WO2020145083A1 - 樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シート - Google Patents

樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シート Download PDF

Info

Publication number
WO2020145083A1
WO2020145083A1 PCT/JP2019/049974 JP2019049974W WO2020145083A1 WO 2020145083 A1 WO2020145083 A1 WO 2020145083A1 JP 2019049974 W JP2019049974 W JP 2019049974W WO 2020145083 A1 WO2020145083 A1 WO 2020145083A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
filler
resin
whisker
Prior art date
Application number
PCT/JP2019/049974
Other languages
English (en)
French (fr)
Inventor
聡寛 田渕
Original Assignee
日東シンコー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東シンコー株式会社 filed Critical 日東シンコー株式会社
Priority to CN201980086431.5A priority Critical patent/CN113227193A/zh
Priority to EP19909432.7A priority patent/EP3909997A4/en
Priority to JP2020565672A priority patent/JPWO2020145083A1/ja
Publication of WO2020145083A1 publication Critical patent/WO2020145083A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/60Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres comprising a combination of distinct filler types incorporated in matrix material, forming one or more layers, and with or without non-filled layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present invention relates to a resin composition, a method for producing the resin composition, and a heat conductive sheet.
  • Patent Document 1 discloses that a cured product obtained by curing a resin composition containing an epoxy resin, a curing agent, and an inorganic filler is used as a heat dissipation sheet. Since such a heat dissipation sheet contains a relatively large amount of an inorganic filler such as a boron nitride filler, it has heat dissipation properties.
  • Patent Document 1 contains a relatively large amount of the inorganic filler as described above, there is a problem that the heat dissipation when it becomes a cured product is not always sufficient.
  • the present invention includes a resin composition capable of exhibiting sufficient heat dissipation when it becomes a cured product, a method for producing the resin composition, and a resin layer composed of the resin composition.
  • An object is to provide a heat conductive sheet.
  • the resin composition according to the present invention is an epoxy resin, a curing agent, and a resin composition containing an inorganic filler, the inorganic filler is dispersed in the epoxy resin,
  • the inorganic filler contains two or more kinds of inorganic particles containing a whisker-like filler.
  • the method for producing a resin composition according to the present invention includes a kneading step of kneading a raw material containing an epoxy resin, a curing agent, and an inorganic filler to prepare a resin composition in which the inorganic filler is dispersed.
  • a method for producing a resin composition The epoxy resin includes a liquid epoxy resin that is liquid at room temperature, The inorganic filler contains two or more kinds of inorganic particles containing a whisker-like filler, Before the kneading step, a pre-kneading step of dispersing the whisker-like filler in the liquid epoxy resin is performed.
  • the heat conductive sheet according to the present invention comprises a resin layer containing an epoxy resin, a curing agent, and an inorganic filler, the resin layer comprising a resin composition in which the inorganic filler is dispersed in the epoxy resin.
  • the inorganic filler contains two or more kinds of inorganic particles containing a whisker-like filler.
  • the top view which shows the laminated body etched.
  • Sectional drawing which shows arrangement
  • the resin composition according to this embodiment contains components that will eventually form a cured product. That is, the resin composition according to the present embodiment contains a polymerizable component that becomes a cured resin by polymerization. Further, the resin composition according to the present embodiment contains an inorganic filler so that the cured product has good thermal conductivity. In addition, the resin composition according to the present embodiment may contain additives generally used as a plastic compounding agent within a range that does not impair the effects of the present invention.
  • the content ratio of the polymerizable component is preferably 10 parts by mass or more and 70 parts by mass or less, more preferably 30 parts by mass or more and 40 parts by mass or less.
  • the cured product obtained by curing the resin composition according to the present embodiment when the solid content is 100 parts by volume, preferably contains an inorganic filler, preferably 10 parts by volume or more and 60 parts by volume or less, The content is more preferably 30 parts by volume or more and 60 parts by volume or less, further preferably 50 parts by volume or more and 60 parts by volume or less. Further, from the viewpoint that the content ratio of the inorganic filler in the cured product is likely to be within the range as described above, the resin composition according to the present embodiment is the inorganic filler based on 100 parts by mass of the polymerizable component. Is preferably contained in an amount of 30 parts by mass or more and 90 parts by mass or less, more preferably 60 parts by mass or more and 70 parts by mass or less.
  • the resin composition according to the present embodiment preferably contains the additive in an amount of 0.005 parts by mass or more and 0.05 parts by mass or less, and 0.01 parts by mass or more with respect to 100 parts by mass of the inorganic filler. It is more preferable to contain 0.03 parts by mass or less.
  • the resin composition according to the present embodiment contains an epoxy resin and a curing agent as the polymerizable component.
  • the epoxy resin is cured with the curing agent to become a cured resin.
  • the epoxy resin includes a diphenyl ether type epoxy resin represented by the following formula (1).
  • the diphenyl ether type epoxy resin represented by the following formula (1) is a solid epoxy resin which is solid at room temperature (for example, 23° C.).
  • Examples of the diphenyl ether type epoxy resin represented by the following formula (1) include diphenyl ether type epoxy resins represented by the following formula (1').
  • the epoxy resin preferably further contains a liquid epoxy resin which is liquid at room temperature. By including the liquid epoxy resin, the whisker-like filler described below can be more sufficiently dispersed in the epoxy resin.
  • liquid epoxy resin a commercially available liquid bisphenol A type epoxy resin can be used.
  • Commercially available liquid bisphenol A type epoxy resins include JER (registered trademark) 825, JER (registered trademark) 827, JER (registered trademark) 828, JER (registered trademark) 828EL, JER (registered trademark) 828US, and JER (registered trademark).
  • the liquid epoxy resin is preferably contained in the resin composition according to the present embodiment in an amount of 20 parts by volume or more and 30 parts by volume or less, and 22 parts by volume or more and 28 parts by volume or less with respect to 1 part by volume of the whisker-like filler described later. It is more preferable that the content is 24 parts by volume or more and 26 parts by volume or less.
  • the curing agent contains a trisphenol type phenol resin represented by the following formula (2).
  • the ratio of the total amount of the epoxy resin and the curing agent in the polymerizable component is preferably 80% by mass or more and 100% by mass or less, and more preferably 90% by mass or more and 100% by mass or less.
  • the ratio of the equivalent of the epoxy resin curing agent to the equivalent of the epoxy resin is preferably 1/2 or more and 2/1 or less, more preferably 2/3 or more and 3/2 or less.
  • the inorganic filler contains two or more kinds of inorganic particles including a whisker-like filler.
  • the inorganic filler is dispersed in the epoxy resin.
  • the “whisker” means a needle-shaped single crystal, and as the whisker-like filler, aluminum nitride whiskers, alumina whiskers, calcium carbonate whiskers, calcium metasilicate whiskers and the like can be used.
  • the whisker-like filler it is preferable to use one having a d90 before compounding of 25 ⁇ m or more.
  • the thermal conductivity of the cured product of the resin composition can be further increased. That is, the heat dissipation of the cured product of the resin composition can be further enhanced.
  • the d90 of the whisker-like filler can be measured by a wet method using a laser diffraction/scattering particle size distribution analyzer (LS 13 320 manufactured by BECKMANCOULTER). The measurement is performed under the following conditions.
  • ⁇ Dispersion medium MEK (methyl ethyl ketone: refractive index 1.38)
  • -Measurement sample Whisker-like filler-PID (Polarization Intensity Differential Scattering) concentration: 42% ⁇ Pump speed: 68% ⁇ Relative humidity: 6% -Execution time (circulation time of the dispersion medium in which the measurement sample is dispersed): 94 seconds
  • Software Dedicated software ver 6.03
  • ⁇ Firmware Dedicated firmware ver2.02
  • ⁇ Measurement range 0.04 to 2000 ⁇ m
  • the whisker-like filler that is a measurement sample is aluminum nitride whiskers (AlN whiskers)
  • AlN whiskers aluminum nitride whiskers
  • a composition prepared by adding AlN whiskers to a liquid epoxy resin is added to MEK that is a dispersion medium, and then this MEK is added. It is preferable to perform a pretreatment of dispersing AlN
  • the above-mentioned whisker-like filler is a fibrous high thermal conductivity inorganic filler having a relatively high thermal conductivity at 20°C.
  • the above-mentioned whisker-like filler usually has a thickness of 2 to 3 ⁇ m and a length of several 10 ⁇ m to several 1000 ⁇ m.
  • the whisker-like filler has a relatively high thermal conductivity as described above and also has the length as described above, and therefore, the inorganic particles other than the whisker-like filler (hereinafter, simply referred to as other inorganic particles) It is considered that when the whisker-like filler is included in the resin composition according to the present embodiment, the whisker-like filler plays a role of connecting other inorganic particles when the resin composition becomes a cured product. That is, since it is considered that a heat radiation path connecting other inorganic particles to each other will be formed in the cured product of the resin composition, it is considered that heat radiation is promoted via this heat radiation path. Therefore, it is considered that the heat dissipation of the cured product of the resin composition according to the present embodiment is improved.
  • the whisker-like filler is preferably in a dispersed state.
  • the whisker-like filler is flocculated. Therefore, it is preferable that the whisker-like filler is loosened and dispersed in the liquid epoxy resin.
  • the other inorganic particles include boron nitride filler, aluminum nitride filler, silicon nitride filler, gallium nitride filler, alumina filler, silicon carbide filler, silicon dioxide filler, magnesium oxide filler, diamond filler and the like.
  • the other inorganic particles preferably include agglomerated particles in which a plurality of primary particles are agglomerated. By including the agglomerated particles, the particle diameter of the other inorganic particles can be increased, so that the interval between the other inorganic particles in the epoxy resin can be reduced. This facilitates formation of a heat radiation path between other inorganic particles due to the whisker-like filler, which will be described later, so that the heat radiation of the cured product of the resin composition can be improved.
  • the boron nitride filler has a plate shape, and the thickness thereof is usually 2 ⁇ m or less and is relatively thin. Therefore, if only the boron nitride filler is contained in the resin composition, the spacing between the boron nitride fillers becomes relatively wide as shown in FIG. 3, and the resin composition is cured to form a sheet. Sometimes, the sheet body cannot always have a sufficient heat dissipation path.
  • the resin composition according to the present embodiment by including the whisker-like filler, other inorganic particles, even if the boron nitride filler is relatively thin as described above, boron nitride fillers Can be connected in the thickness direction.
  • a plurality of laminated bodies in which a plurality of boron nitride fillers are laminated in the thickness direction can be formed in the resin composition according to the present embodiment. Therefore, the spacing between the boron nitride fillers is relatively small.
  • a sufficient heat dissipation path can be formed in the thickness direction of the sheet.
  • the whisker-like filler is contained in an amount of 0.07 part by volume or more and 0.50 part by volume or less with respect to the total volume part of the inorganic filler. Is preferable, it is more preferable that the content is 0.08 volume part or more and 0.40 volume part or less, and it is further preferable that the content is 0.08 volume part or more and 0.34 volume part or less.
  • the additive examples include a curing accelerator that accelerates the curing reaction between the epoxy resin and the curing agent, and also a dispersant, a tackifier, an antioxidant, an antioxidant, a processing aid. , Stabilizers, defoamers, flame retardants, thickeners, pigments and the like.
  • curing accelerator examples include tetraphenylphosphonium tetraphenylborate, imidazoles, triphenylphosphate (TPP), amine curing accelerators, and the like.
  • amine curing accelerator examples include boron trifluoride monoethylamine.
  • the resin composition according to the present embodiment preferably contains 0.5 part by mass or more and 1.5 parts by mass or less of the curing accelerator with respect to 100 parts by mass in total of the epoxy resin and the curing agent. It is more preferable that the content is 0.5 parts by mass or more and 1.0 parts by mass or less.
  • the resin composition according to the present embodiment may be in a state where it has not been completely cured, although the curing reaction has progressed to some extent. In other words, it may be in a state where the curing reaction has proceeded in a part of the resin composition.
  • the resin composition may be applied in the form of a sheet having fluidity and then partially cured. Even in the state where the curing reaction has proceeded in part, the resin composition according to the present embodiment contains the epoxy resin, the curing agent, and the inorganic filler.
  • the method for producing a resin composition according to the present embodiment is a kneading step of kneading an epoxy resin, a curing agent, and a raw material containing an inorganic filler to prepare a resin composition in which the inorganic filler is dispersed.
  • the epoxy resin includes the diphenyl ether type epoxy resin represented by the above formula (1) and a liquid epoxy resin which is liquid at room temperature.
  • the curing agent contains the trisphenol type phenol resin represented by the above formula (2).
  • the inorganic filler contains two or more kinds of inorganic particles containing a whisker-like filler.
  • a preliminary kneading step of dispersing a whisker-like filler in a liquid epoxy resin is performed before the kneading step.
  • whisker-like fillers are generally flocculated, but as described above, by performing a preliminary kneading step before the kneading step, the whisker-like fillers flocculated in a liquid state are liquid. It can be fully loosened in epoxy resin. In the method for producing a resin composition according to the present embodiment, since the kneading step is performed with the whiskers-like filler sufficiently disintegrated as described above, the whiskers-like filler can be sufficiently dispersed in the epoxy resin.
  • the inorganic filler preferably further contains boron nitride particles, and the boron nitride particles preferably include agglomerated particles in which a plurality of primary particles are agglomerated.
  • the preliminary kneading step is performed before the kneading step, it is possible to perform the kneading step while the whisker-like filler is sufficiently loosened. it can. Therefore, in the kneading step, the boron nitride particles can be sufficiently dispersed in the resin composition without performing excessive kneading.
  • the boron nitride particles can be sufficiently dispersed in the epoxy resin while relatively maintaining the aggregated state of the aggregated particles.
  • the inclusion of the agglomerated particles makes it possible to reduce the distance between the boron nitride particles, so that it becomes easy to form a heat dissipation path between the boron nitride particles by the whisker-like filler in the resin composition. As a result, it is possible to improve the heat dissipation when the resin composition is used as a cured product.
  • the heat conductive sheet according to this embodiment includes a resin layer made of the above resin composition. Therefore, the heat conductive sheet according to the present embodiment has improved heat dissipation.
  • metal is preferable. Specifically, a metal containing copper or aluminum is preferable.
  • the heat conductive sheet according to this embodiment can be used for a metal base circuit board.
  • the metal base circuit board is formed by, for example, adhering a circuit layer to a heat conductive sheet. Since the metal base circuit board having such a configuration has the heat conductive sheet according to the present embodiment, this metal base circuit board also has improved heat dissipation.
  • the heat conductive sheet according to the present embodiment is used, for example, in a power module.
  • a power module for example, heat-generating elements such as a semiconductor chip and a power IC are mounted on the circuit layer of the metal base circuit board, these elements are once sealed with silicone gel, and further on the silicone gel. Resin molding is performed and configured. Since the power module having such a configuration has the heat conductive sheet according to the present embodiment, this power module also has improved heat dissipation.
  • the epoxy resin contains a naphthalenediol aralkyl type epoxy resin represented by the following formula (3) instead of the diphenyl ether type epoxy resin represented by the above formula (1).
  • the naphthalenediol aralkyl type epoxy resin represented by the following formula (3) is a solid epoxy resin which is solid at room temperature (for example, 23° C.). Therefore, similarly to the resin composition according to the first embodiment, it is preferable that the resin composition according to the second embodiment further includes a liquid epoxy resin that is liquid at room temperature as the epoxy resin. By including the liquid epoxy resin, the whisker-like filler can be more sufficiently dispersed in the epoxy resin as described above. As the liquid epoxy resin, the same ones as exemplified in the first embodiment can be used.
  • n is a positive integer.
  • the curing agent contains a naphthalenediol aralkyl type phenol resin represented by the following formula (4) instead of the trisphenol type phenol resin represented by the above formula (2). ..
  • n is a positive integer.
  • the solid epoxy resin contained in the epoxy resin is replaced with the naphthalenediol aralkyl type epoxy resin represented by the above formula (3), and the phenol resin contained in the curing agent is represented by the above formula (4).
  • the naphthalenediol aralkyl-type phenol resin is replaced with the resin composition according to the second embodiment, when the resin composition according to the second embodiment becomes a cured product, sufficient heat dissipation is achieved. Can show sex.
  • the epoxy resin is a naphthalenediol aralkyl type epoxy resin represented by the above formula (3) instead of the diphenyl ether type epoxy resin represented by the above formula (1).
  • the curing agent contains a naphthalenediol aralkyl type phenol resin represented by the above formula (4) instead of the trisphenol type phenol resin represented by the above formula (2). It is carried out in the same manner as the method for producing the resin composition according to the above.
  • the heat conductive sheet according to the second embodiment includes the resin composition according to the second embodiment described above. Therefore, the heat conductive sheet according to the second embodiment also has improved heat dissipation.
  • the resin composition, the method for producing the resin composition, and the heat conductive sheet according to the present embodiment are configured as described above, they have the following advantages.
  • the resin composition according to the present invention is an epoxy resin, a curing agent, and a resin composition containing an inorganic filler, the inorganic filler is dispersed in the epoxy resin,
  • the inorganic filler contains two or more kinds of inorganic particles containing a whisker-like filler.
  • the method for producing a resin composition according to the present invention includes a kneading step of kneading a raw material containing an epoxy resin, a curing agent, and an inorganic filler to prepare a resin composition in which the inorganic filler is dispersed.
  • a method for producing a resin composition The epoxy resin includes a liquid epoxy resin that is liquid at room temperature, The inorganic filler contains two or more kinds of inorganic particles containing a whisker-like filler, Before the kneading step, a pre-kneading step of dispersing the whisker-like filler in the liquid epoxy resin is performed.
  • the heat conductive sheet according to the present invention comprises a resin layer containing an epoxy resin, a curing agent, and an inorganic filler, the resin layer comprising a resin composition in which the inorganic filler is dispersed in the epoxy resin.
  • the inorganic filler contains two or more kinds of inorganic particles containing a whisker-like filler.
  • a resin composition capable of exhibiting sufficient heat dissipation when it becomes a cured product, a method for producing the resin composition, and a resin layer composed of the resin composition.
  • a heat conductive sheet can be provided.
  • the resin composition according to the present invention, the method for producing the resin composition, and the heat conductive sheet are not limited to the above embodiments. Further, the resin composition according to the present invention, the method for producing the resin composition, and the heat conductive sheet are not limited by the above-described effects. The resin composition according to the present invention, the method for producing the resin composition, and the heat conductive sheet can be variously modified without departing from the scope of the present invention.
  • Example 1 A resin composition was obtained by kneading the following solid epoxy resin, the following liquid epoxy resin, the following curing agent, the following curing accelerator, the following whisker-like filler, and the following other inorganic particles.
  • Solid epoxy resin Epoxy resin of the following formula (1') (YSLV-80DE, manufactured by Nippon Steel Chemical & Material Co., Ltd.)
  • Liquid epoxy resin JER (registered trademark) 828 (manufactured by Mitsubishi Chemical Holdings)
  • -Curing agent Phenolic resin of the following formula (2) (TrisP-PHBA-S, manufactured by Honshu Chemical Industry Co., Ltd.)
  • -Curing accelerator Tetraphenylphosphonium tetraphenylborate (TPP-K (registered trademark), manufactured by Kitako Chemical Industry Co., Ltd.)
  • ⁇ Whisker filler Aluminum nitride whiskers (AlN whiskers) manufactured by U-MaP Co., Ltd.
  • ⁇ Other inorganic particles Boron nitride filler (BN filler)
  • the epoxy resin and the curing agent were contained in the resin composition in an equivalent ratio of 1:1.
  • the curing accelerator was contained in the resin composition in an amount of 0.01 parts by mass based on 100 parts by mass of the total of the epoxy resin and the curing agent.
  • the inorganic filler is added to the resin composition such that the content ratio of the inorganic filler is 59.0 parts by volume when the solid content of the cured product of the resin composition is 100 parts by volume. Included.
  • Example 1 out of 59.0 parts by volume of the inorganic filler, the proportion of the BN filler was 58.95 parts by volume, and the proportion of the AlN whiskers was 0.05 parts by volume. In addition, AlN whiskers were dispersed in 25 parts by volume of JER (registered trademark) 828 with respect to 1 part by volume of AlN whiskers.
  • JER registered trademark
  • Example 2 Of 59.0 parts by volume of the inorganic filler, the resin composition was prepared in the same manner as in Example 1 except that the proportion of the BN filler was 58.9 parts by volume and the proportion of the AlN whiskers was 0.10 parts by volume.
  • Example 3 Of 59.0 parts by volume of the inorganic filler, the resin composition was prepared in the same manner as in Example 1 except that the ratio of the BN filler was 58.8 parts by volume and the ratio of the AlN whiskers was 0.20 parts by volume.
  • Example 4 A bisphenol A type epoxy resin (JER (registered trademark) 1009 (manufactured by Mitsubishi Chemical Holdings)) is used instead of the solid epoxy resin of the above formula (1′), and novolak is used instead of the curing agent of the epoxy resin of the above formula (2).
  • JER registered trademark
  • novolak is used instead of the curing agent of the epoxy resin of the above formula (2).
  • a resin composition was obtained in the same manner as in Example 2 except that the type phenol resin was used.
  • Example 5 Of 59.0 parts by volume of the inorganic filler, the resin composition was prepared in the same manner as in Example 4, except that the ratio of the BN filler was 58.8 parts by volume and the ratio of the AlN whiskers was 0.2 parts by volume.
  • Example 6 Other than using the epoxy resin of the following formula (3) instead of the solid epoxy resin of the above formula (1′) and using the phenol resin of the following formula (4) instead of the curing agent for the epoxy resin of the above formula (2). A resin composition was obtained in the same manner as in Example 1.
  • n is a positive integer.
  • n is a positive integer.
  • Example 7 Of 59.0 parts by volume of the inorganic filler, the resin composition was prepared in the same manner as in Example 6 except that the proportion of the BN filler was 58.9 parts by volume and the proportion of the AlN whiskers was 0.10 parts by volume.
  • Example 8 Of 59.0 parts by volume of the inorganic filler, the resin composition was prepared in the same manner as in Example 6 except that the ratio of the BN filler was 58.8 parts by volume and the ratio of the AlN whiskers was 0.20 parts by volume.
  • Example 1 A resin composition was obtained in the same manner as in Example 1 except that the proportion of the BN filler in the inorganic filler was 59.0 parts by volume and the proportion of the AlN whiskers was 0 parts by volume. It was
  • an adherend (copper foil 1oz) is laminated on the semi-cured sheet, and the resin layer and the adherend are integrated by hot pressing (2.0 MPa, 180° C., 120 min), and the resin layer is formed. It was fully cured. Then, the cured body was cut into a size of 20 mm ⁇ 100 mm, and the cut adherend was processed (etched) to have a width of 10 mm to prepare a test piece for a peel test. The test piece was subjected to a 90° peel test at a peeling speed of 50 mm/min, and the adhesive strength between the adherend and the resin layer was evaluated by the peel strength.
  • an insulating heat dissipation sheet was prepared as follows. First, a resin composition (thickness: about 200 ⁇ m) according to each example was applied to a copper foil (area: 2500 cm 2 ) as a base material. A coating method and a roll-to-roll method were adopted as a coating method, and the drying condition was 120° C. for 5 minutes. In this way, resin sheets were prepared for the resin compositions according to each example. Next, with respect to each of the resin sheets according to each example, two resin sheets of the same type are overlapped so that the surfaces not in contact with the base material face each other, and the temperature is 100° C., the pressure is 8 MPa, and the time is 20 minutes. Was heat-pressed to prepare an insulating heat dissipation sheet (insulating layer thickness 0.22 ⁇ 0.04 mm) provided with a metal foil.
  • Copper foil which is a metal foil, is removed from both sides of the insulating heat dissipation sheet by etching, and a resin cured body is cut into a rectangular shape so that one side is 10 mm ⁇ 0.5 mm, and the resin cured body is cut out.
  • An antireflection agent (manufactured by Fine Chemical Japan Co., product number: FC-153) was applied to both surfaces of the sample to prepare a sample for measuring thermal diffusivity.
  • the value of the thermal conductivity is the same as the value of the thermal diffusivity measured for the above thermal diffusivity measurement sample using a xenon flash analyzer (manufactured by NETZSCH, LFA-447 type), and the heat flux DSC in accordance with JIS 7123:1987.
  • the value of the thermal diffusivity was obtained by arithmetically averaging the values of the thermal diffusivities measured for the three measurement samples.
  • the measurement of the thermal diffusivity was performed at 5 points for each measurement sample, and for each measurement sample, the value obtained by arithmetically averaging the values at 3 points excluding the maximum value and the minimum value was used as the measurement value.
  • the withstand voltage was measured by a dielectric breakdown device having a crest factor of 1.34 to 1.48, capable of applying a voltage having a frequency of 50 or 60 Hz, and having a maximum voltage of AC 10 kV (effective value). Details of the measuring method will be described with reference to FIGS.
  • the copper foil 13 on one side of the insulation heat dissipation sheet of 75 ⁇ 1 mm ⁇ 65 ⁇ 1 mm is peeled off, an aluminum plate is laminated on the peeled surface and heated, the aluminum plate is integrated with the insulation heat dissipation sheet, and further overheated to be laminated.
  • the body was completely cured to obtain withstand voltage measurement sample 14 shown in FIG.
  • the said insulating heat dissipation sheet each produced the thing provided with the resin composition which concerns on each example.
  • the withstand voltage measurement sample 14 was placed on the brass disc electrode 17 ( ⁇ : 40 mm) with the aluminum plate side down in the insulating oil 16 (JIS C2320:1999) of the oil tank 15, and the withstand voltage was measured.
  • a brass spherical electrode 18 ( ⁇ : 15 mm, weight: 50 g) was placed on the voltage measurement sample 14 so as to be in contact with the approximately center portion of the withstand voltage measurement sample 14.
  • the insulating oil 16 was kept at 20 ⁇ 10° C., and AC 3.0 kV (effective value) was applied to the withstand voltage measurement sample 14 for 1 minute.
  • the AC is quickly increased by 0.5 kV (effective value) and applied for 1 minute.
  • the voltage was increased by applying for 1 minute).
  • the cutoff current was set to 10 mA as a criterion for determining dielectric breakdown.
  • An applied voltage lower than the voltage at which the dielectric breakdown occurred by 0.5 kV (effective value) was defined as the withstand voltage.
  • Table 1 below shows the measurement results of the peel strength, the thermal conductivity, and the withstand voltage by each of the above-mentioned methods.
  • the peel strength indicates the average value of the values obtained in the six tests.
  • the comparative example for Examples 1 to 3 is Comparative Example 1
  • the comparative example for Examples 4 and 5 is Comparative Example 2
  • the comparative example for Examples 6 to 8 is Comparative Example 3.
  • the resin compositions according to Examples 1 to 3 greatly improve the thermal conductivity of the cured product, that is, the heat dissipation, as compared with the resin compositions according to Comparative Example 1.
  • the resin compositions according to Examples 4 and 5 have improved thermal conductivity of the cured product as compared with the resin compositions according to Comparative Example 2, and according to Examples 6 to 8. It can be seen that in the resin composition, the thermal conductivity of the cured product is improved as compared with the resin composition according to Comparative Example 3. That is, it can be seen that the resin compositions according to Examples 4 to 8 also have improved heat dissipation.
  • the resin compositions according to Examples 1 to 3 and the resin compositions according to Examples 6 to 8 have improved peel strength as compared with the resin compositions according to Examples 4 and 5, that is, It can be seen that the peel resistance is improved.
  • the resin compositions according to Examples 1 to 3, that is, the resin compositions using the solid epoxy resin of the above formula (1′) and the phenolic resin of the above formula (2) have a remarkable peel strength. You can see that it will improve.
  • the withstand voltage of the resin compositions according to Examples 4 and 5 and the resin compositions according to Examples 6 to 8 are significantly improved as compared with the resin compositions according to Examples 1 to 3. I understand.
  • the resin composition using the solid epoxy resin of the above formula (1′) and the phenol resin of the above formula (2) can improve heat dissipation and peel resistance, and It can be seen that the resin composition using the solid epoxy resin of the formula (3) and the phenol resin of the formula (4) can improve heat dissipation and withstand voltage.
  • the particle size of the aluminum nitride whiskers (AlN) was adjusted to 4 patterns (Test Examples 1 to 4) as shown in Table 2 below by using an ultrasonic homogenizer (manufactured by Nippon Emerson Co., Ltd.), and the aluminum nitride whiskers were made of resin.
  • the influence of the composition on the heat dissipation of the cured product was examined.
  • the resin compositions according to Test Examples 1 to 4 were obtained in the same manner as in Example 7 above.
  • the results of measuring the thermal conductivity of the cured products of the resin compositions according to Test Examples 1 to 4 are shown in Table 2 below. The thermal conductivity was measured by the method described above.
  • the particle size distribution of the aluminum nitride whiskers was measured by a wet method using a laser diffraction/scattering particle size distribution analyzer (LS 13 320 manufactured by BECKMANCOULTER). The measurement was performed under the following conditions. ⁇ Dispersion medium: MEK (methyl ethyl ketone: refractive index 1.38) -Measurement sample: Whisker-like filler-PID (Polarization Intensity Differential Scattering) concentration: 42% ⁇ Pump speed: 68% ⁇ Relative humidity: 6% -Execution time (circulation time of the dispersion medium in which the measurement sample is dispersed): 94 seconds-Software: Dedicated software ver 6.03 ⁇ Firmware: Dedicated firmware ver2.02 ⁇ Measurement range: 0.04 to 2000 ⁇ m In the above measurement, a composition prepared by adding AlN whiskers to a liquid epoxy resin was added to MEK which is a dispersion medium, and then this MEK
  • the resin compositions according to Test Examples 2 to 4 have higher thermal conductivity values than the resin compositions according to Test Example 1. Further, from Table 2, in the resin composition according to Test Example 1, the d90 of the aluminum nitride whiskers was 18.37 ⁇ m, whereas in the resin compositions according to Test Examples 2 to 4, the d90 of the aluminum nitride whiskers was: It can be seen that both are 25 ⁇ m or more. From the above results, it can be seen that the resin composition containing aluminum nitride whiskers having d90 of 25 ⁇ m or more exhibits higher thermal conductivity, that is, higher heat dissipation.
  • whisker-like filler As the whisker-like filler, alumina whiskers (AlO) whose d90 was adjusted to 25 ⁇ m or more and calcium metasilicate whiskers (CM) whose d90 was adjusted to 25 ⁇ m or more were used with an ultrasonic homogenizer (manufactured by Japan Emerson).
  • resin compositions according to Test Examples 5 to 8 as shown in Table 3 below were obtained.
  • the resin compositions according to Test Examples 5 to 8 were obtained in the same manner as in Example 7 above.
  • the results of measuring the thermal conductivity of the cured products of the resin compositions according to Test Examples 5 to 8 are shown in Table 3 below.
  • the thermal conductivity was measured by the method described above.
  • the particle size distribution of each kind of whisker-like filler was measured by the method described above. No pretreatment was carried out when measuring the particle size distribution of the various whisker-like fillers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、エポキシ樹脂と、硬化剤と、無機フィラーとを含有し、前記無機フィラーが前記エポキシ樹脂中に分散されている樹脂組成物であって、前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む樹脂組成物等である。

Description

樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シート 関連出願の相互参照
 本願は、日本国特願2019-000777号及び日本国特願2019-000779号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明は、樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シートに関する。
 従来、エレクトロニクス分野において、エポキシ樹脂と、硬化剤と、無機フィラーとを含有する樹脂組成物が用いられている。
 下記特許文献1には、エポキシ樹脂と硬化剤と無機フィラーとを含有する樹脂組成物が硬化した硬化物を放熱シートとして使用することが開示されている。
 このような放熱シートは、窒化ホウ素フィラーなどの無機フィラーを比較的多量に含有することから、放熱性を有する。
日本国特開2010-94887号公報
 しかしながら、特許文献1に記載の樹脂組成物は、上記のように比較的多量の無機フィラーを含有するものの、硬化物となったときの放熱性は必ずしも十分ではないという問題がある。
 そこで、本発明は、硬化物となったときに、十分な放熱性を示すことができる樹脂組成物、該樹脂組成物の製造方法、及び、該樹脂組成物で構成された樹脂層を備えた熱伝導性シートを提供することを課題とする。
 本発明に係る樹脂組成物は、エポキシ樹脂と、硬化剤と、無機フィラーとを含有し、前記無機フィラーが前記エポキシ樹脂中に分散されている樹脂組成物であって、
 前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む。
 本発明に係る樹脂組成物の製造方法は、エポキシ樹脂と、硬化剤と、無機フィラーとを含有する原料を混練して、前記無機フィラーが分散されている樹脂組成物を調製する混練工程を含む樹脂組成物の製造方法であって、
 前記エポキシ樹脂は、常温で液体状である液状エポキシ樹脂を含み、
 前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含んでおり、
 前記混練工程の前に、前記ウィスカー状フィラーを前記液状エポキシ樹脂中に分散させる予備混練工程を実施する。
 本発明に係る熱伝導性シートは、エポキシ樹脂と、硬化剤と、無機フィラーとを含有し、前記無機フィラーが前記エポキシ樹脂中に分散されている樹脂組成物で構成された樹脂層を備えた熱伝導性シートであって、
 前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む。
エッチングされた積層体を示す上面図。 耐電圧の測定における配置を示す断面図。 窒化ホウ素フィラーのみを含む樹脂組成物のSEM断面写真。 窒化ホウ素フィラー及び0.10体積%の窒化アルミニウムウィスカーを含む樹脂組成物のSEM断面写真。
 以下、本発明の実施形態について説明する。
<第一実施形態>
(樹脂組成物)
 本実施形態に係る樹脂組成物は、最終的に硬化物を構成することとなる成分を含む。すなわち、本実施形態に係る樹脂組成物は、重合によって硬化樹脂となる重合性成分を含有する。
 また、本実施形態に係る樹脂組成物は、硬化物が良好な熱伝導性を有するように、無機フィラーを含有する。
 なお、本実施形態に係る樹脂組成物は、プラスチック配合薬品として一般に用いられる添加剤を本発明の効果を損なわない範囲において含有してもよい。
 本実施形態に係る樹脂組成物では、前記重合性成分の含有割合は、好ましくは10質量部以上70質量部以下、より好ましくは30質量部以上40質量部以下である。
 本実施形態に係る樹脂組成物を硬化して得られる硬化物は、その固形分を100体積部としたときに、無機フィラーを、好ましくは10体積部以上60体積部以下含有することが好ましく、30体積部以上60体積部以下含有することがより好ましく、50体積部以上60体積部以下含有することがさらに好ましい。
 また、前記硬化物における前記無機フィラーの含有割合が上記のような範囲内となり易くなるという観点から、本実施形態に係る樹脂組成物は、前記重合性成分100質量部に対して、前記無機フィラーを、30質量部以上90質量部以下含有することが好ましく、60質量部以上70質量部以下含有することがより好ましい。
 さらに、本実施形態に係る樹脂組成物は、無機フィラー100質量部に対して、前記添加剤を、0.005質量部以上0.05質量部以下含有することが好ましく、0.01質量部以上0.03質量部以下含有することがより好ましい。
 本実施形態に係る樹脂組成物は、前記重合性成分として、エポキシ樹脂と、硬化剤とを含有する。本実施形態では、エポキシ樹脂が硬化剤とともに硬化することにより、硬化樹脂となる。
 本実施形態に係る樹脂組成物では、エポキシ樹脂は、下記式(1)で表されるジフェニルエーテル型エポキシ樹脂を含む。下記式(1)で表されるジフェニルエーテル型エポキシ樹脂は、常温(例えば、23℃)で固体状である固体エポキシ樹脂である。下記式(1)で示されるジフェニルエーテル型エポキシ樹脂の例としては、下記式(1’)で示されるジフェニルエーテル型エポキシ樹脂が挙げられる。エポキシ樹脂は、常温で液体状である液状エポキシ樹脂をさらに含むことが好ましい。液状エポキシ樹脂を含むことにより、後述するウィスカー状フィラーをエポキシ樹脂中により十分に分散させることができる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 液状エポキシ樹脂としては、市販の液状のビスフェノールA型エポキシ樹脂を用いることができる。市販の液状のビスフェノールA型エポキシ樹脂としては、JER(登録商標)825、JER(登録商標)827、JER(登録商標)828、JER(登録商標)828EL、JER(登録商標)828US、JER(登録商標)828XA、JER(登録商標)824などが挙げられる。これらの中でも、JER(登録商標)828を用いることが好ましい。
 液状エポキシ樹脂は、本実施形態に係る樹脂組成物中において、後述するウィスカー状フィラーの1体積部に対して、20体積部以上30体積部以下含まれていることが好ましく、22体積部以上28体積部以上含まれていることがより好ましく、24体積部以上26体積部以下含まれていることがさらに好ましい。
 本実施形態に係る樹脂組成物では、硬化剤は、下記式(2)で表されるトリスフェノール型フェノール樹脂を含む。
Figure JPOXMLDOC01-appb-C000015
 前記重合性成分に占める、エポキシ樹脂と硬化剤との合計量の割合は、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることがより好ましい。
 前記エポキシ樹脂の当量に対するエポキシ樹脂の硬化剤の当量の比は、1/2以上2/1以下であることが好ましく、2/3以上3/2以下であることがより好ましい。
 無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む。無機フィラーは、エポキシ樹脂中に分散されている。「ウィスカー」とは、針状の単結晶を意味し、ウィスカー状フィラーとしては、窒化アルミニウムウィスカー、アルミナウィスカー、炭酸カルシウムウィスカー、メタ珪酸カルシウムウィスカー等を用いることができる。
 ウィスカー状フィラーとしては、配合前のd90が25μm以上のものを用いることが好ましい。このようなウィスカー状フィラーを用いることにより、樹脂組成物の硬化体の熱伝導率をより高めることができる。すなわち、樹脂組成物の硬化体の放熱性をより高めることができる。
 ウィスカー状フィラーのd90は、レーザー回折・散乱式粒度分布測定装置(BECKMANCOULTER社製のLS 13 320)を用いて湿式法にて測定することができる。
 測定は、以下の条件で行う。
・分散媒:MEK(メチルエチルケトン:屈折率1.38)
・測定試料:ウィスカー状フィラー
・PID(Polaraization Intensity Diferential Scattering)濃度:42%
・ポンプスピード:68%
・相対湿度:6%
・実行時間(測定試料を分散させた分散媒の循環時間):94秒
・ソフトウェア:専用ソフトウェアver6.03
・ファームウェア:専用ファームウェアver2.02
・測定範囲:0.04~2000μm
 
 なお、測定試料であるウィスカー状フィラーが窒化アルミニウムウィスカー(AlNウィスカー)である場合には、液状エポキシ樹脂にAlNウィスカーを加えて調整した組成物を分散媒であるMEKに加えた後、このMEKを15~20分間超音波処理することにより、MEK中にAlNウィスカーを分散させる前処理を行うことが好ましい。
 上記のウィスカー状フィラーは、20℃における熱伝導率が比較的高い繊維状の高熱伝導性無機フィラーである。上記のウィスカー状フィラーは、通常、太さ2~3μmを有し、かつ、長さ数10μm~数1000μmを有する。
 これらのウィスカー状フィラーの中でも、20℃における熱伝導率が特に高い(170W/(m・K)以上)窒化アルミニウムウィスカーを用いることが好ましい。
 ウィスカー状フィラーは、上記のように比較的高い熱伝導率を有し、かつ、上記のような長さを有することから、ウィスカー状フィラー以外の無機粒子(以下、単に、他の無機粒子という)とともにウィスカー状フィラーを本実施形態に係る樹脂組成物中に含有させると、該樹脂組成物が硬化物となったときに、他の無機粒子どうしをつなぐ役割を果たすようになると考えられる。すなわち、樹脂組成物の硬化物中に、他の無機粒子どうしをつなぐ放熱パスが形成されるようになると考えられるため、この放熱パスを経由して放熱が促進されるようになると考えられる。
 したがって、本実施形態に係る樹脂組成物の硬化物の放熱性が向上すると考えられる。
 上記のごとく、他の無機粒子間にウィスカー状フィラーによる放熱パスを十分に形成するためには、ウィスカー状フィラーは分散した状態であることが好ましい。一方で、一般に、ウィスカー状フィラーは、綿状に凝集している。そのため、ウィスカー状フィラーは、液体エポキシ樹脂中でほぐされて分散されていることが好ましい。
 上記他の無機粒子としては、窒化ホウ素フィラー、窒化アルミニウムフィラー、窒化ケイ素フィラー、窒化ガリウムフィラー、アルミナフィラー、炭化ケイ素フィラー、二酸化ケイ素フィラー、酸化マグネシウムフィラー、ダイヤモンドフィラーなどが挙げられる。
 他の無機粒子は、複数の一次粒子が凝集した凝集粒子を含んでいることが好ましい。凝集粒子を含むことにより、他の無機粒子の粒子径を大きくすることができるので、エポキシ樹脂中での他の無機粒子間の間隔を小さくすることができる。これにより、後述するウィスカー状フィラーによる他の無機粒子間の放熱パスを形成し易くなるので、樹脂組成物の硬化物の放熱性を向上させることができる。
 ここで、上記の他の無機粒子の中でも、窒化ホウ素フィラーは板状を有し、その厚さは、通常、2μm以下と比較的薄い。そのため、窒化ホウ素フィラーのみを樹脂組成物中に含有させただけでは、図3に示したように、窒化ホウ素フィラー同士の間隔が比較的広くなるため、樹脂組成物を硬化させてシート体としたときに、該シート体では、必ずしも十分な放熱パスが形成され得ない。
 しかしながら、本実施形態に係る樹脂組成物中に、ウィスカー状フィラーを含有させることにより、他の無機粒子が、上記のごとく厚さが比較的薄い窒化ホウ素フィラーであったとしても、窒化ホウ素フィラー同士を厚さ方向につなぐことができる。これにより、図4に示したように、本実施形態に係る樹脂組成物中に、複数の窒化ホウ素フィラーが厚さ方向に積層された積層体を複数形成させることができる。そのため、窒化ホウ素フィラー同士の間隔は比較的狭くなる。その結果、本実施形態に係る樹脂組成物を硬化させてシート体としたときに、該シート体の厚さ方向に十分な放熱パスを形成することができる。
 本実施形態に係る樹脂組成物を硬化して得られる硬化物において、ウィスカー状フィラーは、無機フィラーの総体積部に対して、0.07体積部以上0.50体積部以下含まれていることが好ましく、0.08体積部以上0.40体積部以下含まれていることがより好ましく、0.08体積部以上0.34体積部以下含まれていることがさらに好ましい。
 前記添加剤としては、例えば、前記エポキシ樹脂と前記硬化剤との硬化反応を促進する硬化促進剤が挙げられ、また、分散剤、粘着性付与剤、老化防止剤、酸化防止剤、加工助剤、安定剤、消泡剤、難燃剤、増粘剤、顔料なども挙げられる。
 前記硬化促進剤としては、例えば、テトラフェニルホスホニウム テトラフェニルボレート(Tetraphenylphosphonium tetraphenylborate)、イミダゾール類、トリフェニルフォスフェイト(TPP)、アミン系硬化促進剤などが挙げられる。該アミン系硬化促進剤としては、例えば、三フッ化ホウ素モノエチルアミンなどが挙げられる。
 本実施形態に係る樹脂組成物は、前記エポキシ樹脂と前記硬化剤との合計100質量部に対して、前記硬化促進剤を、0.5質量部以上1.5質量部以下含有することが好ましく、0.5質量部以上1.0質量部以下含有することがより好ましい。
 本実施形態に係る樹脂組成物は、ある程度硬化反応が進んだものの、完全に硬化していない状態であってもよい。換言すると、樹脂組成物中の一部で硬化反応が進行した状態であってもよい。例えば、樹脂組成物は、流動性を有した状態でシート状に塗工され、その後、部分的に硬化された状態であってもよい。一部で硬化反応が進行した状態であっても、本実施形態に係る樹脂組成物は、上記のエポキシ樹脂と、上記の硬化剤と、上記の無機フィラーとを含有する。
(樹脂組成物の製造方法)
 本実施形態に係る樹脂組成物の製造方法は、エポキシ樹脂と、硬化剤と、無機フィラーとを含有する原料を混練して、前記無機フィラーが分散されている樹脂組成物を調製する混練工程を含む。
 本実施形態に係る樹脂組成物の製造方法では、エポキシ樹脂は、上記式(1)で表されるジフェニルエーテル型エポキシ樹脂と、常温で液体状である液状エポキシ樹脂とを含む。
 本実施形態に係る樹脂組成物の製造方法では、硬化剤は、上記式(2)で表されるトリスフェノール型フェノール樹脂を含む。
 本実施形態に係る樹脂組成物の製造方法では、無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む。
 本実施形態に係る樹脂組成物の製造方法では、混練工程の前に、ウィスカー状フィラーを液状エポキシ樹脂中に分散させる予備混練工程を実施する。
 上記したように、一般に、ウィスカー状フィラーは綿状に凝集しているものの、上記のように、混練工程の前に、予備混練工程を実施することにより、綿状に凝集したウィスカー状フィラーを液状エポキシ樹脂中で十分にほぐすことができる。本実施形態に係る樹脂組成物の製造方法では、このように十分に解されたウィスカー状フィラーにて混練工程を実施するので、エポキシ樹脂中において、ウィスカー状フィラーを十分に分散させることができる。これにより、エポキシ樹脂中に分散された他の無機粒子間をウィスカー状フィラーで十分につなぐことができるので、上記製造方法により得られた樹脂組成物を硬化体としたときの放熱性を向上させることができる。
 本実施形態に係る樹脂組成物の製造方法では、無機フィラーは窒化ホウ素粒子をさらに含んでいることが好ましく、窒化ホウ素粒子が複数の一次粒子が凝集した凝集粒子を含むことが好ましい。
 上記したように、本実施形態に係る樹脂組成物の製造方法では、混練工程の前に、予備混練工程を実施するので、ウィスカー状フィラーが十分にほぐされた状態で、混練工程を行うことができる。そのため、混練工程において、過度の混練を行わずとも、樹脂組成物中に、窒化ホウ素粒子を十分に分散させることができる。これにより、窒化ホウ素粒子の凝集粒子が含まれる場合であっても、該凝集粒子の凝集状態を比較的維持しつつ、エポキシ樹脂中に窒化ホウ素粒子を十分に分散させることができる。上記したように、凝集粒子を含むことにより、窒化ホウ素粒子間の間隔を小さくすることができるので、樹脂組成物中において、ウィスカー状フィラーによる窒化ホウ素粒子間の放熱パスを形成し易くなる。その結果、樹脂組成物を硬化体としたときの放熱性を向上させることができる。
(熱伝導性シート)
 本実施形態に係る熱伝導性シートは、上記した樹脂組成物で構成された樹脂層を備えている。そのため、本実施形態に係る熱伝導性シートは、放熱性が向上されたものとなる。
 前記熱伝導性シートの被着体の材質としては、金属が好ましい。詳しくは、銅又はアルミニウムを含む金属が好ましい。
 本実施形態に係る熱伝導性シートは、金属ベース回路基板に用いられうる。該金属ベース回路基板は、例えば、熱伝導性シートに回路層が接着されて構成される。斯かる構成からなる金属ベース回路基板は、本実施形態に係る熱伝導性シートを有しているため、この金属ベース回路基板も放熱性が向上されたものとなる。
 更に、本実施形態に係る熱伝導性シートは、例えばパワーモジュールに用いられる。該パワーモジュールは、例えば、前記金属ベース回路基板の回路層の上に、半導体チップやパワーICなどの発熱素子が実装され、これらの素子が一旦シリコーンゲルにて封止され、さらにシリコーンゲル上に樹脂モールドが実施されて構成される。斯かる構成からなるパワーモジュールは、本実施形態に係る熱伝導性シートを有しているため、このパワーモジュールも放熱性が向上されたものとなる。
<第二実施形態>
(樹脂組成物)
 第二実施形態に係る樹脂組成物では、エポキシ樹脂は、上記式(1)で表されるジフェニルエーテル型エポキシ樹脂に代えて、下記式(3)で表されるナフタレンジオールアラルキル型エポキシ樹脂を含む。下記式(3)で表されるナフタレンジオールアラルキル型エポキシ樹脂は、常温(例えば、23℃)で固体状である固体エポキシ樹脂である。
 そのため、第二実施形態に係る樹脂組成物も、第一実施形態に係る樹脂組成物と同様に、エポキシ樹脂として、常温で液体状である液状エポキシ樹脂をさらに含むことが好ましい。液状エポキシ樹脂を含むことにより、上記したように、ウィスカー状フィラーをエポキシ樹脂中により十分に分散させることができる。液状エポキシ樹脂は、第一実施形態において例示したものと同じものを用いることができる。
Figure JPOXMLDOC01-appb-C000016
 ただし、nは正の整数である。
 第二実施形態に係る樹脂組成物では、硬化剤は、上記式(2)で表されるトリスフェノール型フェノール樹脂に代えて、下記式(4)で表されるナフタレンジオールアラルキル型フェノール樹脂を含む。
Figure JPOXMLDOC01-appb-C000017
 ただし、mは正の整数である。
 上記のように、エポキシ樹脂に含まれる固体エポキシ樹脂を上記式(3)で表されるナフタレンジオールアラルキル型エポキシ樹脂に代え、かつ、硬化剤に含まれるフェノール樹脂を上記式(4)で表されるナフタレンジオールアラルキル型フェノール樹脂に代えた場合においても、第一実施形態の樹脂組成物の場合と同様に、第二実施形態に係る樹脂組成物も、硬化物となったときに、十分な放熱性を示すことができる。
(樹脂組成物の製造方法)
 第二実施形態に係る樹脂組成物の製造方法は、エポキシ樹脂が、上記式(1)で表されるジフェニルエーテル型エポキシ樹脂に代えて、上記式(3)で表されるナフタレンジオールアラルキル型エポキシ樹脂を含み、硬化剤が、上記式(2)で表されるトリスフェノール型フェノール樹脂に代えて、上記式(4)で表されるナフタレンジオールアラルキル型フェノール樹脂を含むこと以外は、第一実施形態に係る樹脂組成物の製造方法と同様に実施される。
(熱伝導性シート)
 第二実施形態に係る熱伝導性シートは、上記した第二実施形態に係る樹脂組成物を備えている。そのため、第二実施形態に係る熱伝導性シートも、放熱性が向上されたものとなっている。
 本実施形態に係る樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シートは、上記のように構成されているので、以下の利点を有するものである。
 すなわち、本発明に係る樹脂組成物は、エポキシ樹脂と、硬化剤と、無機フィラーとを含有し、前記無機フィラーが前記エポキシ樹脂中に分散されている樹脂組成物であって、
 前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む。
 本発明に係る樹脂組成物の製造方法は、エポキシ樹脂と、硬化剤と、無機フィラーとを含有する原料を混練して、前記無機フィラーが分散されている樹脂組成物を調製する混練工程を含む樹脂組成物の製造方法であって、
 前記エポキシ樹脂は、常温で液体状である液状エポキシ樹脂を含み、
 前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含んでおり、
 前記混練工程の前に、前記ウィスカー状フィラーを前記液状エポキシ樹脂中に分散させる予備混練工程を実施する。
 本発明に係る熱伝導性シートは、エポキシ樹脂と、硬化剤と、無機フィラーとを含有し、前記無機フィラーが前記エポキシ樹脂中に分散されている樹脂組成物で構成された樹脂層を備えた熱伝導性シートであって、
 前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む。
 本発明によれば、硬化物となったときに、十分な放熱性を示すことができる樹脂組成物、該樹脂組成物の製造方法、及び、該樹脂組成物で構成された樹脂層を備えた熱伝導性シートを提供することができる。
 なお、本発明に係る樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シートは、上記実施形態に限定されるものではない。また、本発明に係る樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シートは、上記した作用効果によって限定されるものでもない。本発明に係る樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シートは、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
 (実施例1)
 下記固体エポキシ樹脂、下記液状エポキシ樹脂、下記硬化剤、下記硬化促進剤、下記ウィスカー状フィラー、及び、下記他の無機粒子を混練することによって樹脂組成物を得た。
 
・固体エポキシ樹脂 : 下記式(1’)のエポキシ樹脂(YSLV-80DE、日鉄ケミカル&マテリアル社製)
・液状エポキシ樹脂 : JER(登録商標)828(三菱ケミカルホールディング製)
・硬化剤 : 下記式(2)のフェノール樹脂(TrisP-PHBA-S、本州化学工業社製)
・硬化促進剤 : テトラフェニルホスホニウム テトラフェニルボレート(Tetraphenylphosphonium tetraphenylborate)(TPP-K(登録商標)、北興化学工業社製)
・ウィスカー状フィラー : 株式会社U-MaP製の窒化アルミニウムウィスカー(AlNウィスカー)
・他の無機粒子 : 窒化ホウ素フィラー(BNフィラー)
 
 エポキシ樹脂及び硬化剤は、当量比1:1で樹脂組成物に含有させた。
 また、硬化促進剤は、エポキシ樹脂と硬化剤との合計100質量部に対して0.01質量部で樹脂組成物に含有させた。
 さらに、樹脂組成物の硬化後において該樹脂組成物の硬化物の固形分を100体積部としたときの無機フィラーの含有割合が59.0体積部となるように、無機フィラーを樹脂組成物に含有させた。実施例1においては、無機フィラーの59.0体積部の内、BNフィラーの占める割合を58.95体積部とし、AlNウィスカーの占める割合を0.05体積部とした。
 また、AlNウィスカーは、AlNウィスカー1体積部に対して25体積部のJER(登録商標)828に分散させた。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(実施例2)
 無機フィラーの59.0体積部の内、BNフィラーの占める割合を58.9体積部とし、AlNウィスカーの占める割合を0.10体積部とした以外は、実施例1と同様にして樹脂組成物を得た。
(実施例3)
 無機フィラーの59.0体積部の内、BNフィラーの占める割合を58.8体積部とし、AlNウィスカーの占める割合を0.20体積部とした以外は、実施例1と同様にして樹脂組成物を得た。
 (実施例4)
 上記式(1’)の固体エポキシ樹脂に代えてビスフェノールA型エポキシ樹脂(JER(登録商標)1009(三菱ケミカルホールディング製))を用い、上記式(2)のエポキシ樹脂の硬化剤に代えてノボラック型フェノール樹脂を用いた以外は、実施例2と同様にして樹脂組成物を得た。
(実施例5)
 無機フィラーの59.0体積部の内、BNフィラーの占める割合を58.8体積部とし、AlNウィスカーの占める割合を0.2体積部とした以外は、実施例4と同様にして樹脂組成物を得た。
(実施例6)
 上記式(1’)の固体エポキシ樹脂に代えて下記式(3)のエポキシ樹脂を用い、上記式(2)のエポキシ樹脂の硬化剤に代えて下記式(4)のフェノール樹脂を用いた以外は、実施例1と同様にして樹脂組成物を得た。
Figure JPOXMLDOC01-appb-C000020
 ただし、nは正の整数である。
Figure JPOXMLDOC01-appb-C000021
 ただし、mは正の整数である。
(実施例7)
 無機フィラーの59.0体積部の内、BNフィラーの占める割合を58.9体積部とし、AlNウィスカーの占める割合を0.10体積部とした以外は、実施例6と同様にして樹脂組成物を得た。
(実施例8)
 無機フィラーの59.0体積部の内、BNフィラーの占める割合を58.8体積部とし、AlNウィスカーの占める割合を0.20体積部とした以外は、実施例6と同様にして樹脂組成物を得た。
(比較例1)
 無機フィラーの59.0体積部の内、BNフィラーの占める割合を59.0体積部とし、AlNウィスカーの占める割合を0体積部とした以外は、実施例1と同様にして樹脂組成物を得た。
(比較例2)
 無機フィラーの59.0体積部の内、BNフィラーの占める割合を59.0体積部とし、AlNウィスカーの占める割合を0体積部とした以外は、実施例4と同様にして樹脂組成物を得た。
(比較例3)
 無機フィラーの59.0体積部の内、BNフィラーの占める割合を59.0体積部とし、AlNウィスカーの占める割合を0体積部とした以外は、実施例6と同様にして樹脂組成物を得た。
<ピール強度>
 上記各例に係る樹脂組成物を電解銅箔(厚み:35μm)の片面に塗布し、樹脂層(厚み:145μm)を有するシートを2枚作製した。
 次に、2枚のシートを熱プレス(3.0MPa、120℃、20min)して樹脂層どうしを貼り合わせ、シートの背面から銅箔を1枚剥離した。
 そして、この銅箔を剥離した面にアルミニウム板を配置させ、熱プレス(2.0MPa、120℃、20min)によってシートをアルミニウム板に転着させ、さらに該シートから銅箔を剥がすことによって、半硬化状態のシートを得た。
 次に、この半硬化状態のシートに被着体(銅箔1oz)を積層し、熱プレス(2.0MPa、180℃、120min)によって樹脂層と被着体を一体化させるとともに、樹脂層を十分に硬化させた。その後、硬化体を20mm×100mmのサイズに切り出し、切り出したものの被着体を幅10mm幅に加工(エッチング)し剥離試験用テストピースを作製した。
 該テストピースを50mm/minの剥離速度で90°ピール試験を実施し、被着体と樹脂層との接着強度をピール強度によって評価した。
<熱伝導率>
 熱伝導率の測定にあたって、以下のようにして絶縁放熱シートを作製した。
 まず、基材たる銅箔(面積:2500cm)に、各例に係る樹脂組成物(厚み:約200μm)をそれぞれ塗工した。塗工方法としては、コーター方式、ロール トゥ ロールを採用し、乾燥条件としては、120℃で5分間とした。このようにして各例に係る樹脂組成物について樹脂シートをそれぞれ作製した。
 次に、各例に係る樹脂シートのそれぞれについて、基材と接していない面同士が向かい合うように、2枚の同種の樹脂シートを重ね合わせて、温度100℃、圧力8Mpa、時間20分の条件で熱プレスし、金属箔を備えた絶縁放熱シート(絶縁層厚さ0.22±0.04mm)を作製した。
 上記絶縁放熱シートの両面から金属箔である銅箔をエッチングにより除去し、この絶縁放熱シートから1辺が10mm±0.5mmとなるように樹脂硬化体を矩形状に切り出し、切り出した樹脂硬化体の両面に反射防止剤(ファインケミカルジャパン株式会社製、品番:FC-153)を塗布したものを熱拡散率測定試料とした。
 熱伝導率の値は、キセノンフラッシュアナライザー(NETZSCH社製、LFA-447型)を用いて上記熱拡散率測定試料について測定した熱拡散率の値に、JIS 7123:1987に準拠して熱流束DSCにて測定した比熱の値、及び、JIS K 7122:1999に準拠して水中置換法にて測定した密度の値を乗じて算出した。上記熱拡散率の値は、3個の測定試料について測定した熱拡散率の値を算術平均して求めた。また、上記熱拡散率の測定は、測定試料1個について5点行い、各測定試料について、最大値と最小値を除外した3点の値を算術平均したものを測定値とした。
<耐電圧>
 耐電圧は、波高率が1.34~1.48の間にあり、50または60Hzの周波数の電圧を印加でき、最大電圧がAC10kV(実効値)である絶縁破壊装置により測定した。測定方法の詳細については、図1及び2を参照しながら説明する。
 75±1mm×65±1mmの絶縁放熱シートの片側の銅箔13を剥離し、その剥離面にアルミ板を積層し加熱して、アルミ板を絶縁放熱シートに一体化させ、さらに過熱して積層体を完全に硬化させて、図1に示す耐電圧測定試料14を得た。なお、上記絶縁放熱シートは、各例に係る樹脂組成物を備えたものをそれぞれ作製した。図2に示すように、耐電圧測定試料14を油槽15の絶縁油16(JIS C2320:1999)中でアルミ板側を下にして黄銅性円板電極17(Φ:40mm)上に置き、耐電圧測定試料14の上に、耐電圧測定試料14の略中央部分で接するように黄銅性球状電極18(Φ:15mm、重さ:50g)を置いた。絶縁油16は20±10℃に保ち、耐電圧測定試料14にAC3.0kV(実効値)を1分間印加した。そして、絶縁破壊が生じていない場合には、速やかにAC0.5kV(実効値)上げて1分間印加し、絶縁破壊が生じるまでAC0.5kV(実効値)間隔(0.5kV(実効値)ステップ、1分間印加)で昇圧した。
 なお、絶縁破壊の判断基準として、カットオフ電流を10mAとした。そして、絶縁破壊が生じた電圧より0.5kV(実効値)低い印加電圧を耐電圧とした。
 上記した各方法による、ピール強度、熱伝導度、及び、耐電圧の測定結果を下記表1に示した。下記表では、ピール強度は、6回の試験で得られた各値の平均値を示している。
 なお、実施例1~3に対する比較例は比較例1であり、実施例4及び5に対する比較例は比較例2であり、実施例6~8に対する比較例は比較例3である。
Figure JPOXMLDOC01-appb-T000022
 表1より、実施例1~3に係る樹脂組成物では、比較例1に係る樹脂組成物と比べて、硬化物の熱伝導度が大きく向上すること、すなわち、放熱性が大きく向上することが分かる。
 また、表1より、実施例4及び5に係る樹脂組成物では、比較例2に係る樹脂組成物と比べて、硬化物の熱伝導度が向上すること、及び、実施例6~8に係る樹脂組成物では、比較例3に係る樹脂組成物を比べて、硬化物の熱伝導度が向上することが分かる。すなわち、実施例4~8に係る樹脂組成物においても、放熱性が向上することが分かる。
 さらに、実施例1~3に係る樹脂組成物、及び、実施例6~8に係る樹脂組成物は、実施例4及び5に係る樹脂組成物に比べて、ピール強度が向上すること、すなわち、耐剥離性が向上することが分かる。特に、実施例1~3に係る樹脂組成物、すなわち、上記式(1’)の固体エポキシ樹脂を用い、かつ、上記式(2)のフェノール樹脂を用いた樹脂組成物は、ピール強度が顕著に向上することが分かる。
 また、実施例4及び5に係る樹脂組成物、並びに、実施例6~8に係る樹脂組成物は、実施例1~3に係る樹脂組成物に比べて、耐電圧が顕著に向上することが分かる。
 これらの結果から、上記式(1’)の固体エポキシ樹脂を用い、上記式(2)のフェノール樹脂を用いた樹脂組成物では、放熱性の向上と耐剥離性の向上とを実現でき、上記式(3)の固体エポキシ樹脂を用い、上記式(4)のフェノール樹脂を用いた樹脂組成物では、放熱性の向上と耐電圧の向上とを実現できることが分かる。
 次に、超音波ホモジナイザー(日本エマソン社製)によって、窒化アルミニウムウィスカー(AlN)の粒度を以下の表2に示すような4パターン(試験例1~4)に調整し、窒化アルミニウムウィスカーが、樹脂組成物の硬化体の放熱性に及ぼす影響について調べた。
 試験例1~4に係る樹脂組成物は、上記の実施例7と同様にして得た。試験例1~4に係る樹脂組成物の硬化体について、熱伝導度を測定した結果を以下の表2に示した。熱伝導度は、上記した方法により測定した。
 また、窒化アルミニウムウィスカーの粒度分布は、レーザー回折・散乱式粒度分布測定装置(BECKMANCOULTER社製のLS 13 320)を用いて湿式法にて測定した。
 測定は、以下の条件で行った。
・分散媒:MEK(メチルエチルケトン:屈折率1.38)
・測定試料:ウィスカー状フィラー
・PID(Polaraization Intensity Diferential Scattering)濃度:42%
・ポンプスピード:68%
・相対湿度:6%
・実行時間(測定試料を分散させた分散媒の循環時間):94秒
・ソフトウェア:専用ソフトウェアver6.03
・ファームウェア:専用ファームウェアver2.02
・測定範囲:0.04~2000μm
 
 なお、上記の測定に際して、液状エポキシ樹脂にAlNウィスカーを加えて調整した組成物を分散媒であるMEKに加えた後、このMEKを15~20分間超音波処理することにより、MEK中にAlNウィスカーを分散させる前処理を行った。
Figure JPOXMLDOC01-appb-T000023
 表2より、試験例2~4に係る樹脂組成物は、試験例1に係る樹脂組成物よりも熱伝導度の値が高くなっていることが分かる。また、表2より、試験例1に係る樹脂組成物では、窒化アルミニウムウィスカーのd90は18.37μmであるのに対し、試験例2~4に係る樹脂組成物では、窒化アルミニウムウィスカーのd90は、いずれも、25μm以上であることが分かる。
 上記結果により、d90が25μm以上の窒化アルミニウムウィスカーを含む樹脂組成物は、より高い熱伝導度を示すこと、すなわち、より高い放熱性を示すことが分かる。
 次に、ウィスカー状フィラーの種類が熱伝導率に及ぼす影響について調べた。ウィスカー状フィラーとしては、超音波ホモジナイザー(日本エマソン社製)によって、d90を25μm以上に調整したアルミナウィスカー(AlO)及びd90を25μm以上に調整したメタ珪酸カルシウムウィスカー(CM)を用いた。このようなウィスカー状フィラーを用いて、以下の表3に示すような試験例5~8に係る樹脂組成物を得た。試験例5~8に係る樹脂組成物は、上記の実施例7と同様にして得た。試験例5~8に係る樹脂組成物の硬化体について、熱伝導度を測定した結果を以下の表3に示した。熱伝導度は、上記した方法により測定した。
 また、各種ウィスカー状フィラーの粒度分布は、上記した方法により測定した。
 なお、各種ウィスカー状フィラーの粒度分布の測定に際して、前処理は行わなかった。
Figure JPOXMLDOC01-appb-T000024
 表3より、試験例5~8に係る樹脂組成物の熱伝導度は、いずれも、13W/(m・K)以上と高い値を示すことが分かる。すなわち、d90が25μm以上のウィスカー状フィラーを用いれば、より放熱性の高い樹脂組成物を得ることができることが分かる。
 
 

Claims (18)

  1.  エポキシ樹脂と、硬化剤と、無機フィラーとを含有し、前記無機フィラーが前記エポキシ樹脂中に分散されている樹脂組成物であって、
     前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む
     樹脂組成物。
  2.  前記エポキシ樹脂は、下記式(1)で表されるジフェニルエーテル型エポキシ樹脂を含み、
     前記硬化剤は、下記式(2)で表されるトリスフェノール型フェノール樹脂を含む
     請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  3.  前記エポキシ樹脂は、下記式(3)で表されるナフタレンジオールアラルキル型エポキシ樹脂を含み、
     前記硬化剤は、下記式(4)で表されるナフタレンジオールアラルキル型フェノール樹脂を含む
     請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     ただし、n及びmは正の整数である。
  4.  前記エポキシ樹脂が、常温で液体である液体エポキシ樹脂をさらに含む
     請求項2または3に記載の樹脂組成物。
  5.  前記ウィスカー状フィラーは、窒化アルミニウムウィスカーである
     請求項1乃至4のいずれか1項に記載の樹脂組成物。
  6.  前記無機フィラーは、窒化ホウ素粒子をさらに含む
     請求項1乃至5のいずれか1項に記載の樹脂組成物。
  7.  エポキシ樹脂と、硬化剤と、無機フィラーとを含有する原料を混練して、前記無機フィラーが分散されている樹脂組成物を調製する混練工程を含む樹脂組成物の製造方法であって、
     前記エポキシ樹脂は、常温で液体状である液状エポキシ樹脂を含み、
     前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含んでおり、
     前記混練工程の前に、前記ウィスカー状フィラーを前記液状エポキシ樹脂中に分散させる予備混練工程を実施する
     樹脂組成物の製造方法。
  8.  前記エポキシ樹脂は、下記式(1)で表されるジフェニルエーテル型エポキシ樹脂をさらに含み、
     前記硬化剤は、下記式(2)で表されるトリスフェノール型フェノール樹脂を含む
     請求項7に記載の樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  9.  前記エポキシ樹脂は、下記式(3)で表されるナフタレンジオールアラルキル型エポキシ樹脂をさらに含み、
     前記硬化剤は、下記式(4)で表されるナフタレンジオールアラルキル型フェノール樹脂を含む
     請求項7に記載の樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
     ただし、n及びmは正の整数である。
  10.  前記ウィスカー状フィラーは、窒化アルミニウムウィスカーである
     請求項7乃至9のいずれか1項に記載の樹脂組成物の製造方法。
  11.  前記無機フィラーが、窒化ホウ素粒子をさらに含む
     請求項7乃至10のいずれか1項に記載の樹脂組成物の製造方法。
  12.  前記窒化ホウ素粒子が、複数の一次粒子が凝集した凝集粒子を含む
     請求項11に記載の樹脂組成物の製造方法。
  13.  エポキシ樹脂と、硬化剤と、無機フィラーとを含有し、前記無機フィラーが前記エポキシ樹脂中に分散されている樹脂組成物で構成された樹脂層を備えた熱伝導性シートであって、
     前記無機フィラーは、ウィスカー状フィラーを含む2種類以上の無機粒子を含む
     熱伝導性シート。
  14.  前記エポキシ樹脂は、下記式(1)で表されるジフェニルエーテル型エポキシ樹脂を含み、
     前記硬化剤は、下記式(2)で表されるトリスフェノール型フェノール樹脂を含む
     請求項13に記載の熱伝導性シート。
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
  15.  前記エポキシ樹脂は、下記式(3)で表されるナフタレンジオールアラルキル型エポキシ樹脂を含み、
     前記硬化剤は、下記式(4)で表されるナフタレンジオールアラルキル型フェノール樹脂を含む
     請求項13に記載の熱伝導性シート。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
     ただし、n及びmは正の整数である。
  16.  前記エポキシ樹脂が、常温で液体である液体エポキシ樹脂をさらに含む
     請求項14または15に記載の熱伝導性シート。
  17.  前記ウィスカー状フィラーは、窒化アルミニウムウィスカーである
     請求項13乃至16のいずれか1項に記載の熱伝導性シート。
  18.  前記無機フィラーは、窒化ホウ素粒子をさらに含む
     請求項13乃至17のいずれか1項に記載の熱伝導性シート。
     
     
PCT/JP2019/049974 2019-01-07 2019-12-20 樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シート WO2020145083A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980086431.5A CN113227193A (zh) 2019-01-07 2019-12-20 树脂组合物、该树脂组合物的制造方法、以及导热性片
EP19909432.7A EP3909997A4 (en) 2019-01-07 2019-12-20 RESIN COMPOSITION, METHOD OF MAKING SUCH RESIN COMPOSITION AND THERMAL TRANSDUCING FILM
JP2020565672A JPWO2020145083A1 (ja) 2019-01-07 2019-12-20 樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シート

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-000777 2019-01-07
JP2019000779 2019-01-07
JP2019-000779 2019-01-07
JP2019000777 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020145083A1 true WO2020145083A1 (ja) 2020-07-16

Family

ID=71521494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049974 WO2020145083A1 (ja) 2019-01-07 2019-12-20 樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シート

Country Status (4)

Country Link
EP (1) EP3909997A4 (ja)
JP (1) JPWO2020145083A1 (ja)
CN (1) CN113227193A (ja)
WO (1) WO2020145083A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316564A (ja) * 2000-04-28 2001-11-16 Hitachi Chem Co Ltd 絶縁樹脂組成物、銅箔付き絶縁材及び銅張り積層板
JP2004018617A (ja) * 2002-06-14 2004-01-22 Asahi Denka Kogyo Kk エポキシ樹脂組成物
JP2010094887A (ja) 2008-10-16 2010-04-30 Nitto Shinko Kk 絶縁シートの製造方法
JP2013256637A (ja) * 2012-05-16 2013-12-26 Hitachi Industrial Equipment Systems Co Ltd エポキシ‐ビニル共重合型液状樹脂組成物、その硬化物、製造方法及び硬化物を用いた絶縁材料、電子・電気機器
JP2019000779A (ja) 2017-06-14 2019-01-10 株式会社日立産機システム 安全キャビネット
JP2019000777A (ja) 2017-06-13 2019-01-10 株式会社那須屋興産 廃電池分別処理装置および廃電池分別物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300915A (ja) * 1991-03-29 1992-10-23 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置
JP3267636B2 (ja) * 1991-03-30 2002-03-18 大日本インキ化学工業株式会社 エポキシ樹脂組成物および電子部品封止用材料
JP2856565B2 (ja) * 1991-04-01 1999-02-10 日本化薬株式会社 樹脂の製造方法
JP5584538B2 (ja) * 2010-07-08 2014-09-03 新日鉄住金化学株式会社 エポキシ樹脂組成物、成形物、ワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔
CN104513459B (zh) * 2014-12-01 2017-02-22 佛山市铂利欧照明有限公司 一种环氧树脂基塑封材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316564A (ja) * 2000-04-28 2001-11-16 Hitachi Chem Co Ltd 絶縁樹脂組成物、銅箔付き絶縁材及び銅張り積層板
JP2004018617A (ja) * 2002-06-14 2004-01-22 Asahi Denka Kogyo Kk エポキシ樹脂組成物
JP2010094887A (ja) 2008-10-16 2010-04-30 Nitto Shinko Kk 絶縁シートの製造方法
JP2013256637A (ja) * 2012-05-16 2013-12-26 Hitachi Industrial Equipment Systems Co Ltd エポキシ‐ビニル共重合型液状樹脂組成物、その硬化物、製造方法及び硬化物を用いた絶縁材料、電子・電気機器
JP2019000777A (ja) 2017-06-13 2019-01-10 株式会社那須屋興産 廃電池分別処理装置および廃電池分別物の製造方法
JP2019000779A (ja) 2017-06-14 2019-01-10 株式会社日立産機システム 安全キャビネット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3909997A4

Also Published As

Publication number Publication date
EP3909997A4 (en) 2022-09-21
EP3909997A1 (en) 2021-11-17
JPWO2020145083A1 (ja) 2021-11-18
CN113227193A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
JP6023474B2 (ja) 熱伝導性絶縁シート、金属ベース基板及び回路基板、及びその製造方法
WO2015141797A1 (ja) 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置並びにled装置
JP2009024126A (ja) ポリマー組成物、熱伝導性シート、金属箔付高熱伝導接着シート、金属板付高熱伝導接着シート、金属ベース回路基板ならびにパワーモジュール
JP6276498B2 (ja) 熱硬化性樹脂組成物、熱伝導性シート、及び、半導体モジュール
WO2019164002A1 (ja) 絶縁放熱シート
JP2016079304A (ja) 樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置並びにled装置
JP6829998B2 (ja) 基材付接着シート及び半導体モジュール
WO2020196477A1 (ja) 熱伝導性樹脂シート、積層放熱シート、放熱性回路基板、及び、パワー半導体デバイス
WO2020145083A1 (ja) 樹脂組成物、該樹脂組成物の製造方法、及び、熱伝導性シート
TW201841746A (zh) 散熱電路基板
JP7257104B2 (ja) 積層体
JP6214336B2 (ja) 絶縁シートの製造方法
JP7486941B2 (ja) 樹脂組成物、及び、熱伝導性シート
JP7291118B2 (ja) 積層体
JP2020143198A (ja) 樹脂組成物、及び、熱伝導性シート
JP2017066336A (ja) 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート積層体、樹脂シート積層体硬化物及びその製造方法、半導体装置並びにled装置
JP2019077859A (ja) 樹脂組成物
JP2022060909A (ja) 樹脂組成物、及び、熱伝導性シート
JP7231363B2 (ja) 樹脂組成物
JP2020180216A (ja) 樹脂組成物および電子部品構造体
CN112739739B (zh) 树脂组合物
WO2022255450A1 (ja) 樹脂シート、積層体、及び半導体装置
WO2020129776A1 (ja) 樹脂組成物
WO2021251454A1 (ja) 熱伝導性シート、及び、該熱伝導性シートを備える半導体モジュール
JP2022110408A (ja) 樹脂組成物、及び、熱伝導性シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019909432

Country of ref document: EP

Effective date: 20210809