
 工程(i)
 撹拌機の付いた容器に、変性セルロース繊維(A-3)を100質量部と水を11質量部加え、1500rpmで15分撹拌して含水セルロース繊維(A’-3-1)を得た。
 工程(ii)
 含水セルロース繊維(A’-3-1)を111質量部とエチレン-酢酸ビニル樹脂(B-2:ウルトラセン(登録商標)635、東ソー(株)製)を233質量部とを二軸押出機(軸径15mm、L/D=45、(株)テクノベル製)にて減圧しながら170℃で混練し、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0.1%であった。
 (比較例3)
 実施例6の工程(i)で水を加えずに変性セルロース繊維(A-3)100質量部をそのまま用いた以外は実施例6と同様の操作を行い、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0%であった。
Figure JPOXMLDOC01-appb-T000003
 <ポリプロピレン樹脂との配合>
 (実施例7)
 工程(i)
 撹拌機の付いた容器に、変性セルロース繊維(A-1)を100質量部と水を30質量部加え、1500rpmで15分撹拌して含水セルロース繊維(A’-1-2)を得た。
 工程(ii)
 含水セルロース繊維(A’-1-2)を130質量部とポリプロピレン樹脂(B-3:BC03B、日本ポリプロ(株)製)を100質量部とを二軸押出機(軸径15mm、L/D=45、(株)テクノベル製)にて減圧しながら170℃で混練し、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0.4%であった。
 (比較例4)
 実施例7の工程(i)で水を加えずに変性セルロース繊維(A-1)100質量部をそのまま用いた以外は実施例7と同様の操作を行い、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0%であった。
Figure JPOXMLDOC01-appb-T000004
 <エチレン-プロピレン-ジエンゴムとの配合>
 (実施例8)
 工程(i)
 撹拌機の付いた容器に、変性セルロース繊維(A-4)を100質量部と水を5質量部加え、1500rpmで15分撹拌して含水セルロース繊維(A’-4-1)を得た。
 工程(ii)
 含水セルロース繊維(A’-4-1)を105質量部とエチレン-プロピレン-ジエンゴム(B-4:EP24、JSR(株)製)を100質量部とをバッチ式混練機ラボプラストミル((株)東洋精機製)にて140℃で混練し、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0.1%であった。
 (比較例5)
 実施例8の工程(i)で水を加えずに変性セルロース繊維(A-4)100質量部をそのまま用いた以外は実施例8と同様の操作を行い、変性セルロース繊維配合樹脂組成物を得た。得られた変性セルロース繊維配合樹脂組成物中の水分含有率は0%であった。
Figure JPOXMLDOC01-appb-T000005
 本発明の製造方法によれば、従来の製造方法よりも製造後の色目が改善することがわかる。また、各種熱可塑性樹脂やゴムでも発明の効果があることが示されている。

Claims (6)

  1. (i)疎水化剤(a)で変性されたセルロース繊維(A)100質量部に対して、水5~45質量部添加し、含水セルロース繊維(A’)とする工程と、
    (ii)前記含水セルロース繊維(A’)と、熱可塑性樹脂および/またはゴム(B)とを混練しながら変性セルロース繊維を解繊しつつ、混練後の水分含有率を1%以下まで除去する工程と
    を有することを特徴とする、変性セルロース繊維配合樹脂組成物の製造方法。
  2. 疎水化剤(a)のセルロース繊維への定着率がセルロース繊維に対して5~50質量%である、疎水化剤(a)で変性されたセルロース繊維(A)を用いることを特徴とする、請求項1に記載の変性セルロース繊維配合樹脂組成物の製造方法。
  3. 疎水化剤(a)が、酸無水物及びその誘導体から選ばれる少なくとも1種であることを特徴とする、請求項1または請求項2に記載の変性セルロース繊維配合樹脂組成物の製造方法。
  4. 含水セルロース繊維(A’)と、熱可塑性樹脂および/またはゴム(B)とを質量比で(A’)/(B)=105~145/100~250となるように配合することを特徴とする、請求項1~3いずれか一項に記載の変性セルロース繊維配合樹脂組成物の製造方法。
  5. 熱可塑性樹脂および/またはゴム(B)が、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、エチレン-酢酸ビニル樹脂、エチレン-プロピレン-ジエンゴムから選ばれる少なくとも1種であることを特徴とする、請求項1~4いずれか一項に記載の変性セルロース繊維配合樹脂組成物の製造方法。
  6. 疎水化剤(a)で変性されたセルロース繊維(A)が、前記(ii)の工程においてナノファイバーまで解繊されることを特徴とする、請求項1~5いずれか一項に記載の変性セルロース繊維配合樹脂組成物の製造方法。
PCT/JP2020/001506 2019-01-21 2020-01-17 変性セルロース繊維配合樹脂組成物の製造方法 WO2020153255A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020526046A JP6787533B1 (ja) 2019-01-21 2020-01-17 変性セルロース繊維配合樹脂組成物の製造方法
CN202080003964.5A CN112424265A (zh) 2019-01-21 2020-01-17 改性纤维素纤维调配树脂组合物的制造方法
US17/258,444 US20210292492A1 (en) 2019-01-21 2020-01-17 Method for manufacturing modified cellulose fiber blended resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019007710 2019-01-21
JP2019-007710 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020153255A1 true WO2020153255A1 (ja) 2020-07-30

Family

ID=71736130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001506 WO2020153255A1 (ja) 2019-01-21 2020-01-17 変性セルロース繊維配合樹脂組成物の製造方法

Country Status (4)

Country Link
US (1) US20210292492A1 (ja)
JP (1) JP6787533B1 (ja)
CN (1) CN112424265A (ja)
WO (1) WO2020153255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845718A (zh) * 2021-09-30 2021-12-28 山西省化工研究所(有限公司) 一种竹纤维/玄武岩纤维/聚丙烯环保型复合线材的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594919B (zh) * 2022-10-19 2023-12-08 南京金陵塑胶化工有限公司 一种聚丙烯复合材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239821A (ja) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd ミクロフィブリル化セルロース樹脂複合材とその成形品の製造方法
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
WO2011125801A1 (ja) * 2010-04-01 2011-10-13 三菱化学株式会社 微細セルロース繊維分散液の製造方法
JP2012025949A (ja) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp 微細セルロース繊維分散液およびセルロース繊維複合体並びにその製造方法
JP2015044948A (ja) * 2013-08-29 2015-03-12 王子ホールディングス株式会社 微細セルロース繊維複合体及びその製造方法
JP2017122177A (ja) * 2016-01-07 2017-07-13 大王製紙株式会社 熱可塑性樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757765B2 (ja) * 2011-03-31 2015-07-29 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物
JP6091589B2 (ja) * 2015-03-19 2017-03-08 国立大学法人京都大学 化学修飾セルロースナノファイバー及び熱可塑性樹脂を含有する繊維強化樹脂組成物
JP6620930B2 (ja) * 2015-12-24 2019-12-18 星光Pmc株式会社 変性セルロース繊維の製造方法、樹脂組成物の製造方法、およびゴム組成物の製造方法
WO2017141779A1 (ja) * 2016-02-18 2017-08-24 スターライト工業株式会社 ナノファイバー分散体、ナノファイバー分散体の製造方法、この分散体から得られる粉末状ナノファイバー、当該粉末状ナノファイバーを含む樹脂組成物、当該樹脂組成物を用いた3dプリンタ用造形材料
WO2017170745A1 (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、セルロース強化樹脂成形品およびセルロース強化樹脂成形品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239821A (ja) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd ミクロフィブリル化セルロース樹脂複合材とその成形品の製造方法
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
WO2011125801A1 (ja) * 2010-04-01 2011-10-13 三菱化学株式会社 微細セルロース繊維分散液の製造方法
JP2012025949A (ja) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp 微細セルロース繊維分散液およびセルロース繊維複合体並びにその製造方法
JP2015044948A (ja) * 2013-08-29 2015-03-12 王子ホールディングス株式会社 微細セルロース繊維複合体及びその製造方法
JP2017122177A (ja) * 2016-01-07 2017-07-13 大王製紙株式会社 熱可塑性樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845718A (zh) * 2021-09-30 2021-12-28 山西省化工研究所(有限公司) 一种竹纤维/玄武岩纤维/聚丙烯环保型复合线材的制备方法

Also Published As

Publication number Publication date
JP6787533B1 (ja) 2020-11-18
JPWO2020153255A1 (ja) 2021-02-18
CN112424265A (zh) 2021-02-26
US20210292492A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
CN110741020B (zh) 微细纤维素纤维、其制造方法、浆料及复合体
JP5717656B2 (ja) ゴム組成物
JP6014860B2 (ja) 変性セルロースファイバー及び変性セルロースファイバーを含むゴム組成物
JP5595103B2 (ja) ゴム組成物及びゴム組成物の製造方法
JP6543086B2 (ja) ゴム組成物、タイヤ用ゴム組成物及び空気入りタイヤ
JP5846919B2 (ja) ゴム組成物及びその製造方法
JP6787533B1 (ja) 変性セルロース繊維配合樹脂組成物の製造方法
JP2019172752A (ja) ミクロフィブリル化セルロース含有ポリプロピレン樹脂複合体の製造方法
JP2019059956A (ja) 熱可塑性樹脂組成物
JP2020063327A (ja) 複合材料の製造方法及び複合材料
JP5595104B2 (ja) ゴム組成物及びそれを用いたタイヤ
JP2019189792A (ja) 変性セルロースナノファイバー及びその製造方法、熱可塑性樹脂組成物、並びに成形体
WO2019194032A1 (ja) ソリッド成形材料用樹脂組成物、及びその製造方法、並びにソリッド成形体
JP6986655B2 (ja) 成形材料用樹脂組成物、成形体、及び成形材料用樹脂組成物の製造方法
JP2022014203A (ja) セルロース繊維組成物及びその製造方法、並びにセルロース繊維複合組成物の製造方法
JP2022171163A (ja) 熱可塑性樹脂組成物の製造方法、熱可塑性樹脂組成物、及びアシル化植物繊維組成物
JP7340195B2 (ja) 微細セルロース繊維、その製造方法、スラリー及び複合体
WO2024106173A1 (ja) 樹脂複合物
JP7118701B2 (ja) 複合体及びその製造方法
JP2022088826A (ja) セルロース-樹脂複合組成物及びその製造方法、セルロース分散樹脂組成物、並びにセルロース分散樹脂成形品
JP6021877B2 (ja) ゴム組成物及びゴム組成物の製造方法
WO2024095696A1 (ja) 樹脂組成物、及び樹脂組成物の製造方法
WO2022210498A1 (ja) 樹脂組成物及び樹脂組成物の製造方法
KR20220125705A (ko) 고분자 복합체
JP2023525539A (ja) 高分子複合体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020526046

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744901

Country of ref document: EP

Kind code of ref document: A1