WO2020147546A1 - 移位寄存器单元、栅极驱动电路、显示装置及驱动方法 - Google Patents

移位寄存器单元、栅极驱动电路、显示装置及驱动方法 Download PDF

Info

Publication number
WO2020147546A1
WO2020147546A1 PCT/CN2019/128655 CN2019128655W WO2020147546A1 WO 2020147546 A1 WO2020147546 A1 WO 2020147546A1 CN 2019128655 W CN2019128655 W CN 2019128655W WO 2020147546 A1 WO2020147546 A1 WO 2020147546A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
circuit
transistor
reset
control
Prior art date
Application number
PCT/CN2019/128655
Other languages
English (en)
French (fr)
Inventor
冯雪欢
李永谦
刘浩
Original Assignee
京东方科技集团股份有限公司
合肥京东方卓印科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方卓印科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19909662.9A priority Critical patent/EP3913613A4/en
Priority to US16/766,470 priority patent/US11164516B2/en
Publication of WO2020147546A1 publication Critical patent/WO2020147546A1/zh
Priority to US17/490,054 priority patent/US11615743B2/en
Priority to US18/108,730 priority patent/US20230196994A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit

Definitions

  • the embodiments of the present disclosure relate to a shift register unit, a gate driving circuit, a display device, and a driving method.
  • the gate drive circuit is currently generally integrated in the gate drive chip (GATE IC).
  • GATE IC gate drive chip
  • the area of the chip is the main factor that affects the cost of the chip. How to effectively reduce the area of the chip is a key consideration for technical developers.
  • At least one embodiment of the present disclosure provides a shift register unit including a first sub-circuit, a second sub-circuit, and an anti-leakage circuit.
  • the first sub-circuit includes a first input circuit and a first output circuit, the first input circuit is configured to control the level of the first node in response to a first input signal, and the first output circuit is configured To output the shift signal and the first output signal under the control of the level of the first node;
  • the second sub-circuit includes a second input circuit and a second output circuit, and the second input circuit is configured to While the first input circuit controls the level of the first node, it controls the level of the second node in response to the first input signal, and the second output circuit is configured to The second output signal is output under the control of the level of the second node;
  • the anti-leakage circuit is connected to the first node, and is configured to control the electrical leakage of the anti-leakage node under the control of the level of the first node. The level is controlled so that the
  • the first input circuit is connected to the first node and the leakage prevention node, and is further configured to respond to the first input signal pair The level of the anti-leakage node is controlled;
  • the second input circuit is connected to the second node and the anti-leakage node, and is configured to change the level of the anti-leakage node in response to the first input signal The level is transmitted to the second node.
  • the leakage prevention circuit includes a first leakage prevention transistor, the first input circuit includes a first input transistor and a second input transistor, and the second input
  • the circuit includes a third input transistor; the gate of the first leakage prevention transistor is connected to the first node, the first electrode of the first leakage prevention transistor is configured to receive a first voltage, and the first leakage prevention transistor
  • the second electrode of the transistor is connected to the leakage prevention node; the gate and the first electrode of the first input transistor are configured to receive the first input signal, and the second electrode of the first input transistor is connected to the The leakage prevention node is connected;
  • the gate of the second input transistor is configured to receive the first input signal, the first pole of the second input transistor is connected to the leakage prevention node, and the second input transistor
  • the second pole is connected to the first node; the gate of the third input transistor is configured to receive the first input signal, the first pole of the third input transistor is connected to the leakage prevention node, so The second pole of the third input
  • the shift register unit provided by some embodiments of the present disclosure further includes a blanking input sub-circuit.
  • the blanking input sub-circuit is connected to the first node and the second node, and is configured to receive a selection control signal and control the level of the first node and the level of the second node.
  • the blanking input sub-circuit includes a selection control circuit, a third input circuit, a first transmission circuit, and a second transmission circuit.
  • the selection control circuit is configured to use a second input signal to control the level of the third node in response to the selection control signal and maintain the level of the third node;
  • the third input circuit is configured to Transmitting the first clock signal to the fourth node under the control of the level of the third node;
  • the first transmission circuit is electrically connected to the first node, the fourth node, and the leakage prevention node, And configured to control the level of the first node and the level of the leakage prevention node in response to a first clock signal;
  • the second transmission circuit is connected to the second node and the leakage prevention node , And configured to transmit the level of the leakage prevention node to the second node in response to the first clock signal.
  • the first transfer circuit includes a first transfer transistor and a second transfer transistor
  • the second transfer circuit includes a third transfer transistor.
  • the gate of the first transfer transistor is configured to receive the first clock signal
  • the first pole of the first transfer transistor is connected to the fourth node
  • the second pole of the first transfer transistor is connected to the fourth node.
  • the leakage prevention node is connected; the gate of the second transfer transistor is configured to receive the first clock signal, the first pole of the second transfer transistor is connected to the leakage prevention node, and the second transfer transistor
  • the second pole of the third transfer transistor is connected to the first node; the gate of the third transfer transistor is configured to receive the first clock signal, and the first pole of the third transfer transistor is connected to the anti-leakage node,
  • the second electrode of the third transfer transistor is connected to the second node.
  • the first sub-circuit further includes a first control circuit, a first reset circuit, a second reset circuit, a shift signal output terminal, and a first output signal terminal ;
  • the second sub-circuit also includes a second control circuit, a third reset circuit, a fourth reset circuit and a second output signal terminal.
  • the shift signal output terminal is configured to output the shift signal, the first output signal terminal is configured to output the first output signal; the second output signal terminal is configured to output the second Output signal; the first control circuit is configured to control the level of the fifth node under the control of the level of the first node and the second voltage; the first reset circuit and the first node And the anti-leakage node is connected and is configured to reset the first node and the anti-leakage node under the control of the level of the fifth node; the second reset circuit is configured to Under the control of the level of the fifth node, the shift signal output terminal and the first output signal terminal are reset; the second control circuit is configured to be at the level of the second node and the first output signal terminal; Under the control of the second voltage, the level of the sixth node is controlled; the third reset circuit is connected to the second node and the leakage prevention node, and is configured to be at the level of the sixth node Under control, the level of the leakage prevention node is transmitted to the second node; the fourth reset circuit is
  • the first reset circuit includes a first reset transistor and a second reset transistor
  • the third reset circuit includes a third reset transistor.
  • the gate of the first reset transistor is connected to the fifth node, the first electrode of the first reset transistor is connected to the first node, and the second electrode of the first reset transistor is connected to the leakage prevention Node connection
  • the gate of the second reset transistor is connected to the fifth node, the first electrode of the second reset transistor is connected to the leakage prevention node, and the second electrode of the second reset transistor is configured To receive the third voltage
  • the gate of the third reset transistor is connected to the sixth node, the first pole of the third reset transistor is connected to the second node, and the second node of the third reset transistor The pole is connected with the leakage prevention node.
  • the first sub-circuit further includes a third control circuit, a fourth control circuit, and a common control circuit
  • the second sub-circuit further includes a fifth control circuit.
  • the sixth control circuit is a third control circuit, a fourth control circuit, and a common control circuit
  • the third control circuit is connected to the fifth node and the common control node, and is configured to electrically connect the fifth node and the common control node in response to the first clock signal
  • the common control circuit Is electrically connected to the common control node and the third node, and is configured to control the level of the common control node under the control of the level of the third node
  • the fourth control circuit is Is configured to control the level of the fifth node in response to the first input signal
  • the fifth control circuit is connected to the sixth node and the common control node, and is configured to respond to the The first clock signal electrically connects the sixth node and the common control node
  • the sixth control circuit is configured to control the level of the sixth node in response to the first input signal.
  • the third control circuit includes a first control transistor
  • the common control circuit includes a second control transistor
  • the fifth control circuit includes a third control transistor.
  • the gate of the first control transistor is configured to receive the first clock signal
  • the first electrode of the first control transistor is connected to the fifth node
  • the second electrode of the first control transistor is connected to the fifth node.
  • the common control node is connected; the gate of the second control transistor is connected to the third node, the first pole of the second control transistor is connected to the common control node, and the second control transistor is connected to the second
  • the gate of the third control transistor is configured to receive the first clock signal, the first pole of the third control transistor is connected to the sixth node, and the first pole of the third control transistor is connected to the sixth node.
  • the second pole of the three control transistor is connected to the common control node.
  • the first sub-circuit further includes a fifth reset circuit
  • the second sub-circuit further includes a sixth reset circuit.
  • the fifth reset circuit is connected to the first node and the leakage prevention node, and is configured to reset the first node and the leakage prevention node in response to a display reset signal
  • the sixth reset circuit It is connected to the second node and the leakage prevention node, and is configured to transmit the level of the leakage prevention node to the second node in response to the display reset signal.
  • the fifth reset circuit includes a fourth reset transistor and a fifth reset transistor
  • the sixth reset circuit includes a sixth reset transistor.
  • the gate of the fourth reset transistor is configured to receive the display reset signal, the first pole of the fourth reset transistor is connected to the first node, and the second pole of the fourth reset transistor is connected to the The leakage prevention node is connected;
  • the gate of the fifth reset transistor is configured to receive the display reset signal, the first pole of the fifth reset transistor is connected to the leakage prevention node, and the first pole of the fifth reset transistor
  • the two poles are configured to receive a third voltage;
  • the gate of the sixth reset transistor is configured to receive the display reset signal, the first pole of the sixth reset transistor is connected to the second node, and the first The second pole of the six reset transistor is connected to the leakage prevention node.
  • the first sub-circuit further includes a seventh reset circuit
  • the second sub-circuit further includes an eighth reset circuit.
  • the seventh reset circuit is connected to the first node and the leakage prevention node, and is configured to reset the first node and the leakage prevention node in response to a global reset signal
  • the eighth reset circuit It is connected to the second node and the leakage prevention node, and is configured to transmit the level of the leakage prevention node to the second node in response to the global reset signal.
  • the seventh reset circuit includes a seventh reset transistor and an eighth reset transistor
  • the eighth reset circuit includes a ninth reset transistor.
  • the gate of the seventh reset transistor is configured to receive the global reset signal, the first pole of the seventh reset transistor is connected to the first node, and the second pole of the seventh reset transistor is connected to the The leakage prevention node is connected;
  • the gate of the eighth reset transistor is configured to receive the global reset signal, the first pole of the eighth reset transistor is connected to the leakage prevention node, and the first pole of the eighth reset transistor
  • the two poles are configured to receive a third voltage;
  • the gate of the ninth reset transistor is configured to receive the global reset signal, the first pole of the ninth reset transistor is connected to the second node, and the first The second pole of the nine reset transistor is connected to the leakage prevention node.
  • the shift register unit provided by some embodiments of the present disclosure further includes a third sub-circuit and a fourth sub-circuit, the first sub-circuit, the second sub-circuit, the third sub-circuit, and the fourth sub-circuit
  • the sub-circuits are all connected to the leakage prevention node.
  • the first sub-circuit and the second sub-circuit share the blanking input sub-circuit.
  • the first sub-circuit, the second sub-circuit, the third sub-circuit, and the fourth sub-circuit share the blanking input sub-circuit. Circuit.
  • At least one embodiment of the present disclosure further provides a gate driving circuit including a plurality of cascaded shift register units as provided in the embodiments of the present disclosure.
  • At least one embodiment of the present disclosure further provides a display device, including any gate driving circuit provided in the embodiments of the present disclosure.
  • At least one embodiment of the present disclosure further provides a driving method of a shift register unit, including: the leakage prevention circuit controls the level of the leakage prevention node under the control of the level of the first node, so that the connection The circuit between the first node and the anti-leakage node is cut off, and the circuit connected between the second node and the anti-leakage node is cut off.
  • Figure 1 is a schematic diagram of a shift register unit
  • FIG. 2 is a schematic diagram of a shift register unit provided by some embodiments of the disclosure.
  • FIG. 3 is a schematic diagram of another shift register unit provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of still another shift register unit provided by some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of still another shift register unit provided by some embodiments of the present disclosure.
  • Fig. 6 is a circuit diagram of a blanking input sub-circuit provided by some embodiments of the present disclosure.
  • FIGS. 7A to 7D are circuit diagrams of four blanking input sub-circuits provided by some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of still another shift register unit provided by some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of yet another shift register unit provided by some embodiments of the present disclosure.
  • FIG. 10 is a circuit diagram of a shift register unit provided by some embodiments of the present disclosure.
  • FIG. 11 is a circuit diagram of another shift register unit provided by some embodiments of the present disclosure.
  • FIG. 12 is a circuit diagram of still another shift register unit provided by some embodiments of the present disclosure.
  • FIG. 13 is a circuit diagram of yet another shift register unit provided by some embodiments of the present disclosure.
  • FIG. 14 is a schematic diagram of a gate driving circuit provided by some embodiments of the disclosure.
  • FIG. 15 is a signal timing diagram corresponding to the gate driving circuit shown in FIG. 14 when operating according to some embodiments of the present disclosure
  • FIG. 16 is a schematic diagram of another gate driving circuit provided by some embodiments of the present disclosure.
  • FIG. 17 is a signal timing diagram corresponding to the operation of the gate driving circuit shown in FIG. 16 according to some embodiments of the present disclosure
  • FIG. 18 is a signal simulation diagram of the gate driving circuit shown in FIG. 16.
  • FIG. 19 is a schematic diagram of a display device provided by some embodiments of the present disclosure.
  • pulse up means charging a node or an electrode of a transistor so that the level of the node or the electrode is absolutely The value increases to achieve the operation of the corresponding transistor (such as turning on); “pull-down” means to discharge a node or an electrode of a transistor, so that the absolute value of the level of the node or the electrode is reduced, thereby achieving the corresponding Operation of the transistor (e.g. off).
  • pulse-up means discharging a node or an electrode of a transistor, so that the absolute value of the level of the node or the electrode is reduced, thereby realizing the corresponding transistor Operation (for example, turn on);
  • pulse down means to charge a node or an electrode of a transistor, so that the absolute value of the level of the node or the electrode is increased, thereby realizing the operation of the corresponding transistor (for example, turning off) .
  • pulse up and pulse down will also be adjusted according to the specific type of transistor used, as long as the transistor can be controlled to achieve the corresponding switching function.
  • the current gate drive circuit used in OLED usually consists of three sub-circuits, namely the detection circuit, the display circuit and the connection circuit (OR gate circuit) that outputs the composite pulse of the two.
  • the detection circuit the display circuit
  • the connection circuit OR gate circuit
  • FIG. 1 shows a shift register unit.
  • the shift register unit includes a first input circuit 710, a first output circuit 720, a second input circuit 810, and a second output circuit 820.
  • the first input circuit 710 is configured to control the level of the first node Q1 in response to the first input signal STU1
  • the first output circuit 720 is configured to output the shift signal CR under the control of the level of the first node Q1
  • the first output signal OUT1 the second input circuit 810 is configured to control the level of the second node Q2 in response to the first input signal STU1
  • the second output circuit 820 is configured to change the level of the second node Q2
  • the second output signal OUT2 is output under control. For example, when the first input signal STU1 is at a high level, the first node Q1 and the second node Q2 can be charged at the same time.
  • a gate driving circuit can be formed, and the gate driving circuit can be used to drive a display device to perform display operations.
  • the shift signal CR output by the first output circuit 720 in a shift register unit of a certain stage can be provided to the shift register unit of another stage as the first input signal STU1, thereby completing the row-by-row shift of the display scan.
  • the first output signal OUT1 and the second output signal OUT2 output by a shift register unit of a certain stage can respectively drive two adjacent rows of pixel units in the display panel to perform display scanning.
  • the shift register unit shown in FIG. 1 in order to make the shift register unit work better, other circuits need to be provided to better control the level of the first node Q1, for example, one or more A reset circuit connected to the first node Q1.
  • a reset circuit is used to reset the level of the first node Q1.
  • the reset operation causes the level of the first node Q1 to change from a high level to a low level.
  • the first node Q1 may leak through one or more of these reset circuits, that is, the first node Q1 Leakage occurs through the first leakage path indicated by the dashed line in FIG. 1, which will cause the level of the first node Q1 to not be maintained at a higher level when the first output circuit 720 is outputting, which may cause the first output
  • the signal OUT1 is deviated, which in turn leads to display failures in the display panel using the shift register unit as the gate driving circuit.
  • a reset circuit is used to reset the level of the second node Q2.
  • this reset operation causes the level of the second node Q2 to change from a high level to a low level.
  • the reset operation of the first node Q1 and the second node Q2 may be performed simultaneously so that the first node Q1 and the second node Q2 are simultaneously pulled down to a low level.
  • the second point Q2 may leak through one or more of these reset circuits, that is, the second node Q2 Leakage occurs through the second leakage path indicated by the dotted line in FIG. 1, which will cause the level of the second node Q2 to not be maintained at a higher level when the second output circuit 820 is outputting, which may result in a second output
  • the signal OUT2 has a deviation, which in turn leads to display failures in the display panel using the shift register unit as the gate driving circuit.
  • the circuit path connected to the first node Q1 that may cause leakage of the first node Q1 is called the first leakage path
  • the first leakage path may include one or Multiple circuits (or sub-circuits), for example, including a reset circuit for resetting the first node Q1;
  • the circuit path connected to the second node Q2 that may cause leakage of the second node Q2 is called the second leakage
  • the path, the second leakage path may include one or more circuits (or sub-circuits), for example, a reset circuit that performs a reset operation on the second node Q2, etc. The following embodiments are the same and will not be repeated.
  • At least one embodiment of the present disclosure provides a shift register unit that includes a first sub-circuit, a second sub-circuit, and an anti-leakage circuit.
  • the first sub-circuit includes a first input circuit and a first output circuit, the first input circuit is configured to control the level of the first node in response to the first input signal, and the first output circuit is configured to The shift signal and the first output signal are output under the control of the level;
  • the second sub-circuit includes a second input circuit and a second output circuit, the second input circuit is configured to respond to the level of the first input signal to the second node Control, the second output circuit is configured to output the second output signal under the control of the level of the second node;
  • the leakage prevention circuit is connected to the first node and is configured to control the level of the first node The level of the leakage prevention node is controlled so that the circuit connected between the first node and the leakage prevention node is cut off, and the circuit connected between the second node and the leakage prevention node is cut
  • Some embodiments of the present disclosure also provide a gate driving circuit, a display device, and a driving method corresponding to the above-mentioned shift register unit.
  • the shift register unit, the gate driving circuit, the display device and the driving method provided by some embodiments of the present disclosure can avoid the leakage of the first node and the second node, and avoid the problem of the gate driving circuit formed by the shift register unit.
  • the display device has a poor display problem.
  • some embodiments of the present disclosure can also simplify the circuit structure, thereby reducing the frame size of the display device using the gate driving circuit, and improving the PPI of the display device.
  • the shift register unit 10 includes a first sub-circuit 100, a second sub-circuit 200, and an anti-leakage circuit 400.
  • the first sub-circuit 100 includes a first input circuit 110 and a first output circuit 120
  • the second sub-circuit 200 includes a second input circuit 210 and a second output circuit 220.
  • a plurality of the shift register units 10 can be cascaded to construct a gate driving circuit provided by an embodiment of the present disclosure.
  • the gate driving circuit can be used in a display device to provide a scan signal during the display of one frame of the display device .
  • the first input circuit 110 is configured to control the level of the first node Q1 in response to the first input signal STU1, for example, to charge the first node Q1.
  • the first input circuit 110 may be configured to receive the first input signal STU1 and the second voltage VDD, and the first input circuit 110 is turned on in response to the first input signal STU1, so that the second voltage VDD can be used for the first node Q1 is charging.
  • the first input circuit 110 may not receive the second voltage VDD, and directly use the first input signal STU1 to charge the first node Q1.
  • the second voltage VDD is, for example, a high level.
  • the following embodiments are the same as this, and will not be repeated.
  • the first output circuit 120 is configured to output the shift signal CR and the first output signal OUT1 under the control of the level of the first node Q1.
  • the first output circuit 120 may be configured to receive the second clock signal CLKB and the third clock signal CLKC.
  • the first output circuit 120 is turned on under the control of the level of the first node Q1, the second clock signal CLKB is output as the shift signal CR, and the third clock signal CLKC is output as the first output signal OUT1.
  • the shift signal CR output by the first output circuit 120 may be provided to other shift register units 10 as the first input signal STU1, thereby completing the line-by-line shift of the display scan;
  • the first output signal OUT1 output by the output circuit 120 can drive a certain row of sub-pixel units in the display panel to perform display scanning.
  • the signal waveforms of the shift signal CR and the first output signal OUT1 output by the first output circuit 120 may be the same or different, which is not limited in the embodiment of the present disclosure.
  • the second input circuit 210 is configured to control the level of the second node Q2 in response to the first input signal STU1 while the first input circuit 110 controls the level of the first node Q1, for example, to control the level of the second node Q2.
  • the node Q2 is charged.
  • the second input circuit 210 may be configured to receive a first input signal STU1 and a second voltage VDD.
  • the first input signal STU1 and the first input signal STU1 received by the first input circuit 110 are the same signal, and the second input signal STU1
  • the circuit 210 is turned on in response to the first input signal STU1, so that the second node Q2 can be charged by the second voltage VDD.
  • the second input circuit 210 may not receive the second voltage VDD, and directly use the first input signal STU1 to charge the second node Q2.
  • the first input circuit 110 and the second input circuit 210 can simultaneously receive the first input signal STU1, so that The first input signal STU1 can simultaneously control the level of the first node Q1 and the level of the second node Q2, for example, simultaneously charge the first node Q1 and the second node Q2.
  • the second output circuit 220 is configured to output the second output signal OUT2 under the control of the level of the second node Q2.
  • the second output circuit 220 may be configured to receive the fourth clock signal CLKD.
  • the fourth clock signal CLKD may be used as the second output signal. OUT2 output.
  • the second output signal OUT2 output by the second output circuit 220 may drive a certain row of sub-pixel units in the display panel to perform display scanning.
  • some of the shift register units 10 can be connected to a clock signal line to receive the first input signal STU1 provided by the clock signal line; Alternatively, some shift register units 10 may also receive the shift signal CR output by other stages of shift register units 10 as the first input signal STU1.
  • the shift register 10 provided by some embodiments of the present disclosure can simultaneously charge multiple sub-circuits (the first sub-circuit 100 and the second sub-circuit 200, etc.), and only one sub-circuit (for example, the first sub-circuit 100) needs to output shift. Bit signal, and other sub-circuits (such as the second sub-circuit 200, etc.) do not need to output shift signals, so that the number of clock signal lines and transistors can be saved, and the frame of the display device using the shift register unit 10 can be reduced. Size to improve the PPI of the display device.
  • FIG. 2 is only an example of the present disclosure, and the embodiment of the present disclosure does not limit the number of sub-circuits included in the shift register unit 10. For example, it may also include three, four or more sub-circuits. , The number of sub-circuits can be set according to the actual situation.
  • the leakage prevention circuit 400 is connected to the first node Q1, and is configured to control the level of the leakage prevention node OF under the control of the level of the first node Q1, so that it is connected to the first node
  • the circuit between Q1 and the leakage prevention node OF is turned off, and the circuit connected between the second node Q2 and the leakage prevention node OF is turned off.
  • the first leakage path may be a reset circuit connected to the first node Q1, assuming that there is no leakage prevention circuit 400
  • the levels at both ends of the reset circuit in the first leakage path are the high level of the first node Q1 and the low level of the third voltage VGL1, respectively.
  • the voltage difference is large, and the first node Q1 is more likely to leak through the reset circuit.
  • the control terminal of the reset circuit can be made to receive the low-level third voltage VGL1.
  • the leakage prevention circuit 400 may be configured to receive the first voltage VA of a high level, and when the level of the first node Q1 is high, the leakage prevention circuit 400 The circuit 400 is turned on under the control of the level of the first node Q1, so that the high-level first voltage VA can be transmitted to the anti-leakage node OF, so that the level of the anti-leakage node OF becomes higher, for example, The level of the leakage node OF is higher than the third voltage VGL1.
  • the first voltage VA is, for example, a high level
  • the second voltage VDD is, for example, a high level
  • the first voltage VA and the second voltage VDD may be the same or different.
  • the third voltage VGL1 is, for example, a low level, for example, the third voltage VGL1 may be a negative level or zero volts. The following embodiments are the same and will not be repeated here.
  • the level of the leakage prevention node OF can be made higher than the third voltage VGL1, so that the first The circuit in the leakage path (for example, the reset circuit) is turned off under the control of the level of the leakage prevention node OF and the third voltage VGL1, thereby turning off the circuit connected between the first node Q1 and the leakage prevention node OF, thereby It can prevent the first node Q1 from leaking through the first leakage path, or the degree of leakage is reduced.
  • the leakage prevention circuit 400 controls the level of the leakage prevention node OF to prevent the first node Q1 from being connected to the first node Q1 and the leakage prevention node OF. Leakage occurs in the circuit between, or the degree of leakage is reduced.
  • the second leakage path may be a reset circuit connected to the second node Q2, assuming that there is no leakage prevention circuit 400
  • the levels at both ends of the reset circuit in the second leakage path are the high level of the second node Q2 and the low level third voltage VGL1, respectively.
  • the voltage difference between the two ends is large, and the second node Q2 is more likely to leak through the reset circuit.
  • the control terminal of the reset circuit can be made to receive the low-level third voltage VGL1.
  • the leakage prevention circuit 400 may be configured to receive a high-level first voltage VA, since the first input signal STU1 simultaneously affects the first node Q1 and the second node Q1 and the second node Q1.
  • the node Q2 is charged, so when the second node Q2 is at a high level, the first node Q1 is also at a high level, and the leakage prevention circuit 400 is turned on under the control of the level of the first node Q1, so that the high level
  • the flat first voltage VA is transmitted to the leakage prevention node OF, so that the level of the leakage prevention node OF becomes higher, for example, the level of the leakage prevention node OF is higher than the third voltage VGL1.
  • the level of the leakage prevention node OF can be made higher than the third voltage VGL1, so that the circuit (for example, the reset circuit) in the second leakage path is at the level of the leakage prevention node OF and the first
  • the three voltages VGL1 are cut off under the control of the three voltages, thereby making the circuit connected between the second node Q2 and the leakage prevention node OF cut off, thereby preventing the second node Q2 from leaking through the second leakage path, or reducing the degree of leakage.
  • the anti-leakage circuit 400 controlling the level of the anti-leakage node OF, it can prevent the second node Q2 from being connected to the second node Q2 and the anti-leakage node OF. Leakage occurs in the circuit between, or the degree of leakage is reduced.
  • the shift register unit 10 provided by some embodiments of the present disclosure is provided with an anti-leakage circuit 400, so that the first sub-circuit 100 and the second sub-circuit 200 can share the same anti-leakage node OF, thereby avoiding the first node at the same time.
  • Q1 and the second node Q2 leak; in addition, the first sub-circuit 100 and the second sub-circuit 200 share the leakage prevention node OF, which can also simplify the circuit structure and reduce the frame size of the display device using the shift register unit. It is more beneficial to improve the PPI of the display device.
  • the high level and the low level are relative.
  • the high level indicates a higher voltage range (for example, the high level may be 5V, 10V or other suitable voltages), and multiple high levels may be the same or different.
  • the low level represents a lower voltage range (for example, the low level can be 0V, -5V, -10V or other suitable voltages), and multiple low levels can be the same or different.
  • the minimum value of the high level is greater than the maximum value of the low level.
  • controlling the level of a node includes charging the node to increase the level of the node, Or discharge the node to pull down the level of the node.
  • a node for example, the first node Q1, the second node Q2, etc.
  • charging the node means charging the capacitor electrically connected to the node; similarly, discharging the node means charging the capacitor electrically connected to the node. Discharge; the high or low level of the node can be maintained through the capacitor.
  • the first input circuit 110 is connected to the first node Q1 and the leakage prevention node OF, and is also configured to respond to the first
  • the input signal STU1 controls the level of the anti-leakage node OF
  • the second input circuit 210 is connected to the second node Q2 and connected to the anti-leakage node OF, and is configured to switch the anti-leakage node OF in response to the first input signal STU1
  • the level is transmitted to the second node Q2.
  • both the first input circuit 110 and the second input circuit 210 can be turned on under the control of the first input signal STU1.
  • the first input signal STU1 charges the first node Q1 after passing through the first input circuit 110.
  • the first input signal STU1 can also charge the second node Q2 after passing through the first input circuit 110, the leakage prevention node OF, and the second input circuit 210. Recharge. That is, the first input circuit 110 and the second input circuit 210 are electrically connected through the leakage prevention node OF, and the first input circuit 110 is multiplexed during the charging process of the first node Q1 and the second node Q2.
  • the leakage prevention node OF since the first input circuit 110 is connected between the first node Q1 and the leakage prevention node OF, the leakage of the first node Q1 through the first input circuit 110 can be avoided, or The degree of leakage is reduced. For example, after the first node Q1 is charged to a high level, if the first input signal STU1 changes to a low level, the leakage of the first node Q1 through the first input circuit 110 can be avoided at this time.
  • the second input circuit 210 is connected between the second node Q2 and the leakage prevention node OF, it is possible to prevent the second node Q2 from leaking through the second input circuit 210, or the degree of leakage is reduced. For example, after the second node Q2 is charged to a high level, if the first input signal STU1 changes to a low level, the leakage of the second node Q2 through the second input circuit 210 can be avoided at this time.
  • the shift register unit provided by some embodiments of the present disclosure, by electrically connecting the first input circuit 110 and the second input circuit 210 to the leakage prevention node OF, it is possible to prevent the first node Q1 from passing through the first input circuit 110. Electric leakage can be avoided, and electric leakage of the second node Q2 through the second input circuit 210 can be avoided.
  • the first input circuit 110 when charging the first node Q1 and the second node Q2, can also be multiplexed, which can simplify the circuit structure, reduce the frame size of the display device using the shift register unit, and more It is beneficial to improve the PPI of the display device.
  • the leakage prevention circuit 400 includes a first leakage prevention transistor A1, and the first input circuit 110 includes a first input transistor B1 and a second input transistor. B2, the second input circuit 210 includes a third input transistor B3.
  • the gate of the first leakage prevention transistor A1 is connected to the first node Q1, the first pole of the first leakage prevention transistor A1 is configured to receive the first voltage VA, the second pole of the first leakage prevention transistor A1 and the leakage prevention node OF connection.
  • the first leakage prevention transistor A1 is turned on, so that the first voltage VA can be used to control the level of the leakage prevention node OF, for example, the first voltage VA
  • the leakage prevention node OF is charged so that the level of the leakage prevention node OF becomes higher.
  • the gate and the first electrode of the first input transistor B1 are configured to receive the first input signal STU1, and the second electrode of the first input transistor B1 is connected to the leakage prevention node OF.
  • the gate of the second input transistor B2 is configured to receive the first input signal STU1, the first electrode of the second input transistor B2 is connected to the leakage prevention node OF, and the second electrode of the second input transistor B2 is connected to the first node Q1.
  • the gate of the third input transistor B3 is configured to receive the first input signal STU1, the first electrode of the third input transistor B3 is connected to the leakage prevention node OF, and the second electrode of the third input transistor B3 is connected to the second node Q2.
  • the first input transistor B1 when the first input signal STU1 is at a high level, the first input transistor B1, the second input transistor B2, and the third input transistor B3 are all turned on, and the first input signal STU1 passes through the first input transistor B1 And the second input transistor B2 charge the first node Q1, while the first input signal STU1 charges the second node Q2 through the first input transistor B1 and the third input transistor B3. Therefore, the first input transistor B1 is multiplexed.
  • the first input signal STU1 changes from a high level to a predetermined low level, for example, the predetermined low level is the first Three voltages VGL1.
  • the level of the leakage prevention node OF is made higher than the third voltage VGL1, so that the V gs (gate and source of the second input transistor B2) The voltage difference between) is less than zero, so that the second input transistor B2 can be kept off, and the level of the leakage prevention node OF becomes higher (higher than the third voltage VGL1), so that from the first node Q1 to the leakage prevention node
  • the voltage difference of OF becomes smaller (or even negative), so that the first node Q1 cannot pass through the second input transistor B2 to cause leakage, or the degree of leakage is reduced.
  • the second node Q2 cannot leak through the third input transistor B3, or the degree of leakage is reduced.
  • the first input circuit 110 and the second input circuit 210 share the leakage prevention node OF, so that the first input transistor B1 can be By multiplexing, the number of transistors can be saved, the frame size of the display device using the shift register unit can be reduced, and the PPI of the display device can be improved.
  • the shift register unit 10 further includes a fourth reset transistor R4, a fifth reset transistor R5, a seventh reset transistor R7, and an eighth reset transistor R8 for resetting the first node Q1.
  • the sixth reset transistor R6 and the ninth reset transistor R9 reset by the two nodes Q2.
  • the gates of the fourth reset transistor R4, the fifth reset transistor R5, and the sixth reset transistor R6 are all configured to receive the display reset signal STD.
  • the display reset signal STD is at a high level
  • the fourth reset transistor R4, the The fifth reset transistor R5 and the sixth reset transistor R6 are turned on, so that the low-level third voltage VGL1 can reset the first node Q1 through the fifth reset transistor R5 and the fourth reset transistor R4, and the low-level second The three-voltage VGL1 can reset the second node Q2 through the fifth reset transistor R5 and the sixth reset transistor R6. Therefore, the fifth reset transistor R5 is multiplexed.
  • the gates of the seventh reset transistor, the eighth reset transistor R8, and the ninth reset transistor R9 are all configured to receive a global reset signal TRST.
  • the global reset signal TRST is at a high level
  • the transistor R8 and the ninth reset transistor R9 are turned on, so that the low-level third voltage VGL1 can reset the first node Q1 through the eighth reset transistor R8 and the seventh reset transistor R7, and the low-level third voltage
  • the VGL1 can reset the second node Q2 through the eighth reset transistor R8 and the ninth reset transistor R9. Therefore, the eighth reset transistor R8 is multiplexed.
  • the display reset signal STD and the global reset signal TRST will be described in detail below, and will not be repeated here.
  • the display reset signal STD provided to the fourth reset transistor R4 and the global reset signal TRST provided to the seventh reset transistor R7 can be made to a predetermined low level at this time.
  • the predetermined low level is the third voltage VGL1, so that the fourth reset transistor R4 and the seventh reset transistor R7 are turned off. If the fourth reset transistor R4 and the seventh reset transistor R7 cannot be completely turned off, the first node Q1 may leak through the fourth reset transistor R4 or the seventh reset transistor R7.
  • the first leakage prevention transistor A1 when the level of the first node Q1 is high, the potential of the leakage prevention node OF is higher than the third voltage VGL1, so as to have a predetermined low level.
  • the third voltage VGL1 display reset signal STD or global reset signal TRST, so that the fourth reset transistor R4 and the seventh reset transistor R7 V gs (the voltage difference between the gate and the source) are less than zero, thereby
  • the fourth reset transistor R4 and the seventh reset transistor R7 can be kept off, and at the same time, the potential of the leakage prevention node OF becomes higher (higher than the third voltage VGL1), so that the voltage difference from the first node Q1 to the leakage prevention node OF Becomes smaller (or even negative), so that the first node Q1 cannot leak through the fourth reset transistor R4 or the seventh reset transistor R7, or the leakage degree is reduced.
  • the first leakage prevention transistor A1 when the level of the second node Q2 is high, the potential of the leakage prevention node OF is higher than the third voltage VGL1, so as to have a predetermined low level (for example, the first The display reset signal STD or the global reset signal TRST of the three voltages VGL1) makes the V gs (the voltage difference between the gate and the source) of the sixth reset transistor R6 and the ninth reset transistor R9 less than zero, so that the first Both the sixth reset transistor R6 and the ninth reset transistor R9 remain off, and at the same time, since the potential of the leakage prevention node OF becomes higher (higher than the third voltage VGL1), the voltage difference from the first node Q1 to the leakage prevention node OF becomes smaller ( Even negative), so that the second node Q2 cannot leak through the sixth reset transistor R6 or the ninth reset transistor R9, or the degree of leakage is reduced.
  • a predetermined low level for example, the first The display reset signal STD or the global reset signal TRST of the three voltages VGL
  • the shift register unit 10 on the basis of realizing leakage prevention, when the first node Q1 and the second node Q2 are reset, the fifth reset transistor R5 and the eighth reset transistor R8 is multiplexed, so that the number of transistors can be saved, the frame size of the display device using the shift register unit can be reduced, and the PPI of the display device can be improved.
  • the possible leakage path of the first node Q1 only illustrates the second input transistor B2, the fourth reset transistor R4, and the seventh reset transistor R7.
  • the possible leakage path of the second node Q2 only the third input transistor B3, the sixth reset transistor R6 and the ninth reset transistor R9 are shown.
  • the shift register unit 10 by providing the first leakage prevention transistor A1, when the first node Q1 is at a high level, it can be connected to the first node Q1 and the leakage prevention transistor A1.
  • the circuit between the nodes OF is cut off, so as to avoid the leakage of the first node Q1, or the degree of leakage is reduced; when the second node Q2 is high, the circuit connected between the second node Q2 and the leakage prevention node OF can be made It is turned off, so as to avoid leakage of the second node Q2 or decrease in the degree of leakage.
  • transistors shown in FIG. 3 are all described by taking an N-type transistor as an example.
  • the transistors used in the embodiments of the present disclosure may all be thin film transistors or field effect transistors or other switching devices with the same characteristics.
  • thin film transistors are used as examples for description.
  • the source and drain of the transistor used here may be symmetrical in structure, so the source and drain may be indistinguishable in structure.
  • transistors in order to distinguish the two poles of the transistor other than the gate, one pole of the first pole and the other pole of the second pole are directly described.
  • transistors can be divided into N-type and P-type transistors according to their characteristics.
  • the turn-on voltage is a high-level voltage (for example, 5V, 10V or other suitable voltages), and the turn-off voltage is a low-level voltage (for example, 0V, -5V, -10V or other suitable voltages) );
  • the transistors in the following embodiments are also described by taking N-type transistors as examples, and will not be repeated.
  • the embodiments of the present disclosure include but are not limited thereto.
  • one or more transistors in the shift register unit provided by the embodiments of the present disclosure may also adopt P-type transistors.
  • the turn-on voltage is a low-level voltage (for example, 0V, -5V, -10V or other suitable voltages), and the turn-off voltage is a high-level voltage (for example, 5V, 10V or other suitable voltages) ).
  • the gate drive circuit composed of shift register units needs to provide drive signals for scanning transistors and sensing transistors to sub-pixel units in the display panel, for example, for the display period of one frame.
  • a sensing driving signal for the sensing transistor is provided in a blanking period of one frame.
  • the sensing driving signal output by the gate driving circuit is sequentially scanned row by row.
  • the sensing driving signal for the sub-pixel unit of the first row in the display panel is output during the blanking period of the first frame.
  • Measure the drive signal output the sense drive signal for the second row of sub-pixel units in the display panel during the blanking period of the second frame, and so on, output the frequency of the sense drive signal corresponding to one row of sub-pixel units per frame Line-by-line sequential output, which completes the line-by-line sequential compensation of the display panel.
  • the gate driving circuit drives a display panel
  • the gate driving circuit is required not only to output the scan driving signal for the display period, but also to output the blanking period. Sense the drive signal.
  • random compensation refers to an external compensation method that is different from line-by-line sequential compensation. During the blanking period of a certain frame, it can output randomly corresponding to any line in the display panel.
  • the sensing driving signal of the sub-pixel unit is the same in the following embodiments, and will not be repeated here.
  • the definition of "one frame,” “every frame,” or “a certain frame” includes sequential display periods and blanking periods, for example, in the display period.
  • the driving circuit outputs a driving signal, which can drive the display panel from the first row to the last row to complete the scanning and display of a complete image.
  • the gate driving circuit outputs a driving signal, which can be used for driving
  • the sensing transistors in a certain row of sub-pixel units in the display panel complete the external compensation of the row of sub-pixel units.
  • the shift register unit 10 further includes a blanking input sub-circuit 300.
  • the blanking input sub-circuit 300 is connected to the first node Q1 and the second node Q2, and is configured to receive the selection control signal OE and control the first node Q1 and the second node Q2, for example, the first node Q1 and the second node Q2 The second node Q2 is charged.
  • the blanking input sub-circuit 300 can charge the first node Q1 and the second node Q2, so that the first output circuit 120 outputs under the control of the level of the first node Q1
  • the first output signal OUT1, or the second output circuit 220 is caused to output the second output signal OUT2 under the control of the level of the second node Q2.
  • the first output signal OUT1 or the second output signal OUT2 can be used to drive the sensing transistors in a certain row of sub-pixel units in the display panel to complete the external compensation of the row of sub-pixel units.
  • the gate driving circuit of the shift register unit 10 and the display device provided by the embodiments of the present disclosure can realize random compensation, thereby avoiding poor display problems such as scan lines and uneven display brightness caused by line-by-line sequential compensation.
  • the blanking input sub-circuit 300 includes a selection control circuit 310, a third input circuit 320, a first transmission circuit 330, and a second transmission circuit 340.
  • the selection control circuit 310 is configured to use the second input signal STU2 to control the level of the third node H in response to the selection control signal OE, for example, to charge the third node H and maintain the level of the third node H. For example, in the display period of one frame, the selection control circuit 310 may be turned on under the control of the selection control signal OE, so as to charge the third node H using the second input signal STU2.
  • the level (for example, high level) of the third node H can be maintained from the display period of one frame to the blanking period of the frame.
  • the shift register unit 10 of a certain stage may receive the shift signal CR output by the shift register unit 10 of the other stage as the second input signal STU2.
  • the waveforms of the selection control signal OE and the second input signal STU2 provided to the shift register unit 10 of this stage can be made The timing is the same, so that the selection control circuit 310 in the shift register unit 10 of this stage is turned on.
  • the third input circuit 320 is configured to transmit the first clock signal CLKA to the fourth node N under the control of the level of the third node H.
  • the third input circuit 320 may be configured to receive the first clock signal CLKA.
  • the third input circuit 320 is turned on under the control of the level of the third node H, the first clock signal CLKA can be transmitted to the fourth node N, thereby controlling the level of the fourth node N.
  • the third input circuit 320 may transmit the high level to the fourth node N, so that the fourth node N becomes a high level. level.
  • the first transmission circuit 330 is electrically connected to the first node Q1, the fourth node N, and the leakage prevention node OF, and is configured to respond to the level of the first node Q1 and the leakage prevention node OF in response to the first clock signal CLKA. Level control.
  • the first transmission circuit 330 may be configured to receive the first clock signal CLKA, and when the first transmission circuit 330 is turned on under the control of the first clock signal CLKA, the power of the fourth node N may be The signal is transmitted to the first node Q1, so as to control the level of the first node Q1, for example, to charge the first node Q1.
  • the level of the fourth node N can also be transmitted to the leakage prevention node OF, so as to control the level of the leakage prevention node OF.
  • the second transmission circuit 340 is electrically connected to the second node Q2 and the leakage prevention node OF, and is configured to transmit the level of the leakage prevention node OF to the second node Q2 in response to the first clock signal CLKA.
  • the second transmission circuit 340 may be configured to receive the first clock signal CLKA, and when the second transmission circuit 340 is turned on under the control of the first clock signal CLKA, the electrical leakage prevention node OF may be The level is transmitted to the second node Q2, thereby controlling the level of the second node Q2, for example, charging the second node Q2.
  • the blanking input sub-circuit 300 is provided in the shift register unit 10 to realize that the driving signal can be output during the blanking period of one frame.
  • the "blanking" in the blanking input sub-circuit 300 only indicates that it is related to the blanking period in one frame, and does not limit the blanking input sub-circuit 300 to only work in the blanking period.
  • the following embodiments are the same as this: No longer.
  • the first transmission circuit 330 and the second transmission circuit 340 are electrically connected through the leakage prevention node OF.
  • the first transmission circuit 330 charges the first node Q1
  • the high level of the fourth node N can be transmitted to the second node Q2 through the leakage prevention node OF, so that the second node Q2 can be charged.
  • both the first transmission circuit 330 and the second transmission circuit 340 are electrically connected to the leakage prevention node OF, the leakage of the first node Q1 through the first transmission circuit 330 can be avoided, and the second node Q2 can be prevented from passing through the second transmission.
  • the circuit 340 leaks.
  • the shift register unit 10 includes three, four or more sub-circuits, correspondingly, three, four or more transmission circuits need to be provided to realize the function of the blanking input sub-circuit 300.
  • the shift register unit 10 when the shift register unit 10 includes a plurality of sub-circuits (the first sub-circuit 100 and the second sub-circuit 200, etc.), these sub-circuits can share a blanking input sub-circuit 300, so that The area occupied by the shift register unit 10 is reduced, and the frame size of the display device using the shift register unit 10 is reduced, thereby increasing the PPI of the display device.
  • the selection control circuit 310 may be implemented to include a fourth input transistor B4 and a first capacitor C1.
  • the gate of the fourth input transistor B4 is configured to receive the selection control signal OE
  • the first pole of the fourth input transistor B4 is configured to receive the second input signal STU2, the second pole of the fourth input transistor B4 and the third node H connection.
  • the selection control signal OE is a high-level turn-on signal
  • the fourth input transistor B4 is turned on, so that the third node H can be charged by the second input signal STU2.
  • the first pole of the first capacitor C1 is connected to the third node H, the second pole of the first capacitor C1 is configured to receive the third voltage VGL1, or the second pole of the first capacitor C1 is configured to receive the second voltage VDD. Setting the first capacitor C1 can maintain the potential of the third node H. For example, during the display period of one frame, the selection control circuit 310 charges the third node H to pull the third node H to a high potential, and then the first capacitor C1 can maintain the high potential of the third node H to the blanking period of the frame.
  • the third input circuit 320 may be implemented as a sixth input transistor B6.
  • the gate of the sixth input transistor B6 is connected to the third node H
  • the first electrode of the sixth input transistor B6 is configured to receive the first clock signal CLKA
  • the second electrode of the sixth input transistor B6 is connected to the fourth node N.
  • the sixth input transistor B6 is turned on, so that the fourth node N can be charged by the first clock signal CLKA to raise the level of the fourth node N.
  • the first transmission circuit 330 includes a first transmission transistor T1 and a second transmission transistor T2, and the second transmission circuit 340 includes a third transmission transistor T3.
  • the gate of the first transfer transistor T1 is configured to receive the first clock signal CLKA, the first pole of the first transfer transistor T1 is connected to the fourth node N, and the second pole of the first transfer transistor T1 is connected to the leakage prevention node OF;
  • the gate of the second transfer transistor T2 is configured to receive the first clock signal CLKA, the first pole of the second transfer transistor T2 is connected to the leakage prevention node OF, and the second pole of the second transfer transistor T2 is connected to the first node Q1;
  • the gate of the third transfer transistor T3 is configured to receive the first clock signal CLKA, the first pole of the third transfer transistor T3 is connected to the leakage prevention node OF, and the second pole of the third transfer transistor T3 is connected to the second node Q2.
  • the first transfer transistor T1, the second transfer transistor T2, and the third transfer transistor T3 are all turned on, and the turned-on first transfer transistor T1 can turn the fourth node N high.
  • the level is transmitted to the leakage prevention node OF, so that the level of the leakage prevention node OF becomes a high level; then the turned-on second transfer transistor T2 transmits the high level of the leakage prevention node OF to the first node Q1 to A node Q1 is charged; the turned-on third transfer transistor T3 transmits the high level of the leakage prevention node OF to the second node Q2, so as to charge the second node Q2.
  • the first transfer transistor T1 is multiplexed, and at the same time, since the second transfer transistor T2 is connected to the leakage prevention node OF, the second transfer transistor T2 is also The leakage of the first node Q1 can be avoided; since the third transfer transistor T3 is connected to the leakage prevention node OF, the third transfer transistor T3 can also avoid the leakage of the second node Q2.
  • FIGS. 7A-7C The blanking input sub-circuit 300 provided in FIGS. 7A-7C is described below. It should be noted that in the following description, the same parts in FIGS. 7A-7C and FIG. 6 will not be repeated.
  • the blanking input sub-circuit 300 further includes a first coupling capacitor CST1.
  • the first pole of the first coupling capacitor CST1 is configured to receive the first clock signal CLKA, and the second pole of the first coupling capacitor CST1 is connected to the third node H.
  • the first clock signal CLKA changes from a low level to a high level
  • the first clock signal CLKA can couple and pull up the third node H through the coupling effect of the first coupling capacitor CST1, so that the power of the third node H The level is further pulled high, so as to ensure that the sixth input transistor B6 conducts more fully.
  • the blanking input sub-circuit 300 further includes a second coupling capacitor CST2, the first pole of the second coupling capacitor CST2 is connected to the third node H, and the second coupling capacitor CST2 The two poles are connected to the fourth node N.
  • the first clock signal CLKA changes from a low level to a high level
  • the sixth input transistor B6 is turned on at this time, the high-level first clock signal CLKA can be transmitted to the fourth through the sixth input transistor B6.
  • the potential of the second pole of the second coupling capacitor CST2 is pulled high.
  • the level of the third node H can be further pulled high, thereby ensuring that the sixth The conduction of the input transistor B6 is more sufficient.
  • the first transfer circuit 330 includes a first transfer transistor T1 and a second transfer transistor T2, and the second transfer circuit 340 includes a third transfer transistor T3.
  • the gate of the first transfer transistor T1 is connected to the fourth node N, the first pole of the first transfer transistor T1 is configured to receive the high-level second voltage VDD, the second pole of the first transfer transistor T1 and the leakage prevention node OF connection;
  • the gate of the second transfer transistor T2 is connected to the fourth node N, the first pole of the second transfer transistor T2 is connected to the leakage prevention node OF, and the second pole of the second transfer transistor T2 is connected to the first node Q1;
  • the gate of the third transfer transistor T3 is connected to the fourth node N, the first pole of the third transfer transistor T3 is connected to the leakage prevention node OF, and the second pole of the third transfer transistor T3 is connected to the second node Q2.
  • the first clock signal CLKA when the first clock signal CLKA is at a high level, the first clock signal CLKA at a high level is transmitted to the fourth node N through the turned-on sixth input transistor B6, so that the fourth node N becomes a high level,
  • the first transfer transistor T1, the second transfer transistor T2, and the third transfer transistor T3 are all turned on.
  • the turned-on first transfer transistor T1 can transmit the high-level second voltage VDD to the leakage prevention node OF to prevent leakage
  • the level of the node OF becomes a high level; then the turned-on second transfer transistor T2 transmits the high level of the leakage prevention node OF to the first node Q1 to charge the first node Q1; the turned-on third transfer The transistor T3 transfers the high level of the leakage prevention node OF to the second node Q2 to charge the second node Q2.
  • FIG. 7D also provides a blanking input sub-circuit 300.
  • the selection control circuit 310 in the blanking input sub-circuit 300 includes a fifth input transistor B5 in addition to the fourth input transistor B4.
  • the blanking input sub-circuit 300 also includes a second leakage prevention transistor A2.
  • the gate of the second leakage prevention transistor A2 is connected to the third node H
  • the first pole of the second leakage prevention transistor A2 is configured to receive the first voltage VA
  • the second leakage prevention transistor A2 is The electrode is connected to the first electrode of the fifth input transistor B5, the gate of the fifth input transistor B5 is configured to receive the selection control signal OE, and the second electrode of the fifth input transistor B5 is connected to the third node H.
  • the second anti-leakage transistor A2 and the fifth input transistor B5 cooperate to prevent the third node H from leaking.
  • the first sub-circuit 100 further includes a first control circuit 130, a first reset circuit 140, a second reset circuit 150, and a shift signal The output terminal CRT and the first output signal terminal OP1.
  • the shift signal output terminal CRT is configured to output the shift signal CR
  • the first output signal terminal OP1 is configured to output the first output signal OUT1.
  • the first control circuit 130 is configured to control the level of the fifth node QB_A under the control of the level of the first node Q1 and the second voltage VDD.
  • the first control circuit 130 is connected to the first node Q1 and the fifth node QB_A, and is configured to receive the second voltage VDD and the third voltage VGL1.
  • the first control circuit 130 may use a low level third voltage VGL1 to pull the fifth node QB_A down to a low level.
  • the first control circuit 130 may use a high-level second voltage VDD to charge the fifth node QB_A to pull the fifth node QB_A to a high level.
  • the first reset circuit 140 is connected to the first node Q1 and the leakage prevention node OF, and is configured to reset the first node Q1 and the leakage prevention node OF under the control of the level of the fifth node QB_A.
  • the first reset circuit 140 is configured to receive the third voltage VGL1.
  • the low-level third voltage VGL1 can be used to The node Q1 and the leakage prevention node OF perform a pull-down reset.
  • the second reset circuit 150 is configured to reset the shift signal output terminal CRT and the first output signal terminal OP1 under the control of the level of the fifth node QB_A.
  • the second reset circuit 150 is connected to the fifth node QB_A, the shift signal output terminal CRT, and the first output signal terminal OP1, and is configured to receive the third voltage VGL1 and the fourth voltage VGL2 (for example, low level).
  • the third voltage VGL1 can be used to pull down the shift signal output terminal CRT
  • the fourth voltage VGL2 can also be used to reset the An output signal terminal OP1 performs pull-down reset.
  • the third voltage VGL1 may also be used to pull-down reset the first output signal terminal OP1, which is not limited in the embodiments of the present disclosure.
  • the fourth voltage VGL2 is, for example, a low level, and the following embodiments are the same as this, and will not be repeated.
  • the fourth voltage VGL2 may be the same as or different from the third voltage VGL1.
  • the second sub-circuit 200 further includes a second control circuit 230, a third reset circuit 240, a fourth reset circuit 250, and a second output signal terminal OP2.
  • the second output signal terminal OP2 is configured to output the second output signal OUT2.
  • the second control circuit 230 is configured to control the level of the sixth node QB_B under the control of the level of the second node Q2 and the second voltage VDD.
  • the second control circuit 230 is connected to the second node Q2 and the sixth node QB_B, and is configured to receive the second voltage VDD and the third voltage VGL1.
  • the second control circuit 230 may use a low level third voltage VGL1 to pull down the sixth node QB_B to a low level.
  • the second control circuit 230 can charge the sixth node QB_B with the second voltage VDD at a high level to pull the sixth node QB_B up to a high level.
  • the fifth node QB_A and the sixth node QB_B are simultaneously pulled down to a low level; because the first node Q1 And the second node Q2 is pulled down to low level at the same time, so the fifth node QB_A and the sixth node QB_B are pulled up to high level at the same time. That is, the level of the first node Q1 and the level of the second node Q2 "same up and down", and the level of the fifth node QB_A and the level of the sixth node QB_B "same up and down".
  • the third reset circuit 240 is connected to the second node Q2 and the leakage prevention node OF, and is configured to transmit the level of the leakage prevention node OF to the second node Q2 under the control of the level of the sixth node QB_B.
  • the third reset circuit 240 is connected to the sixth node QB_B.
  • the third reset circuit 240 is turned on under the control of the level of the sixth node QB_B, the level of the leakage prevention node OF can be transmitted to the second node Q2 .
  • the first reset circuit 140 and the third reset circuit 240 are electrically connected through the leakage prevention node OF, so that the first reset circuit 140 is multiplexed.
  • the first reset circuit 140 and the third reset circuit 240 are simultaneously turned on, so that the third The voltage VGL1 pulls down and resets the second node Q2 through the first reset circuit 140, the leakage prevention node OF, and the third reset circuit 240.
  • the fourth reset circuit 250 is configured to reset the second output signal terminal OP2 under the control of the level of the sixth node QB_B.
  • the fourth reset circuit 250 is connected to the sixth node QB_B and the second output signal terminal OP2, and is configured to receive the fourth voltage VGL2.
  • the fourth voltage VGL2 at a low level may be used to pull down and reset the second output signal terminal OP2.
  • the third voltage VGL1 may also be used to pull-down reset the second output signal terminal OP2, which is not limited in the present disclosure.
  • each node (first node Q1, second node Q2, third node H, fourth node N, fifth node QB_A, sixth node QB_B, etc.) and each output The terminals (the shift signal output terminal CRT, the first output signal terminal OP1, the second output signal terminal OP2, etc.) are all set to better describe the circuit structure, and do not represent actual components.
  • the node represents the junction of the related circuit connections in the circuit structure, that is, the related circuits connected with the same node identifier are electrically connected to each other.
  • the first control circuit 130 and the first reset circuit 140 are both connected to the fifth node QB_A, which means that these circuits are electrically connected to each other.
  • the first sub-circuit 100 further includes a third control circuit 160, a fourth control circuit 170, and a common control circuit 161; the second sub-circuit 200 also includes a fifth control circuit 260 and a sixth control circuit 270.
  • the third control circuit 160 is connected to the fifth node QB_A and the common control node CC, and is configured to electrically connect the fifth node QB_A and the common control node CC in response to the first clock signal CLKA.
  • the common control circuit 161 is electrically connected to the common control node CC and the third node H, and is configured to control the level of the common control node CC under the control of the level of the third node H.
  • the common control circuit 161 may be configured to receive a low-level third voltage VGL1.
  • the third voltage VGL1 may be used to control the common The level of node CC is pulled down to a low level.
  • the fifth control circuit 260 is connected to the sixth node QB_B and the common control node CC, and is configured to electrically connect the sixth node QB_B and the common control node CC in response to the first clock signal CLKA.
  • the third control circuit 160, the common control circuit 161, and the fifth control circuit 260 are all turned on , So that the low-level third voltage VGL1 can pull down the fifth node QB_A through the common control circuit 161 and the third control circuit 160; and the low-level third voltage VGL1 can be passed through the fifth control circuit 260 and the common control circuit.
  • the circuit 161 pulls down the sixth node QB_B. That is, the common control circuit 161 is used to control the level of the fifth node QB_A and the level of the sixth node QB_B. Therefore, the common control circuit 161 is multiplexed, so that the circuit structure can be simplified.
  • the fourth control circuit 170 is configured to control the level of the fifth node QB_A in response to the first input signal STU1.
  • the fourth control circuit 170 may be configured to receive the third voltage VGL1 of a low level.
  • the fourth control circuit 170 is turned on in response to the first input signal STU1, so that the fifth node QB_A can be pulled down with the low-level third voltage VGL1. Pulling down the fifth node QB_A to a low potential can avoid the influence of the fifth node QB_A on the first node Q1, thereby making the first node Q1 more fully charged during the display period.
  • the sixth control circuit 270 is configured to control the level of the sixth node QB_B in response to the first input signal STU1.
  • the sixth control circuit 270 may be configured to receive the third voltage VGL1 at a low level.
  • the sixth control circuit 270 is turned on in response to the first input signal STU1, so that the sixth node QB_B can be pulled down by the low-level third voltage VGL1. Pulling down the sixth node QB_B to a low potential can avoid the influence of the sixth node QB_B on the second node Q2, thereby making the second node Q2 more fully charged during the display period.
  • the first sub-circuit 100 further includes a fifth reset circuit 180 and a seventh reset circuit 190
  • the second sub-circuit 200 further includes a sixth reset circuit 280 and an eighth reset circuit 290.
  • the fifth reset circuit 180 is connected to the first node Q1 and the leakage prevention node OF, and is configured to reset the first node Q1 and the leakage prevention node OF in response to the display reset signal STD.
  • the sixth reset circuit 280 is connected to the second node Q2 and the leakage prevention node OF, and is configured to transmit the level of the leakage prevention node OF to the second node Q2 in response to the display reset signal STD.
  • the fifth reset circuit 180 may be configured to receive the third voltage VGL1 of a low level.
  • both the fifth reset circuit 180 and the sixth reset circuit 280 are turned on in response to the display reset signal STD, so that the third voltage VGL1 of a low level can pass through the fifth reset circuit 180.
  • the first node Q1 and the leakage prevention node OF perform a pull-down reset.
  • the low-level third voltage VGL1 can pull down and reset the second node Q2 through the sixth reset circuit 280 and the fifth reset circuit 180.
  • the shift register unit 10 of a certain stage can receive the shift signal CR output by the shift register unit 10 of the other stage as the display reset signal STD.
  • the fifth reset circuit 180 and the sixth reset circuit 280 are both connected to the leakage prevention node OF, so the first node Q1 can be prevented from passing through the fifth reset. Electric leakage occurs in the circuit 180, and electric leakage of the second node Q2 through the sixth reset circuit 280 can be avoided.
  • the fifth reset circuit 180 and the sixth reset circuit 280 are electrically connected through the leakage prevention node OF, so that the fifth reset circuit 180 can be multiplexed, thereby simplifying the circuit structure.
  • the seventh reset circuit 190 is connected to the first node Q1 and the leakage prevention node OF, and is configured to reset the first node Q1 and the leakage prevention node OF in response to a global reset signal TRST.
  • the eighth reset circuit 290 is connected to the second node Q2 and the leakage prevention node OF, and is configured to transmit the level of the leakage prevention node OF to the second node Q2 in response to the global reset signal TRST.
  • the seventh reset circuit 190 may be configured to receive the third voltage VGL1 of a low level.
  • the seventh reset circuit 190 and the eighth reset circuit 290 in the shift register units 10 of each stage respond before the display period of one frame It is turned on by the global reset signal TRST, so that the low-level third voltage VGL1 can pull down and reset the first node Q1 and the leakage prevention node OF through the seventh reset circuit 190.
  • the low-level third voltage VGL1 can pull down and reset the second node Q2 through the eighth reset circuit 290 and the seventh reset circuit 190.
  • the seventh reset circuit 190 and the eighth reset circuit 290 are both connected to the leakage prevention node OF, so it is possible to prevent the first node Q1 from passing through the seventh reset.
  • the circuit 190 leaks, and it can prevent the second node Q2 from leaking through the eighth reset circuit 290.
  • the seventh reset circuit 190 and the eighth reset circuit 290 are electrically connected through the leakage prevention node OF, so that the seventh reset circuit 190 can be multiplexed, thereby simplifying the circuit structure.
  • the shift register unit 10 may be implemented as the circuit structure shown in FIG. 10. As shown in FIG. 10, the shift register unit 10 includes a first sub-circuit 100, a second sub-circuit 200, a blanking input sub-circuit 300, and an anti-leakage circuit 400.
  • the first sub-circuit 100 includes a first input circuit 110, a first output circuit 120, a first control circuit 130, a first reset circuit 140, a second reset circuit 150, a third control circuit 160, a common control circuit 161, and a fourth control circuit.
  • the second sub-circuit 200 includes a second input circuit 210, a second output circuit 220, a second control circuit 230, a third reset circuit 240, a fourth reset circuit 250, a fifth control circuit 260, a sixth control circuit 270, and a sixth The reset circuit 280 and the eighth reset circuit 290.
  • the first output circuit 120 may include a first output transistor D1, a second output transistor D2, and a second capacitor C2.
  • the gate of the first output transistor D1 is connected to the first node Q1
  • the first electrode of the first output transistor D1 is configured to receive the second clock signal CLKB as the shift signal CR
  • the second electrode of the first output transistor D1 is
  • the shift signal output terminal CRT is connected and configured to output the shift signal CR.
  • the gate of the second output transistor D2 is connected to the first node Q1, the first pole of the second output transistor D2 is configured to receive the third clock signal CLKC as the first output signal OUT1, and the second pole of the second output transistor D2 It is connected to the first output signal terminal OP1 and is configured to output the first output signal OUT1.
  • the first pole of the second capacitor C2 is connected to the first node Q1, and the second pole of the second capacitor C2 is connected to the second pole of the second output transistor D2 (ie, the first output signal terminal OP1).
  • the first control circuit 130 may be implemented to include a sixth control transistor E6 and a seventh control transistor E7.
  • the gate and the first electrode of the sixth control transistor E6 are configured to receive the second voltage VDD, and the second electrode of the sixth control transistor E6 is connected to the fifth node QB_A.
  • the gate of the seventh control transistor E7 is connected to the first node Q1
  • the first electrode of the seventh control transistor E7 is connected to the fifth node QB_A
  • the second electrode of the seventh control transistor E7 is configured to receive a low-level third Voltage VGL1.
  • the second control circuit 230 may be implemented to include an eighth control transistor E8 and a ninth control transistor E9.
  • the gate and the first electrode of the eighth control transistor E8 are configured to receive the second voltage VDD, and the second electrode of the eighth control transistor E8 is connected to the sixth node QB_B.
  • the gate of the ninth control transistor E9 is connected to the second node Q2
  • the first electrode of the ninth control transistor E9 is connected to the sixth node QB_B
  • the second electrode of the ninth control transistor E9 is configured to receive a low-level third Voltage VGL1.
  • the first reset circuit 140 may be implemented to include a first reset transistor R1 and a second reset transistor R2, and the third reset circuit 240 includes a third reset transistor R3.
  • the gate of the first reset transistor R1 is connected to the fifth node QB_A, the first electrode of the first reset transistor R1 is connected to the first node Q1, and the second electrode of the first reset transistor R1 is connected to the leakage prevention node OF.
  • the gate of the second reset transistor R2 is connected to the fifth node QB_A, the first electrode of the second reset transistor R2 is connected to the leakage prevention node OF, and the second electrode of the second reset transistor R2 is configured to receive a low-level third Voltage VGL1.
  • the gate of the third reset transistor R3 is connected to the sixth node QB_B, the first electrode of the third reset transistor R3 is connected to the second node Q2, and the second electrode of the third reset transistor R3 is connected to the leakage prevention node OF.
  • the first reset transistor R1 is connected to the leakage prevention node OF to prevent the first node Q1 from leaking through the first reset transistor R1; the third reset transistor R3 Connecting to the leakage prevention node OF can prevent the second node Q2 from leaking through the third reset transistor R3.
  • the second reset transistor R2 can also be multiplexed, thereby saving the number of transistors and reducing the display of the shift register unit.
  • the frame size of the device is more conducive to improving the PPI of the display device.
  • the second reset circuit 150 includes a tenth reset transistor R10 and an eleventh reset transistor R11.
  • the gate of the tenth reset transistor R10 is connected to the fifth node QB_A, the first pole of the tenth reset transistor R10 is connected to the shift signal output terminal CRT, and the second pole of the tenth reset transistor R10 is configured to receive a low level The third voltage VGL1.
  • the gate of the eleventh reset transistor R11 is connected to the fifth node QB_A, the first pole of the eleventh reset transistor R11 is connected to the first output signal terminal OP1, and the second pole of the eleventh reset transistor R11 is configured to receive low Level of the fourth voltage VGL2.
  • the fourth reset circuit 250 includes a twelfth reset transistor R12.
  • the gate of the twelfth reset transistor R12 is connected to the sixth node QB_B, the first pole of the twelfth reset transistor R12 is connected to the second output signal terminal OP2, and the second pole of the twelfth reset transistor R12 is configured to receive low Level of the fourth voltage VGL2.
  • the third control circuit 160 includes a first control transistor E1
  • the fourth control circuit 170 includes a fourth control transistor E4
  • the common control circuit 161 includes a second control transistor E2.
  • the gate of the first control transistor E1 is configured to receive the first clock signal CLKA, the first electrode of the first control transistor E1 is connected to the fifth node QB_A, and the second electrode of the first control transistor E1 is connected to the common control node CC.
  • the gate of the second control transistor E2 is connected to the third node H, the first electrode of the second control transistor E2 is connected to the common control node CC, and the second electrode of the second control transistor E2 is configured to receive a low level third node. Voltage VGL1.
  • the gate of the fourth control transistor E4 is configured to receive the first input signal STU1, the first pole of the fourth control transistor E4 is connected to the fifth node QB_A, and the second pole of the fourth control transistor E4 is configured to receive a low level The third voltage VGL1.
  • the fifth control circuit 260 includes a third control transistor E3, and the sixth control circuit 270 includes a fifth control transistor E5.
  • the gate of the third control transistor E3 is configured to receive the first clock signal CLKA, the first electrode of the third control transistor E3 is connected to the sixth node QB_B, and the second electrode of the third control transistor E3 is connected to the common control node CC.
  • the gate of the fifth control transistor E5 is configured to receive the first input signal STU1, the first pole of the fifth control transistor E5 is connected to the sixth node QB_B, and the second pole of the fifth control transistor E5 is configured to receive a low level The third voltage VGL1.
  • the second control transistor E2 can be multiplexed by setting the common control node CC, thereby saving the number of transistors and simplifying the circuit structure.
  • the fifth reset circuit 180 includes a fourth reset transistor R4 and a fifth reset transistor R5, the sixth reset circuit 280 includes a sixth reset transistor R6, and the seventh reset circuit 190 includes a seventh reset transistor R7 and an eighth reset transistor R7.
  • the reset transistor R8 and the eighth reset circuit 290 include a ninth reset transistor R9. It should be noted that for the detailed description and technical effects of the fourth reset transistor R4, the fifth reset transistor R5, the sixth reset transistor R6, the seventh reset transistor R7, the eighth reset transistor R8, and the ninth reset transistor R9, please refer to FIG. The corresponding description in the embodiment shown in 3 will not be repeated here.
  • the shift register unit 10 may also be implemented as the circuit structure shown in FIG. 11. Only the differences between the shift register unit 10 shown in FIG. 11 and the shift register unit 10 shown in FIG. 10 are described below, and the similarities are not repeated here.
  • the shift register unit 10 may further include a thirteenth reset transistor R13, a fourteenth reset transistor R14, a fifteenth reset transistor R15, a sixteenth reset transistor R16, a seventeenth reset transistor R17, and Eighteenth reset transistor R18.
  • the gate and the first pole of the sixth control transistor E6 are configured to receive the fifth voltage VDD_A
  • the gate and the first pole of the eighth control transistor E8 are configured to receive the sixth voltage VDD_B.
  • the fifth voltage VDD_A and the sixth voltage VDD_B may be configured to be mutually inverted signals, that is, when the fifth voltage VDD_A is at a high level, the sixth voltage VDD_B is When the fifth voltage VDD_A is low, the sixth voltage VDD_B is high.
  • the sixth control transistor E6 and the eighth control transistor E8 can be turned on at the same time, so that performance drift caused by the long-term conduction of the transistors can be avoided, and the stability of the circuit can be improved.
  • the shift register unit 10 includes a first sub-circuit 100, a second sub-circuit 200, a third sub-circuit 500, and a fourth sub-circuit. Circuit 600.
  • the third sub-circuit 500 and the fourth sub-circuit 600 share the same blanking input sub-circuit.
  • the third sub-circuit 500, the fourth sub-circuit 600 and the shared blanking input sub-circuit include a leakage prevention transistor A2_b, and input transistors B2_b, B3_b , B4_b, B5_b, B6_b, transfer transistor T1_b, T2_b, T3_b, control transistor E1_b, E2_b, E3_b, E4_b, E5_b, E6_b, E7_b, E8_b, E9_b, reset transistor R1_b, R3_b, R4_b, R4_b , R11_b, R12_b, output transistors D1_b, D2_b, D3_b, capacitors C1_b, C2_b, C3_b, and also set nodes Q3, Q4, QB_C, QB_D, H_b, N_b,
  • the third sub-circuit 500 is configured to receive the input signal STU3, the display reset signal STD2, the clock signals CLKB_b, CLKC_b, and to provide output signals through the output terminals CRT_b and OP3
  • the fourth sub-circuit 600 is configured to receive the input signal STU3,
  • the reset signal STD2 and the clock signal CLKD_b are displayed, and the output signal is provided through the output terminal OP4.
  • the blanking input sub-circuit common to the third sub-circuit 500 and the fourth sub-circuit 600 is configured to receive the input signal STU4.
  • the first sub-circuit 100, the second sub-circuit 200, the third sub-circuit 500, and the fourth sub-circuit 600 are all connected to the anti-leakage node OF, that is, the four sub-circuits share one anti-leakage node OF.
  • the first sub-circuit 100 and the second sub-circuit 200 share the same blanking input sub-circuit
  • the third sub-circuit 500 and the fourth sub-circuit 600 share the same blanking input sub-circuit, thereby saving the number of transistors and simplifying the circuit.
  • the structure reduces the frame size of the display device using the shift register unit, which is more conducive to improving the PPI of the display device.
  • the shift register unit 10 may also be implemented as the circuit structure shown in FIG. 13. Only the differences between the shift register unit 10 shown in FIG. 13 and the shift register unit 10 shown in FIG. 12 will be described below, and the similarities will not be repeated here.
  • the first sub-circuit 100, the second sub-circuit 200, the third sub-circuit 500, and the fourth sub-circuit 600 in the shift register unit 10 are all connected to the leakage prevention node OF, that is, the four sub-circuits share the same An anti-leakage node OF.
  • the first sub-circuit 100, the second sub-circuit 200, the third sub-circuit 500, and the fourth sub-circuit 600 also share the same blanking input sub-circuit, which can further reduce the number of transistors, simplify the circuit structure, and reduce the use of The frame size of the display device of the shift register unit is more conducive to improving the PPI of the display device.
  • the first capacitor C1 can be used to maintain the potential at the third node H
  • the second capacitor C2 can be used to maintain the potential at the first node Q1.
  • the third capacitor C3 maintains the potential at the second node Q2.
  • the first capacitor C1, the second capacitor C2, and the third capacitor C3 can be capacitive devices manufactured by a process, for example, a capacitor device can be realized by manufacturing a special capacitor electrode, and each electrode of the capacitor can pass through a metal layer, a semiconductor layer (for example, Doped polysilicon), etc., or in some examples, by designing circuit wiring parameters so that the first capacitor C1, the second capacitor C2, and the third capacitor C3 can also be realized by the parasitic capacitances between the various devices.
  • a capacitor device can be realized by manufacturing a special capacitor electrode, and each electrode of the capacitor can pass through a metal layer, a semiconductor layer (for example, Doped polysilicon), etc., or in some examples, by designing circuit wiring parameters so that the first capacitor C1, the second capacitor C2, and the third capacitor C3 can also be realized by the parasitic capacitances between the various devices.
  • connection mode of the first capacitor C1, the second capacitor C2, and the third capacitor C3 is not limited to the above described mode, and may also be other applicable connection modes, as long as the storage and writing to the third node H, the first node Q1 and The level of the second node Q2 is sufficient.
  • an embodiment of the present disclosure also provides a gate driving circuit 20.
  • the gate driving circuit 20 includes a plurality of cascaded shift register units 10, of which any one or more shift register units 10 may adopt the structure or modification of the shift register unit 10 provided by the embodiment of the present disclosure.
  • the shift register unit 10 shown in FIG. 11 may be adopted.
  • A1, A2, A3, A4, A5, and A6 in FIG. 14 represent sub-circuits in the shift register unit 10.
  • A1, A3, and A5 represent the first sub-circuits in the three shift register units 10, A2, A4 and A6 respectively represent the second sub-circuit in the three shift register units 10.
  • each shift register unit 10 includes a first sub-circuit and a second sub-circuit to output the first output signal OUT1 and the second output signal OUT2, respectively.
  • the gate driving circuit 20 is used to drive a display panel
  • the first output signal OUT1 and the second output signal OUT2 can respectively drive a row of sub-pixel units in the display panel.
  • A1, A2, A3, A4, A5, and A6 can drive the first row, second row, third row, fourth row, fifth row, and sixth row sub-pixel units of the display panel, respectively.
  • the gate driving circuit 20 provided by the embodiment of the present disclosure can share the blanking input sub-circuit, so that the frame size of the display device using the gate driving circuit can be reduced, and the PPI of the display device can be improved. At the same time, random compensation can be implemented, so that poor display problems such as scan lines and uneven display brightness caused by line-by-line sequential compensation can be avoided.
  • the gate driving circuit 20 includes a first sub-clock signal line CLK_1, a second sub-clock signal line CLK_2, and a third sub-clock signal line CLK_3.
  • the first sub-circuit in the 3n-2 stage shift register unit is connected to the first sub-clock signal line CLK_1 to receive the second clock signal CLKB of the 3n-2 stage shift register unit; the 3n-1 stage shift register
  • the first sub-circuit and the second sub-clock signal line CLK_2 in the unit are connected to receive the second clock signal CLKB of the 3n-1 stage shift register unit; the first sub-circuit and the third sub-circuit in the 3n stage shift register unit
  • the sub-clock signal line CLK_3 is connected to receive the second clock signal CLKB of the 3n-th stage shift register unit; n is an integer greater than zero.
  • the shift register unit 10 when the shift register unit 10 is cascaded, it is only necessary to sequentially provide the second clock signal CLKB to the first sub-circuit in each stage of the shift register unit 10, and the second clock signal CLKB can be used as The shift signal CR is output to complete the scan shift.
  • the gate driving circuit 20 further includes a fourth sub-clock signal line CLK_4, a fifth sub-clock signal line CLK_5, a sixth sub-clock signal line CLK_6, a seventh sub-clock signal line CLK_7, and an eighth sub-clock signal line.
  • the first sub-circuit and the fourth sub-clock signal line CLK_4 in the 3n-2th stage shift register unit are connected to receive the third clock signal CLKC of the 3n-2th stage shift register unit, and the 3n-2th stage shift register
  • the second sub-circuit in the unit and the fifth sub-clock signal line CLK_5 are connected to receive the fourth clock signal CLKD of the 3n-2th stage shift register unit.
  • the first sub-circuit and the sixth sub-clock signal line CLK_6 in the 3n-1 stage shift register unit are connected to receive the third clock signal CLKC of the 3n-1 stage shift register unit, and the 3n-1 stage shift register
  • the second sub-circuit in the unit is connected to the seventh sub-clock signal line CLK_7 to receive the fourth clock signal CLKD of the 3n-1 stage shift register unit.
  • the first sub-circuit and the eighth sub-clock signal line CLK_8 in the 3n-th stage shift register unit are connected to receive the third clock signal CLKC of the 3n-th stage shift register unit, and the second sub-circuit in the 3n-th stage shift register unit
  • the circuit is connected to the ninth sub-clock signal line CLK_9 to receive the fourth clock signal CLKD of the 3n-th stage shift register unit.
  • the gate drive circuit 20 provided by the embodiment of the present disclosure can use a 6CLK clock signal, which can make the waveforms of the drive signal output by the gate drive circuit 20 overlap, for example, can increase the precharge time of each row of sub-pixel units , So that the gate drive circuit can be applied to high-frequency scanning display.
  • the embodiment of the present disclosure does not limit the type of clock signal used. For example, clock signals such as 8CLK and 10CLK may also be used.
  • the gate driving circuit 20 further includes a tenth sub-clock signal line CLK_10, an eleventh sub-clock signal line CLK_11, and a twelfth sub-clock signal line CLK_12.
  • the first sub-circuit and the second sub-circuit in each stage of the shift register unit 10 are connected to the tenth sub-clock signal line CLK_10 to receive the global reset signal TRST.
  • the selection input circuit 310 in each stage of the shift register unit 10 is connected to the eleventh sub-clock signal line CLK_11 to receive the selection control signal OE.
  • the first sub-circuit, the second sub-circuit, and the third input circuit 320 in each stage of the shift register unit 10 are connected to the twelfth sub-clock signal line CLK_12 to receive the first clock signal CLKA.
  • the gate driving circuit 20 further includes a thirteenth sub-clock signal line CLK_13 and a fourteenth sub-clock signal line CLK_14.
  • the first sub-circuit in each stage of shift register unit 10 is connected to the thirteenth sub-clock signal line CLK_13 to receive the third voltage VDD_A; the second sub-circuit in each stage of shift register unit 10 is connected to The fourteenth sub-clock signal line CLK_14 is connected to receive the fourth voltage VDD_B.
  • the gate driving circuit 20 further includes a fifteenth sub-clock signal line CLK_15, a first sub-circuit and a second sub-circuit in the first-stage shift register unit 10, and a fifteenth sub-clock signal line CLK_15 Connect to receive the first input signal STU1.
  • the first sub-circuit and the second sub-circuit in the shift register unit 10 of the other stage and the first sub-circuit in the shift register unit 10 of the previous stage are Connect to receive the shift signal CR as the first input signal STU1. Except for the last two stages of the shift register unit 10, the first sub-circuit and the second sub-circuit in the other stages of the shift register unit 10 and the first sub-circuit in the latter two stages of the shift register unit 10 are connected to receive shift signals CR and as the display reset signal STD.
  • cascade relationship shown in FIG. 14 is only an example. According to the description of the present disclosure, other cascade manners may also be adopted according to actual conditions.
  • the shift register unit 10 in the gate driving circuit 20 shown in FIG. 14 may adopt the circuit structure shown in FIG. 11, and FIG. 15 shows the gate driving circuit 20 shown in FIG. Signal timing diagram at work.
  • H ⁇ 5> represents the third node H in the third-stage shift register unit 10
  • the third-stage shift register unit 10 corresponds to the fifth and sixth rows of sub-pixel units in the display panel.
  • N ⁇ 5> represents the fourth node N in the third stage shift register unit 10.
  • Q1 ⁇ 1> and Q2 ⁇ 2> respectively represent the first node Q1 and the second node Q2 in the first stage shift register unit 10;
  • Q1 ⁇ 5> and Q2 ⁇ 6> respectively represent the third stage shift register unit 10 In the first node Q1 and the second node Q2.
  • the number in parentheses indicates the number of rows of sub-pixel units in the display panel corresponding to the node, and the following embodiments are the same, and will not be repeated.
  • OUT1 ⁇ 1> and OUT2 ⁇ 2> respectively represent the first output signal OUT1 and the second output signal OUT2 output by the shift register unit 10 of the first stage.
  • OUT1 ⁇ 3> and OUT2 ⁇ 4> respectively represent the first output signal OUT1 and the second output signal OUT2 output by the second stage shift register unit 10;
  • OUT1 ⁇ 5> and OUT2 ⁇ 6> respectively represent the third stage The first output signal OUT1 and the second output signal OUT2 output by the shift register unit 10.
  • CR ⁇ 1>, CR ⁇ 3>, and CR ⁇ 5> represent the shift signals CR output by the first-stage, second-stage, and third-stage shift register units 10, respectively.
  • CR ⁇ 1> is the same as OUT1 ⁇ 1>
  • CR ⁇ 3> is the same as OUT1 ⁇ 3>
  • CR ⁇ 5> is the same as OUT1 ⁇ 5>.
  • 1F represents the first frame
  • DS represents the display period in the first frame
  • BL represents the blanking period in the first frame.
  • the fifth voltage VDD_A is at a low level
  • the sixth voltage VDD_B is at a high level as an example for illustration, but the embodiment of the present disclosure is not limited to this.
  • the signal level in the signal timing diagram shown in FIG. 15 is only schematic and does not represent a true level value.
  • the tenth sub-clock signal line CLK_10 and the eleventh sub-clock signal line CLK_11 provide a high level.
  • the seventh reset transistor R7 and the eighth reset transistor R8 in each stage of the shift register unit 10 And the ninth reset transistor R9 is turned on, so that the first node Q1 and the second node Q2 in each stage of the shift register unit 10 can be reset; the fourth input transistor B4 in each stage of the shift register unit 10 and The fifth input transistor B5 is turned on. Since the second input signal STU2 received at this time is low, the third node H in each stage of the shift register unit 10 can be reset, so as to start in the first frame 1F Realize global reset before.
  • the working process of the third-stage shift register unit 10 (that is, the sub-pixel units corresponding to the fifth and sixth rows of the display panel) is described as follows.
  • the shift signal CR ⁇ 3> output by the first sub-circuit in the second stage shift register unit 10 is high, that is, the first input signal received by the third stage shift register unit 10 STU1 is high, so the first input transistor B1, the second input transistor B2, and the third input transistor B3 are turned on.
  • the high-level first input signal STU1 charges the first node Q1 ⁇ 5> through the first input transistor B1 and the second input transistor B2, thereby pulling up the first node Q1 ⁇ 5> to a high level;
  • the first input signal STU1 can also charge the second node Q2 ⁇ 6> through the first input transistor B1 and the third input transistor B3, thereby pulling the second node Q2 ⁇ 6> to a high level.
  • the second output transistor D2 is turned on under the control of the first node Q1 ⁇ 5>, but because the third clock signal CLKC provided by the eighth sub-clock signal line CLK_8 is low at this time, the third-stage shift register unit 10
  • the first output signal OUT1 ⁇ 5> output is low
  • the third output transistor D3 is turned on under the control of the second node Q2 ⁇ 6>, but at this time, because the fourth sub-clock signal line CLK_9 provides the fourth The clock signal CLKD is low, so the second output signal OUT2 ⁇ 6> output by the third-stage shift register unit 10 is low; at this stage, the first output signal in the third-stage shift register unit 10
  • the third clock signal CLKC provided by the eighth sub-clock signal line CLK_8 becomes a high level, and the potential of the first node Q1 ⁇ 5> is further pulled up due to the bootstrap effect, so the second output The transistor D2 is kept on, so that the first output signal OUT1 ⁇ 5> output by the third-stage shift register unit 10 becomes a high level.
  • the fourth clock signal CLKD provided by the ninth sub-clock signal line CLK_9 is still at a low level at this time, the second output signal OUT2 ⁇ 6> output by the third-stage shift register unit 10 continues to be at a low level.
  • the fourth clock signal CLKD provided by the ninth sub-clock signal line CLK_9 becomes a high level
  • the potential of the second node Q2 ⁇ 6> is further pulled up due to the bootstrap effect
  • the third output transistor D3 remains on, so that the second output signal OUT2 ⁇ 6> output by the third-stage shift register unit 10 becomes a high level.
  • the first node Q1 ⁇ 5> still maintains a high level, so the second output transistor D2 is turned on.
  • the third clock signal CLKC provided by the eighth sub-clock signal line CLK_8 becomes a low level
  • the first output signal OUT1 ⁇ 5> output by the third-stage shift register unit 10 becomes a low level.
  • the potential of the first node Q1 ⁇ 5> will also drop.
  • the second node Q2 ⁇ 6> still maintains a high level, so the third output transistor D3 is turned on.
  • the fourth clock signal CLKD provided by the ninth sub-clock signal line CLK_9 becomes a low level
  • the second output signal OUT2 ⁇ 6> output by the third-stage shift register unit 10 becomes a low level.
  • the potential of the second node Q2 ⁇ 6> will also drop.
  • the output signal of each three-stage shift register unit 10 (each stage outputs the first output signal OUT1 and the second output signal OUT2 in turn) is a cycle, and because The third-stage shift register unit 10 receives the shift signal CR output by the fifth-stage shift register unit 10 as the display reset signal STD, so at this stage when the third clock signal CLKC provided by the sixth sub-clock signal line CLK_6 becomes At high level, the display reset signal STD received by the third-stage shift register unit 10 is also at high level, so that the fourth reset transistor R4, the fifth reset transistor R5, and the sixth reset transistor R6 are turned on, so that the low
  • the third voltage VGL1 of the same level completes the pull-down reset of the first node Q1 ⁇ 5> and the second node Q2 ⁇ 6>.
  • the third-stage shift register unit 10 drives the sub-pixels in the fifth and sixth rows of the display panel to complete the display, and so on, the fourth-stage and fifth-stage shift register units 10 drive the sub-pixels in the display panel row by row.
  • the unit completes one frame of display drive. So far, the display period of the first frame ends.
  • the third node H is also charged in the display period DS of the first frame 1F.
  • the display period DS of the first frame 1F also proceed as follows.
  • the eleventh sub-clock signal line CLK_11 provides the same signal as the shift signal CR ⁇ 5> output by the third stage shift register unit 10, so the fourth input transistor B4 And the fifth input transistor B5 is turned on.
  • the second input signal STU2 received by the third-stage shift register unit 10 can be the same as the shift signal CR ⁇ 5>, so that the high-level second input signal STU2 can charge the third node H ⁇ 5> to charge The third node H ⁇ 5> is pulled up to a high level.
  • the foregoing charging process for the third node H ⁇ 5> is only an example, and the embodiments of the present disclosure include but are not limited to this.
  • the second input signal STU2 received by the third-stage shift register unit 10 may also be the same as the shift signal CR output by the other-stage shift register unit 10, and at the same time, the sum of the signal provided to the eleventh sub-clock signal line CLK_11
  • the signal timing of the second input signal STU2 may be the same.
  • the high potential of the third node H ⁇ 5> can be maintained until the blanking period BL of the first frame 1F.
  • the following operations are performed in the blanking period BL of the first frame 1F.
  • the first clock signal CLKA provided by the twelfth sub-clock signal line CLK_12 is at a high level. Since the third node H ⁇ 5> maintains a high level at this stage, the sixth input transistor B6 is turned on ON, the high-level first clock signal CLKA is transmitted to the fourth node N ⁇ 5> through the sixth input transistor B6, so that the fourth node N ⁇ 5> becomes a high level.
  • the first transfer transistor T1, the second transfer transistor T2, and the third transfer transistor T3 are turned on under the control of the high-level first clock signal CLKA, so the high-level first clock signal CLKA can be connected to the first node Q1. ⁇ 5> and the second node Q2 ⁇ 6> are charged, and the levels of the first node Q1 ⁇ 5> and the second node Q2 ⁇ 6> are pulled up.
  • the third node H ⁇ 5> will be coupled and pulled up, so that The third node H ⁇ 5> can be maintained at a higher high potential to ensure that the sixth input transistor B6 is completely turned on.
  • the first clock signal CLKA provided by the twelfth sub-clock signal line CLK_12 changes from a high level to a low level, so that the fourth node N ⁇ 5> becomes a low level. Due to the coupling effect of the first capacitor C1, The potential of the third node H ⁇ 5> will also drop.
  • the third clock signal CLKC provided by the eighth sub-clock signal line CLK_8 becomes a high level, and the potential of the first node Q1 ⁇ 5> is further pulled up due to the bootstrap effect, so the second output The transistor D2 is kept on, so that the first output signal OUT1 ⁇ 5> output by the third-stage shift register unit 10 becomes a high level.
  • the fourth clock signal CLKD provided by the ninth sub-clock signal line CLK_9 is still low at this time, the second output signal OUT2 ⁇ 6> output by the third-stage shift register unit 10 is low.
  • the first output signal OUT1 ⁇ 5> output in the eighth stage 8 can be used to drive the sensing transistors in the sub-pixel units in the display panel to achieve external compensation.
  • the first node Q1 ⁇ 5> still maintains a high level, so the second output transistor D2 is turned on.
  • the third clock signal CLKC provided by the eighth sub-clock signal line CLK_8 becomes a low level
  • the first output signal OUT1 ⁇ 5> output by the third-stage shift register unit 10 becomes a low level.
  • the potential of the first node Q1 ⁇ 5> will also drop.
  • the tenth sub-clock signal line CLK_10 and the eleventh sub-clock signal line CLK_11 provide a high level, and the seventh reset transistor R7, the eighth reset transistor R8, and the The ninth reset transistor R9 is turned on, so that the first node Q1 and the second node Q2 in each stage of shift register unit 10 can be reset; the fourth input transistor B4 and the second node in each stage of shift register unit 10 can be reset.
  • the five-input transistor B5 is turned on. Since the second input signal STU2 received at this time is low, the third node H in each stage of the shift register unit 10 can be reset, thereby completing the global reset.
  • the blanking period of the first frame is used to output driving signals corresponding to the fifth row of sub-pixel units of the display panel as an example. limited. For example, when it is necessary to output the driving signal corresponding to the sub-pixel unit of the nth row of the display panel during the blanking period of a certain frame, the corresponding third node H needs to be pulled up high in the display period DS of the frame.
  • a high-level first clock signal CLKA is provided to raise the potential of the first node Q1 or the second node Q2, and then when a high-level drive signal needs to be output , Provide a high-level third clock signal CLKC or a fourth clock signal CLKD, n is an integer greater than zero.
  • the same timing of two signals refers to time synchronization at a high level, and the amplitude of the two signals is not required to be the same.
  • Some embodiments of the present disclosure also provide a gate driving circuit 20, as shown in FIG. 16, which is a signal timing diagram corresponding to the gate driving circuit 20 shown in FIG. The difference between the gate driving circuit 20 shown in FIG. 16 and the gate driving circuit 20 shown in FIG. 14 will be described below.
  • the gate driving circuit 20 uses a clock signal of 10CLK, the fourth sub-clock signal line CLK_4, the fifth sub-clock signal line CLK_5, the sixth sub-clock signal line CLK_6, Seventh sub-clock signal line CLK_7, eighth sub-clock signal line CLK_8, ninth sub-clock signal line CLK_9, fifteenth sub-clock signal line CLK_15, sixteenth sub-clock signal line CLK_16, seventeenth sub-clock signal line CLK_17 A total of ten clock signal lines and the eighteenth sub-clock signal line CLK_18 provide drive signals output row by row to the shift register units 10 of each stage.
  • the clock signal of 10CLK is used to further increase the precharge time of each row of sub-pixel units, so that the gate driving circuit can be applied to higher frequency scanning display.
  • the other stages of shift register units 10 are connected to the first sub-circuits in the first two stages of shift register units 10 to receive the shift
  • the bit signal CR is used as the first input signal STU1.
  • the other-stage shift register unit 10 and the first sub-circuit in the last four-stage shift register unit 10 are connected to receive the shift signal CR as a display reset signal STD.
  • the tenth sub-clock signal line CLK_10 is connected to the first sub-circuit and the second sub-circuit (ie, A1, A2, A3, and A4) in the first two stages of shift register unit 10 to provide a first input signal STU1, and the tenth sub-clock signal line CLK_10 is also connected to the shift register unit 10 of other stages to provide a global reset signal TRST.
  • the number of clock signal lines can be saved, so that the frame size of the display device using the gate driving circuit can be reduced, and the PPI of the display device can be improved.
  • the first output signal OUT1 ⁇ 11> can be used to drive the eleventh row of sub-pixel units to complete external compensation.
  • OF ⁇ 11> represents the leakage prevention node OF in the shift register unit 10 of the sixth stage
  • OF ⁇ 13> represents the leakage prevention node OF in the seventh stage shift register unit 10.
  • the clock signal adopts the clock signal of 10CLK, and the high level of adjacent clock signals overlaps 75% of the time, so that, for example, the high voltage of the first output signal OUT1 ⁇ 11> Ping is only valid for the last 25% of the time, that is, as long as the first node Q1 ⁇ 11> is bootstrapped for the second time and remains at the high level for the last 25% of the time to ensure that no leakage occurs, that is, It is necessary to ensure that the level of the leakage prevention node OF is high during the 25% of the time.
  • the sixth-stage shift register unit, the seventh-stage shift register unit, and the eighth-stage shift register unit can all be the same as the leakage-proof in the seventh-stage shift register unit.
  • Node OF ⁇ 13> is connected.
  • the leakage-proof node OF ⁇ 13> remains high, it can make Q1 ⁇ 11>, Q2 ⁇ 12>, Q1 ⁇ 13>, Q2 ⁇ 14>, Q1 ⁇ 15> , Q2 ⁇ 16> will not leak during the last 25% of the time when Q2 ⁇ 16> is maintained at a high level after being booted twice, thereby avoiding output abnormalities and avoiding the use of the shift register unit as the display panel of the gate drive circuit Display failure occurred.
  • at most six sub-circuits in the shift register unit can share one leakage prevention node OF.
  • FIG. 18 shows a signal simulation diagram of the third node H ⁇ 11>, the fourth node N ⁇ 11>, and the first output signal OUT1 ⁇ 11> shown in FIG. 17.
  • the display device 1 includes the gate driving circuit 20 provided by the embodiments of the present disclosure and a plurality of sub-pixel units 510 arranged in an array.
  • the display device 1 further includes a display panel 50, and a pixel array composed of a plurality of sub-pixel units 510 is arranged in the display panel 50.
  • the first output signal OUT1 and the second output signal OUT2 output by each shift register unit 10 in the gate driving circuit 20 are respectively provided to the sub-pixel units 510 in different rows.
  • the gate driving circuit 20 connects with each other through the gate line GL.
  • the sub-pixel unit 510 is electrically connected.
  • the gate driving circuit 20 is used to provide a driving signal to the pixel array.
  • the driving signal can drive the scan transistor and the sensing transistor in the sub-pixel unit 510.
  • the display device 1 may further include a data driving circuit 30 for providing data signals to the pixel array.
  • the data driving circuit 30 is electrically connected to the sub-pixel unit 510 through the data line DL.
  • the display device 1 in this embodiment can be: liquid crystal panel, liquid crystal TV, display, OLED panel, OLED TV, electronic paper display device, mobile phone, tablet computer, notebook computer, digital photo frame, navigator, etc. Products or parts with display functions.
  • Some embodiments of the present disclosure also provide a driving method, which can be used to drive the shift register unit 10 provided by the embodiment of the present disclosure.
  • a plurality of the shift register units 10 can be cascaded to construct the gate provided by an embodiment of the present disclosure.
  • a pole driving circuit which is used to drive the display panel to display at least one frame.
  • the driving method includes: the leakage prevention circuit 400 controls the level of the leakage prevention node OF under the control of the level of the first node Q1, so that the circuit connected between the first node Q1 and the leakage prevention node OF is cut off, And the circuit connected between the second node Q2 and the leakage prevention node OF is turned off.

Abstract

一种移位寄存器单元(10)、栅极驱动电路(20)、显示装置(1)及驱动方法。移位寄存器单元(10)包括第一子电路(100)、第二子电路(200)和防漏电电路(400)。第一子电路(100)包括第一输入电路(110)和第一输出电路(120),第一输入电路(110)被配置为响应于第一输入信号(STU1)对第一节点(Q1)的电平进行控制;第二子电路(200)包括第二输入电路(210)和第二输出电路(220);防漏电电路(400)和第一节点(Q1)连接,且被配置为在第一节点(Q1)的电平的控制下对防漏电节点(OF)的电平进行控制,以使得连接于第一节点(Q1)和防漏电节点(OF)之间的电路截止,且使得连接于第二节点(Q2)和防漏电节点(OF)之间的电路截止。移位寄存器单元(10)可以避免第一节点(Q1)和第二节点(Q2)发生漏电,同时还可以简化电路结构,从而减小采用移位寄存器单元(10)的显示装置(1)的边框尺寸。

Description

移位寄存器单元、栅极驱动电路、显示装置及驱动方法
本申请要求于2019年1月18日递交的中国专利申请第201910048927.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种移位寄存器单元、栅极驱动电路、显示装置及驱动方法。
背景技术
在显示领域特别是OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板中,栅极驱动电路目前一般集成在栅极驱动芯片(GATE IC)中。集成电路(IC)设计中,芯片的面积是影响芯片成本的主要因素,如何有效地降低芯片面积是技术开发人员需要着重考虑的。
发明内容
本公开至少一实施例提供一种移位寄存器单元,包括第一子电路、第二子电路和防漏电电路。所述第一子电路包括第一输入电路和第一输出电路,所述第一输入电路被配置为响应于第一输入信号对第一节点的电平进行控制,所述第一输出电路被配置为在所述第一节点的电平的控制下输出移位信号和第一输出信号;所述第二子电路包括第二输入电路和第二输出电路,所述第二输入电路被配置为在所述第一输入电路对所述第一节点的电平进行控制的同时,响应于所述第一输入信号对第二节点的电平进行控制,所述第二输出电路被配置为在所述第二节点的电平的控制下输出第二输出信号;所述防漏电电路和所述第一节点连接,且被配置为在所述第一节点的电平的控制下对防漏电节点的电平进行控制,以使得连接于所述第一节点和所述防漏电节点之间的电路截止,且使得连接于所述第二节点和所述防漏电节点之间的电路截止。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一输入电 路和所述第一节点以及所述防漏电节点连接,且还被配置为响应于所述第一输入信号对所述防漏电节点的电平进行控制;所述第二输入电路和所述第二节点以及所述防漏电节点连接,且被配置为响应于所述第一输入信号将所述防漏电节点的电平传输至所述第二节点。
例如,在本公开一些实施例提供的移位寄存器单元中,所述防漏电电路包括第一防漏电晶体管,所述第一输入电路包括第一输入晶体管和第二输入晶体管,所述第二输入电路包括第三输入晶体管;所述第一防漏电晶体管的栅极和所述第一节点连接,所述第一防漏电晶体管的第一极被配置为接收第一电压,所述第一防漏电晶体管的第二极和所述防漏电节点连接;所述第一输入晶体管的栅极以及第一极被配置为接收所述第一输入信号,所述第一输入晶体管的第二极和所述防漏电节点连接;所述第二输入晶体管的栅极被配置为接收所述第一输入信号,所述第二输入晶体管的第一极和所述防漏电节点连接,所述第二输入晶体管的第二极和所述第一节点连接;所述第三输入晶体管的栅极被配置为接收所述第一输入信号,所述第三输入晶体管的第一极和所述防漏电节点连接,所述第三输入晶体管的第二极和所述第二节点连接。
例如,本公开一些实施例提供的移位寄存器单元还包括消隐输入子电路。所述消隐输入子电路和所述第一节点以及所述第二节点连接,且被配置为接收选择控制信号并对所述第一节点的电平和所述第二节点的电平进行控制。
例如,在本公开一些实施例提供的移位寄存器单元中,所述消隐输入子电路包括选择控制电路、第三输入电路、第一传输电路和第二传输电路。所述选择控制电路被配置为响应于所述选择控制信号利用第二输入信号对第三节点的电平进行控制,并保持所述第三节点的电平;所述第三输入电路被配置为在所述第三节点的电平的控制下将第一时钟信号传输至第四节点;所述第一传输电路和所述第一节点、所述第四节点以及所述防漏电节点电连接,且被配置为响应于第一时钟信号对所述第一节点的电平以及所述防漏电节点的电平进行控制;所述第二传输电路和所述第二节点以及所述防漏电节点连接,且被配置为响应于所述第一时钟信号将所述防漏电节点的电平传输至所述第二节点。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一传输电路包括第一传输晶体管和第二传输晶体管,所述第二传输电路包括第三传输 晶体管。所述第一传输晶体管的栅极被配置为接收所述第一时钟信号,所述第一传输晶体管的第一极和所述第四节点连接,所述第一传输晶体管的第二极和所述防漏电节点连接;所述第二传输晶体管的栅极被配置为接收所述第一时钟信号,所述第二传输晶体管的第一极和所述防漏电节点连接,所述第二传输晶体管的第二极和所述第一节点连接;所述第三传输晶体管的栅极被配置为接收所述第一时钟信号,所述第三传输晶体管的第一极和所述防漏电节点连接,所述第三传输晶体管的第二极和所述第二节点连接。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一子电路还包括第一控制电路、第一复位电路、第二复位电路、移位信号输出端以及第一输出信号端;所述第二子电路还包括第二控制电路、第三复位电路、第四复位电路以及第二输出信号端。所述移位信号输出端被配置为输出所述移位信号,所述第一输出信号端被配置为输出所述第一输出信号;所述第二输出信号端被配置为输出所述第二输出信号;所述第一控制电路被配置为在所述第一节点的电平和第二电压的控制下,对第五节点的电平进行控制;所述第一复位电路和所述第一节点以及所述防漏电节点连接,且被配置为在所述第五节点的电平的控制下,对所述第一节点以及所述防漏电节点进行复位;所述第二复位电路被配置为在第五节点的电平的控制下,对所述移位信号输出端和所述第一输出信号端进行复位;所述第二控制电路被配置为在所述第二节点的电平和所述第二电压的控制下,对第六节点的电平进行控制;所述第三复位电路和所述第二节点以及所述防漏电节点连接,且被配置为在所述第六节点的电平的控制下,将所述防漏电节点的电平传输至所述第二节点;所述第四复位电路被配置为在第六节点的电平的控制下,对所述第二输出信号端进行复位。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一复位电路包括第一复位晶体管和第二复位晶体管,所述第三复位电路包括第三复位晶体管。所述第一复位晶体管的栅极和所述第五节点连接,所述第一复位晶体管的第一极和所述第一节点连接,所述第一复位晶体管的第二极和所述防漏电节点连接;所述第二复位晶体管的栅极和所述第五节点连接,所述第二复位晶体管的第一极和所述防漏电节点连接,所述第二复位晶体管的第二极被配置为接收第三电压;所述第三复位晶体管的栅极和所述第六节点连接,所述第三复位晶体管的第一极和所述第二节点连接,所述第三复位晶体管的 第二极和所述防漏电节点连接。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一子电路还包括第三控制电路、第四控制电路和公共控制电路,所述第二子电路还包括第五控制电路和第六控制电路。所述第三控制电路和所述第五节点以及公共控制节点连接,且被配置为响应于所述第一时钟信号使得所述第五节点和所述公共控制节点电连接,所述公共控制电路和所述公共控制节点以及所述第三节点电连接,且被配置为在所述第三节点的电平的控制下对所述公共控制节点的电平进行控制,所述第四控制电路被配置为响应于所述第一输入信号对所述第五节点的电平进行控制;所述第五控制电路和所述第六节点以及所述公共控制节点连接,且被配置为响应于所述第一时钟信号使得所述第六节点和所述公共控制节点电连接,所述第六控制电路被配置为响应于所述第一输入信号对所述第六节点的电平进行控制。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第三控制电路包括第一控制晶体管,所述公共控制电路包括第二控制晶体管,所述第五控制电路包括第三控制晶体管。所述第一控制晶体管的栅极被配置为接收所述第一时钟信号,所述第一控制晶体管的第一极和所述第五节点连接,所述第一控制晶体管的第二极和所述公共控制节点连接;所述第二控制晶体管的栅极和所述第三节点连接,所述第二控制晶体管的第一极和所述公共控制节点连接,所述第二控制晶体管的第二极被配置为接收第三电压;所述第三控制晶体管的栅极被配置为接收所述第一时钟信号,所述第三控制晶体管的第一极和所述第六节点连接,所述第三控制晶体管的第二极和所述公共控制节点连接。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一子电路还包括第五复位电路,所述第二子电路还包括第六复位电路。所述第五复位电路和所述第一节点以及所述防漏电节点连接,且被配置为响应于显示复位信号对所述第一节点以及所述防漏电节点进行复位;所述第六复位电路和所述第二节点以及所述防漏电节点连接,且被配置为响应于所述显示复位信号将所述防漏电节点的电平传输至所述第二节点。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第五复位电路包括第四复位晶体管和第五复位晶体管,所述第六复位电路包括第六复位晶体管。所述第四复位晶体管的栅极被配置为接收所述显示复位信号,所述 第四复位晶体管的第一极和所述第一节点连接,所述第四复位晶体管的第二极和所述防漏电节点连接;所述第五复位晶体管的栅极被配置为接收所述显示复位信号,所述第五复位晶体管的第一极和所述防漏电节点连接,所述第五复位晶体管的第二极被配置为接收第三电压;所述第六复位晶体管的栅极被配置为接收所述显示复位信号,所述第六复位晶体管的第一极和所述第二节点连接,所述第六复位晶体管的第二极和所述防漏电节点连接。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一子电路还包括第七复位电路,所述第二子电路还包括第八复位电路。所述第七复位电路和所述第一节点以及所述防漏电节点连接,且被配置为响应于全局复位信号对所述第一节点和所述防漏电节点进行复位;所述第八复位电路和所述第二节点以及所述防漏电节点连接,且被配置为响应于所述全局复位信号将所述防漏电节点的电平传输至所述第二节点。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第七复位电路包括第七复位晶体管和第八复位晶体管,所述第八复位电路包括第九复位晶体管。所述第七复位晶体管的栅极被配置为接收所述全局复位信号,所述第七复位晶体管的第一极和所述第一节点连接,所述第七复位晶体管的第二极和所述防漏电节点连接;所述第八复位晶体管的栅极被配置为接收所述全局复位信号,所述第八复位晶体管的第一极和所述防漏电节点连接,所述第八复位晶体管的第二极被配置为接收第三电压;所述第九复位晶体管的栅极被配置为接收所述全局复位信号,所述第九复位晶体管的第一极和所述第二节点连接,所述第九复位晶体管的第二极和所述防漏电节点连接。
例如,本公开一些实施例提供的移位寄存器单元还包括第三子电路和第四子电路,所述第一子电路、所述第二子电路、所述第三子电路以及所述第四子电路均和所述防漏电节点连接。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一子电路和所述第二子电路共用所述消隐输入子电路。
例如,在本公开一些实施例提供的移位寄存器单元中,所述第一子电路、所述第二子电路、所述第三子电路以及所述第四子电路共用所述消隐输入子电路。
本公开至少一实施例还提供一种栅极驱动电路,包括多个级联的如本公开的实施例提供的任一移位寄存器单元。
本公开至少一实施例还提供一种显示装置,包括如本公开的实施例提供的任一栅极驱动电路。
本公开至少一实施例还提供一种移位寄存器单元的驱动方法,包括:所述防漏电电路在所述第一节点的电平的控制下对防漏电节点的电平进行控制,以使得连接于所述第一节点和所述防漏电节点之间的电路截止,且使得连接于所述第二节点和所述防漏电节点之间的电路截止。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种移位寄存器单元的示意图;
图2为本公开一些实施例提供的一种移位寄存器单元的示意图;
图3为本公开一些实施例提供的另一种移位寄存器单元的示意图;
图4为本公开一些实施例提供的再一种移位寄存器单元的示意图;
图5为本公开一些实施例提供的再一种移位寄存器单元的示意图;
图6为本公开一些实施例提供的一种消隐输入子电路的电路图;
图7A至图7D为本公开的一些实施例提供的四种消隐输入子电路的电路图;
图8为本公开一些实施例提供的再一种移位寄存器单元的示意图;
图9为本公开一些实施例提供的又一种移位寄存器单元的示意图;
图10为本公开一些实施例提供的一种移位寄存器单元的电路图;
图11为本公开一些实施例提供的另一种移位寄存器单元的电路图;
图12为本公开一些实施例提供的再一种移位寄存器单元的电路图;
图13为本公开一些实施例提供的又一种移位寄存器单元的电路图;
图14为本公开一些实施例提供的一种栅极驱动电路的示意图;
图15为本公开一些实施例提供的一种对应于图14所示的栅极驱动电路工作时的信号时序图;
图16为本公开一些实施例提供的另一种栅极驱动电路的示意图;
图17为本公开一些实施例提供的一种对应于图16所示的栅极驱动电路工作时的信号时序图;
图18为图16所示的栅极驱动电路的信号仿真图;以及
图19为本公开一些实施例提供的一种显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开的实施例中,例如,当各个电路实现为N型晶体管时,术语“上拉”表示对一个节点或一个晶体管的一个电极进行充电,以使得该节点或该电极的电平的绝对值升高,从而实现相应晶体管的操作(例如导通);“下拉”表示对一个节点或一个晶体管的一个电极进行放电,以使得该节点或该电极的电平的绝对值降低,从而实现相应晶体管的操作(例如截止)。
又例如,当各个电路实现为P型晶体管时,术语“上拉”表示对一个节点或一个晶体管的一个电极进行放电,以使得该节点或该电极的电平的绝对值降低,从而实现相应晶体管的操作(例如导通);“下拉”表示对一个节点或一个晶体管的一个电极进行充电,以使得该节点或该电极的电平的绝对值升高,从而实现相应晶体管的操作(例如截止)。
并且,术语“上拉”、“下拉”的具体含义也将根据所采用的晶体管的具体类型而相应调整,只要能实现对于晶体管的控制以实现相应的开关功能。
目前用于OLED的栅极驱动电路通常要用三个子电路组合而成,即检测电路、显示电路和输出两者复合脉冲的连接电路(或门电路),但是这样的电路结构非常复杂,无法满足显示面板的高分辨率窄边框的要求。
图1示出了一种移位寄存器单元,例如,该移位寄存器单元包括第一输入电路710、第一输出电路720、第二输入电路810以及第二输出电路820。第一输入电路710被配置为响应于第一输入信号STU1对第一节点Q1的电平进行控制,第一输出电路720被配置为在第一节点Q1的电平的控制下输出移位信号CR和第一输出信号OUT1,第二输入电路810被配置为响应于第一输入信号STU1对第二节点Q2的电平进行控制,第二输出电路820被配置为在第二节点Q2的电平的控制下输出第二输出信号OUT2。例如,当第一输入信号STU1为高电平时,可以同时对第一节点Q1和第二节点Q2进行充电。
例如,当多个如图1中所示的移位寄存器单元级联时可以构成一个栅极驱动电路,该栅极驱动电路可以用于驱动显示装置进行显示操作。例如,某一级移位寄存器单元中的第一输出电路720输出的移位信号CR可以提供至其它级移位寄存器单元以作为第一输入信号STU1,从而完成显示扫描的逐行移位。例如,某一级移位寄存器单元输出的第一输出信号OUT1和第二输出信号OUT2可以分别驱动显示面板中的相邻两行像素单元进行显示扫描。
例如,在图1所示的移位寄存器单元中,为了使得该移位寄存器单元更好地工作,还需要设置其它电路来更好地控制第一节点Q1的电平,例如,设置一个或多个和第一节点Q1连接的复位电路。例如,当该移位寄存器单元输出第一输出信号OUT1后,采用复位电路对第一节点Q1的电平进行复位。例如,该复位操作使得第一节点Q1的电平从高电平变为低电平。例如,当第一节点Q1的电平为高电平时,如果上述复位电路不能保持完全地截止,则第一节点Q1可能会通过这些复位电路中的一个或多个发生漏电,即第一节点Q1通过图1中虚线表示的第一漏电路径发生漏电,从而会导致在第一输出电路720进行输出时第一节点Q1的电平不能保持在一个较高的电平,从而可能会导致第一输出信号OUT1出现偏差,进而导致采用该移位寄存器单元作为栅极驱动电路的显示面板发生显示不良。
类似地,在图1所示的移位寄存器单元中,为了使得该移位寄存器单元更好地工作,还需要设置其它电路来更好地控制第二节点Q2的电平,例如, 设置一个或多个和第二节点Q2连接的复位电路。例如,当该移位寄存器单元输出第二输出信号OUT2后,采用复位电路对第二节点Q2的电平进行复位。例如,该复位操作使得第二节点Q2的电平从高电平变为低电平。例如,对第一节点Q1和第二节点Q2的复位操作可以同时进行以使得第一节点Q1和第二节点Q2同时被拉低至低电平。例如,当第二节点Q2的电平为高电平时,如果上述复位电路不能保持完全地截止,则第二点Q2可能会通过这些复位电路中的一个或多个发生漏电,即第二节点Q2通过图1中虚线表示的第二漏电路径发生漏电,从而会导致在第二输出电路820进行输出时第二节点Q2的电平不能保持在一个较高的电平,从而可能会导致第二输出信号OUT2出现偏差,进而导致采用该移位寄存器单元作为栅极驱动电路的显示面板发生显示不良。
需要说明的是,在本公开的一些实施例中,将和第一节点Q1连接的、可能使得第一节点Q1发生漏电的电路路径称为第一漏电路径,该第一漏电路径可能包括一个或多个电路(或子电路),例如,包括对第一节点Q1进行复位操作的复位电路等;将和第二节点Q2连接的、可能使得第二节点Q2发生漏电的电路路径称为第二漏电路径,该第二漏电路径可能包括一个或多个电路(或子电路),例如,包括对第二节点Q2进行复位操作的复位电路等,以下各实施例与此相同,不再赘述。
本公开的至少一实施例提供一种移位寄存器单元,该移位寄存器单元包括第一子电路、第二子电路和防漏电电路。第一子电路包括第一输入电路和第一输出电路,第一输入电路被配置为响应于第一输入信号对第一节点的电平进行控制,第一输出电路被配置为在第一节点的电平的控制下输出移位信号和第一输出信号;第二子电路包括第二输入电路和第二输出电路,第二输入电路被配置为响应于第一输入信号对第二节点的电平进行控制,第二输出电路被配置为在第二节点的电平的控制下输出第二输出信号;防漏电电路和第一节点连接,且被配置为在第一节点的电平的控制下对防漏电节点的电平进行控制,以使得连接于第一节点和防漏电节点之间的电路截止,且使得连接于第二节点和防漏电节点之间的电路截止。
本公开的一些实施例还提供对应于上述移位寄存器单元的栅极驱动电路、显示装置及驱动方法。
本公开的一些实施例提供的移位寄存器单元、栅极驱动电路、显示装置 及驱动方法,可以避免第一节点和第二节点发生漏电,避免采用该移位寄存器单元形成的栅极驱动电路的显示装置发生显示不良问题。同时,本公开的一些实施例还可以简化电路结构,从而可以减小采用栅极驱动电路的显示装置的边框尺寸,提高该显示装置的PPI。
下面结合附图对本公开的一些实施例及其示例进行详细说明。
本公开的至少一个实施例提供一种移位寄存器单元10,如图2所示,该移位寄存器单元10包括第一子电路100、第二子电路200和防漏电电路400,第一子电路100包括第一输入电路110和第一输出电路120,第二子电路200包括第二输入电路210和第二输出电路220。多个该移位寄存器单元10可以级联以构建本公开一实施例提供的栅极驱动电路,该栅极驱动电路可以用于显示装置,在显示装置的一帧画面的显示过程中提供扫描信号。
该第一输入电路110被配置为响应于第一输入信号STU1对第一节点Q1的电平进行控制,例如对第一节点Q1进行充电。例如,第一输入电路110可以被配置为接收第一输入信号STU1和第二电压VDD,第一输入电路110响应于第一输入信号STU1而导通,从而可以利用第二电压VDD对第一节点Q1进行充电。又例如,第一输入电路110也可以不接收第二电压VDD,直接利用第一输入信号STU1对第一节点Q1进行充电。
需要说明的是,在本公开的一些实施例中,第二电压VDD例如为高电平,以下各实施例与此相同,不再赘述。
该第一输出电路120被配置为在第一节点Q1的电平的控制下输出移位信号CR和第一输出信号OUT1。例如,第一输出电路120可以被配置为接收第二时钟信号CLKB和第三时钟信号CLKC,第一输出电路120在第一节点Q1的电平的控制下导通时,可以将第二时钟信号CLKB作为移位信号CR输出,并将第三时钟信号CLKC作为第一输出信号OUT1输出。
例如,在一帧的显示时段中,第一输出电路120输出的移位信号CR可以提供至其它移位寄存器单元10以作为第一输入信号STU1,从而完成显示扫描的逐行移位;第一输出电路120输出的第一输出信号OUT1可以驱动显示面板中的某一行子像素单元进行显示扫描。
需要说明的是,在一帧的显示时段中,第一输出电路120输出的移位信号CR和第一输出信号OUT1的信号波形可以相同,也可以不同,本公开的实施例对此不作限定。
该第二输入电路210被配置为在第一输入电路110对第一节点Q1的电平进行控制的同时,响应于第一输入信号STU1对第二节点Q2的电平进行控制,例如对第二节点Q2进行充电。例如,第二输入电路210可以被配置为接收第一输入信号STU1和第二电压VDD,该第一输入信号STU1与第一输入电路110接收的第一输入信号STU1是同一个信号,第二输入电路210响应于第一输入信号STU1而导通,从而可以利用第二电压VDD对第二节点Q2进行充电。又例如,第二输入电路210也可以不接收第二电压VDD,直接利用第一输入信号STU1对第二节点Q2进行充电。
在本公开的一些实施例提供的移位寄存器单元10中,当第一输入信号STU1为高电平时,第一输入电路110和第二输入电路210可以同时接收该第一输入信号STU1,以使得该第一输入信号STU1可以同时对第一节点Q1的电平和第二节点Q2的电平进行控制,例如同时对第一节点Q1和第二节点Q2进行充电。
第二输出电路220被配置为在第二节点Q2的电平的控制下输出第二输出信号OUT2。例如,第二输出电路220可以被配置为接收第四时钟信号CLKD,第二输出电路220在第二节点Q2的电平的控制下导通时,可以将第四时钟信号CLKD作为第二输出信号OUT2输出。
例如,在一帧的显示时段中,第二输出电路220输出的第二输出信号OUT2可以驱动显示面板中的某一行子像素单元进行显示扫描。
例如,当多个移位寄存器单元10级联构成一栅极驱动电路时,其中有些移位寄存器单元10可以和一个时钟信号线连接,从而接收由该时钟信号线提供的第一输入信号STU1;或者,有些移位寄存器单元10还可以接收其它级移位寄存器单元10输出的移位信号CR作为第一输入信号STU1。
本公开的一些实施例提供的移位寄存器10可以对多个子电路(第一子电路100和第二子电路200等)同时进行充电,只有一个子电路(例如第一子电路100)需要输出移位信号,而其它子电路(例如第二子电路200等)不需要输出移位信号,从而可以节省时钟信号线以及晶体管的数量,从而可以减小采用该移位寄存器单元10的显示装置的边框尺寸,提高该显示装置的PPI。
需要说明的是,图2仅是本公开的一种示例,本公开的实施例对移位寄存器单元10包括的子电路的数量不作限定,例如还可以包括三个、四个或更 多个子电路,子电路的数量可以根据实际情况进行设置。
如图2所示,防漏电电路400和第一节点Q1连接,且被配置为在第一节点Q1的电平的控制下对防漏电节点OF的电平进行控制,以使得连接于第一节点Q1和防漏电节点OF之间的电路截止,且使得连接于第二节点Q2和防漏电节点OF之间的电路截止。
如图2所示,在本公开的一些实施例提供的移位寄存器单元10中,例如,第一漏电路径可能是和第一节点Q1连接的复位电路,假设在不存在防漏电电路400的情形下,当第一节点Q1为高电平时,第一漏电路径中的复位电路的两端的电平分别为第一节点Q1的高电平和低电平的第三电压VGL1,该复位电路的两端的电压差较大,第一节点Q1通过该复位电路发生漏电的可能性较大。另外,当不需要该复位电路工作时,可以使得该复位电路的控制端接收低电平的第三电压VGL1。
例如,在移位寄存器单元10包括防漏电电路400的情形中,防漏电电路400可以被配置为接收高电平的第一电压VA,当第一节点Q1的电平为高电平时,防漏电电路400在第一节点Q1的电平的控制下被导通,从而可以将高电平的第一电压VA传输至防漏电节点OF,从而使得防漏电节点OF的电平变高,例如使得防漏电节点OF的电平高于第三电压VGL1。
需要说明的是,在本公开的一些实施例中,第一电压VA例如为高电平,第二电压VDD例如为高电平,第一电压VA和第二电压VDD可以相同也可以不同。第三电压VGL1例如为低电平,例如第三电压VGL1可以为负电平或零伏。以下各实施例与此相同,不再赘述。
当防漏电电路400在第一节点Q1的电平的控制下被导通后,经过上述防漏电电路400的控制,可以使得防漏电节点OF的电平高于第三电压VGL1,从而使得第一漏电路径中的电路(例如,复位电路)在防漏电节点OF的电平和第三电压VGL1的控制下被截止,由此使得连接于第一节点Q1和防漏电节点OF之间的电路截止,从而可以避免第一节点Q1通过第一漏电路径发生漏电,或漏电程度降低。
在本公开的一些实施例提供的移位寄存器单元10中,通过防漏电电路400对防漏电节点OF的电平的控制,可以避免第一节点Q1通过连接于第一节点Q1与防漏电节点OF之间的电路发生漏电,或漏电程度降低。
类似地,如图2所示,在本公开的实施例提供的移位寄存器单元10中, 例如,第二漏电路径可能是和第二节点Q2连接的复位电路,假设在不存在防漏电电路400的情形下,当第二节点Q2为高电平时,第二漏电路径中的复位电路的两端的电平分别为第二节点Q2的高电平和低电平的第三电压VGL1,该复位电路的两端的电压差较大,第二节点Q2通过该复位电路发生漏电的可能性较大。另外,当不需要该复位电路工作时,可以使得该复位电路的控制端接收低电平的第三电压VGL1。
例如,在移位寄存器单元10包括防漏电电路400的情形中,防漏电电路400可以被配置为接收高电平的第一电压VA,由于第一输入信号STU1同时对第一节点Q1和第二节点Q2进行充电,所以当第二节点Q2为高电平时,第一节点Q1也为高电平,防漏电电路400在第一节点Q1的电平的控制下被导通,从而可以将高电平的第一电压VA传输至防漏电节点OF,从而使得防漏电节点OF的电平变高,例如使得防漏电节点OF的电平高于第三电压VGL1。
经过上述防漏电电路400的控制,就可以使得防漏电节点OF的电平高于第三电压VGL1,从而使得第二漏电路径中的电路(例如,复位电路)在防漏电节点OF的电平和第三电压VGL1的控制下被截止,由此使得连接于第二节点Q2和防漏电节点OF之间的电路截止,从而可以避免第二节点Q2通过第二漏电路径发生漏电,或漏电程度降低。
在本公开的一些实施例提供的移位寄存器单元10中,通过防漏电电路400对防漏电节点OF的电平的控制,可以避免第二节点Q2通过连接于第二节点Q2与防漏电节点OF之间的电路发生漏电,或漏电程度降低。
本公开的一些实施例提供的移位寄存器单元10通过设置一个防漏电电路400,且使得第一子电路100和第二子电路200可以共用同一个防漏电节点OF,从而可以同时避免第一节点Q1和第二节点Q2发生漏电;另外,第一子电路100和第二子电路200通过共用防漏电节点OF,还可以简化电路结构,减小采用该移位寄存器单元的显示装置的边框尺寸,更有利于提高该显示装置的PPI。
另外,需要说明的是,在本公开的实施例中,高电平和低电平是相对而言的。高电平表示一个较高的电压范围(例如,高电平可以采用5V、10V或其他合适的电压),且多个高电平可以相同也可以不同。类似地,低电平表示一个较低的电压范围(例如,低电平可以采用0V、-5V、-10V或其他合适的 电压),且多个低电平可以相同也可以不同。例如,高电平的最小值比低电平的最大值大。
需要说明的是,在本公开的实施例中,对一个节点(例如第一节点Q1、第二节点Q2等)的电平进行控制,包括对该节点进行充电以拉高该节点的电平,或者对该节点进行放电以拉低该节点的电平。例如,可以设置一个与该节点电连接的电容,对该节点进行充电即表示对与该节点电连接的电容进行充电;类似地,对该节点进行放电即表示对与该节点电连接的电容进行放电;通过该电容可以维持该节点的高电平或低电平。
如图2所示,在本公开的一些实施例提供的移位寄存器单元10中,第一输入电路110和第一节点Q1连接以及和防漏电节点OF连接,且还被配置为响应于第一输入信号STU1对防漏电节点OF的电平进行控制;第二输入电路210和第二节点Q2连接以及和防漏电节点OF连接,且被配置为响应于第一输入信号STU1将防漏电节点OF的电平传输至第二节点Q2。
例如,当第一输入信号STU1为高电平时,第一输入电路110和第二输入电路210均可以在第一输入信号STU1的控制下被导通。第一输入信号STU1经过第一输入电路110后对第一节点Q1充电,同时第一输入信号STU1还可以经过第一输入电路110、防漏电节点OF以及第二输入电路210后对第二节点Q2充电。也就是说,第一输入电路110和第二输入电路210通过防漏电节点OF实现了电连接,在对第一节点Q1和第二节点Q2的充电过程中,第一输入电路110被复用。
另外,通过上述对防漏电节点OF的描述可知,由于第一输入电路110连接于第一节点Q1和防漏电节点OF之间,所以可以避免第一节点Q1通过第一输入电路110发生漏电,或漏电程度降低。例如当第一节点Q1被充电至高电平后,如果第一输入信号STU1变为低电平,则此时可以避免第一节点Q1通过第一输入电路110发生漏电。
类似地,由于第二输入电路210连接于第二节点Q2和防漏电节点OF之间,所以可以避免第二节点Q2通过第二输入电路210发生漏电,或漏电程度降低。例如当第二节点Q2被充电至高电平后,如果第一输入信号STU1变为低电平,则此时可以避免第二节点Q2通过第二输入电路210发生漏电。
在本公开的一些实施例提供的移位寄存器单元中,通过使得第一输入电路110和第二输入电路210均和防漏电节点OF电连接,可以避免第一节点 Q1通过第一输入电路110发生漏电,且可以避免第二节点Q2通过第二输入电路210发生漏电。另外,在对第一节点Q1和第二节点Q2进行充电时,第一输入电路110还可以被复用,从而可以简化电路结构,减小采用该移位寄存器单元的显示装置的边框尺寸,更有利于提高该显示装置的PPI。
如图3所示,在本公开的一些实施例提供的移位寄存器单元10中,防漏电电路400包括第一防漏电晶体管A1,第一输入电路110包括第一输入晶体管B1和第二输入晶体管B2,第二输入电路210包括第三输入晶体管B3。
第一防漏电晶体管A1的栅极和第一节点Q1连接,第一防漏电晶体管A1的第一极被配置为接收第一电压VA,第一防漏电晶体管A1的第二极和防漏电节点OF连接。例如,当第一节点Q1的电平为高电平时,第一防漏电晶体管A1被导通,从而可以利用第一电压VA对防漏电节点OF的电平进行控制,例如利用第一电压VA对防漏电节点OF进行充电以使得防漏电节点OF的电平变高。
第一输入晶体管B1的栅极以及第一极被配置为接收第一输入信号STU1,第一输入晶体管B1的第二极和防漏电节点OF连接。
第二输入晶体管B2的栅极被配置为接收第一输入信号STU1,第二输入晶体管B2的第一极和防漏电节点OF连接,第二输入晶体管B2的第二极和第一节点Q1连接。
第三输入晶体管B3的栅极被配置为接收第一输入信号STU1,第三输入晶体管B3的第一极和防漏电节点OF连接,第三输入晶体管B3的第二极和第二节点Q2连接。
如图3所示,当第一输入信号STU1为高电平时,第一输入晶体管B1、第二输入晶体管B2以及第三输入晶体管B3均被导通,第一输入信号STU1通过第一输入晶体管B1和第二输入晶体管B2对第一节点Q1进行充电,同时第一输入信号STU1通过第一输入晶体管B1和第三输入晶体管B3对第二节点Q2进行充电。因此,第一输入晶体管B1被复用。
例如,在第一输入信号STU1完成对第一节点Q1和第二节点Q2的充电操作后,第一输入信号STU1由高电平变为预定的低电平,例如该预定的低电平为第三电压VGL1。通过设置第一防漏电晶体管A1,当第一节点Q1为高电平时,使得防漏电节点OF的电平高于第三电压VGL1,从而使得第二 输入晶体管B2的V gs(栅极和源极之间的电压差)小于零,从而可以使得第二输入晶体管B2保持截止,同时由于防漏电节点OF的电平变高(高于第三电压VGL1),使得从第一节点Q1到防漏电节点OF的电压差变小(甚至为负),从而使得第一节点Q1不能通过第二输入晶体管B2而发生漏电,或漏电程度降低。基于和上述第一节点Q1相同的原理,第二节点Q2不能通过第三输入晶体管B3而发生漏电,或漏电程度降低。
在本公开的一些实施例提供的移位寄存器单元10中,在实现防漏电的基础上,通过第一输入电路110和第二输入电路210共用防漏电节点OF,可以使得第一输入晶体管B1被复用,从而可以节省晶体管数量,减小采用该移位寄存器单元的显示装置的边框尺寸,更有利于提高该显示装置的PPI。
例如,如图3所示,该移位寄存器单元10还包括对第一节点Q1进行复位的第四复位晶体管R4、第五复位晶体管R5、第七复位晶体管R7以及第八复位晶体管R8,对第二节点Q2复位的第六复位晶体管R6以及第九复位晶体管R9。
例如,第四复位晶体管R4、第五复位晶体管R5以及第六复位晶体管R6的栅极都被配置为接收显示复位信号STD,当该显示复位信号STD为高电平时,第四复位晶体管R4、第五复位晶体管R5以及第六复位晶体管R6被导通,从而低电平的第三电压VGL1可以通过第五复位晶体管R5和第四复位晶体管R4对第一节点Q1进行复位,且低电平的第三电压VGL1可以通过第五复位晶体管R5和第六复位晶体管R6对第二节点Q2进行复位。因此,第五复位晶体管R5被复用。
例如,第七复位晶体管、第八复位晶体管R8以及第九复位晶体管R9的栅极都被配置为接收全局复位信号TRST,当该全局复位信号TRST为高电平时,第七复位晶体管、第八复位晶体管R8以及第九复位晶体管R9被导通,从而低电平的第三电压VGL1可以通过第八复位晶体管R8和第七复位晶体管R7对第一节点Q1进行复位,且低电平的第三电压VGL1可以通过第八复位晶体管R8和第九复位晶体管R9对第二节点Q2进行复位。因此,第八复位晶体管R8被复用。需要说明的是,关于显示复位信号STD和全局复位信号TRST将在下文中进行详细描述,这里不再赘述。
例如,当第一节点Q1为高电平时,此时可以使得提供至第四复位晶体管R4的显示复位信号STD以及提供至第七复位晶体管R7的全局复位信号 TRST为预定的低电平,例如该预定的低电平为第三电压VGL1,从而使得第四复位晶体管R4和第七复位晶体管R7被截止。如果第四复位晶体管R4和第七复位晶体管R7不能被完全地截止,则第一节点Q1可能通过第四复位晶体管R4或者第七复位晶体管R7而发生漏电。
如图3所示,通过设置第一防漏电晶体管A1,当第一节点Q1的电平为高电平时,使得防漏电节点OF的电位高于第三电压VGL1,从而相对于具有预定低电平(例如第三电压VGL1)的显示复位信号STD或全局复位信号TRST,使得第四复位晶体管R4和第七复位晶体管R7的V gs(栅极和源极之间的电压差)均小于零,从而可以使得第四复位晶体管R4和第七复位晶体管R7均保持截止,同时由于防漏电节点OF的电位变高(高于第三电压VGL1),使得从第一节点Q1到防漏电节点OF的电压差变小(甚至为负),从而使得第一节点Q1不能通过第四复位晶体管R4或第七复位晶体管R7而发生漏电,或漏电程度降低。
类似地,通过设置第一防漏电晶体管A1,当第二节点Q2的电平为高电平时,使得防漏电节点OF的电位高于第三电压VGL1,从而相对于具有预定低电平(例如第三电压VGL1)的显示复位信号STD或全局复位信号TRST,使得第六复位晶体管R6和第九复位晶体管R9的V gs(栅极和源极之间的电压差)均小于零,从而可以使得第六复位晶体管R6和第九复位晶体管R9均保持截止,同时由于防漏电节点OF的电位变高(高于第三电压VGL1),使得从第一节点Q1到防漏电节点OF的电压差变小(甚至为负),从而使得第二节点Q2不能通过第六复位晶体管R6或第九复位晶体管R9而发生漏电,或漏电程度降低。
在本公开的一些实施例提供的移位寄存器单元10中,在实现防漏电的基础上,在对第一节点Q1和第二节点Q2进行复位操作时,第五复位晶体管R5和第八复位晶体管R8被复用,从而可以节省晶体管数量,减小采用该移位寄存器单元的显示装置的边框尺寸,更有利于提高该显示装置的PPI。
需要说明的是,在图3中,为了说明防漏电的工作原理,关于第一节点Q1可能存在的漏电路径仅示意出了第二输入晶体管B2、第四复位晶体管R4以及第七复位晶体管R7,当存在其它和第一节点Q1连接的电路时,为了避免第一节点Q1通过该电路而发生漏电,只要使得该电路和防漏电节点OF连接即可。关于第二节点Q2可能存在的漏电路径仅示意出了第三输入晶体管 B3、第六复位晶体管R6以及第九复位晶体管R9,当存在其它和第二节点Q2连接的电路时,为了避免第二节点Q2通过该电路而发生漏电,只要使得该电路和防漏电节点OF连接即可。
也就是说,在本公开的一些实施例提供的移位寄存器单元10中,通过设置第一防漏电晶体管A1,当第一节点Q1为高电平时,可以使得连接于第一节点Q1和防漏电节点OF之间的电路截止,从而可以避免第一节点Q1发生漏电,或漏电程度降低;当第二节点Q2为高电平时,可以使得连接于第二节点Q2和防漏电节点OF之间的电路截止,从而可以避免第二节点Q2发生漏电,或漏电程度降低。
需要说明的是,在图3中所示的晶体管均以N型晶体管为例进行说明。
本公开的实施例中采用的晶体管均可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件,本公开的实施例中均以薄膜晶体管为例进行说明。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管除栅极之外的两极,直接描述了其中一极为第一极,另一极为第二极。此外,按照晶体管的特性可以将晶体管分为N型和P型晶体管。当晶体管为N型晶体管时,开启电压为高电平电压(例如,5V、10V或其他合适的电压),关闭电压为低电平电压(例如,0V、-5V、-10V或其他合适的电压);以下各实施例中的晶体管也均以N型晶体管为例进行说明,不再赘述。但本公开的实施例包括但不限于此,例如本公开的实施例提供的移位寄存器单元中的一个或多个晶体管也可以采用P型晶体管。当晶体管为P型晶体管时,开启电压为低电平电压(例如,0V、-5V、-10V或其他合适的电压),关闭电压为高电平电压(例如,5V、10V或其他合适的电压)。
在对OLED显示面板中的子像素单元进行补偿时,除了在子像素单元中设置像素补偿电路进行内部补偿外,还可以通过设置感测晶体管进行外部补偿。在进行外部补偿时,由移位寄存器单元构成的栅极驱动电路需要向显示面板中的子像素单元分别提供用于扫描晶体管和感测晶体管的驱动信号,例如,在一帧的显示时段提供用于扫描晶体管的扫描驱动信号,在一帧的消隐时段提供用于感测晶体管的感测驱动信号。
在一种外部补偿方法中,栅极驱动电路输出的感测驱动信号是逐行顺序扫描的,例如,在第一帧的消隐时段输出用于显示面板中第一行的子像素单 元的感测驱动信号,在第二帧的消隐时段输出用于显示面板中第二行的子像素单元的感测驱动信号,依次类推,以每帧输出对应一行子像素单元的感测驱动信号的频率逐行顺序输出,即完成对该显示面板的逐行顺序补偿。
但是,在采用上述逐行顺序补偿的方法时,可能会产生显示不良问题:一是在进行多帧的扫描显示过程中有一条逐行移动的扫描线;二是因为进行外部补偿的时间点的差异会造成显示面板不同区域的亮度差异比较大,例如,在对显示面板的第100行的子像素单元进行外部补偿时,显示面板的第10行的子像素单元虽然已经进行过外部补偿了,但此时第10行的子像素单元的发光亮度可能已经发生变化,例如发光亮度降低,从而会造成显示面板不同区域的亮度不均匀,在大尺寸的显示面板中这种问题会更加明显。
如上所述,在栅极驱动电路驱动一个显示面板时,如果要实现外部补偿,则需要该栅极驱动电路不仅可以输出用于显示时段的扫描驱动信号,同时还需要输出用于消隐时段的感测驱动信号。
需要说明的是,在本公开的一些实施例中,随机补偿指的是区别于逐行顺序补偿的一种外部补偿方法,在某一帧的消隐时段可以随机输出对应于显示面板中任意一行的子像素单元的感测驱动信号,以下各实施例与此相同,不再赘述。
另外,在本公开的一些实施例中,为了说明的目的,定义“一帧”、“每帧”或“某一帧”包括依次进行的显示时段和消隐时段,例如在显示时段中栅极驱动电路输出驱动信号,该驱动信号可以驱动显示面板从第一行到最后一行完成完整的一幅图像的扫描显示,在消隐时段中栅极驱动电路输出驱动信号,该驱动信号可以用于驱动显示面板中的某一行子像素单元中的感测晶体管,以完成该行子像素单元的外部补偿。
为了实现上述随机补偿,如图4所示,在本公开的一些实施例中,移位寄存器单元10还包括消隐输入子电路300。消隐输入子电路300和第一节点Q1以及第二节点Q2连接,且被配置为接收选择控制信号OE并对第一节点Q1和第二节点Q2的进行控制,例如对第一节点Q1和第二节点Q2进行充电。
例如,在一帧的消隐时段中,消隐输入子电路300可以对第一节点Q1和第二节点Q2进行充电,从而使得第一输出电路120在第一节点Q1的电平的控制下输出第一输出信号OUT1,或者使得第二输出电路220在第二节 点Q2的电平的控制下输出第二输出信号OUT2。第一输出信号OUT1或者第二输出信号OUT2可以用于驱动显示面板中的某一行子像素单元中的感测晶体管,以完成该行子像素单元的外部补偿。
采用本公开的实施例提供的移位寄存器单元10的栅极驱动电路以及显示装置可以实现随机补偿,从而可以避免由于逐行顺序补偿造成的扫描线以及显示亮度不均匀等显示不良问题。
如图5所示,在本公开的一些实施例中,消隐输入子电路300包括选择控制电路310、第三输入电路320、第一传输电路330以及第二传输电路340。
该选择控制电路310被配置为响应于选择控制信号OE利用第二输入信号STU2对第三节点H的电平进行控制,例如对第三节点H进行充电,并保持第三节点H的电平。例如,在一帧的显示时段中,选择控制电路310可以在选择控制信号OE的控制下而导通,从而利用第二输入信号STU2对第三节点H进行充电。第三节点H的电平(例如高电平)可以从一帧的显示时段一直保持到该帧的消隐时段。
例如,当多个移位寄存器单元10级联构成一栅极驱动电路时,某一级移位寄存器单元10可以接收其它级移位寄存器单元10输出的移位信号CR作为第二输入信号STU2。例如,当需要选择某一级移位寄存器单元10在一帧的消隐时段输出驱动信号时,则可以使得提供至该级移位寄存器单元10的选择控制信号OE和第二输入信号STU2的波形时序相同,从而使得该级移位寄存器单元10中的选择控制电路310导通。
该第三输入电路320被配置为在第三节点H的电平的控制下将第一时钟信号CLKA传输至第四节点N。例如,第三输入电路320可以被配置为接收第一时钟信号CLKA。第三输入电路320在第三节点H的电平的控制下导通时可以将第一时钟信号CLKA传输至第四节点N,从而控制第四节点N的电平。例如,在一帧的消隐时段中,当第一时钟信号CLKA为高电平时,第三输入电路320可以将该高电平传输至第四节点N,从而使得第四节点N变为高电平。
该第一传输电路330和第一节点Q1、第四节点N以及防漏电节点OF电连接,且被配置为响应于第一时钟信号CLKA对第一节点Q1的电平以及防漏电节点OF的电平进行控制。例如,在一些实施例中,第一传输电路330可以被配置为接收第一时钟信号CLKA,当第一传输电路330在第一时钟信 号CLKA的控制下导通时可以将第四节点N的电平传输至第一节点Q1,从而对第一节点Q1的电平进行控制,例如对第一节点Q1进行充电。另外,当第一传输电路330在第一时钟信号CLKA的控制下导通时还可以将第四节点N的电平传输至防漏电节点OF,从而对防漏电节点OF的电平进行控制。
该第二传输电路340和第二节点Q2以及防漏电节点OF电连接,且被配置为响应于第一时钟信号CLKA将防漏电节点OF的电平传输至第二节点Q2。例如,在一些实施例中,第二传输电路340可以被配置为接收第一时钟信号CLKA,当第二传输电路340在第一时钟信号CLKA的控制下导通时可以将防漏电节点OF的电平传输至第二节点Q2,从而对第二节点Q2的电平进行控制,例如对第二节点Q2进行充电。
需要说明的是,在本公开的实施例中,在移位寄存器单元10中设置消隐输入子电路300是为了实现在一帧的消隐时段中可以输出驱动信号。消隐输入子电路300中的“消隐”仅表示和一帧中的消隐时段有关,而并不限定消隐输入子电路300仅工作在消隐时段中,以下各实施例与此相同,不再赘述。
在本公开的一些实施例提供的移位寄存器单元10中,第一传输电路330和第二传输电路340通过防漏电节点OF实现电连接,当第一传输电路330对第一节点Q1进行充电时,同时通过防漏电节点OF还可以将第四节点N的高电平传输至第二节点Q2,从而实现对第二节点Q2的充电。另外,由于第一传输电路330和第二传输电路340均和防漏电节点OF电连接,所以还可以避免第一节点Q1通过第一传输电路330发生漏电,并且避免第二节点Q2通过第二传输电路340发生漏电。
另外,当移位寄存器单元10包括三个、四个或更多个子电路时,相应地,需要设置三个、四个或更多个传输电路以实现消隐输入子电路300的功能。
在本公开的一些实施例中,当移位寄存器单元10包括多个子电路时(第一子电路100和第二子电路200等),这些子电路可以共用一个消隐输入子电路300,从而可以减小该移位寄存器单元10占用的面积,减小采用该移位寄存器单元10的显示装置的边框尺寸,从而提高该显示装置的PPI。
如图6和图7A-7C所示,在一些实施例中,选择控制电路310可以实现为包括第四输入晶体管B4和第一电容C1。第四输入晶体管B4的栅极被配置为接收选择控制信号OE,第四输入晶体管B4的第一极被配置为接收第二 输入信号STU2,第四输入晶体管B4的第二极和第三节点H连接。例如,当选择控制信号OE为高电平的导通信号时,第四输入晶体管B4导通,从而可以利用第二输入信号STU2对第三节点H进行充电。
第一电容C1的第一极和第三节点H连接,第一电容C1的第二极被配置为接收第三电压VGL1,或者第一电容C1的第二极被配置为接收第二电压VDD。设置第一电容C1可以保持第三节点H的电位,例如,在一帧的显示时段中,选择控制电路310对第三节点H进行充电从而将第三节点H拉高至高电位,然后第一电容C1可以将第三节点H的高电位保持至该帧的消隐时段。
例如,在如图6所示的实施例中,第三输入电路320可以实现为第六输入晶体管B6。第六输入晶体管B6的栅极和第三节点H连接,第六输入晶体管B6的第一极被配置为接收第一时钟信号CLKA,第六输入晶体管B6的第二极和第四节点N连接。例如,当第三节点H为高电平时,第六输入晶体管B6导通,从而可以利用第一时钟信号CLKA对第四节点N充电以拉高第四节点N的电平。
例如,在如图6所示的实施例中,第一传输电路330包括第一传输晶体管T1和第二传输晶体管T2,第二传输电路340包括第三传输晶体管T3。
第一传输晶体管T1的栅极被配置为接收第一时钟信号CLKA,第一传输晶体管T1的第一极和第四节点N连接,第一传输晶体管T1的第二极和防漏电节点OF连接;第二传输晶体管T2的栅极被配置为接收第一时钟信号CLKA,第二传输晶体管T2的第一极和防漏电节点OF连接,第二传输晶体管T2的第二极和第一节点Q1连接;第三传输晶体管T3的栅极被配置为接收第一时钟信号CLKA,第三传输晶体管T3的第一极和防漏电节点OF连接,第三传输晶体管T3的第二极和第二节点Q2连接。
例如,当第一时钟信号CLKA为高电平时,第一传输晶体管T1、第二传输晶体管T2以及第三传输晶体管T3均导通,导通的第一传输晶体管T1可以将第四节点N的高电平传输至防漏电节点OF,使得防漏电节点OF的电平变为高电平;然后导通的第二传输晶体管T2将防漏电节点OF的高电平传输至第一节点Q1以对第一节点Q1进行充电;导通的第三传输晶体管T3将防漏电节点OF的高电平传输至第二节点Q2,以实现对第二节点Q2的充电。如上所述,在对第一节点Q1和第二节点Q2进行充电时,第一传输晶 体管T1被复用,同时,由于第二传输晶体管T2和防漏电节点OF连接,所以第二传输晶体管T2还可以避免第一节点Q1发生漏电;由于第三传输晶体管T3和防漏电节点OF连接,所以第三传输晶体管T3还可以避免第二节点Q2发生漏电。
下面对图7A-7C提供的消隐输入子电路300进行描述,需要说明的是,在下面的描述中,对于图7A-7C和图6相同的部分将不再赘述。
例如,如图7A所示,相对于图6,消隐输入子电路300还包括第一耦合电容CST1。第一耦合电容CST1的第一极被配置为接收第一时钟信号CLKA,第一耦合电容CST1的第二极和第三节点H连接。例如,当第一时钟信号CLKA从低电平变为高电平时,第一时钟信号CLKA通过第一耦合电容CST1的耦合作用可以对第三节点H进行耦合上拉,使得第三节点H的电平被进一步拉高,从而可以保证第六输入晶体管B6的导通更充分。
例如,如图7B所示,相对于图7A,消隐输入子电路300还包括第二耦合电容CST2,第二耦合电容CST2的第一极和第三节点H连接,第二耦合电容CST2的第二极和第四节点N连接。例如,当第一时钟信号CLKA从低电平变为高电平时,此时如果第六输入晶体管B6导通,则高电平的第一时钟信号CLKA可以通过第六输入晶体管B6传输至第四节点N,使得第二耦合电容CST2的第二极的电位被拉高,通过第二耦合电容CST2的自举作用,从而可以使得第三节点H的电平被进一步拉高,从而可以保证第六输入晶体管B6的导通更充分。
例如,如图7C所示,第一传输电路330包括第一传输晶体管T1和第二传输晶体管T2,第二传输电路340包括第三传输晶体管T3。
第一传输晶体管T1的栅极和第四节点N连接,第一传输晶体管T1的第一极被配置为接收高电平的第二电压VDD,第一传输晶体管T1的第二极和防漏电节点OF连接;第二传输晶体管T2的栅极和第四节点N连接,第二传输晶体管T2的第一极和防漏电节点OF连接,第二传输晶体管T2的第二极和第一节点Q1连接;第三传输晶体管T3的栅极和第四节点N连接,第三传输晶体管T3的第一极和防漏电节点OF连接,第三传输晶体管T3的第二极和第二节点Q2连接。
例如,当第一时钟信号CLKA为高电平时,高电平的第一时钟信号CLKA通过导通的第六输入晶体管B6传输至第四节点N,从而使得第四节点N变 为高电平,第一传输晶体管T1、第二传输晶体管T2以及第三传输晶体管T3均被导通,导通的第一传输晶体管T1可以将高电平的第二电压VDD传输至防漏电节点OF,使得防漏电节点OF的电平变为高电平;然后导通的第二传输晶体管T2将防漏电节点OF的高电平传输至第一节点Q1以对第一节点Q1进行充电;导通的第三传输晶体管T3将防漏电节点OF的高电平传输至第二节点Q2以对第二节点Q2进行充电。
例如,图7D还提供了一种消隐输入子电路300,相对于图7B,消隐输入子电路300中的选择控制电路310除了包括第四输入晶体管B4外还包括第五输入晶体管B5,另外消隐输入子电路300还包括第二防漏电晶体管A2。
如图7D所示,第二防漏电晶体管A2的栅极和第三节点H连接,第二防漏电晶体管A2的第一极被配置为接收第一电压VA,第二防漏电晶体管A2的第二极和第五输入晶体管B5的第一极连接,第五输入晶体管B5的栅极被配置为接收选择控制信号OE,第五输入晶体管B5的第二极和第三节点H连接。
第二防漏电晶体管A2和第五输入晶体管B5配合可以防止第三节点H发生漏电,关于防止第三节点H发生漏电的工作原理可以参考上述关于第一节点Q1的相应描述,这里不再赘述。
如图8所示,在本公开的一些实施例提供的移位寄存器单元10中,第一子电路100还包括第一控制电路130、第一复位电路140、第二复位电路150、移位信号输出端CRT以及第一输出信号端OP1。移位信号输出端CRT被配置为输出移位信号CR,第一输出信号端OP1被配置为输出第一输出信号OUT1。
该第一控制电路130被配置为在第一节点Q1的电平和第二电压VDD的控制下,对第五节点QB_A的电平进行控制。例如,第一控制电路130和第一节点Q1和第五节点QB_A连接,且被配置为接收第二电压VDD和第三电压VGL1。例如,当第一节点Q1处于高电平时,第一控制电路130可以利用低电平的第三电压VGL1将第五节点QB_A拉低至低电平。又例如,当第一节点Q1处于低电平时,第一控制电路130可以利用高电平的第二电压VDD对第五节点QB_A进行充电,以将第五节点QB_A拉高至高电平。
该第一复位电路140和第一节点Q1以及防漏电节点OF连接,且被配置为在第五节点QB_A的电平的控制下,对第一节点Q1以及防漏电节点OF 进行复位。例如,第一复位电路140被配置为接收第三电压VGL1,当第一复位电路140在第五节点QB_A的电平的控制下导通时,可以利用低电平的第三电压VGL1对第一节点Q1以及防漏电节点OF进行下拉复位。
该第二复位电路150被配置为在第五节点QB_A的电平的控制下,对移位信号输出端CRT和第一输出信号端OP1进行复位。例如,第二复位电路150和第五节点QB_A、移位信号输出端CRT以及第一输出信号端OP1连接,且被配置为接收第三电压VGL1和第四电压VGL2(例如为低电平)。例如,当第二复位电路150在第五节点QB_A的电平的控制下导通时,可以利用第三电压VGL1对移位信号输出端CRT进行下拉复位,同时还可以利用第四电压VGL2对第一输出信号端OP1进行下拉复位。
需要说明的是,在本公开的一些实施例中,也可以利用第三电压VGL1对第一输出信号端OP1进行下拉复位,本公开的实施例对此不作限制。另外,在本公开的实施例中,第四电压VGL2例如为低电平,以下各实施例与此相同,不再赘述。在本公开的实施例中,第四电压VGL2可以和第三电压VGL1相同,也可以不同。
如图8所示,第二子电路200还包括第二控制电路230、第三复位电路240、第四复位电路250以及第二输出信号端OP2。第二输出信号端OP2被配置为输出第二输出信号OUT2。
该第二控制电路230被配置为在第二节点Q2的电平和第二电压VDD的控制下,对第六节点QB_B的电平进行控制。例如,第二控制电路230和第二节点Q2以及第六节点QB_B连接,且被配置为接收第二电压VDD和第三电压VGL1。例如,当第二节点Q2处于高电平时,第二控制电路230可以利用低电平的第三电压VGL1将第六节点QB_B下拉至低电平。又例如,当第二节点Q2的电位处于低电平时,第二控制电路230可以利用高电平的第二电压VDD对第六节点QB_B进行充电,以将第六节点QB_B上拉至高电平。
在本公开的一些实施例中,由于第一节点Q1和第二节点Q2被同时充电至高电平,所以第五节点QB_A和第六节点QB_B被同时拉低至低电平;由于第一节点Q1和第二节点Q2被同时拉低至低电平,所以第五节点QB_A和第六节点QB_B被同时拉高至高电平。也就是说,第一节点Q1的电平和第二节点Q2的电平“同起同落”,第五节点QB_A的电平和第六节点QB_B 的电平“同起同落”。
该第三复位电路240和第二节点Q2以及防漏电节点OF连接,且被配置为在第六节点QB_B的电平的控制下,将防漏电节点OF的电平传输至第二节点Q2。例如,第三复位电路240和第六节点QB_B连接,当第三复位电路240在第六节点QB_B的电平的控制下导通时,可以将防漏电节点OF的电平传输至第二节点Q2。
在本公开的一些实施例提供的移位寄存器单元10中,第一复位电路140和第三复位电路240通过防漏电节点OF实现电连接,从而使得第一复位电路140被复用。例如,当第六节点QB_B为高电平(此时第五节点QB_A也为高电平)时,第一复位电路140和第三复位电路240同时被导通,从而使得低电平的第三电压VGL1通过第一复位电路140、防漏电节点OF、第三复位电路240对第二节点Q2进行下拉复位。
该第四复位电路250被配置为在第六节点QB_B的电平的控制下,对第二输出信号端OP2进行复位。例如,第四复位电路250和第六节点QB_B和第二输出信号端OP2连接,且被配置为接收第四电压VGL2。例如,当第四复位电路250在第六节点QB_B的电平的控制下导通时,可以利用低电平的第四电压VGL2对第二输出信号端OP2进行下拉复位。需要说明的是,在本公开的一些实施例中,也可以利用第三电压VGL1对第二输出信号端OP2进行下拉复位,本公开对此不作限制。
需要说明的是,在本公开的实施例中,各个节点(第一节点Q1、第二节点Q2、第三节点H、第四节点N、第五节点QB_A和第六节点QB_B等)和各个输出端(移位信号输出端CRT、第一输出信号端OP1和第二输出信号端OP2等)均是为了更好地描述电路结构而设置的,并非表示实际存在的部件。节点表示电路结构中相关电路连接的汇合点,即与具有相同节点标识连接的相关电路彼此之间是电连接的。例如,如图8所示,第一控制电路130以及第一复位电路140都和第五节点QB_A连接,也就是表示这些电路彼此之间是电连接的。
如图9所示,在本公开的一些实施例提供的移位寄存器单元10中,第一子电路100还包括第三控制电路160、第四控制电路170和公共控制电路161;第二子电路200还包括第五控制电路260和第六控制电路270。
该第三控制电路160和第五节点QB_A以及公共控制节点CC连接,且 被配置为响应于第一时钟信号CLKA使得第五节点QB_A和公共控制节点CC电连接。
该公共控制电路161和公共控制节点CC以及第三节点H电连接,且被配置为在第三节点H的电平的控制下对公共控制节点CC的电平进行控制。例如,公共控制电路161可以被配置为接收低电平的第三电压VGL1,当公共控制电路161在第三节点H的电平的控制下被导通时,可以利用第三电压VGL1将公共控制节点CC的电平拉低至低电平。
该第五控制电路260和第六节点QB_B以及公共控制节点CC连接,且被配置为响应于第一时钟信号CLKA使得第六节点QB_B和公共控制节点CC电连接。
例如,在一帧的消隐时段中,当第一时钟信号CLKA为高电平且第三节点H为高电平时,第三控制电路160、公共控制电路161以及第五控制电路260均导通,从而使得低电平的第三电压VGL1可以通过公共控制电路161和第三控制电路160对第五节点QB_A进行下拉;且低电平的第三电压VGL1可以通过第五控制电路260和公共控制电路161对第六节点QB_B进行下拉。也就是说,公共控制电路161既用于控制第五节点QB_A的电平也用于控制第六节点QB_B的电平。因此,公共控制电路161被复用,从而可以简化电路结构。
如图9所示,该第四控制电路170被配置为响应于第一输入信号STU1对第五节点QB_A的电平进行控制。例如,第四控制电路170可以被配置为接收低电平的第三电压VGL1。例如,在一帧的显示时段中,第四控制电路170响应于第一输入信号STU1而被导通,从而可以利用低电平的第三电压VGL1对第五节点QB_A进行下拉。将第五节点QB_A下拉至低电位,可以避免第五节点QB_A对第一节点Q1的影响,从而使得在显示时段中对第一节点Q1的充电更充分。
该第六控制电路270被配置为响应于第一输入信号STU1对第六节点QB_B的电平进行控制。例如,第六控制电路270可以被配置为接收低电平的第三电压VGL1。例如,在一帧的显示时段中,第六控制电路270响应于第一输入信号STU1而被导通,从而可以利用低电平的第三电压VGL1对第六节点QB_B进行下拉。将第六节点QB_B下拉至低电位,可以避免第六节点QB_B对第二节点Q2的影响,从而使得在显示时段中对第二节点Q2的 充电更充分。
如图9所示,第一子电路100还包括第五复位电路180和第七复位电路190,第二子电路200还包括第六复位电路280和第八复位电路290。
该第五复位电路180和第一节点Q1以及防漏电节点OF连接,且被配置为响应于显示复位信号STD对第一节点Q1以及防漏电节点OF进行复位。
该第六复位电路280和第二节点Q2以及防漏电节点OF连接,且被配置为响应于显示复位信号STD将防漏电节点OF的电平传输至第二节点Q2。
例如,第五复位电路180可以被配置为接收低电平的第三电压VGL1。例如,在一帧的显示时段中,第五复位电路180和第六复位电路280都响应于显示复位信号STD而导通,从而使得低电平的第三电压VGL1可以通过第五复位电路180对第一节点Q1以及防漏电节点OF进行下拉复位。同时,低电平的第三电压VGL1可以通过第六复位电路280以及第五复位电路180对第二节点Q2进行下拉复位。例如,当多个移位寄存器单元10级联构成一栅极驱动电路时,某一级移位寄存器单元10可以接收其它级移位寄存器单元10输出的移位信号CR作为显示复位信号STD。
如上所述,在本公开的一些实施例提供的移位寄存器单元10中,第五复位电路180和第六复位电路280均与防漏电节点OF连接,所以可以避免第一节点Q1通过第五复位电路180发生漏电,且可以避免第二节点Q2通过第六复位电路280发生漏电。
另外,在防止漏电的基础上,第五复位电路180和第六复位电路280通过防漏电节点OF实现电连接,从而使得第五复位电路180可以被复用,从而可以简化电路结构。
该第七复位电路190和第一节点Q1以及防漏电节点OF连接,且被配置为响应于全局复位信号TRST对第一节点Q1和防漏电节点OF进行复位。
该第八复位电路290和第二节点Q2以及防漏电节点OF连接,且被配置为响应于全局复位信号TRST将防漏电节点OF的电平传输至第二节点Q2。
例如,第七复位电路190可以被配置为接收低电平的第三电压VGL1。例如,当多个移位寄存器单元10级联构成一栅极驱动电路时,在一帧的显示时段前,各级移位寄存器单元10中的第七复位电路190以及第八复位电路290都响应于全局复位信号TRST而导通,从而使得低电平的第三电压VGL1可以通过第七复位电路190对第一节点Q1以及防漏电节点OF进行下拉复 位。同时,低电平的第三电压VGL1可以通过第八复位电路290以及第七复位电路190对第二节点Q2进行下拉复位。
如上所述,在本公开的一些实施例提供的移位寄存器单元10中,第七复位电路190和第八复位电路290均与防漏电节点OF连接,所以可以避免第一节点Q1通过第七复位电路190发生漏电,且可以避免第二节点Q2通过第八复位电路290发生漏电。
另外,在防止漏电的基础上,第七复位电路190和第八复位电路290通过防漏电节点OF实现电连接,从而使得第七复位电路190可以被复用,从而可以简化电路结构。
本领域技术人员可以理解,尽管图9中示出了多个控制电路和多个复位电路,然而上述示例并不能限制本公开的保护范围。在实际应用中,技术人员可以根据情况选择使用或不使用上述各电路中的一个或多个,基于前述各电路的各种组合变型均不脱离本公开的原理,对此不再赘述。
在本公开的一些实施例中,移位寄存器单元10可以实现为图10所示的电路结构。如图10所示,该移位寄存器单元10包括第一子电路100、第二子电路200、消隐输入子电路300和防漏电电路400。
第一子电路100包括第一输入电路110、第一输出电路120、第一控制电路130、第一复位电路140、第二复位电路150、第三控制电路160、公共控制电路161、第四控制电路170、第五复位电路180以及第七复位电路190。
第二子电路200包括第二输入电路210、第二输出电路220、第二控制电路230、第三复位电路240、第四复位电路250、第五控制电路260、第六控制电路270、第六复位电路280以及第八复位电路290。
需要说明的是,关于消隐输入子电路300、防漏电电路400、第一输入电路110以及第二输入电路210的晶体管示例已经在上文中进行描述,这里不再赘述。
如图10所示,第一输出电路120可以包括第一输出晶体管D1、第二输出晶体管D2和第二电容C2。第一输出晶体管D1的栅极和第一节点Q1连接,第一输出晶体管D1的第一极被配置为接收第二时钟信号CLKB并作为移位信号CR,第一输出晶体管D1的第二极和移位信号输出端CRT连接且被配置为输出移位信号CR。
第二输出晶体管D2的栅极和第一节点Q1连接,第二输出晶体管D2的 第一极被配置为接收第三时钟信号CLKC并作为第一输出信号OUT1,第二输出晶体管D2的第二极和第一输出信号端OP1连接且被配置为输出第一输出信号OUT1。第二电容C2的第一极和第一节点Q1连接,第二电容C2的第二极和第二输出晶体管D2的第二极(即第一输出信号端OP1)连接。
如图10所示,第一控制电路130可以实现为包括第六控制晶体管E6和第七控制晶体管E7。第六控制晶体管E6的栅极和第一极被配置为接收第二电压VDD,第六控制晶体管E6的第二极和第五节点QB_A连接。第七控制晶体管E7的栅极和第一节点Q1连接,第七控制晶体管E7的第一极和第五节点QB_A连接,第七控制晶体管E7的第二极被配置为接收低电平的第三电压VGL1。
如图10所示,第二控制电路230可以实现为包括第八控制晶体管E8和第九控制晶体管E9。第八控制晶体管E8的栅极和第一极被配置为接收第二电压VDD,第八控制晶体管E8的第二极和第六节点QB_B连接。第九控制晶体管E9的栅极和第二节点Q2连接,第九控制晶体管E9的第一极和第六节点QB_B连接,第九控制晶体管E9的第二极被配置为接收低电平的第三电压VGL1。
如图10所示,第一复位电路140可以实现为包括第一复位晶体管R1和第二复位晶体管R2,第三复位电路240包括第三复位晶体管R3。
第一复位晶体管R1的栅极和第五节点QB_A连接,第一复位晶体管R1的第一极和第一节点Q1连接,第一复位晶体管R1的第二极和防漏电节点OF连接。第二复位晶体管R2的栅极和第五节点QB_A连接,第二复位晶体管R2的第一极和防漏电节点OF连接,第二复位晶体管R2的第二极被配置为接收低电平的第三电压VGL1。
第三复位晶体管R3的栅极和第六节点QB_B连接,第三复位晶体管R3的第一极和第二节点Q2连接,第三复位晶体管R3的第二极和防漏电节点OF连接。
在本公开的一些实施例提供的移位寄存器单元10中,将第一复位晶体管R1和防漏电节点OF连接,可以避免第一节点Q1通过第一复位晶体管R1发生漏电;将第三复位晶体管R3和防漏电节点OF连接,可以避免第二节点Q2通过第三复位晶体管R3发生漏电。在防漏电的基础上,在对第一节点Q1和第二节点Q2进行复位操作时,第二复位晶体管R2还可以被复用, 从而可以节省晶体管数量,减小采用该移位寄存器单元的显示装置的边框尺寸,更有利于提高该显示装置的PPI。
如图10所示,第二复位电路150包括第十复位晶体管R10和第十一复位晶体管R11。
第十复位晶体管R10的栅极和第五节点QB_A连接,第十复位晶体管R10的第一极和移位信号输出端CRT连接,第十复位晶体管R10的第二极被配置为接收低电平的第三电压VGL1。第十一复位晶体管R11的栅极和第五节点QB_A连接,第十一复位晶体管R11的第一极和第一输出信号端OP1连接,第十一复位晶体管R11的第二极被配置为接收低电平的第四电压VGL2。
如图10所示,第四复位电路250包括第十二复位晶体管R12。第十二复位晶体管R12的栅极和第六节点QB_B连接,第十二复位晶体管R12的第一极和第二输出信号端OP2连接,第十二复位晶体管R12的第二极被配置为接收低电平的第四电压VGL2。
如图10所示,第三控制电路160包括第一控制晶体管E1,第四控制电路170包括第四控制晶体管E4,公共控制电路161包括第二控制晶体管E2。
第一控制晶体管E1的栅极被配置为接收第一时钟信号CLKA,第一控制晶体管E1的第一极和第五节点QB_A连接,第一控制晶体管E1的第二极和公共控制节点CC连接。
第二制晶体管E2的栅极和第三节点H连接,第二控制晶体管E2的第一极和公共控制节点CC连接,第二控制晶体管E2的第二极被配置为接收低电平的第三电压VGL1。
第四控制晶体管E4的栅极被配置为接收第一输入信号STU1,第四控制晶体管E4的第一极和第五节点QB_A连接,第四控制晶体管E4的第二极被配置为接收低电平的第三电压VGL1。
如图10所示,第五控制电路260包括第三控制晶体管E3,第六控制电路270包括第五控制晶体管E5。
第三控制晶体管E3的栅极被配置为接收第一时钟信号CLKA,第三控制晶体管E3的第一极和第六节点QB_B连接,第三控制晶体管E3的第二极和公共控制节点CC连接。
第五控制晶体管E5的栅极被配置为接收第一输入信号STU1,第五控制 晶体管E5的第一极和第六节点QB_B连接,第五控制晶体管E5的第二极被配置为接收低电平的第三电压VGL1。
在本公开的一些实施例提供的移位寄存器单元10中,通过设置公共控制节点CC可以使得第二控制晶体管E2被复用,从而可以节省晶体管数量,简化电路结构。
如图10所示,第五复位电路180包括第四复位晶体管R4和第五复位晶体管R5,第六复位电路280包括第六复位晶体管R6,第七复位电路190包括第七复位晶体管R7和第八复位晶体管R8,第八复位电路290包括第九复位晶体管R9。需要说明的是,关于第四复位晶体管R4、第五复位晶体管R5、第六复位晶体管R6、第七复位晶体管R7、第八复位晶体管R8以及第九复位晶体管R9的详细描述以及技术效果可以参考图3所示的实施例中的相应描述,这里不再赘述。
在本公开的一些实施例中,移位寄存器单元10还可以实现为图11所示的电路结构。下面只描述图11所示的移位寄存器单元10和图10所示的移位寄存器单元10的区别,相同之处在此不再赘述。
如图11所示,该移位寄存器单元10还可以包括第十三复位晶体管R13、第十四复位晶体管R14、第十五复位晶体管R15、第十六复位晶体管R16、第十七复位晶体管R17以及第十八复位晶体管R18。
如图11所示,第六控制晶体管E6的栅极以及第一极被配置为接收第五电压VDD_A,第八控制晶体管E8的栅极以及第一极被配置为接收第六电压VDD_B。
需要说明的是,在本公开的实施例中,例如,第五电压VDD_A和第六电压VDD_B可以被配置为彼此互为反相信号,即第五电压VDD_A为高电平时,第六电压VDD_B为低电平,而第五电压VDD_A为低电平时,第六电压VDD_B为高电平。采用这种方式可以使得第六控制晶体管E6和第八控制晶体管E8在同一时刻只有一个处于导通状态,这样可以避免晶体管长期导通引起的性能漂移,从而可以提高电路的稳定性。
如图12所示,在本公开的一些实施例提供的移位寄存器单元10中,该移位寄存器单元10包括第一子电路100、第二子电路200、第三子电路500、第四子电路600。
第三子电路500、第四子电路600共用同一个消隐输入子电路,第三子 电路500、第四子电路600以及共用的消隐输入子电路包括防漏电晶体管A2_b,输入晶体管B2_b、B3_b、B4_b、B5_b,B6_b,传输晶体管T1_b、T2_b、T3_b,控制晶体管E1_b、E2_b、E3_b、E4_b、E5_b、E6_b、E7_b、E8_b、E9_b,复位晶体管R1_b、R3_b、R4_b、R6_b、R7_b、R9_b、R10_b、R11_b、R12_b,输出晶体管D1_b、D2_b、D3_b,电容C1_b、C2_b、C3_b,另外还设置节点Q3、Q4、QB_C、QB_D、H_b、N_b、CC_b以用于各个晶体管之间的连接。
另外,第三子电路500被配置为接收输入信号STU3、显示复位信号STD2、时钟信号CLKB_b、CLKC_b,且通过输出端CRT_b和OP3提供输出信号,第四子电路600被配置为接收输入信号STU3、显示复位信号STD2、时钟信号CLKD_b,且通过输出端OP4提供输出信号。第三子电路500和第四子电路600共用的消隐输入子电路被配置为接收输入信号STU4。
如图12所示,第一子电路100、第二子电路200、第三子电路500、第四子电路600均和防漏电节点OF连接,即四个子电路共用一个防漏电节点OF。另外,第一子电路100和第二子电路200共用同一个消隐输入子电路,第三子电路500和第四子电路600共用同一个消隐输入子电路,从而可以节省晶体管数量,简化电路结构,减小采用该移位寄存器单元的显示装置的边框尺寸,更有利于提高该显示装置的PPI。
在本公开的一些实施例中,移位寄存器单元10还可以实现为图13所示的电路结构。下面只描述图13所示的移位寄存器单元10和图12所示的移位寄存器单元10的区别,相同之处在此不再赘述。
如图13所示,该移位寄存器单元10中的第一子电路100、第二子电路200、第三子电路500以及第四子电路600均和防漏电节点OF连接,即四个子电路共用一个防漏电节点OF。另外,第一子电路100、第二子电路200、第三子电路500以及第四子电路600还共用同一个消隐输入子电路,从而可以进一步减少晶体管数量,简化电路结构,减小采用该移位寄存器单元的显示装置的边框尺寸,更有利于提高该显示装置的PPI。
如前所述,在本公开的实施例提供的移位寄存器单元10中,可以利用第一电容C1维持第三节点H处的电位,利用第二电容C2维持第一节点Q1处的电位,利用第三电容C3维持第二节点Q2处的电位。第一电容C1、第二电容C2和第三电容C3可以是通过工艺制程制作的电容器件,例如通过制作 专门的电容电极来实现电容器件,该电容的各个电极可以通过金属层、半导体层(例如掺杂多晶硅)等实现,或者在一些示例中,通过设计电路布线参数使得第一电容C1、第二电容C2和第三电容C3也可以通过各个器件之间的寄生电容实现。第一电容C1、第二电容C2和第三电容C3的连接方式不局限于上面描述的方式,也可以为其他适用的连接方式,只要能存储写入到第三节点H、第一节点Q1和第二节点Q2的电平即可。
本公开的一个实施例还提供一种栅极驱动电路20,如图14所示,该栅极驱动电路20包括多个级联的移位寄存器单元10,其中任意一个或多个移位寄存器单元10可以采用本公开的实施例提供的移位寄存器单元10的结构或其变型,例如,可以采用图11所示的移位寄存器单元10。图14中的A1、A2、A3、A4、A5和A6表示移位寄存器单元10中的子电路,例如A1、A3和A5分别表示三个移位寄存器单元10中的第一子电路,A2、A4和A6分别表示三个移位寄存器单元10中的第二子电路。
例如,如图14所示,每个移位寄存器单元10包括第一子电路和第二子电路,以分别输出第一输出信号OUT1和第二输出信号OUT2。当该栅极驱动电路20用于驱动一显示面板时,第一输出信号OUT1和第二输出信号OUT2可以分别驱动显示面板中的一行子像素单元。例如,A1、A2、A3、A4、A5以及A6可以分别驱动显示面板的第一行、第二行、第三行、第四行、第五行以及第六行子像素单元。
本公开的实施例提供的栅极驱动电路20,可以共用消隐输入子电路,从而可以减小采用该栅极驱动电路的显示装置的边框尺寸,提高该显示装置的PPI。同时,还可以实现随机补偿,从而可以避免由于逐行顺序补偿造成的扫描线以及显示亮度不均匀等显示不良问题。
下面以图14所示的栅极驱动电路20为例,对栅极驱动电路20中的信号线进行说明。
如图14所示,栅极驱动电路20包括第一子时钟信号线CLK_1、第二子时钟信号线CLK_2和第三子时钟信号线CLK_3。第3n-2级移位寄存器单元中的第一子电路和第一子时钟信号线CLK_1连接以接收第3n-2级移位寄存器单元的第二时钟信号CLKB;第3n-1级移位寄存器单元中的第一子电路和第二子时钟信号线CLK_2连接以接收第3n-1级移位寄存器单元的第二时钟信号CLKB;第3n级移位寄存器单元中的第一子电路和第三子时钟信号线 CLK_3连接以接收第3n级移位寄存器单元的第二时钟信号CLKB;n为大于零的整数。
如上所述,在移位寄存器单元10进行级联时,只需要向每一级移位寄存器单元10中的第一子电路依次提供第二时钟信号CLKB即可,该第二时钟信号CLKB可以作为移位信号CR输出以完成扫描移位。
如图14所示,栅极驱动电路20还包括第四子时钟信号线CLK_4、第五子时钟信号线CLK_5、第六子时钟信号线CLK_6、第七子时钟信号线CLK_7、第八子时钟信号线CLK_8和第九子时钟信号线CLK_9。
第3n-2级移位寄存器单元中的第一子电路和第四子时钟信号线CLK_4连接以接收第3n-2级移位寄存器单元的第三时钟信号CLKC,第3n-2级移位寄存器单元中的第二子电路和第五子时钟信号线CLK_5连接以接收第3n-2级移位寄存器单元的第四时钟信号CLKD。
第3n-1级移位寄存器单元中的第一子电路和第六子时钟信号线CLK_6连接以接收第3n-1级移位寄存器单元的第三时钟信号CLKC,第3n-1级移位寄存器单元中的第二子电路和第七子时钟信号线CLK_7连接以接收第3n-1级移位寄存器单元的第四时钟信号CLKD。
第3n级移位寄存器单元中的第一子电路和第八子时钟信号线CLK_8连接以接收第3n级移位寄存器单元的第三时钟信号CLKC,第3n级移位寄存器单元中的第二子电路和第九子时钟信号线CLK_9连接以接收第3n级移位寄存器单元的第四时钟信号CLKD。
如上所述,通过第四子时钟信号线CLK_4、第五子时钟信号线CLK_5、第六子时钟信号线CLK_6、第七子时钟信号线CLK_7、第八子时钟信号线CLK_8以及第九子时钟信号线CLK_9共六条时钟信号线向各级移位寄存器单元10提供逐行输出的驱动信号。即本公开的实施例提供的栅极驱动电路20可以采用6CLK的时钟信号,这样可以使得该栅极驱动电路20输出的驱动信号的波形交叠,例如可以增加每一行子像素单元的预充电时间,从而使得该栅极驱动电路可以适用于高频率的扫描显示。本公开的实施例对采用的时钟信号的类型不作限定,例如还可以采用8CLK、10CLK等时钟信号。
如图14所示,栅极驱动电路20还包括第十子时钟信号线CLK_10、第十一子时钟信号线CLK_11和第十二子时钟信号线CLK_12。
例如,每一级移位寄存器单元10中的第一子电路和第二子电路都和第 十子时钟信号线CLK_10连接以接收全局复位信号TRST。每一级移位寄存器单元10中的选择输入电路310都和第十一子时钟信号线CLK_11以接收选择控制信号OE。每一级移位寄存器单元10中的第一子电路、第二子电路以及第三输入电路320都和第十二子时钟信号线CLK_12以接收第一时钟信号CLKA。
如图14所示,栅极驱动电路20还包括第十三子时钟信号线CLK_13和第十四子时钟信号线CLK_14。
例如,每一级移位寄存器单元10中的第一子电路都和第十三子时钟信号线CLK_13连接以接收第三电压VDD_A;每一级移位寄存器单元10中的第二子电路都和第十四子时钟信号线CLK_14连接以接收第四电压VDD_B。
如图14所示,栅极驱动电路20还包括第十五子时钟信号线CLK_15,第一级移位寄存器单元10中的第一子电路以及第二子电路和第十五子时钟信号线CLK_15连接以接收第一输入信号STU1。
如图14所示,除了第一级移位寄存器单元10外,其它级移位寄存器单元10中的第一子电路和第二子电路和前一级移位寄存器单元10中的第一子电路连接以接收移位信号CR并作为第一输入信号STU1。除了最后两级移位寄存器单元10外,其它级移位寄存器单元10中的第一子电路和第二子电路和后两级移位寄存器单元10中的第一子电路连接以接收移位信号CR并作为显示复位信号STD。
需要说明的是,图14中所示的级联关系仅是一种示例,根据本公开的描述,还可以根据实际情况采用其它级联方式。
例如,在一个示例中,图14所示的栅极驱动电路20中的移位寄存器单元10可以采用图11中所示的电路结构,图15示出了图14所示的栅极驱动电路20工作时的信号时序图。
在图15中,H<5>表示第三级移位寄存器单元10中的第三节点H,第三级移位寄存器单元10对应显示面板中第五行和第六行子像素单元。N<5>表示第三级移位寄存器单元10中的第四节点N。
Q1<1>和Q2<2>分别表示第一级移位寄存器单元10中的第一节点Q1和第二节点Q2;Q1<5>和Q2<6>分别表示第三级移位寄存器单元10中的第一节点Q1和第二节点Q2。括号中的数字表示该节点对应的显示面板中的子像素单元的行数,以下各实施例与此相同,不再赘述。
OUT1<1>和OUT2<2>分别表示第一级移位寄存器单元10输出的第一输出信号OUT1和第二输出信号OUT2。类似地,OUT1<3>和OUT2<4>分别表示第二级移位寄存器单元10输出的第一输出信号OUT1和第二输出信号OUT2;OUT1<5>和OUT2<6>分别表示第三级移位寄存器单元10输出的第一输出信号OUT1和第二输出信号OUT2。CR<1>、CR<3>和CR<5>分别表示第一级、第二级和第三级移位寄存器单元10输出的移位信号CR。例如,如图15所示,在本实施例中,CR<1>和OUT1<1>相同,CR<3>和OUT1<3>相同,CR<5>和OUT1<5>相同。
1F表示第一帧,DS表示第一帧中的显示时段,BL表示第一帧中的消隐时段。另外,需要说明的是,在图15中是以第五电压VDD_A为低电平而第六电压VDD_B为高电平为例进行示意的,但本公开的实施例不限于此。图15所示的信号时序图中的信号电平只是示意性的,不代表真实电平值。
下面结合图15中的信号时序图以及图11所示的移位寄存器单元10,对图14中所示的栅极驱动电路20的工作原理进行说明。
在第一帧1F开始前,第十子时钟信号线CLK_10和第十一子时钟信号线CLK_11提供高电平,每一级移位寄存器单元10中的第七复位晶体管R7、第八复位晶体管R8以及第九复位晶体管R9导通,从而可以对每一级移位寄存器单元10中的第一节点Q1和第二节点Q2进行复位;每一级移位寄存器单元10中的第四输入晶体管B4以及第五输入晶体管B5导通,由于此时接收的第二输入信号STU2为低电平,所以可以对每一级移位寄存器单元10中的第三节点H进行复位,从而在第一帧1F开始前实现全局复位。
在第一帧1F的显示时段DS中,针对第三级移位寄存器单元10(即对应显示面板第五行和第六行的子像素单元)的工作过程描述如下。
在第一阶段1中,第二级移位寄存器单元10中的第一子电路输出的移位信号CR<3>为高电平,即第三级移位寄存器单元10接收的第一输入信号STU1为高电平,所以第一输入晶体管B1、第二输入晶体管B2以及第三输入晶体管B3导通。高电平的第一输入信号STU1通过第一输入晶体管B1和第二输入晶体管B2对第一节点Q1<5>充电,从而将第一节点Q1<5>上拉至高电平;高电平的第一输入信号STU1还可以通过第一输入晶体管B1和第三输入晶体管B3对第二节点Q2<6>进行充电,从而将第二节点Q2<6>上拉至高电平。
第二输出晶体管D2在第一节点Q1<5>的控制下导通,但由于此时第八子时钟信号线CLK_8提供的第三时钟信号CLKC为低电平,所以第三级移位寄存器单元10输出的第一输出信号OUT1<5>为低电平;第三输出晶体管D3在第二节点Q2<6>的控制下导通,但由于此时第九子时钟信号线CLK_9提供的第四时钟信号CLKD为低电平,所以第三级移位寄存器单元10输出的第二输出信号OUT2<6>为低电平;在此阶段,同时对第三级移位寄存器单元10中的第一节点和第二节点完成预充电。
在第二阶段2中,第八子时钟信号线CLK_8提供的第三时钟信号CLKC变为高电平,第一节点Q1<5>的电位由于自举效应而进一步被拉高,所以第二输出晶体管D2保持导通,从而第三级移位寄存器单元10输出的第一输出信号OUT1<5>变为高电平。但由于此时第九子时钟信号线CLK_9提供的第四时钟信号CLKD仍然为低电平,所以第三级移位寄存器单元10输出的第二输出信号OUT2<6>继续保持低电平。
在第三阶段3中,第九子时钟信号线CLK_9提供的第四时钟信号CLKD变为高电平,第二节点Q2<6>的电位由于自举效应而进一步被拉高,第三输出晶体管D3保持导通,从而第三级移位寄存器单元10输出的第二输出信号OUT2<6>变为高电平。
在第四阶段4中,由于第二电容C2的保持作用,第一节点Q1<5>仍然保持高电平,所以第二输出晶体管D2导通。但由于第八子时钟信号线CLK_8提供的第三时钟信号CLKC变为低电平,所以第三级移位寄存器单元10输出的第一输出信号OUT1<5>变为低电平。同时由于第二电容C2的自举作用,第一节点Q1<5>的电位也会下降。
在第五阶段5中,由于第三电容C3的保持作用,第二节点Q2<6>仍然保持高电平,所以第三输出晶体管D3导通。但由于第九子时钟信号线CLK_9提供的第四时钟信号CLKD变为低电平,所以第三级移位寄存器单元10输出的第二输出信号OUT2<6>变为低电平。同时由于第三电容C3的自举作用,第二节点Q2<6>的电位也会下降。
在第六阶段6中,由于采用6CLK的时钟信号,每三级移位寄存器单元10(每一级依次输出第一输出信号OUT1和第二输出信号OUT2)输出的信号为一个循环,同时又因为第三级移位寄存器单元10接收第五级移位寄存器单元10输出的移位信号CR作为显示复位信号STD,所以在此阶段当第 六子时钟信号线CLK_6提供的第三时钟信号CLKC变为高电平时,第三级移位寄存器单元10接收的显示复位信号STD也为高电平,从而使得第四复位晶体管R4、第五复位晶体管R5以及第六复位晶体管R6导通,从而可以利用低电平的第三电压VGL1对第一节点Q1<5>和第二节点Q2<6>完成下拉复位。
第三级移位寄存器单元10驱动显示面板中第五行和第六行的子像素完成显示后,依次类推,第四级、第五级等移位寄存器单元10逐行驱动显示面板中的子像素单元完成一帧的显示驱动。至此,第一帧的显示时段结束。
同时在第一帧1F的显示时段DS中还对第三节点H进行充电,例如,当第一帧1F中需要对第五行子像素单元进行补偿时,则在第一帧1F的显示时段DS中还进行如下操作。
在第二阶段2和第三阶段3中,使得第十一子时钟信号线CLK_11提供和第三级移位寄存器单元10输出的移位信号CR<5>相同的信号,所以第四输入晶体管B4和第五输入晶体管B5导通。同时可以使第三级移位寄存器单元10接收的第二输入信号STU2和移位信号CR<5>相同,从而高电平的第二输入信号STU2可以对第三节点H<5>充电以将第三节点H<5>上拉至高电平。
需要说明的是,上述对第三节点H<5>的充电过程仅是一种示例,本公开的实施例包括但不限于此。例如,第三级移位寄存器单元10接收的第二输入信号STU2还可以和其它级移位寄存器单元10输出的移位信号CR相同,同时使得提供至第十一子时钟信号线CLK_11的信号和该第二输入信号STU2的信号时序相同即可。
第三节点H<5>的高电位可以一直保持到第一帧1F的消隐时段BL中。当第一帧1F中需要对第五行子像素单元进行补偿时,则在第一帧1F的消隐时段BL中进行如下操作。
在第七阶段7中,第十二子时钟信号线CLK_12提供的第一时钟信号CLKA为高电平,由于在此阶段第三节点H<5>保持高电平,所以第六输入晶体管B6导通,高电平的第一时钟信号CLKA通过第六输入晶体管B6传输至第四节点N<5>,从而使得第四节点N<5>变为高电平。第一传输晶体管T1、第二传输晶体管T2以及第三传输晶体管T3在高电平的第一时钟信号CLKA的控制下导通,所以高电平的第一时钟信号CLKA可以分别对第一节 点Q1<5>和第二节点Q2<6>进行充电,第一节点Q1<5>和第二节点Q2<6>的电平被拉高。
同时,在第七阶段7中,由于第一电容C1的耦合作用,第四节点N<5>由低电平变为高电平时会对第三节点H<5>进行耦合上拉,从而使得第三节点H<5>可以保持在一个较高的高电位上,保证第六输入晶体管B6被完全导通。
然后第十二子时钟信号线CLK_12提供的第一时钟信号CLKA从高电平变为低电平,从而使得第四节点N<5>变为低电平,由于第一电容C1的耦合作用,第三节点H<5>的电位也会下降。
在第八阶段8中,第八子时钟信号线CLK_8提供的第三时钟信号CLKC变为高电平,第一节点Q1<5>的电位由于自举效应而进一步被拉高,所以第二输出晶体管D2保持导通,从而第三级移位寄存器单元10输出的第一输出信号OUT1<5>变为高电平。但由于此时第九子时钟信号线CLK_9提供的第四时钟信号CLKD仍然为低电平,所以第三级移位寄存器单元10输出的第二输出信号OUT2<6>为低电平。
例如,在第八阶段8输出的第一输出信号OUT1<5>可以用于驱动显示面板中的子像素单元中的感测晶体管,以实现外部补偿。
在第九阶段9中,由于第二电容C2的保持作用,第一节点Q1<5>仍然保持高电平,所以第二输出晶体管D2导通。但由于第八子时钟信号线CLK_8提供的第三时钟信号CLKC变为低电平,所以第三级移位寄存器单元10输出的第一输出信号OUT1<5>变为低电平。同时由于第二电容C2的自举作用,第一节点Q1<5>的电位也会下降。
在第十阶段10中,第十子时钟信号线CLK_10和第十一子时钟信号线CLK_11提供高电平,每一级移位寄存器单元10中的第七复位晶体管R7、第八复位晶体管R8以及第九复位晶体管R9导通,从而可以对每一级移位寄存器单元10中的第一节点Q1和第二节点Q2进行复位;每一级移位寄存器单元10中的第四输入晶体管B4和第五输入晶体管B5导通,由于此时接收的第二输入信号STU2为低电平,所以可以对每一级移位寄存器单元10中的第三节点H进行复位,从而完成全局复位。
至此,第一帧的驱动时序结束。后续在第二帧、第三帧等更多阶段中对栅极驱动电路的驱动可以参考上述描述,这里不再赘述。
需要说明是,在上述对随机补偿的工作原理进行描述时,是以第一帧的消隐时段输出对应于显示面板的第五行子像素单元的驱动信号为例进行说明的,本公开对此不作限定。例如,当在某一帧的消隐时段中需要输出对应于显示面板的第n行子像素单元的驱动信号时,则需要在该帧的显示时段DS中将对应的第三节点H上拉至高电平,同时在该帧的消隐时段BL中,提供高电平的第一时钟信号CLKA以拉高第一节点Q1或第二节点Q2的电位,然后在需要输出高电平的驱动信号时,提供高电平的第三时钟信号CLKC或第四时钟信号CLKD,n为大于零的整数。
另外,在本公开的实施例中,两个信号时序相同指的是位于高电平的时间同步,而不要求两个信号的幅值相同。
本公开的一些实施例还提供一种栅极驱动电路20,如图16所示,图17为对应图16所示的栅极驱动电路20工作时的信号时序图。下面描述图16所示的栅极驱动电路20与图14所示的栅极驱动电路20的区别。
如图16和图17所示,在该实施例中,栅极驱动电路20采用10CLK的时钟信号,第四子时钟信号线CLK_4、第五子时钟信号线CLK_5、第六子时钟信号线CLK_6、第七子时钟信号线CLK_7、第八子时钟信号线CLK_8、第九子时钟信号线CLK_9、第十五子时钟信号线CLK_15、第十六子时钟信号线CLK_16、第十七子时钟信号线CLK_17和第十八子时钟信号线CLK_18共十条时钟信号线向各级移位寄存器单元10提供逐行输出的驱动信号。在本公开的实施例中,采用10CLK的时钟信号,可以进一步增加每一行子像素单元的预充电时间,从而使得该栅极驱动电路可以适用于更高频率的扫描显示。
在图16和图17所示的实施例中,除了前两级移位寄存器单元10外,其它级移位寄存器单元10和前两级移位寄存器单元10中的第一子电路连接以接收移位信号CR并作为第一输入信号STU1。除了最后四级移位寄存器单元10外,其它级移位寄存器单元10和后四级移位寄存器单元10中的第一子电路连接以接收移位信号CR并作为显示复位信号STD。
如图16所示,第十子时钟信号线CLK_10和前两级移位寄存器单元10中的第一子电路和第二子电路(即A1、A2、A3和A4)连接以提供第一输入信号STU1,同时第十子时钟信号线CLK_10还和其它级移位寄存器单元10连接以提供全局复位信号TRST。采用这种方式,可以节省时钟信号线的 数量,从而可以减小采用该栅极驱动电路的显示装置的边框尺寸,提高该显示装置的PPI。
如图17所示,在该实施例中,选择的是对第十一行子像素单元进行补偿(对应第六级移位寄存器单元10)。在第一帧1F的显示时段DS中,对第三节点H<11>进行充电;在消隐时段BL中,提供高电平的第一时钟信号CLKA,完成对第一节点Q1<11>和第二节点Q2<12>的充电,然后第四子时钟信号线CLK_4提供高电平的第三时钟信号,使得第六级移位寄存器单元10输出的第一输出信号OUT1<11>为高电平,该第一输出信号OUT1<11>可以用于驱动第十一行子像素单元完成外部补偿。
如图17所示,OF<11>表示第六级移位寄存器单元10中的防漏电节点OF,OF<13>表示第七级移位寄存器单元10中的防漏电节点OF。在图16和图17所示的实施例中,时钟信号采用10CLK的时钟信号,相邻时钟信号的高电平有75%的时间重叠,从而使得例如第一输出信号OUT1<11>的高电平只在最后25%的时间内有效,也就是说,只要在第一节点Q1<11>被二次自举后保持在高电平的最后25%的时间内保证不发生漏电即可,即要保证在该25%的时间内防漏电节点OF的电平为高电平。
如图17内的虚线框800中所示,可以使得第六级移位寄存器单元、第七级移位寄存器单元以及第八级移位寄存器单元均和第七级移位寄存器单元中的防漏电节点OF<13>连接,在该防漏电节点OF<13>保持高电平的时间内,可以使得Q1<11>、Q2<12>、Q1<13>、Q2<14>、Q1<15>、Q2<16>在被二次自举后保持在高电平的最后25%的时间内不发生漏电,从而可以避免发生输出异常,避免采用该移位寄存器单元作为栅极驱动电路的显示面板发生显示不良。如上所述,在采用10CLK的情形中,最多可以使得移位寄存器单元中的六个子电路共用一个防漏电节点OF。
另外,图18示出了图17所示的第三节点H<11>、第四节点N<11>以及第一输出信号OUT1<11>的信号仿真图。
本公开的一些实施例还提供一种显示装置1,如图19所示,该显示装置1包括本公开实施例提供的栅极驱动电路20以及多个呈阵列排布的子像素单元510。例如,该显示装置1还包括显示面板50,多个子像素单元510构成的像素阵列设置在显示面板50中。
栅极驱动电路20中的每一个移位寄存器单元10输出的第一输出信号 OUT1和第二输出信号OUT2分别提供至不同行的子像素单元510,例如,栅极驱动电路20通过栅线GL与子像素单元510电连接。栅极驱动电路20用于提供驱动信号至像素阵列,例如该驱动信号可以驱动子像素单元510中的扫描晶体管和感测晶体管。
例如,该显示装置1还可以包括数据驱动电路30,该数据驱动电路30用于提供数据信号至像素阵列。例如,数据驱动电路30通过数据线DL与子像素单元510电连接。
需要说明的是,本实施例中的显示装置1可以为:液晶面板、液晶电视、显示器、OLED面板、OLED电视、电子纸显示装置、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开的实施例提供的显示装置1的技术效果可以参考上述实施例中关于栅极驱动电路20的相应描述,这里不再赘述。
本公开的一些实施例还提供一种驱动方法,可以用于驱动本公开的实施例提供的移位寄存器单元10,多个该移位寄存器单元10可以级联构建本公开一实施例提供的栅极驱动电路,该栅极驱动电路用于驱动显示面板显示至少一帧画面。
该驱动方法包括:防漏电电路400在第一节点Q1的电平的控制下对防漏电节点OF的电平进行控制,以使得连接于第一节点Q1和防漏电节点OF之间的电路截止,且使得连接于第二节点Q2和防漏电节点OF之间的电路截止。
需要说明的是,关于本公开的实施例提供的驱动方法的详细描述和技术效果可以参考本公开的实施例中对于移位寄存器单元10和栅极驱动电路20的工作原理的描述,这里不再赘述。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种移位寄存器单元,包括第一子电路、第二子电路和防漏电电路,其中,
    所述第一子电路包括第一输入电路和第一输出电路,所述第一输入电路被配置为响应于第一输入信号对第一节点的电平进行控制,所述第一输出电路被配置为在所述第一节点的电平的控制下输出移位信号和第一输出信号;
    所述第二子电路包括第二输入电路和第二输出电路,所述第二输入电路被配置为在所述第一输入电路对所述第一节点的电平进行控制的同时,响应于所述第一输入信号对第二节点的电平进行控制,所述第二输出电路被配置为在所述第二节点的电平的控制下输出第二输出信号;
    所述防漏电电路和所述第一节点连接,且被配置为在所述第一节点的电平的控制下对防漏电节点的电平进行控制,以使得连接于所述第一节点和所述防漏电节点之间的电路截止,且使得连接于所述第二节点和所述防漏电节点之间的电路截止。
  2. 根据权利要求1所述的移位寄存器单元,其中,所述第一输入电路和所述第一节点以及所述防漏电节点连接,且还被配置为响应于所述第一输入信号对所述防漏电节点的电平进行控制;
    所述第二输入电路和所述第二节点以及所述防漏电节点连接,且被配置为响应于所述第一输入信号将所述防漏电节点的电平传输至所述第二节点。
  3. 根据权利要求2所述的移位寄存器单元,其中,所述防漏电电路包括第一防漏电晶体管,所述第一输入电路包括第一输入晶体管和第二输入晶体管,所述第二输入电路包括第三输入晶体管;
    所述第一防漏电晶体管的栅极和所述第一节点连接,所述第一防漏电晶体管的第一极被配置为接收第一电压,所述第一防漏电晶体管的第二极和所述防漏电节点连接;
    所述第一输入晶体管的栅极以及第一极被配置为接收所述第一输入信号,所述第一输入晶体管的第二极和所述防漏电节点连接;
    所述第二输入晶体管的栅极被配置为接收所述第一输入信号,所述第二输入晶体管的第一极和所述防漏电节点连接,所述第二输入晶体管的第二极和所述第一节点连接;
    所述第三输入晶体管的栅极被配置为接收所述第一输入信号,所述第三输入晶体管的第一极和所述防漏电节点连接,所述第三输入晶体管的第二极和所述第二节点连接。
  4. 根据权利要求1-3任一所述的移位寄存器单元,还包括消隐输入子电路,其中,所述消隐输入子电路和所述第一节点以及所述第二节点连接,且被配置为接收选择控制信号并对所述第一节点的电平和所述第二节点的电平进行控制。
  5. 根据权利要求4所述的移位寄存器单元,其中,所述消隐输入子电路包括选择控制电路、第三输入电路、第一传输电路和第二传输电路;
    所述选择控制电路被配置为响应于所述选择控制信号利用第二输入信号对第三节点的电平进行控制,并保持所述第三节点的电平;
    所述第三输入电路被配置为在所述第三节点的电平的控制下将第一时钟信号传输至第四节点;
    所述第一传输电路和所述第一节点、所述第四节点以及所述防漏电节点电连接,且被配置为响应于第一时钟信号对所述第一节点的电平以及所述防漏电节点的电平进行控制;
    所述第二传输电路和所述第二节点以及所述防漏电节点连接,且被配置为响应于所述第一时钟信号将所述防漏电节点的电平传输至所述第二节点。
  6. 根据权利要求5所述的移位寄存器单元,其中,所述第一传输电路包括第一传输晶体管和第二传输晶体管,所述第二传输电路包括第三传输晶体管;
    所述第一传输晶体管的栅极被配置为接收所述第一时钟信号,所述第一传输晶体管的第一极和所述第四节点连接,所述第一传输晶体管的第二极和所述防漏电节点连接;
    所述第二传输晶体管的栅极被配置为接收所述第一时钟信号,所述第二传输晶体管的第一极和所述防漏电节点连接,所述第二传输晶体管的第二极和所述第一节点连接;
    所述第三传输晶体管的栅极被配置为接收所述第一时钟信号,所述第三传输晶体管的第一极和所述防漏电节点连接,所述第三传输晶体管的第二极和所述第二节点连接。
  7. 根据权利要求5或6所述的移位寄存器单元,其中,所述第一子电路 还包括第一控制电路、第一复位电路、第二复位电路、移位信号输出端以及第一输出信号端;所述第二子电路还包括第二控制电路、第三复位电路、第四复位电路以及第二输出信号端;
    所述移位信号输出端被配置为输出所述移位信号,所述第一输出信号端被配置为输出所述第一输出信号;所述第二输出信号端被配置为输出所述第二输出信号;
    所述第一控制电路被配置为在所述第一节点的电平和第二电压的控制下,对第五节点的电平进行控制;
    所述第一复位电路和所述第一节点以及所述防漏电节点连接,且被配置为在所述第五节点的电平的控制下,对所述第一节点以及所述防漏电节点进行复位;
    所述第二复位电路被配置为在第五节点的电平的控制下,对所述移位信号输出端和所述第一输出信号端进行复位;
    所述第二控制电路被配置为在所述第二节点的电平和所述第二电压的控制下,对第六节点的电平进行控制;
    所述第三复位电路和所述第二节点以及所述防漏电节点连接,且被配置为在所述第六节点的电平的控制下,将所述防漏电节点的电平传输至所述第二节点;
    所述第四复位电路被配置为在第六节点的电平的控制下,对所述第二输出信号端进行复位。
  8. 根据权利要求7所述的移位寄存器单元,其中,所述第一复位电路包括第一复位晶体管和第二复位晶体管,所述第三复位电路包括第三复位晶体管;
    所述第一复位晶体管的栅极和所述第五节点连接,所述第一复位晶体管的第一极和所述第一节点连接,所述第一复位晶体管的第二极和所述防漏电节点连接;
    所述第二复位晶体管的栅极和所述第五节点连接,所述第二复位晶体管的第一极和所述防漏电节点连接,所述第二复位晶体管的第二极被配置为接收第三电压;
    所述第三复位晶体管的栅极和所述第六节点连接,所述第三复位晶体管的第一极和所述第二节点连接,所述第三复位晶体管的第二极和所述防漏电 节点连接。
  9. 根据权利要求7或8所述的移位寄存器单元,其中,所述第一子电路还包括第三控制电路、第四控制电路和公共控制电路,所述第二子电路还包括第五控制电路和第六控制电路;
    所述第三控制电路和所述第五节点以及公共控制节点连接,且被配置为响应于所述第一时钟信号使得所述第五节点和所述公共控制节点电连接,
    所述公共控制电路和所述公共控制节点以及所述第三节点电连接,且被配置为在所述第三节点的电平的控制下对所述公共控制节点的电平进行控制,
    所述第四控制电路被配置为响应于所述第一输入信号对所述第五节点的电平进行控制;
    所述第五控制电路和所述第六节点以及所述公共控制节点连接,且被配置为响应于所述第一时钟信号使得所述第六节点和所述公共控制节点电连接,
    所述第六控制电路被配置为响应于所述第一输入信号对所述第六节点的电平进行控制。
  10. 根据权利要求9所述的移位寄存器单元,其中,所述第三控制电路包括第一控制晶体管,所述公共控制电路包括第二控制晶体管,所述第五控制电路包括第三控制晶体管;
    所述第一控制晶体管的栅极被配置为接收所述第一时钟信号,所述第一控制晶体管的第一极和所述第五节点连接,所述第一控制晶体管的第二极和所述公共控制节点连接;
    所述第二控制晶体管的栅极和所述第三节点连接,所述第二控制晶体管的第一极和所述公共控制节点连接,所述第二控制晶体管的第二极被配置为接收第三电压;
    所述第三控制晶体管的栅极被配置为接收所述第一时钟信号,所述第三控制晶体管的第一极和所述第六节点连接,所述第三控制晶体管的第二极和所述公共控制节点连接。
  11. 根据权利要求7-10任一项所述的移位寄存器单元,其中,所述第一子电路还包括第五复位电路,所述第二子电路还包括第六复位电路;
    所述第五复位电路和所述第一节点以及所述防漏电节点连接,且被配置 为响应于显示复位信号对所述第一节点以及所述防漏电节点进行复位;
    所述第六复位电路和所述第二节点以及所述防漏电节点连接,且被配置为响应于所述显示复位信号将所述防漏电节点的电平传输至所述第二节点。
  12. 根据权利要求11所述的移位寄存器单元,其中,所述第五复位电路包括第四复位晶体管和第五复位晶体管,所述第六复位电路包括第六复位晶体管;
    所述第四复位晶体管的栅极被配置为接收所述显示复位信号,所述第四复位晶体管的第一极和所述第一节点连接,所述第四复位晶体管的第二极和所述防漏电节点连接;
    所述第五复位晶体管的栅极被配置为接收所述显示复位信号,所述第五复位晶体管的第一极和所述防漏电节点连接,所述第五复位晶体管的第二极被配置为接收第三电压;
    所述第六复位晶体管的栅极被配置为接收所述显示复位信号,所述第六复位晶体管的第一极和所述第二节点连接,所述第六复位晶体管的第二极和所述防漏电节点连接。
  13. 根据权利要求7-12任一项所述的移位寄存器单元,其中,所述第一子电路还包括第七复位电路,所述第二子电路还包括第八复位电路;
    所述第七复位电路和所述第一节点以及所述防漏电节点连接,且被配置为响应于全局复位信号对所述第一节点和所述防漏电节点进行复位;
    所述第八复位电路和所述第二节点以及所述防漏电节点连接,且被配置为响应于所述全局复位信号将所述防漏电节点的电平传输至所述第二节点。
  14. 根据权利要求13所述的移位寄存器单元,其中,所述第七复位电路包括第七复位晶体管和第八复位晶体管,所述第八复位电路包括第九复位晶体管;
    所述第七复位晶体管的栅极被配置为接收所述全局复位信号,所述第七复位晶体管的第一极和所述第一节点连接,所述第七复位晶体管的第二极和所述防漏电节点连接;
    所述第八复位晶体管的栅极被配置为接收所述全局复位信号,所述第八复位晶体管的第一极和所述防漏电节点连接,所述第八复位晶体管的第二极被配置为接收第三电压;
    所述第九复位晶体管的栅极被配置为接收所述全局复位信号,所述第九 复位晶体管的第一极和所述第二节点连接,所述第九复位晶体管的第二极和所述防漏电节点连接。
  15. 根据权利要求4-14任一项所述的移位寄存器单元,还包括第三子电路和第四子电路,其中,
    所述第一子电路、所述第二子电路、所述第三子电路以及所述第四子电路均和所述防漏电节点连接。
  16. 根据权利要求15所述的移位寄存器单元,其中,所述第一子电路和所述第二子电路共用所述消隐输入子电路。
  17. 根据权利要求15或16所述的移位寄存器单元,其中,所述第一子电路、所述第二子电路、所述第三子电路以及所述第四子电路共用所述消隐输入子电路。
  18. 一种栅极驱动电路,包括多个级联的如权利要求1-17任一所述的移位寄存器单元。
  19. 一种显示装置,包括如权利要求18所述的栅极驱动电路。
  20. 一种如权利要求1-17任一所述的移位寄存器单元的驱动方法,包括:
    所述防漏电电路在所述第一节点的电平的控制下对防漏电节点的电平进行控制,以使得连接于所述第一节点和所述防漏电节点之间的电路截止,且使得连接于所述第二节点和所述防漏电节点之间的电路截止。
PCT/CN2019/128655 2019-01-18 2019-12-26 移位寄存器单元、栅极驱动电路、显示装置及驱动方法 WO2020147546A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19909662.9A EP3913613A4 (en) 2019-01-18 2019-12-26 SLIDER REGISTER UNIT, GATE DRIVER CIRCUIT, DISPLAY DEVICE AND DRIVE METHOD
US16/766,470 US11164516B2 (en) 2019-01-18 2019-12-26 Shift register unit, gate driving circuit, display device and driving method
US17/490,054 US11615743B2 (en) 2019-01-18 2021-09-30 Shift register unit, gate driving circuit, display device and driving method
US18/108,730 US20230196994A1 (en) 2019-01-18 2023-02-13 Shift register unit, gate driving circuit, display device and driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910048927.5 2019-01-18
CN201910048927.5A CN109935204B (zh) 2019-01-18 2019-01-18 移位寄存器单元、栅极驱动电路、显示装置及驱动方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/766,470 A-371-Of-International US11164516B2 (en) 2019-01-18 2019-12-26 Shift register unit, gate driving circuit, display device and driving method
US17/490,054 Continuation US11615743B2 (en) 2019-01-18 2021-09-30 Shift register unit, gate driving circuit, display device and driving method

Publications (1)

Publication Number Publication Date
WO2020147546A1 true WO2020147546A1 (zh) 2020-07-23

Family

ID=66985028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128655 WO2020147546A1 (zh) 2019-01-18 2019-12-26 移位寄存器单元、栅极驱动电路、显示装置及驱动方法

Country Status (4)

Country Link
US (3) US11164516B2 (zh)
EP (1) EP3913613A4 (zh)
CN (1) CN109935204B (zh)
WO (1) WO2020147546A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935208B (zh) * 2018-02-14 2021-03-02 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路、显示装置以及驱动方法
CN109935204B (zh) 2019-01-18 2022-06-03 合肥京东方卓印科技有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
CN112930563B (zh) * 2019-08-08 2023-04-21 京东方科技集团股份有限公司 栅极驱动单元、电路、显示基板、显示面板和显示装置
CN112447141B (zh) * 2019-08-30 2022-04-08 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动电路、显示面板
CN110610676B (zh) * 2019-09-30 2021-10-26 合肥京东方卓印科技有限公司 显示装置、栅极驱动电路、移位寄存电路及其驱动方法
CN110619838B (zh) * 2019-11-04 2021-12-21 京东方科技集团股份有限公司 移位寄存器单元电路及驱动方法、栅极驱动器和显示装置
US20230335207A1 (en) * 2020-12-26 2023-10-19 Hefei Boe Joint Technology Co.,Ltd. Shift register and method for driving the same, gate driving circuit, and display device
CN115244610B (zh) 2020-12-26 2023-11-28 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动电路、显示装置
CN114170943B (zh) * 2021-12-09 2023-11-21 上海中航光电子有限公司 移位寄存电路、显示面板和显示装置
CN116189608B (zh) * 2022-02-16 2023-08-04 北京大学 一种led显示屏消除毛毛虫与拖影现象并提高刷新率的方法
WO2023225847A1 (zh) * 2022-05-24 2023-11-30 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路和栅极驱动方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083370A (ko) * 2009-01-13 2010-07-22 삼성전자주식회사 게이트 구동회로 및 이를 갖는 표시장치
CN104505049A (zh) * 2014-12-31 2015-04-08 深圳市华星光电技术有限公司 一种栅极驱动电路
CN107909959A (zh) * 2018-01-02 2018-04-13 京东方科技集团股份有限公司 移位寄存器单元、其驱动方法、栅极驱动电路及显示装置
CN108711401A (zh) * 2018-08-10 2018-10-26 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
CN108877682A (zh) * 2018-07-18 2018-11-23 京东方科技集团股份有限公司 一种移位寄存器及其驱动方法、栅极驱动电路
CN109166600A (zh) * 2018-10-26 2019-01-08 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
CN109935204A (zh) * 2019-01-18 2019-06-25 合肥京东方卓印科技有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317288A (ja) * 2006-05-25 2007-12-06 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置
DE102010008337A1 (de) 2010-02-17 2011-08-18 Liedtke, Dieter Walter, 06712 Daumenkino-Windräder zur Elektro-Energie-Erzeugung mit Informationen und Werbung
CN103927965B (zh) 2014-03-21 2017-02-22 京东方科技集团股份有限公司 驱动电路及驱动方法、goa单元、goa电路及显示装置
US9382747B1 (en) 2015-12-30 2016-07-05 International Business Machines Corporation Pro-active building protection system
KR102435224B1 (ko) * 2016-04-05 2022-08-25 삼성디스플레이 주식회사 게이트 구동회로 및 그것을 포함하는 표시 장치
CN106128409B (zh) * 2016-09-21 2018-11-27 深圳市华星光电技术有限公司 扫描驱动电路及显示装置
KR102338948B1 (ko) * 2017-05-22 2021-12-14 엘지디스플레이 주식회사 게이트 쉬프트 레지스터와 이를 포함한 유기발광 표시장치
KR102470378B1 (ko) * 2017-11-30 2022-11-23 엘지디스플레이 주식회사 게이트 구동 회로 및 이를 포함하는 발광 표시 장치
CN108806611B (zh) * 2018-06-28 2021-03-19 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
CN108597438B (zh) * 2018-07-03 2020-12-15 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路及其驱动方法、显示装置
CN109935185B (zh) * 2018-07-18 2022-07-01 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置
CN110858469B (zh) * 2018-08-23 2021-02-09 合肥京东方卓印科技有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
CN109166527B (zh) * 2018-10-24 2020-07-24 合肥京东方卓印科技有限公司 显示面板、显示装置及驱动方法
CN109935187B (zh) * 2019-01-18 2020-08-18 合肥京东方卓印科技有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083370A (ko) * 2009-01-13 2010-07-22 삼성전자주식회사 게이트 구동회로 및 이를 갖는 표시장치
CN104505049A (zh) * 2014-12-31 2015-04-08 深圳市华星光电技术有限公司 一种栅极驱动电路
CN107909959A (zh) * 2018-01-02 2018-04-13 京东方科技集团股份有限公司 移位寄存器单元、其驱动方法、栅极驱动电路及显示装置
CN108877682A (zh) * 2018-07-18 2018-11-23 京东方科技集团股份有限公司 一种移位寄存器及其驱动方法、栅极驱动电路
CN108711401A (zh) * 2018-08-10 2018-10-26 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
CN109166600A (zh) * 2018-10-26 2019-01-08 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
CN109935204A (zh) * 2019-01-18 2019-06-25 合肥京东方卓印科技有限公司 移位寄存器单元、栅极驱动电路、显示装置及驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913613A4

Also Published As

Publication number Publication date
CN109935204B (zh) 2022-06-03
US11164516B2 (en) 2021-11-02
US20210201774A1 (en) 2021-07-01
CN109935204A (zh) 2019-06-25
EP3913613A4 (en) 2022-09-28
EP3913613A1 (en) 2021-11-24
US20230196994A1 (en) 2023-06-22
US20220020326A1 (en) 2022-01-20
US11615743B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2020147377A1 (zh) 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
WO2020147546A1 (zh) 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
US11263953B2 (en) Shift register unit and drive method thereof, gate drive circuit and display device
US11087855B2 (en) Shift register unit and driving method, gate drive circuit and display device
US11475825B2 (en) Shift register unit, gate driving circuit, display device, and driving method
WO2020015641A1 (zh) 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
JP7396901B2 (ja) シフトレジスタユニット、ゲート駆動回路、表示装置及び駆動方法
US11127478B2 (en) Shift register unit and driving method thereof, gate driving circuit, and display device
US11244619B2 (en) Shift register unit, gate driving circuit, display device and driving method
WO2020168887A1 (zh) 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
US11403990B2 (en) Shift register unit, gate driving circuit, display device, and driving method
US11942041B2 (en) Shift register unit, gate driving circuit, display device, and driving method
US11393402B2 (en) OR logic operation circuit and driving method, shift register unit, gate drive circuit, and display device
WO2019157865A1 (zh) 移位寄存器单元、栅极驱动电路、显示装置及驱动方法
WO2023245563A1 (zh) 显示基板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019909662

Country of ref document: EP

Effective date: 20210818