WO2020144841A1 - 電力変換システムおよび電力変換装置 - Google Patents

電力変換システムおよび電力変換装置 Download PDF

Info

Publication number
WO2020144841A1
WO2020144841A1 PCT/JP2019/000657 JP2019000657W WO2020144841A1 WO 2020144841 A1 WO2020144841 A1 WO 2020144841A1 JP 2019000657 W JP2019000657 W JP 2019000657W WO 2020144841 A1 WO2020144841 A1 WO 2020144841A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
power conversion
value
target value
Prior art date
Application number
PCT/JP2019/000657
Other languages
English (en)
French (fr)
Inventor
美和子 田中
浩毅 石原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/293,915 priority Critical patent/US11309807B2/en
Priority to JP2019516568A priority patent/JP6537761B1/ja
Priority to PCT/JP2019/000657 priority patent/WO2020144841A1/ja
Priority to CN201980087646.9A priority patent/CN113261171B/zh
Publication of WO2020144841A1 publication Critical patent/WO2020144841A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/64Conversion of dc power input into ac power output without possibility of reversal by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to a power conversion system and a power conversion device.
  • the amount of power generation fluctuates momentarily according to natural conditions such as weather. Therefore, it is important to suppress voltage fluctuations in the power system.
  • the voltage control device of Patent Document 1 suppresses short-cycle fluctuations of the voltage of the power system by reactive power compensation by a static var compensator, and long-cycle fluctuations of the voltage of the power system of a step-type automatic voltage regulator. Suppress by switching taps.
  • the voltage control device of Patent Document 1 suppresses short cycle fluctuations by reactive power compensation by the reactive power compensator, but the static var compensator has a problem of high cost.
  • an object of the present invention is to provide a power conversion system and a power conversion device that can stabilize voltage fluctuations in a distribution system connected to a distributed power supply system without using a static var compensator. Is.
  • the present invention is a power conversion system including an automatic voltage regulator installed in a power distribution system and at least one distributed power supply system, and the distributed power supply system includes a distributed power supply and a power conversion device.
  • the power conversion device includes a power conversion circuit that converts DC power output from the distributed power supply into AC power and outputs the AC power, and a voltage detection unit that detects a voltage at a connection point between the power conversion circuit and the power distribution system.
  • the voltage target value is corrected, and when the voltage at the interconnection point deviates from the voltage control dead zone based on the voltage target value, the deviation is made.
  • the reactive power corresponding to the magnitude of the voltage is output.
  • FIG. 1 is a schematic diagram of a power conversion system 100 according to a first embodiment. It is a figure which shows the example of the daily power generation amount of solar power generation.
  • FIG. 3 is a configuration diagram of a power conversion device 50 according to the first embodiment. 3 is a block diagram of a control circuit 540 according to the first embodiment.
  • FIG. It is a figure showing the structure of the excess voltage output part 5430.
  • 6 is a flowchart showing a procedure for generating a reactive power command value Qr of control circuit 540 of the first embodiment.
  • (A) is a figure showing the time change of the voltage of an electric system, when not correcting voltage target value Vref at the time of operation of SVR20.
  • FIG. 3 is a configuration diagram of a power conversion device 50 according to the first embodiment. 3 is a block diagram of a control circuit 540 according to the first embodiment.
  • FIG. It is a figure showing the structure of the excess voltage output part 5430.
  • 6 is a flowchart showing
  • FIG. 7B is a diagram showing a temporal change in the voltage of the power distribution system when the voltage target value Vref is corrected during the operation of the SVR 20.
  • 5 is a schematic diagram of a power conversion system 100 according to a second embodiment.
  • FIG. 5 is a configuration diagram of a power conversion device 50 according to a second embodiment.
  • FIG. 7 is a block diagram of a control circuit 540 according to the second embodiment.
  • FIG. 9 is a flowchart showing a procedure for generating a reactive power command value Qr of control circuit 540 of the second embodiment.
  • (A) is a figure showing an example of the simulation result of the voltage of a power distribution system at the time of operation of SVR20, when not correcting the voltage target value Vref.
  • 6B is a diagram illustrating an example of a simulation result of reactive power output when the voltage target value Vref is not corrected during the operation of the SVR 20.
  • C is a figure showing an example of the simulation result of the voltage of a power distribution system at the time of operation of SVR20, when voltage target value Vref is amended.
  • D is a figure showing an example of the simulation result of the reactive power output when the voltage target value Vref is corrected at the time of operation of SVR20. It is a figure which shows the structure of the electric power controller at the time of implementing the function of the power converter device 50 using software.
  • FIG. 1 is a schematic diagram of a power conversion system 100 according to the first embodiment.
  • a power conversion system 100 includes a substation 10, a step automatic voltage regulator (SVR) 20, a column transformer 40, and at least one distributed power system 90.
  • the step type automatic voltage regulator 20 and the columnar transformer 40 are installed in the power distribution system LA.
  • the electric power sent from the substation 10 is supplied to the load 80 via the step type automatic voltage regulator 20 and the columnar transformer 40.
  • the step automatic voltage regulator (SVR) 20 performs tap switching when the AC effective voltage of the power distribution system LA deviates from the upper limit voltage or the lower limit voltage of the operating voltage of the SVR 20 for a predetermined time, and 1 By changing the transformation ratio between the secondary side and the secondary side, the voltage of the distribution system LA is automatically adjusted to an appropriate value.
  • the width of the voltage that fluctuates on the secondary side by one tap switching by the SVR 20 is referred to as an SVR voltage step width ⁇ Vsvr.
  • the predetermined time may be, for example, about 45 seconds.
  • the distributed power supply system 90 includes a distributed power supply.
  • the distributed power source is a customer distributed power source in which a solar power generation device and a storage battery are installed, a power generation device using natural energy such as a large number of solar power generations, or a mega solar including a plurality of storage batteries.
  • FIG. 2 is a diagram illustrating an example of the daily power generation amount of solar power generation.
  • the amount of power generated by the solar power generator 60 changes from moment to moment due to fluctuations in solar radiation, so that voltage fluctuations occur in a short cycle in a power distribution system in which large-capacity distributed power sources are interconnected.
  • the number of times the SVR 20 operates increases. Since the SVR 20 performs mechanical tap switching, the life of the device shortens as the number of operations increases. It is not desirable that the number of times the SVR 20 operates increases due to the power fluctuation of the distributed power source.
  • the distributed power supply system 90 includes at least a solar power generator 60 which is a distributed power supply, a power conversion device 50-a for solar power generation, a load 80, a voltage detector 101-a for solar power generation, and a solar power generation. Current detector 102-a.
  • the distributed power supply system 90 further includes a storage battery 70 that is a distributed power supply, a power conversion device 50-b for the storage battery, a voltage detector 101-b for the storage battery, and a current detector 102-b for the storage battery. May be.
  • the power conversion device 50-a for solar power generation and the power conversion device 50-b for storage batteries are collectively referred to as the power conversion device 50.
  • the voltage detector 101-a for photovoltaic power generation and the voltage detector 101-b for a storage battery are collectively referred to as the voltage detector 101.
  • the current detector 102-a for photovoltaic power generation and the current detector 102-b for storage battery are collectively referred to as the current detector 102.
  • the solar power generator 60 and the storage battery 70 are collectively referred to as a distributed power source.
  • the voltage detector 101 measures the AC voltage Vac at the connection point between the power conversion device 50 and the power distribution system LA.
  • the current detector 102 measures an alternating current Iac at a connection point between the power conversion device 50 and the power distribution system LA.
  • the number of distributed power supply systems 90 connected to the distribution system LA is two in FIG. 1, but at least one may be connected.
  • the central management device 30 manages the state of the distribution system LA.
  • the central management device 30 monitors the power flow of the power system.
  • the central management device 30 has a function of bidirectionally performing data communication with the power conversion device 50 of the distributed power system 90.
  • the central management device 30 periodically sends and receives the information of the SVR 20, the voltage control dead zone Vdead of the power conversion device 50, the voltage at the interconnection point of the power conversion device 50, and the current at the interconnection point.
  • the central management device 30 determines the voltage control dead zone Vdead based on the impedance ZL of the power distribution system LA and the voltage distribution in a range smaller than the voltage control dead zone Vdead (SVR) of the SVR. That is, Vdead(SVR)>Vdead.
  • FIG. 3 is a diagram showing the configuration of the power conversion device 50 according to the first embodiment.
  • power conversion device 50 includes a voltage detection unit 510, a voltage target value generation unit 520, a current detection unit 530, a control circuit 540, and a power conversion circuit 550.
  • the voltage detection unit 510 receives the AC voltage Vac measured by the voltage detector 101, and detects the detected voltage effective value Ve from the received AC voltage value Vac.
  • the voltage target value generation unit 520 calculates the average value of the detected voltage effective value Ve output from the voltage detection unit 510 for a certain period of time (for example, several minutes or more), thereby removing the high frequency component of the voltage at the interconnection point.
  • the target value Vref is generated.
  • the voltage target value generation unit 520 may generate the voltage target value Vref from which the high frequency component of the voltage at the interconnection point has been removed by removing the high band component of the detected voltage effective value Ve with a low pass filter. ..
  • the current detection unit 530 receives the alternating current Iac measured by the current detector 102, and detects the detected current effective value Ie from the received alternating current Iac.
  • the control circuit 540 controls the detected voltage effective value Ve, the voltage target value Vref, the detected current effective value Ie, the voltage control dead zone Vdead transmitted from the central management device 30, the active power command value Pr, and the SVR first settling condition St1. , SVR second settling condition St2 is received.
  • the first SVR settling condition St1 is the SVR voltage step width ⁇ Vsvr.
  • the second SVR settling condition is the tap switching time ⁇ Ttap.
  • the control circuit 540 calculates the control amount of the voltage and the current at the interconnection point of the power conversion circuit 550 based on the received information, and generates the pulse width modulation signal PWM according to the calculated control amount.
  • the pulse width modulation signal PWM is sent to the power conversion circuit 550.
  • the power conversion circuit 550 converts the DC power output from the distributed power supply into AC power and outputs the AC power to the power distribution system LA.
  • the power conversion circuit 550 is composed of an inverter.
  • the power conversion circuit 550 includes a self-extinguishing semiconductor switching element, a diode element, and a smoothing capacitor.
  • the power conversion circuit 550 converts DC power into AC power by changing the ON/OFF DUTY ratio of the gate signal of the self-extinguishing semiconductor device.
  • the circuit configuration of the power conversion circuit 550 is not limited.
  • FIG. 4 is a block diagram of the control circuit 540 of the first embodiment.
  • control circuit 540 includes a correction unit 310 and a command unit 320.
  • the correction unit 310 When the correction unit 310 detects that the SVR 20 has operated, the correction unit 310 corrects the voltage target value Vref so as to correspond to the detected operation.
  • the correction unit 310 includes an SVR operation detection unit 5410, a voltage target value correction amount calculation unit 5420, and an adder 5491.
  • the SVR operation detection unit 5410 transmits the SVR first settling condition St1 ( ⁇ Vsvr), the SVR second settling condition St2 ( ⁇ Ttap), and the detected current effective value at the interconnection point of the power conversion device 50. Whether or not the SVR has operated is detected based on Ie and the detected voltage effective value Ve. Specifically, the state in which the absolute value of the change rate Vrate of the detected voltage effective value Ve at the interconnection point detected by the voltage detection unit 510 exceeds the reference value K1 continues for a specified period and is output from the power conversion circuit 550. When the absolute value of the change amount ⁇ P of the active power is less than the reference value K2, it is detected that the SVR 20 has operated.
  • the reference value K1 is determined by the SVR first settling condition St1 ( ⁇ Vsvr) and the SVR second settling condition St2 ( ⁇ Ttap).
  • the reference value K2 is determined based on the SVR voltage step width ( ⁇ Vsvr [%]) and the distribution system voltage low voltage conversion impedance ZL from the power conversion circuit 550 to the SVR20.
  • the voltage target value correction amount calculation unit 5420 and the adder 5491 detect that the SVR 20 has operated, when the change rate Vrate of the detected voltage effective value Ve at the interconnection point is positive, the voltage target value Vref is SVR.
  • the target value Vref is corrected.
  • the voltage target value correction amount calculation unit 5420 calculates the voltage target value correction amount ⁇ Vref based on the SVR first settling condition St1 when the SVR operation detection unit 5410 detects the SVR operation.
  • the voltage target value correction amount calculation unit 5420 sets the voltage target value correction amount ⁇ Vref to 0 when the SVR operation is not detected.
  • the adder 5491 adds the voltage target value Vref and the voltage target value correction amount ⁇ Vref, and outputs a new voltage target value RVref.
  • the command unit 320 determines the magnitude of the deviated voltage.
  • the power conversion circuit 550 is commanded to output the reactive power corresponding thereto.
  • the command unit 320 includes a subtractor 5492, an excess voltage output unit 5430, a voltage control unit 5440, a reactive power control unit 5450, an active power control unit 5460, an adder 5493, and a current control unit 5470.
  • the excess voltage output unit 5430 outputs
  • FIG. 5 is a diagram showing a configuration of excess voltage output unit 5430.
  • the overvoltage output unit 5430 includes a limiter 5431 and a subtractor 5432.
  • the limiter 5431 outputs Vdead when the absolute value of the deviation ⁇ Ve exceeds the voltage control dead zone Vdead.
  • the limiter 5431 outputs the absolute value
  • the subtractor 5432 subtracts Vdead or
  • the voltage control unit 5440 proportionally controls the voltage output from the excess voltage output unit 5430 to output the control amount obtained by amplifying the output of the excess voltage output unit 5430 as the reactive power command value Qr.
  • the output of the excess voltage output unit 5430 is
  • the voltage control unit 5440 has amplified
  • the voltage control unit 5440 starts voltage control when the absolute value of the deviation ⁇ Ve exceeds the voltage control dead zone Vdead.
  • the reactive power control unit 5450 outputs the reactive current command value Iqr so that the reactive power follows the reactive power command value Qr.
  • the active power control unit 5460 outputs the active current command value Ipr so that the power obtained by calculating the detected current effective value Ie and the detected voltage effective value Ve follows the active power command value Pr.
  • the active power command value Pr is, for example, a command value of the amount of electric power when the distributed power supply system is regarded as a virtual power plant and power is supplied to the grid from a solar power generator, a storage battery, or both power supplies.
  • the adder 5493 adds the active current command value Ipr output from the active power control unit 5460 and the reactive current command value Iqr output from the reactive power control unit 5450 to generate a current command value Ir.
  • the current control unit 5470 outputs the pulse width modulation signal PWM so that the alternating current Iac follows the current command value Ir, and drives the gate of the power conversion circuit 550.
  • FIG. 6 is a flowchart showing a procedure for generating reactive power command value Qr of control circuit 540 of the first embodiment.
  • step S1 the control circuit 540 acquires the SVR first settling condition St1 and the SVR second settling condition St2 from the central management device 30 and stores them in the memory.
  • the SVR first settling condition St1 is the SVR voltage step width ( ⁇ Vsvr [%]).
  • the SVR second settling condition St2 is the tap switching time ( ⁇ Ttap).
  • the central management device 30 acquires information on the SVR settling condition and line impedance of the distribution system to be managed from the electric power company and holds the information.
  • step S2 If the voltage control dead zone Vdead is updated in step S2, the process proceeds to step S3. If the voltage control dead zone Vdead has not been updated, the process returns to step S2.
  • the central management device 30 regularly distributes the voltage control dead zone Vdead of each power conversion device to the power conversion device 50.
  • step S3 the control circuit 540 acquires the voltage control dead zone Vdead. Thereby, the reactive power output of each distributed power supply system can be made more uniform.
  • step S4 the control circuit 540 acquires the detected voltage effective value Ve(n), the detected current effective value Ie(n), and the voltage target value Vref at the time T(n) of the interconnection point of the power conversion device 50. , Store the obtained value in memory.
  • step S5 the SVR operation detection unit 5410 uses the detected voltage effective value Ve(n) at time T(n) and the detected voltage effective value Ve at time T(n ⁇ 1) acquired last time, as shown in the following equation.
  • ⁇ t is one cycle time.
  • One cycle is a value obtained by dividing the tap switching time ⁇ Ttap by the cycle of the system frequency. For example, when the system frequency is 50 Hz and the SVR tap switching time ⁇ Ttap is 0.1 seconds, a value obtained by dividing 0.1 seconds by the system frequency cycle of 0.02 seconds is one cycle.
  • step S6 the SVR operation detection unit 5410, based on the SVR voltage step width ( ⁇ Vsvr[%]) and the SVR tap switching time ( ⁇ Ttap), as shown in the following expression, the voltage for the low voltage 200V of the power distribution system. A reference value K1 of 90% of the deviation is obtained.
  • the SVR operation detection unit 5410 compares the absolute value of the change rate Vrate of the detected voltage effective value Ve with the magnitude of the reference value K1. When the absolute value of the change rate Vrate of the detected voltage effective value Ve is larger than the reference value K1, the process proceeds to step S7. When the absolute value of the change rate Vrate of the detected voltage effective value Ve is less than or equal to the reference value K1, the process proceeds to step S11.
  • step S7 it is determined whether the state in which the absolute value of the change rate Vrate of the detected voltage effective value Ve is larger than the reference value K1 continues for 5 cycles. If it is determined that it has not continued, the process proceeds to step S11. If it is determined that it is continuing, the process proceeds to step S8.
  • step S8 the SVR operation detection unit 5410 calculates the difference ⁇ P in detected power between time T(n) and time T(n-5) according to the following formula.
  • time T(n-5) is the time five cycles before.
  • step S9 the SVR operation detection unit 5410 obtains a reference value K2 indicating the amount of power required for the voltage at the interconnection point of the distributed power system 90 to change by the voltage step width during the SVR operation.
  • the control circuit 540 is based on the SVR voltage step width ( ⁇ Vsvr [%]) for the low voltage 200V of the distribution system, the low voltage of the distribution system (200V), and the distribution system voltage low voltage conversion impedance ZL from the distributed power system 90 to the SVR 20.
  • the reference value K2 is calculated according to the following formula.
  • step S9 If the absolute value of the detected power difference ⁇ P is less than the reference value K2 (S9: YES), the process proceeds to step S10, and if the absolute value of the detected power difference ⁇ P is equal to or greater than the reference value K2 (S9: NO). Processing proceeds to step S11. If NO in step S9, the difference ⁇ P is regarded as a step change in the voltage due to the power change in the distribution system. In the case of YES in step S9, the difference ⁇ P is regarded as a step change in voltage due to tap switching by the SVR 20.
  • step S10 the voltage target value correction amount calculation unit 5420 calculates the voltage target correction amount ⁇ Vref according to the following equation (5) when the change rate Vrate of the detected voltage effective value Ve is positive.
  • the control circuit 540 calculates the voltage target correction amount ⁇ Vref according to the following equation (6).
  • step S11 the voltage target value correction amount calculation unit 5420 sets the voltage target correction amount ⁇ Vref to 0.
  • step S12 the adder 5491 calculates the new voltage target value RVref by adding the voltage target value Vref and the voltage target correction amount ⁇ Vref using the voltage target correction amount ⁇ Vref obtained in step S10 and step S11. To do.
  • step S13 the subtractor 5492 calculates the difference ⁇ Ve(n) between the voltage target value RVref and the detected voltage effective value Ve(n).
  • step S14 the excess voltage output unit 5430 outputs
  • the output of the excess voltage output unit 5430 is
  • the voltage control unit 5440 has amplified
  • the reactive power command value Qr To the reactive power control unit 5450 as the reactive power command value Qr.
  • FIG. 7A is a diagram showing a time change of the voltage of the distribution system in the case where the voltage target value Vref is not corrected during the operation of the SVR 20.
  • the power conversion device 50 outputs reactive power when the voltage of the power distribution system deviates from the voltage control dead zone, that is, when the voltage of the power distribution system exceeds Vref+Vdead or falls below Vref-Vdead, thereby outputting the reactive power. Control the voltage of.
  • the SVR 20 performs tap switching in the direction of decreasing the voltage of the distribution system. This reduces the voltage in the distribution system by approximately 1% to 2%. Due to the operation of the SVR 20, the voltage of the power distribution system becomes smaller than (Vref-Vdead). As a result, a large amount of reactive power is output.
  • FIG. 7B is a diagram showing a temporal change in the voltage of the distribution system when the target voltage value Vref is corrected during the operation of the SVR 20.
  • the voltage of the power distribution system After detecting the operation of the SVR 20, the voltage of the power distribution system changes along the voltage target value RVref by correcting the voltage target value Vref to RVref. Transition between. As a result, reactive power is not output.
  • the SVR operation is detected based on the rate of change in the voltage at the interconnection point of the power converter 50 and the amount of power fluctuation. Since there is no power fluctuation when the SVR operates, it is also possible to determine that the SVR has operated when the rate of change of the effective current value at the interconnection point exceeds the reference value and there is no power fluctuation. However, the target voltage value corrects the polarity of the change in the effective current value at the interconnection point to the opposite polarity.
  • the central control device 30 when the central control device 30 observes the voltage at the SVR observation point and the time when the voltage at the observation point exceeds the voltage control dead zone of the SVR exceeds the settling time of the SVR, the central control device 30 operates the SVR. It is also possible to detect and transmit “current voltage control dead zone+SVR voltage step width” to the power conversion device 50 as the voltage control dead zone. This can prevent unnecessary reactive power output during SVR operation. In this case, the voltage control dead zone temporarily increases when the SVR operation is detected, so the voltage control is turned off. However, the difference between the voltage target value and the measured value of the voltage at the interconnection point is smaller than that before the SVR operation. When the power becomes smaller, the power conversion device 50 autonomously returns to the voltage control dead zone before the SVR operation. As a result, the original voltage control is restored, and the voltage of the power distribution system can be stabilized.
  • the central management device and the power conversion device of the distributed power supply system cooperate with each other so that the power distribution system The voltage can be stabilized.
  • the SVR operates, unnecessary reactive power is not output, and it is possible to prevent fluctuations in the voltage of the distribution system.
  • the voltage control dead zone Vdead of the power conversion device By setting the voltage control dead zone Vdead of the power conversion device to be smaller than the voltage control dead zone Vdead (SVR) of the SVR, when the voltage of the distribution system fluctuates, the voltage at the interconnection point of the distributed power source becomes faster than the SVR measurement point. Deviates from the voltage control dead zone. As a result, the power conversion device 50 of the distributed power supply system can immediately output reactive power, suppress short-term voltage fluctuations, and reduce the number of SVR operations.
  • SVR voltage control dead zone Vdead
  • Embodiment 2 a method for stabilizing the voltage of the distribution system of the power conversion system in which the distributed power supply system is connected to the high voltage system will be described.
  • the power conversion system according to the second embodiment does not include the central management device 30 according to the first embodiment.
  • FIG. 8 is a schematic diagram of the power conversion system 100 according to the second embodiment. Referring to FIG. 8, in power conversion system 100, step type automatic voltage regulator SVR 20, load 80, and power conversion device 50 are connected to high-voltage power distribution system LA 2 via substation 10.
  • one storage battery 70 and one solar power generator 60 are shown, but a plurality of storage batteries 70 and one solar power generator 60 may be arranged in a dispersed manner.
  • FIG. 9 is a configuration diagram of the power conversion device 50 according to the second embodiment.
  • the power conversion device 50 cannot receive the dead zone Vdead.
  • the power conversion device 50 holds the line impedance ZH of the power distribution system LA2 presented by the power company in the memory 560.
  • the power conversion device 50 holds the SVR first settling condition St1 in the memory 560.
  • ⁇ Vsvr is a value not less than ⁇ VsvrMin and not more than ⁇ VsvrMax.
  • the power conversion device 50 holds the SVR second settling condition St2( ⁇ Ttap) in the memory 560.
  • control circuit 540 is the same as the block configuration shown in FIG. 4 and has been described in the first embodiment, and therefore description thereof will not be repeated.
  • FIG. 10 is a block diagram of the control circuit 540 according to the second embodiment.
  • control circuit 540 includes a correction unit 310 and a command unit 320.
  • the correction unit 310 corrects the voltage target value Vref so as to correspond to the detected operation when detecting that the SVR 20 operates, as in the first embodiment.
  • the correction unit 310 includes an SVR operation detection unit 5410 and a voltage target value determination unit 5480.
  • the SVR operation detection unit 5410 detects the SVR first settling condition St1 ( ⁇ VsvrMin, ⁇ VsvrMax, ⁇ Vsvr) and the SVR second settling condition St2 ( ⁇ Ttap) stored in the memory 560, and the detection current at the interconnection point of the power conversion device 50. Whether or not the SVR has operated is detected based on the effective value Ie and the detected voltage effective value Ve.
  • a state in which the absolute value of the change rate Vrate of the detected voltage effective value Ve at the interconnection point detected by the voltage detection unit 510 exceeds the reference value K3 and is less than the reference value K4 continues for a specified period,
  • the reference value K3 is determined based on the lower limit value ( ⁇ VsvrMin[%]) of the SVR voltage step width and the SVR tap switching time ( ⁇ Ttap).
  • the reference value K4 is determined based on the upper limit value ( ⁇ VsvrMax[%]) of the SVR voltage step width and the SVR tap switching time ( ⁇ Ttap).
  • the reference value K5 is determined based on the SVR voltage step width ( ⁇ Vsvr [%]) and the distribution system voltage high voltage conversion impedance ZH from the power conversion circuit 550 to the SVR20.
  • the voltage target value determination unit 5480 is based on the voltage target value Vref output from the voltage target value generation unit 520, the provisional value ⁇ Vsvr of the SVR voltage step width in the memory 560, and the output result of the SVR operation detection unit 5410. , And outputs a new target voltage value RVref.
  • the voltage target value determination unit 5480 calculates the voltage target value lower limit VrefMin and the voltage target value upper limit VrefMax based on the voltage target value Vref and the provisional value ⁇ Vsvr of the SVR voltage step width.
  • the voltage target value determination unit 5480 sets the voltage target value RVref to the voltage target value lower limit VrefMin when the change rate Vrate of the detected voltage effective value Ve at the interconnection point is negative when detecting that the SVR 20 has operated. Then, when the change rate Vrate is positive, the voltage target value RVref is set to the voltage target value upper limit VrefMax.
  • command unit 320 deviates when the detected voltage effective value Ve at the interconnection point detected by voltage detection unit 510 deviates from voltage control dead zone Vdead based on voltage target value Vref.
  • the power conversion circuit 550 is instructed to output the reactive power according to the magnitude of the voltage.
  • the command unit 320 includes a subtractor 5492, an excess voltage output unit 5430, a voltage control unit 5440, a reactive power control unit 5450, an active power control unit 5460, an adder 5493, a current control unit 5470, and a dead zone determination unit 5490.
  • the excess voltage output unit 5430, the voltage control unit 5440, the reactive power control unit 5450, the active power control unit 5460, the current control unit 5470, the subtractor 5492, and the adder 5493 are the same as those in the first embodiment, and therefore the description thereof will be repeated. Absent.
  • the dead zone determination unit 5490 prevents the voltage at the interconnection point from exceeding the upper limit value of the electricity distribution system LA2 based on the line impedance ZH of the electricity distribution system LA2 and the detected voltage effective value Ve at the interconnection point, and the lower limit value.
  • the voltage control dead zone Vdead is determined so as not to fall below the range.
  • the dead zone determination unit 5490 sets the voltage control dead zone Vdead smaller as the distance from the SVR 20 becomes shorter.
  • FIG. 11 is a flowchart showing a procedure for generating reactive power command value Qr of control circuit 540 of the second embodiment.
  • step S101 the power conversion device 50 holds the provisional value ⁇ Vsvr of the SVR voltage step width and the line impedance ZH from the substation 10 to the power conversion device 50 in the internal memory 560.
  • step S102 the power conversion device 50 acquires the detected voltage effective value Ve(n), the detected current effective value Ie(n), and the voltage target value Vref at the time T(n) of the interconnection point of the power conversion device 50. Then, it is held in the internal memory 560.
  • step S103 the dead zone determination unit 5490 causes the voltage at the interconnection point to deviate from the upper limit value and the lower limit value of the voltage of the distribution system based on the voltage at the interconnection point to which the power conversion device 50 is connected and the line impedance ZH.
  • the voltage control dead zone Vdead is determined as follows so as not to exist.
  • the power conversion device 50 can start the voltage control before the SVR 20, so the power conversion device 50. This makes it possible to suppress voltage fluctuations in a short cycle.
  • the voltage control dead band Vdead(SVR) of the SVR is 1% to 2% of the reference voltage VR, so that the voltage control dead band Vdead of the power converter is set to 0.9% or less of Vdead(SVR). It's desirable.
  • the voltage control dead zone Vdead may be a fixed value.
  • the voltage control dead zone Vdead of the power conversion device 50 may be dynamically changed to 50% of the current value. As a result, when the voltage of the power distribution system approaches the upper limit value or the lower limit value, more reactive power output is output in response to a short-term voltage fluctuation, and the effect of lengthening the SVR operation interval is obtained. ..
  • the voltage control dead zone Vdead is set larger for the power conversion device 50 with a longer distance from the SVR 20. Is desirable.
  • the dead zone determination unit 5490 sets the voltage control dead zone Vdead(R) of the power conversion device 50 farthest from the SVR 20 to 90% of the voltage control dead zone Vdead(SVR) of the SVR20.
  • the dead zone determination unit 5490 sets the voltage control dead zone Vdead of the power conversion device 50 to be smaller as the distance from the SVR 20 becomes shorter.
  • the dead zone determination unit 5490 sets the voltage control dead zone Vdead(N) of the power converter closest to the SVR 20 to 50% of the voltage control dead zone Vdead(R) of the farthest power converter 50.
  • step S104 the voltage target value determination unit 5480 calculates the voltage target value lower limit VrefMin and the voltage target value upper limit VrefMax based on the voltage target value Vref and the provisional value ⁇ Vsvr of the SVR voltage step width, and the internal voltage It is held in the memory 560. 6600 represents a distribution system high voltage.
  • step S105 the SVR operation detection unit 5410 uses the detected voltage effective value Ve(n) at time T(n) and the previously acquired detected voltage effective value Ve at time T(n-1) as shown in the following equation.
  • step S106 the SVR operation detection unit 5410, based on the lower limit value ( ⁇ VsvrMin[%]) of the SVR voltage step width and the SVR tap switching time ( ⁇ Ttap), as shown in the following equation, the high voltage of the distribution system.
  • a reference value K3 of the voltage deviation with respect to 6600V is obtained.
  • the SVR operation detection unit 5410 based on the upper limit value ( ⁇ VsvrMax [%]) of the SVR voltage step width and the SVR tap switching time ( ⁇ Ttap), as shown in the following expression, the voltage deviation with respect to the high voltage 6600V of the distribution system.
  • the reference value K4 of is calculated.
  • K3
  • *6600/ ⁇ Ttap... (10) K4
  • the SVR operation detection unit 5410 compares the absolute value of the change rate Vrate of the detected voltage effective value Ve with the magnitudes of the reference values K3 and K4. When K4>
  • step S107 the SVR operation detection unit 5410 determines whether or not the state of K4>
  • one cycle is a value obtained by dividing the tap switching time by the cycle of the system frequency. For example, when the system frequency is 50 Hz and the SVR tap switching time ⁇ Ttap is 0.1 seconds, a value obtained by dividing 0.1 seconds by the system frequency cycle of 0.02 seconds is one cycle. If it is determined that it has not continued, the process proceeds to step S111. If it is determined that it is continuing, the process proceeds to step S108.
  • step S108 the SVR operation detection unit 5410 calculates a difference ⁇ P in detected power between time T(n) and time T(n-5) according to the following formula.
  • time T(n-5) is the time five cycles before.
  • step S109 the SVR operation detection unit 5410 obtains a reference value K5 indicating the amount of electric power required for the voltage at the interconnection point to change corresponding to the voltage step width during the SVR operation.
  • the control circuit 540 determines the SVR voltage step width ( ⁇ Vsvr[%]) for the high voltage 6600V of the distribution system, the high voltage of the distribution system (6600V), and the distribution system voltage high voltage conversion impedance ZH from the power conversion circuit 550 to the SVR20. Based on, the reference value K5 is calculated according to the following formula.
  • step S109 If the absolute value of the detected power difference ⁇ P is less than the reference value K5 (S109: YES), the process proceeds to step S110, and if the absolute value of the detected power difference ⁇ P is the reference value K5 or more (S109: NO). , The process proceeds to step S111.
  • the difference ⁇ P is regarded as a step change in voltage due to a power change in the distribution system.
  • the difference ⁇ P is regarded as a step change in voltage due to tap switching by the SVR 20.
  • step S110 if the change rate Vrate of the detected voltage effective value Ve is negative, the process proceeds to step S112. If the change rate Vrate of the detected voltage effective value Ve is 0 or positive, the process proceeds to step S113. move on.
  • step S112 voltage target value determination unit 5480 sets voltage target value lower limit VrefMin to a new voltage target value RVref.
  • step S113 voltage target value determination unit 5480 sets voltage target value upper limit VrefMax to a new voltage target value RVref.
  • step S111 the absolute value of the change rate Vrate of the detected voltage effective value Ve and the magnitude of the reference value K4 are compared. If K4>
  • step S115 the subtractor 5492 calculates the difference ⁇ Ve(n) between the voltage target value RVref and the detected voltage effective value Ve(n).
  • step S116 the excess voltage output unit 5430 outputs
  • the output of the excess voltage output unit 5430 is
  • the voltage control unit 5440 has amplified
  • the reactive power command value Qr To the reactive power control unit 5450 as the reactive power command value Qr.
  • step S117 the voltage control unit 5440 sets the reactive power command value Qr to 0 because the voltage and power fluctuations are larger than those in the SVR operation, the possibility of a system accident cannot be denied, and it is desirable not to output the reactive power. To do.
  • the voltage target value upper limit VrefMax and the voltage target value lower limit VrefMin after the SVR operation are held, and when the SVR operation is autonomously detected, the voltage target value is set. Based on the value Vref and the provisional value ⁇ Vsvr of the SVR voltage step width, the voltage target value after the SVR operation is promptly corrected. This makes it possible to suppress the reactive power output.
  • FIG. 12A is a diagram showing an example of a simulation result of the voltage of the power distribution system when the voltage target value Vref is not corrected during the operation of the SVR 20.
  • FIG. 12B is a diagram illustrating an example of a simulation result of the reactive power output when the voltage target value Vref is not corrected during the operation of the SVR 20.
  • FIG. 12(a) it can be seen that the voltage of the distribution system is below Vref-Vdead immediately after the operation of the SVR 20.
  • FIG. 12B it can be seen that a large amount of reactive power is output immediately after the operation of the SVR 20.
  • FIG. 12C is a diagram showing an example of a simulation result of the voltage of the distribution system when the voltage target value Vref is corrected during the operation of the SVR 20.
  • FIG. 12D is a diagram showing an example of a simulation result of the reactive power output when the voltage target value Vref is corrected during the operation of the SVR 20.
  • the voltage of the distribution system is between RVref ⁇ Vdead and RVref+Vdead immediately after the operation of the SVR 20.
  • the reactive power immediately after the operation of the SVR 20 is 1/14 of that in the case where no correction is made.
  • the power conversion device that does not receive information from the central management device autonomously determines the voltage control dead zone to correct the voltage target value of the reactive power control.
  • the voltage of the power distribution system can be stabilized without outputting unnecessary reactive power.
  • the operation of the step type automatic voltage regulator is autonomously determined using the upper and lower limit values of the step voltage change rate that are generally assumed. For a voltage fluctuation that may be a voltage fluctuation due to a system fault, the reactive power command value is set to 0 and the reactive power output is stopped. As a result, it is possible to suppress fluctuations in the voltage of the distribution system due to unnecessary voltage control.
  • the power conversion device 50 described in the first and second embodiments may have a corresponding operation configured by digital circuit hardware or software.
  • the power controller includes, for example, a processor 1000 and a memory 2000 as illustrated in FIG. 13, and the processor 1000 stores a program stored in the memory 2000. Can be run.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

電力変換装置(50)は、分散電源が出力する直流電力を交流電力に変換して、配電系統に出力する電力変換回路(550)と、電圧検出部(510)によって検出された電圧の実効値から高周波変動を除去して電圧目標値(Vref)を生成する電圧目標値生成部(520)と、自動電圧調整器が動作したことを検出したときに、電圧目標値(Vref)を補正する補正部と、電圧検出部で検出された連系点の電圧が電圧目標値を基準とする電圧制御不感帯を逸脱した場合に、逸脱した分の電圧の大きさに応じた無効電力を出力するように電力変換回路に指令する指令部とを備える。

Description

電力変換システムおよび電力変換装置
 本発明は、電力変換システムおよび電力変換装置に関する。
 太陽光発電システム等の自然エネルギーを利用した発電は、天候などの自然条件に応じて発電量が刻々と変動する。そのため、電力系統の電圧変動を抑制することが重要である。
 たとえば、特許文献1の電圧制御装置は、電力系統の電圧の短周期変動を静止型無効電力補償装置による無効電力補償で抑制し、電力系統の電圧の長周期変動をステップ式自動電圧調整器のタップ切り替えにより抑制する。
WO2016/121014 A1
 特許文献1の電圧制御装置は、短周期変動を無効電力補償装置による無効電力補償で抑制するが、静止型無効電力補償装置はコストが高いという問題がある。
 それゆえに、本発明の目的は、静止型無効電力補償装置を用いずに、分散電源システムと連系した配電系統の電圧変動を安定化することができる電力変換システムおよび電力変換装置を提供することである。
 本発明は、配電系統に設置された自動電圧調整器と、少なくとも1つの分散電源システムとを備えた電力変換システムであって、分散電源システムは、分散電源と、電力変換装置とを含む。電力変換装置は、分散電源が出力する直流電力を交流電力に変換して、配電系統に出力する電力変換回路と、電力変換回路と配電系統との連系点の電圧を検出する電圧検出部と、電圧検出部によって検出された電圧の実効値から高周波変動を除去して電圧目標値を生成する電圧目標値生成部と、自動電圧調整器が動作したことを検出したときに、電圧目標値を補正する補正部と、電圧検出部で検出された連系点の電圧が電圧目標値を基準とする電圧制御不感帯を逸脱した場合に、逸脱した分の電圧の大きさに応じた無効電力を出力するように電力変換回路に指令する指令部とを備える。
 本発明によれば、自動電圧調整器が動作したことを検出したときに、電圧目標値を補正し、連系点の電圧が電圧目標値を基準とする電圧制御不感帯を逸脱した場合に、逸脱した分の電圧の大きさに応じた無効電力を出力する。これによって、静止型無効電力補償装置を用いずに、分散電源システムと連系した配電系統の電圧変動を安定化することができる。
実施の形態1の電力変換システム100の概略図である。 太陽光発電の1日発電量の例を示す図である。 実施の形態1の電力変換装置50の構成図である。 実施の形態1の制御回路540のブロック図である。 超過電圧出力部5430の構成を表わす図である。 実施の形態1の制御回路540の無効電力指令値Qrを生成する手順を表わすフローチャートである。 (a)は、SVR20の動作時に電圧目標値Vrefを補正しない場合のは電系統の電圧の時間変化を表わす図である。(b)は、SVR20の動作時に電圧目標値Vrefを補正した場合の配電系統の電圧の時間変化を表わす図である。 実施の形態2の電力変換システム100の概略図である。 実施の形態2の電力変換装置50の構成図である。 実施の形態2の制御回路540のブロック図である。 実施の形態2の制御回路540の無効電力指令値Qrを生成する手順を表わすフローチャートである。 (a)は、SVR20の動作時に、電圧目標値Vrefを補正しない場合の配電系統の電圧のシミュレーション結果の一例を表わす図である。(b)は、SVR20の動作時に電圧目標値Vrefを補正しない場合に出力される無効電力のシミュレーション結果の一例を表わす図である。(c)は、SVR20の動作時に、電圧目標値Vrefを補正した場合の配電系統の電圧のシミュレーション結果の一例を表わす図である。(d)は、SVR20の動作時に電圧目標値Vrefを補正した場合に出力される無効電力のシミュレーション結果の一例を表わす図である。 電力変換装置50の機能をソフトウェアを用いて実現する場合の電力制御器の構成を示す図である。
 以下、実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分には同一の符号を付してその説明は繰り返さない。
 実施の形態1.
 図1は、実施の形態1の電力変換システム100の概略図である。
 図1を参照して、電力変換システム100は、変電所10、ステップ式自動電圧調整器(SVR)20、柱状変圧器40、および少なくとも1つの分散電源システム90を備える。配電系統LAにステップ式自動電圧調整器20及び柱状変圧器40が設置される。変電所10から送られてくる電力は、ステップ式自動電圧調整器20及び柱状変圧器40を介して負荷80へ供給される。
 ステップ式自動電圧調整器(SVR)20は、所定の時間、配電系統LAの交流実効電圧が、SVR20の運用電圧の上限電圧、あるいは下限電圧を逸脱していた場合にタップ切り換えを実施し、1次側と2次側の変圧比を変更して、配電系統LAの電圧を適正値に自動調整する。SVR20による1回のタップ切り替えによって、2次側の変動する電圧の幅をSVR電圧ステップ幅ΔVsvrと称する。SVR20の運用電圧の上限電圧VUおよび下限電圧VLは、基準電圧VRと、電圧制御不感帯Vdead(SVR)によって、決定される。VU=VR+Vdead(SVR)、VL=VR-Vdead(SVR)である。ここで、所定の時間は、例えば、45秒程度とすることができる。
 分散電源システム90は、分散電源を備える。たとえば、分散電源は、太陽光発電装置および蓄電池を設置した需要家分散電源、多数の太陽光発電などの自然エネルギーを用いた発電装置、または複数の蓄電池からなるメガソーラーなどである。
 図2は、太陽光発電の1日発電量の例を示す図である。
 図2に示すように、太陽光発電機60の発電量は日射変動により時々刻々と変化するため、大容量の分散電源が連系される配電系統では電圧の変動が短い周期で発生する。その結果、SVR20の動作回数が増える。SVR20は、機械式タップ切り替えを行うため、動作回数が多くなると機器の寿命が短くなる。分散電源の電力変動が要因でSVR20の動作回数が増えるのは望ましくない。
 分散電源システム90は、少なくとも、分散電源である太陽光発電機60、太陽光発電用の電力変換装置50-a、負荷80と、太陽光発電用の電圧検出器101-aと、太陽光発電用の電流検出器102-aとを備える。分散電源システム90は、さらに、分散電源である蓄電池70と、蓄電池用の電力変換装置50-bと、蓄電池用の電圧検出器101-bと、蓄電池用の電流検出器102-bとを備えてもよい。
 太陽光発電用の電力変換装置50-aと、蓄電池用の電力変換装置50-bとを総称して、電力変換装置50と記載する。太陽光発電用の電圧検出器101-aと、蓄電池用の電圧検出器101-bとを総称して、電圧検出器101と記載する。太陽光発電用の電流検出器102-aと、蓄電池用の電流検出器102-bとを総称して、電流検出器102と記載する。太陽光発電機60と、蓄電池70とを総称して、分散電源と記載する。
 電圧検出器101は、電力変換装置50と配電系統LAとの連系点の交流電圧Vacを計測する。電流検出器102は、電力変換装置50と配電系統LAとの連系点の交流電流Iacを計測する。
 配電系統LAに連系する分散電源システム90の個数は、図1では2個としているが、少なくとも1個連系していればよい。
 中央管理装置30は、配電系統LAの状態を管理する。中央管理装置30は、電力系統の潮流を監視する。中央管理装置30は、分散電源システム90の電力変換装置50と双方向にデータ通信する機能を備える。中央管理装置30は、SVR20の情報、電力変換装置50の電圧制御不感帯Vdead、電力変換装置50の連系点の電圧および連系点の電流を定期的に授受する。中央管理装置30は、SVRの電圧制御不感帯Vdead(SVR)より小さい範囲で、配電系統LAのインピーダンスZLと電圧分布とに基づいて、電圧制御不感帯Vdeadを決定する。すなわち、Vdead(SVR)>Vdeadである。
 図3は、実施の形態1の電力変換装置50の構成を示す図である。
 図3を参照して、電力変換装置50は、電圧検出部510、電圧目標値生成部520、電流検出部530、制御回路540、および電力変換回路550を備える。
 電圧検出部510は、電圧検出器101が計測した交流電圧Vacを受信して、受信した交流電圧値Vacから検出電圧実効値Veを検出する。
 電圧目標値生成部520は、電圧検出部510が出力した検出電圧実効値Veの一定時間(たとえば数分以上)の平均値を算出することによって、連系点の電圧の高周波成分を除去した電圧目標値Vrefを生成する。あるいは、電圧目標値生成部520は、ローパスフィルタによって、検出電圧実効値Veの高帯域成分を除去することによって、連系点の電圧の高周波成分を除去した電圧目標値Vrefを生成してもよい。
 電流検出部530は、電流検出器102が計測した交流電流Iacを受信して、受信した交流電流Iacから検出電流実効値Ieを検出する。
 制御回路540は、検出電圧実効値Veと、電圧目標値Vrefと、検出電流実効値Ieと、中央管理装置30から送信される電圧制御不感帯Vdead、有効電力指令値Pr、SVR第1整定条件St1、SVR第2整定条件St2とを受信する。SVR第1整定条件St1は、SVR電圧ステップ幅ΔVsvrである。SVR第2整定条件は、タップ切り替え時間ΔTtapである。制御回路540は、受信したこれらの情報に基づいて、電力変換回路550の連系点の電圧及び電流の制御量を算出し、算出した制御量に従って、パルス幅変調信号PWMを生成する。パルス幅変調信号PWMは、電力変換回路550へ送られる。
 電力変換回路550は、分散電源が出力する直流電力を交流電力に変換して、配電系統LAに出力する。電力変換回路550は、インバータによって構成される。電力変換回路550は、自己消弧型半導体スイッチング素子と、ダイオード素子と、平滑コンデンサとを備える。電力変換回路550は、自己消弧型半導体素子のゲート信号のオン/オフのDUTY比率を変えることによって直流電力を交流電力へ変換する。本実施の形態では、電力変換回路550の回路構成については限定しない。
 図4は、実施の形態1の制御回路540のブロック図である。
 図4を参照して、制御回路540は、補正部310と、指令部320とを備える。
 補正部310は、SVR20が動作したことを検出したときに、検出した動作に対応するように電圧目標値Vrefを補正する。
 補正部310は、SVR動作検出部5410、電圧目標値補正量算出部5420、および加算器5491を備える。
 SVR動作検出部5410は、中央管理装置30から送信されるSVR第1整定条件St1(ΔVsvr)と、SVR第2整定条件St2(ΔTtap)と、電力変換装置50の連系点の検出電流実効値Ieと、検出電圧実効値Veとに基づいて、SVRが動作したか否かを検出する。具体的には、電圧検出部510で検出された連系点の検出電圧実効値Veの変化率Vrateの絶対値が基準値K1を超える状態が規定期間継続し、かつ電力変換回路550から出力される有効電力の変化量ΔPの絶対値が基準値K2未満となった場合に、SVR20が動作したことを検出する。基準値K1は、SVR第1整定条件St1(ΔVsvr)およびSVR第2整定条件St2(ΔTtap)によって決定される。基準値K2は、SVR電圧ステップ幅(ΔVsvr[%])と、電力変換回路550からSVR20までの配電系統電圧低圧換算インピーダンスZLとに基づいて決定される。
 電圧目標値補正量算出部5420および加算器5491は、SVR20が動作したことを検出したときに、連系点の検出電圧実効値Veの変化率Vrateが正の場合に、電圧目標値VrefにSVR電圧ステップ幅ΔVsvrの絶対値を加算し、連系点の検出電圧実効値Veの変化率Vrateが負の場合に、電圧目標値VrefからSVR電圧ステップ幅ΔVsvrの絶対値を減算することによって、電圧目標値Vrefを補正する。
 具体的には、電圧目標値補正量算出部5420は、SVR動作検出部5410がSVR動作を検出した場合に、SVR第1整定条件St1に基づいて、電圧目標値補正量ΔVrefを算出する。電圧目標値補正量算出部5420は、SVR動作を検出しなかった場合は電圧目標値補正量ΔVrefを0とする。加算器5491は、電圧目標値Vrefと、電圧目標値補正量ΔVrefとを加算して、新たな電圧目標値RVrefを出力する。
 指令部320は、電圧検出部510で検出された連系点の検出電圧実効値Veが電圧目標値RVrefを基準とする電圧制御不感帯Vdeadを逸脱した場合に、逸脱した分の電圧の大きさに応じた無効電力を出力するように電力変換回路550を指令する。
 指令部320は、減算器5492、超過電圧出力部5430、電圧制御部5440、無効電力制御部5450、有効電力制御部5460、加算器5493、および電流制御部5470を備える。
 減算器5492は、電圧目標値RVrefから検出電圧実効値Veを減算して、偏差ΔVe(=RVref-Ve)を算出する。
 超過電圧出力部5430は、偏差ΔVeの絶対値が電圧制御不感帯Vdeadを超えた場合に、|ΔVe|-Vdeadを出力し、偏差ΔVeの絶対値が電圧制御不感帯Vdead以下の場合に、0[V]を出力する。
 図5は、超過電圧出力部5430の構成を表わす図である。
 超過電圧出力部5430は、リミッタ5431と、減算器5432とを備える。
 リミッタ5431は、偏差ΔVeの絶対値が電圧制御不感帯Vdeadを超えているときに、Vdeadを出力する。リミッタ5431は、偏差ΔVeの絶対値が電圧制御不感帯Vdead以下のときに、偏差ΔVeの絶対値|ΔVe|を出力する。
 減算器5432は、偏差ΔVeの絶対値|ΔVe|から、リミッタ5431の出力であるVdeadまたは|ΔVe|を減算して、|ΔVe|-Vdead、または0[V]を出力する。
 電圧制御部5440は、超過電圧出力部5430から出力される電圧を比例制御することによって、超過電圧出力部5430の出力を増幅した制御量を無効電力指令値Qrとして出力する。電圧制御部5440は、超過電圧出力部5430の出力が|ΔVe|-Vdeadの場合、すなわち、偏差ΔVeの絶対値が電圧制御不感帯Vdeadを超えた場合に、|ΔVe|-Vdeadを増幅した制御量を無効電力指令値Qrとして無効電力制御部5450へ出力する。電圧制御部5440は、偏差ΔVeの絶対値が電圧制御不感帯Vdeadを超えた場合に、電圧制御を開始する。電圧制御部5440は、偏差ΔVeの絶対値が電圧制御不感帯Vdead以下となると、徐々に無効電力指令値Qrを減少させ、やがて電圧制御を停止する。
 無効電力制御部5450は、無効電力が無効電力指令値Qrに従うように、無効電流指令値Iqrを出力する。
 有効電力制御部5460は、検出電流実効値Ieおよび検出電圧実効値Veを演算することによって得られる電力が有効電力指令値Prに従うように、有効電流指令値Iprを出力する。
 有効電力指令値Prは、例えば分散電源システムを仮想発電所とみなし、太陽光発電機または蓄電池、若しくは両方の電源から系統への供給する場合の電力量の指令値である。
 加算器5493は、有効電力制御部5460から出力された有効電流指令値Iprと無効電力制御部5450から出力される無効電流指令値Iqrとを加算して電流指令値Irを生成する。
 電流制御部5470は、交流電流Iacが、電流指令値Irに従うようにパルス幅変調信号PWMを出力して、電力変換回路550のゲートを駆動する。
 図6は、実施の形態1の制御回路540の無効電力指令値Qrを生成する手順を表わすフローチャートである。
 ステップS1において、制御回路540は、中央管理装置30からSVR第1整定条件St1およびSVR第2整定条件St2を取得し、メモリに保持する。SVR第1整定条件St1は、SVR電圧ステップ幅(ΔVsvr[%])である。SVR第2整定条件St2は、タップ切り替え時間(ΔTtap)である。中央管理装置30は、管理する配電系統のSVRの整定条件および線路インピーダンスの情報を電力会社から取得して保持している。
 ステップS2において、電圧制御不感帯Vdeadの更新があった場合に、処理がステップS3に進む。電圧制御不感帯Vdeadの更新がない場合に、処理がステップS2に戻る。中央管理装置30は、各電力変換装置の電圧制御不感帯Vdeadを電力変換装置50に定期的に配信する。
 ステップS3において、制御回路540は、電圧制御不感帯Vdeadを取得する。これにより、各分散電源システムの無効電力出力をより均一化することができる。
 ステップS4において、制御回路540は、電力変換装置50の連系点の時刻T(n)における検出電圧実効値Ve(n)、検出電流実効値Ie(n)、および電圧目標値Vrefを取得し、取得した値をメモリに保持する。
 ステップS5において、SVR動作検出部5410は、以下の式に示すように、時刻T(n)における検出電圧実効値Ve(n)と前回取得した時刻T(n-1)における検出電圧実効値Ve(n-1)との差分を時間差分Δt(Δt=T(n)-T(n-1))で除算することによって、検出電圧実効値Veの変化率Vrateを算出する。Δtは、1サイクル時間である。1サイクルは、タップ切替時間ΔTtapを系統周波数の周期で除算した値である。たとえば、系統周波数が50Hz、かつSVRのタップ切り替え時間ΔTtapが0.1秒の場合には、0.1秒を系統周波数の周期0.02秒で除算した値が1サイクルとなる。
 Vrate=(Ve(n)-Ve(n-1))/(T(n)-T(n-1))・・・(1)
 ステップS6において、SVR動作検出部5410は、以下の式に示すように、SVR電圧ステップ幅(ΔVsvr[%])とSVRタップ切り替え時間(ΔTtap)とに基づいて、配電系統の低圧電圧200Vに対する電圧偏差の90%の基準値K1を求める。
 K1=|ΔVsvr|*200*0.9/ΔTtap・・・(2)
 SVR動作検出部5410は、検出電圧実効値Veの変化率Vrateの絶対値と、基準値K1の大きさとを比較する。検出電圧実効値Veの変化率Vrateの絶対値が基準値K1よりも大きいときには、処理がステップS7に進む。検出電圧実効値Veの変化率Vrateの絶対値が基準値K1以下のときには、処理がステップS11に進む。
 ステップS7において、検出電圧実効値Veの変化率Vrateの絶対値が基準値K1よりも大きい状態が、5サイクルの時間継続しているか否かを判定する。継続していないと判定された場合には、処理がステップS11に進む。継続していると判定された場合には、処理がステップS8に進む。
 ステップS8において、SVR動作検出部5410は、以下の式に従って、時刻T(n)と時刻T(n-5)における検出電力の差分ΔPを算出する。ここで、T(n)を現在の時刻とすると、時刻T(n-5)を5サイクル前の時刻とする。
 ΔP=Ve(n)×Ie(n)-Ve(n-5)×Ie(n-5)・・・(3)
 ステップS9において、SVR動作検出部5410は、分散電源システム90の連系点の電圧がSVR動作時に電圧ステップ幅相当変動するのに必要な電力量を示す基準値K2を求める。制御回路540は、配電系統の低圧電圧200Vに対するSVR電圧ステップ幅(ΔVsvr[%])、配電系統の低圧電圧(200V)、および分散電源システム90からSVR20までの配電系統電圧低圧換算インピーダンスZLに基づいて、以下の式に従って、基準値K2を算出する。
 K2=(ΔVsvr×200)×200/ZL・・・(4)
 検出電力の差分ΔPの絶対値が基準値K2未満の場合(S9:YES)には、処理がステップS10に進み、検出電力の差分ΔPの絶対値が基準値K2以上の場合(S9:NO)には、処理がステップS11に進む。ステップS9でNOとなる場合は、差分ΔPを配電系統の電力変動に伴う電圧のステップ変動とみなされる。ステップS9でYESの場合は、差分ΔPをSVR20によるタップ切り替えによる電圧のステップ変動とみなされる。
 ステップS10において、電圧目標値補正量算出部5420は、検出電圧実効値Veの変化率Vrateが正の場合に、以下の式(5)に従って、電圧目標補正量ΔVrefを算出する。制御回路540は、検出電圧実効値Veの変化率Vrateが負の場合、以下の式(6)に従って、電圧目標補正量ΔVrefを算出する。
 ΔVref=|ΔVsvr|・・・(5)
 ΔVref=―|ΔVsvr|・・・(6)
 ステップS11において、電圧目標値補正量算出部5420は、電圧目標補正量ΔVrefを0に設定する。
 ステップS12において、加算器5491は、ステップS10及びステップS11で求めた電圧目標補正量ΔVrefを用いて、電圧目標値Vrefと電圧目標補正量ΔVrefとを加算して、新たな電圧目標値RVrefを算出する。
 ステップS13において、減算器5492は、電圧目標値RVrefと検出電圧実効値Ve(n)との差分ΔVe(n)を算出する。
 ステップS14において、超過電圧出力部5430は、偏差ΔVeの絶対値が電圧制御不感帯Vdeadを超えた場合に、|ΔVe|-Vdeadを出力し、偏差ΔVeの絶対値が電圧制御不感帯Vdead以下の場合に、0[V]を出力する。電圧制御部5440は、超過電圧出力部5430の出力が|ΔVe|-Vdeadの場合、すなわち、偏差ΔVeの絶対値が電圧制御不感帯Vdeadを超えた場合に、|ΔVe|-Vdeadを増幅した制御量を無効電力指令値Qrとして無効電力制御部5450へ出力する。
 次に、SVR20の動作時に電圧目標値Vrefを補正した場合の効果について説明する。
 図7(a)は、SVR20の動作時に電圧目標値Vrefを補正しない場合の配電系統の電圧の時間変化を表わす図である。
 電力変換装置50は、配電系統の電圧が電圧制御不感帯を逸脱した場合、すなわち、配電系統の電圧がVref+Vdeadを超える、またはVref-Vdeadを下回った場合に、無効電力を出力することによって、配電系統の電圧を制御する。
 ここで、配電系統の電圧がSVR20の動作電圧閾値以上となってSVR20が動作し、SVRの整定時間を超えた場合、SVR20は、配電系統の電圧を低下させる方向にタップ切り替えを行なう。これによって、配電系統の電圧を概ね1%~2%だけ減少する。SVR20の動作によって、配電系統の電圧は(Vref-Vdead)よりも小さくなる。その結果、多くの無効電力が出力される。
 図7(b)は、SVR20の動作時に電圧目標値Vrefを補正した場合の配電系統の電圧の時間変化を表わす図である。
 SVR20の動作を検出後、電圧目標値VrefをRVrefに補正することによって、配電系統の電圧は電圧目標値RVrefに沿って変化するので、配電系統の電圧は、(RVref-Vdead)と(RVref+Vdead)の間で遷移する。その結果、無効電力が出力されない。
 なお、上記の例では、電力変換装置50の連系点の電圧の変化率と電力変動量によりSVRの動作を検出した。SVRが動作した場合に、電力変動がないので、連系点の電流実効値の変化率が基準値を超え、かつ電力変動がない場合に、SVRが動作したと判定することも可能である。ただし、電圧目標値は、連系点の電流実効値変化の極性を逆極性に補正する。
 また、中央管理装置30がSVRの観測地点の電圧を観測し、観測地点の電圧がSVRの電圧制御不感帯を超える時間がSVRの整定時間を超えた場合に、中央管理装置30がSVRの動作を検出して、電力変換装置50に電圧制御不感帯として、「現在の電圧制御不感帯+SVR電圧ステップ幅」を送信することとしてもよい。これによって、SVR動作時に不要な無効電力出力を防止することができる。この場合、SVR動作検出時に一時的に電圧制御不感帯が大きくなるため、電圧制御がオフとなるが、電圧目標値と連系点の電圧の計測値との差がSVR動作前の電圧制御不感帯より小さくなった時点で電力変換装置50が自律的にSVR動作前の電圧制御不感帯に戻す。これによって、本来の電圧制御に戻るので、配電系統の電圧を安定化することができる。
 以上のように、本実施の形態によれば、SVRと分散電源システムを含む電力変換システムにおいて、中央管理装置と、分散電源システムの電力変換装置とが協調して、無効電力出力により配電系統の電圧を安定化することができる。SVRが動作した場合には不要な無効電力を出力することがなく、配電系統の電圧の変動を防止することができる。
 電力変換装置の電圧制御不感帯VdeadをSVRの電圧制御不感帯Vdead(SVR)よりも小さく設定することによって、配電系統の電圧が変動した場合に、SVR計測点よりも早く分散電源の連系点の電圧が電圧制御不感帯を逸脱する。これによって、分散電源システムの電力変換装置50が即座に無効電力を出力して、短周期の電圧変動を抑制することができるとともに、SVRの動作回数の軽減を図ることができる。
 実施の形態2.
 実施の形態2では、高圧系統に分散電源システムが連系する電力変換システムの配電系統の電圧の安定化制御方法について説明する。実施の形態2の電力変換システムは、実施の形態1の中央管理装置30を備えない。
 図8は、実施の形態2の電力変換システム100の概略図である。図8を参照して、電力変換システム100では、ステップ式自動電圧調整器SVR20と負荷80と電力変換装置50とが変電所10を介して高圧の配電系統LA2に連系している。
 図8では蓄電池70及び太陽光発電機60は各1つずつ示されているが、複数個に分散して配置されてもよい。
 図9は、実施の形態2の電力変換装置50の構成図である。
 図9を参照して、実施の形態2では、中央管理装置30が設置されていないため、実施の形態1で中央管理装置30から送信されていたSVRの第1整定条件St1、St2、電圧制御不感帯Vdeadを電力変換装置50は受信できない。
 電力変換装置50は、電力会社から提示される配電系統LA2の線路インピーダンスZHをメモリ560に保持する。電力変換装置50は、SVR第1整定条件St1をメモリ560に保持する。SVR第1整定条件St1は、一般的なSVR電圧ステップ幅の下限値ΔVsvrMin、上限値ΔVsvrMax、SVR電圧ステップ幅の暫定値ΔVsvrとを含む。たとえば、ΔVsvrMin=1%、ΔVsvrMax=2%とすることができる。ΔVsvrは、ΔVsvrMin以上、かつΔVsvrMax以下の値である。電力変換装置50は、SVR第2整定条件St2(ΔTtap)をメモリ560に保持する。
 図9のその他の構成については、図3に示すものと同じであり、実施の形態1で説明しているため、その説明を繰り返さない。制御回路540のブロック構成は図4に示すブロック構成と等しく、実施の形態1で説明しているため、その説明を繰り返さない。
 図10は、実施の形態2の制御回路540のブロック図である。
 図10を参照して、制御回路540は、補正部310と、指令部320とを備える。
 補正部310は、実施の形態1と同様に、SVR20が動作したことを検出したときに、検出した動作に対応するように電圧目標値Vrefを補正する。
 補正部310は、SVR動作検出部5410、電圧目標値決定部5480を備える。
 SVR動作検出部5410は、メモリ560に保持されているSVR第1整定条件St1(ΔVsvrMin、ΔVsvrMax、ΔVsvr)およびSVR第2整定条件St2(ΔTtap)と、電力変換装置50の連系点の検出電流実効値Ieと、検出電圧実効値Veとに基づいて、SVRが動作したか否かを検出する。具体的には、電圧検出部510で検出された連系点の検出電圧実効値Veの変化率Vrateの絶対値が基準値K3を超え、かつ基準値K4未満となる状態が規定期間継続し、かつ電力変換回路550から出力される有効電力の変化量ΔPの絶対値が基準値K5未満となった場合に、SVR20が動作したことを検出する。基準値K3は、SVR電圧ステップ幅の下限値(ΔVsvrMin[%])とSVRタップ切り替え時間(ΔTtap)とに基づいて決定される。基準値K4は、SVR電圧ステップ幅の上限値(ΔVsvrMax[%])とSVRタップ切り替え時間(ΔTtap)とに基づいて決定される。基準値K5は、SVR電圧ステップ幅(ΔVsvr[%])と、電力変換回路550からSVR20までの配電系統電圧高圧換算インピーダンスZHとに基づいて決定される。
 電圧目標値決定部5480は、電圧目標値生成部520から出力される電圧目標値Vrefと、メモリ560内のSVR電圧ステップ幅の暫定値ΔVsvrと、SVR動作検出部5410の出力結果とに基づいて、新たな電圧目標値RVrefを出力する。
 電圧目標値決定部5480は、電圧目標値Vrefと、SVR電圧ステップ幅の暫定値ΔVsvrとに基づいて、電圧目標値下限VrefMinおよび電圧目標値上限VrefMaxとを算出する。電圧目標値決定部5480は、SVR20が動作したことを検出した場合に、連系点の検出電圧実効値Veの変化率Vrateが負の場合に、電圧目標値RVrefを電圧目標値下限VrefMinに設定し、変化率Vrateが正の場合に、電圧目標値RVrefを電圧目標値上限VrefMaxに設定する。
 指令部320は、実施の形態1と同様に、電圧検出部510で検出された連系点の検出電圧実効値Veが電圧目標値Vrefを基準とする電圧制御不感帯Vdeadを逸脱した場合に、逸脱した分の電圧の大きさに応じた無効電力を出力するように電力変換回路550を指令する。
 指令部320は、減算器5492、超過電圧出力部5430、電圧制御部5440、無効電力制御部5450、有効電力制御部5460、加算器5493、電流制御部5470、および不感帯決定部5490を備える。
 超過電圧出力部5430、電圧制御部5440、無効電力制御部5450、有効電力制御部5460、電流制御部5470、減算器5492、および加算器5493は、実施の形態1のものと同様なので説明を繰り返さない。
 不感帯決定部5490は、配電系統LA2の線路インピーダンスZHと、連系点の検出電圧実効値Veとに基づいて、連系点の電圧が配電系統LA2の上限値を超えないように、および下限値を下回らないように、電圧制御不感帯Vdeadを決定する。不感帯決定部5490は、SVR20からの距離が短くなるほど、電圧制御不感帯Vdeadを小さく設定する。
 図11は、実施の形態2の制御回路540の無効電力指令値Qrを生成する手順を表わすフローチャートである。
 ステップS101において、電力変換装置50は、SVR電圧ステップ幅の暫定値ΔVsvrと、変電所10から電力変換装置50までの線路インピーダンスZHを内部のメモリ560に保持する。
 ステップS102において、電力変換装置50は、電力変換装置50の連系点の時刻T(n)での検出電圧実効値Ve(n)、検出電流実効値Ie(n)、電圧目標値Vrefを取得し、内部のメモリ560に保持する。
 ステップS103において、不感帯決定部5490は、電力変換装置50が接続される連系点の電圧と線路インピーダンスZHとに基づいて、連系点の電圧が配電系統の電圧の上限値および下限値を逸脱ないように電圧制御不感帯Vdeadを以下のようにして決定する。
 電力変換装置50の電圧制御不感帯VdeadをSVR20の電圧制御不感帯Vdead(SVR)より小さく設定することによって、SVR20よりも先に電力変換装置50が電圧制御を開始することができるので、電力変換装置50によって短周期の電圧変動を抑制することができる。
 一般的にSVRの電圧制御不感帯Vdead(SVR)は基準電圧VRの1%~2%であるため、電力変換装置の電圧制御不感帯VdeadをVdead(SVR)の0.9%以下に設定するのが望ましいといえる。電圧制御不感帯Vdeadは、固定値でもよい。配電系統の電圧が上限値近傍または下限値近傍である場合に、電力変換装置50の電圧制御不感帯Vdeadを現在値の50%と動的に小さく変更してもよい。これによって、配電系統の電圧が上限値または下限値に近づいた場合には、短周期の電圧変動に対して、より多くの無効電力出力を出力して、SVR動作間隔を長くする効果が得られる。SVR20からの線路インピーダンスZHが大きいほど逆潮電力による電力変換装置50の連系点の電圧上昇率が大きくなるため、SVR20からの距離が長い電力変換装置50ほど電圧制御不感帯Vdeadを大きく設定するのが望ましい。
 したがって、不感帯決定部5490は、SVR20からも最も遠い電力変換装置50の電圧制御不感帯Vdead(R)をSVR20の電圧制御不感帯Vdead(SVR)の90%に設定する。不感帯決定部5490は、SVR20からの距離が短くなるほど、電力変換装置50の電圧制御不感帯Vdeadを小さく設定する。不感帯決定部5490は、SVR20に最も近い電力変換装置の電圧制御不感帯Vdead(N)を最も遠い電力変換装置50の電圧制御不感帯Vdead(R)の50%に設定する。
 ステップS104において、電圧目標値決定部5480は、電圧目標値Vrefと、SVR電圧ステップ幅の暫定値ΔVsvrとに基づいて、電圧目標値下限VrefMinおよび電圧目標値上限VrefMaxとを算出して、内部のメモリ560に保持する。6600は、配電系統高圧電圧を表わす。
 VrefMin=Vref―|ΔVsvr|*6600・・・(7)
 VrefMax=Vref+|ΔVsvr|*6600・・・(8)
 ステップS105において、SVR動作検出部5410は、以下の式に示すように、時刻T(n)における検出電圧実効値Ve(n)と前回取得した時刻T(n-1)における検出電圧実効値Ve(n-1)との差分を時間差分Δt(Δt=T(n)-T(n-1))で除算することによって、検出電圧実効値Veの変化率Vrateを算出する。
 Vrate=Ve(n)-Ve(n-1)/(T(n)-T(n-1))・・・(9)
 ステップS106において、SVR動作検出部5410は、以下の式に示すように、SVR電圧ステップ幅の下限値(ΔVsvrMin[%])とSVRタップ切り替え時間(ΔTtap)とに基づいて、配電系統の高圧電圧6600Vに対する電圧偏差の基準値K3を求める。SVR動作検出部5410は、以下の式に示すように、SVR電圧ステップ幅の上限値(ΔVsvrMax[%])とSVRタップ切り替え時間(ΔTtap)とに基づいて、配電系統の高圧電圧6600Vに対する電圧偏差の基準値K4を求める。
 K3=|ΔVsvrMin|*6600/ΔTtap・・・(10)
 K4=|ΔVsvrMax|*6600/ΔTtap・・・(11)
 SVR動作検出部5410は、検出電圧実効値Veの変化率Vrateの絶対値と、基準値K3およびK4の大きさとを比較する。K4>|Vrate|>K3であるときには、処理がステップS7に進む。K4>|Vrate|>K3でないときには、処理がステップS11に進む。
 ステップS107において、SVR動作検出部5410は、K4>|Vrate|>|Vrate>K3の状態が5サイクルの時間継続しているか否かを判定する。ここで、1サイクルは、タップ切替時間を系統周波数の周期で除算した値である。たとえば、系統周波数が50Hz、かつSVRのタップ切り替え時間ΔTtapが0.1秒の場合には、0.1秒を系統周波数の周期0.02秒で除算した値が1サイクルとなる。継続していないと判定された場合には、処理がステップS111に進む。継続していると判定された場合には、処理がステップS108に進む。
 ステップS108において、SVR動作検出部5410は、以下の式に従って、時刻T(n)と時刻T(n-5)における検出電力の差分ΔPを算出する。ここで、T(n)を現在の時刻とすると、時刻T(n-5)を5サイクル前の時刻とする。
 ΔP=Ve(n)×Ie(n)-Ve(n-5)×Ie(n-5)・・・(12)
 ステップS109において、SVR動作検出部5410は、連系点の電圧がSVR動作時の電圧ステップ幅相当変動するのに必要な電力量を示す基準値K5を求める。制御回路540は、配電系統の高圧電圧6600Vに対するSVR電圧ステップ幅(ΔVsvr[%])と、配電系統の高圧電圧(6600V)、および電力変換回路550からSVR20までの配電系統電圧高圧換算インピーダンスZHとに基づいて、以下の式に従って、基準値K5を算出する。
 K5=(ΔVsvr×6600)×6600/ZH・・・(13)
 検出電力の差分ΔPの絶対値が基準値K5未満の場合(S109:YES)には、処理がステップS110に進み、検出電力の差分ΔPの絶対値が基準値K5以上の場合(S109:NO)は、処理がステップS111に進む。ステップS109でNOとなる場合は、差分ΔPが配電系統の電力変動に伴う電圧のステップ変動とみなされる。ステップS109でYesの場合は、差分ΔPがSVR20によるタップ切り替えによる電圧のステップ変動とみなされる。
 ステップS110において、検出電圧実効値Veの変化率Vrateが負の場合には、処理がステップS112に進み、検出電圧実効値Veの変化率Vrateが0または正の場合には、処理がステップS113に進む。
 ステップS112において、電圧目標値決定部5480は、電圧目標値下限VrefMinを新たな電圧目標値RVrefに設定する。
 ステップS113において、電圧目標値決定部5480は、電圧目標値上限VrefMaxを新たな電圧目標値RVrefに設定する。
 ステップS111において、検出電圧実効値Veの変化率Vrateの絶対値と基準値K4との大きさとを比較する。K4>|Vrate|の場合には、処理がステップS114に進む。K4≦|Vrate|の場合には、処理がステップS117に進む。
 ステップS114において、電圧目標値決定部5480は、電圧目標値Vrefを維持する。すなわち、RVref=Vrefに設定される。
 ステップS115において、減算器5492は、電圧目標値RVrefと検出電圧実効値Ve(n)との差分ΔVe(n)を算出する。
 ステップS116において、超過電圧出力部5430は、偏差ΔVeの絶対値が電圧制御不感帯Vdeadを超えた場合に、|ΔVe|-Vdeadを出力し、偏差ΔVeの絶対値が電圧制御不感帯Vdead以下の場合に、0[V]を出力する。電圧制御部5440は、超過電圧出力部5430の出力が|ΔVe|-Vdeadの場合、すなわち、偏差ΔVeの絶対値が電圧制御不感帯Vdeadを超えた場合に、|ΔVe|-Vdeadを増幅した制御量を無効電力指令値Qrとして無効電力制御部5450へ出力する。
 ステップS117において、SVR動作より大きな電圧変動と電力変動があり、系統事故の可能性が否定できず、無効電力を出力しないほうが望ましいため、電圧制御部5440は、無効電力指令値Qrを0に設定する。
 以上のように、本実施の形態によれば、SVR動作後の電圧目標値上限VrefMax、電圧目標値下限VrefMinを保持しておき、SVRが動作したことを自律的に検出した場合に、電圧目標値VrefとSVR電圧ステップ幅の暫定値ΔVsvrとに基づいて、SVR動作後の電圧目標値を速やかに補正する。これによって、無効電力出力を抑制することが可能である。
 図12(a)は、SVR20の動作時に、電圧目標値Vrefを補正しない場合の配電系統の電圧のシミュレーション結果の一例を表わす図である。図12(b)は、SVR20の動作時に電圧目標値Vrefを補正しない場合に出力される無効電力のシミュレーション結果の一例を表わす図である。
 図12(a)に示すように、SVR20の動作直後において、配電系統の電圧がVref-Vdeadを下回っていることがわかる。図12(b)に示すように、SVR20の動作直後に無効電力を多く出力していることがわかる。
 図12(c)は、SVR20の動作時に、電圧目標値Vrefを補正した場合の配電系統の電圧のシミュレーション結果の一例を表わす図である。図12(d)は、SVR20の動作時に電圧目標値Vrefを補正した場合に出力される無効電力のシミュレーション結果の一例を表わす図である。
 図12(c)に示すように、SVR20の動作直後において、配電系統の電圧がRVref-Vdeadと、RVref+Vdeadとの間に収まっていることがわかる。図12(d)に示すように、SVR20の動作直後の無効電力は、補正しない場合の1/14となる。
 以上のように、本実施の形態によれば、中央管理装置からの情報を受信しない電力変換装置が、電圧制御不感帯を自律的に決定することによって、無効電力制御の電圧目標値を補正する。これによって、不要な無効電力を出力せずに配電系統の電圧を安定化することができる。また、一般的に想定されるステップ電圧変化率の上下限値を用いて、ステップ式自動電圧調整器の動作を自律的に判定する。系統事故による電圧変動の可能性がある電圧変動に対しては、無効電力指令値を0にして、無効電力出力を停止する。これによって、不要な電圧制御による配電系統の電圧の変動を抑制することができる。
 実施の形態1および2において説明した電力変換装置50は、相当する動作をデジタル回路のハードウェアまたはソフトウェアで構成してもよい。電力変換装置50の機能をソフトウェアを用いて実現する場合には、電力制御器は、例えば、図13に示すようにプロセッサ1000とメモリ2000とを備え、メモリ2000に記憶されたプログラムをプロセッサ1000が実行するようにすることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 変電所、20 ステップ式自動電圧調整器(SVR)、30 中央管理装置、 40 柱状変圧器、50 電力変換装置、60 太陽光発電、70 蓄電池、80 負荷、90 分散電源システム、100 電力変換システム、101-a,101-b,101 電圧計、102-a,102-b,102 電流計、310 補正部、320 指令部、510 電圧検出部、520 電圧目標生成部、530 電流検出部、540 制御回路、550 電力変換回路、560 メモリ、1000 プロセッサ、2000 メモリ、5410 SVR動作検出部、5420 電圧目標値補正量算出部、5430 超過電圧出力部、5431 リミッタ、5432,5492 減算器、5440 電圧制御部、5491,5493 加算器、5550 無効電力制御部、5560 有効電力制御部、5470 電流制御部、5480 電圧目標値決定部、5490 不感帯決定部、LA,LA2 配電系統。

Claims (14)

  1.  配電系統に設置された自動電圧調整器と、少なくとも1つの分散電源システムとを備えた電力変換システムであって、
     前記分散電源システムは、
     分散電源と、
     電力変換装置とを含み、
     前記電力変換装置は、
     前記分散電源が出力する直流電力を交流電力に変換して、前記配電系統に出力する電力変換回路と、
     前記電力変換回路と前記配電系統との連系点の電圧を検出する電圧検出部と、
     前記電圧検出部によって検出された電圧の実効値から高周波変動を除去して電圧目標値を生成する電圧目標値生成部と、
     前記自動電圧調整器が動作したことを検出したときに、前記電圧目標値を補正する補正部と、
     前記電圧検出部で検出された前記連系点の電圧が前記電圧目標値を基準とする電圧制御不感帯を逸脱した場合に、逸脱した分の電圧の大きさに応じた無効電力を出力するように前記電力変換回路に指令する指令部とを備えた、電力変換システム。
  2.  前記補正部は、前記電圧検出部で検出された連系点の電圧の変化率の絶対値が第1の基準値を超え、かつ前記電力変換回路から出力される有効電力の変化量の絶対値が第2の基準値未満となった場合に、前記自動電圧調整器が動作したことを検出する、請求項1に記載の電力変換システム。
  3.  前記補正部は、前記電圧検出部で検出された連系点の電圧の変化率の絶対値が第1の基準値を超えた状態が規定期間継続し、かつ前記電力変換回路から出力される有効電力の変化量の絶対値が第2の基準値未満となった場合に、前記自動電圧調整器が動作したことを検出する、請求項2に記載の電力変換システム。
  4.  前記補正部は、前記自動電圧調整器が動作したことを検出したときに、前記自動電圧調整器の電圧ステップ幅に基づいて、前記電圧目標値を補正する、請求項2記載の電力変換システム。
  5.  前記補正部は、前記自動電圧調整器が動作したことを検出したときに、前記連系点の電圧の変化率が正の場合に、前記電圧目標値に前記自動電圧調整器の電圧ステップ幅の絶対値を加算し、前記連系点の電圧の変化率が負の場合に、前記電圧目標値から前記自動電圧調整器の電圧ステップ幅の絶対値を減算することによって、前記電圧目標値を補正する、請求項4記載の電力変換システム。
  6.  前記指令部は、
     前記連系点の電圧と前記電圧目標値との偏差を出力する減算器と、
     前記偏差の絶対値が前記電圧制御不感帯を超えた場合に、前記偏差の絶対値と前記電圧制御不感帯との差分を出力し、前記偏差の絶対値が前記電圧制御不感帯以下の場合に、零を出力する超過電圧出力部と、
     前記超過電圧出力部の出力を増幅した制御量を無効電力指令値として出力する電圧制御部とを含む、請求項1記載の電力変換システム。
  7.  前記電圧制御不感帯は、前記自動電圧調整器の電圧制御不感帯幅よりも小さい、請求項6記載の電力変換システム。
  8.  前記配電系統の状態を管理する中央管理装置を備え、
     前記電力変換装置は、前記中央管理装置から送られる前記電圧制御不感帯を表わす情報を受信する、請求項7記載の電力変換システム。
  9.  前記補正部は、前記電圧検出部で検出された連系点の電圧の変化率の絶対値が第1の基準値を超え、かつ第2の基準値未満であり、前記電力変換回路から出力される有効電力の変化量の絶対値が第3の基準値未満となった場合に、前記自動電圧調整器が動作したことを検出する、請求項1に記載の電力変換システム。
  10.  前記補正部は、前記電圧検出部で検出された連系点の電圧の変化率の絶対値が第1の基準値を超え、かつ第2の基準値未満となる状態が規定期間継続し、前記電力変換回路から出力される有効電力の変化量の絶対値が第3の基準値未満となった場合に、前記自動電圧調整器が動作したことを検出する、請求項9に記載の電力変換システム。
  11.  前記補正部は、前記自動電圧調整器が動作したことを検出したときに、前記連系点の電圧の変化率が正の場合に、前記電圧目標値を電圧目標値上限に補正し、前記連系点の電圧の変化率が負の場合に、前記電圧目標値が電圧目標値下限に補正する、請求項9記載の電力変換システム。
  12.  前記補正部は、前記電圧目標値と、前記自動電圧調整器の電圧ステップ幅とに基づいて、前記電圧目標値上限および前記電圧目標値下限を設定する、請求項11記載の電力変換システム。
  13.  前記指令部は、前記電力変換回路と前記自動電圧調整器との距離に応じて、前記電圧制御不感帯を設定する、請求項7記載の電力変換システム。
  14.  配電系統に設置された自動電圧調整器と、分散電源とを備えた電力変換システムにおける電力変換装置であって、
     前記分散電源が出力する直流電力を交流電力に変換して、前記配電系統に出力する電力変換回路と、
     前記電力変換回路と前記配電系統との連系点の電圧を検出する電圧検出部と、
     前記電圧検出部によって検出された電圧の実効値から高周波変動を除去して電圧目標値を生成する電圧目標値生成部と、
     前記自動電圧調整器が動作したことを検出したときに、前記電圧目標値を補正する補正部と、
     前記電圧検出部で検出された前記連系点の電圧が前記電圧目標値を基準とする電圧制御不感帯を逸脱した場合に、逸脱した分の電圧の大きさ応じた無効電力を出力するように前記電力変換回路に指令する指令部とを備えた、電力変換装置。
PCT/JP2019/000657 2019-01-11 2019-01-11 電力変換システムおよび電力変換装置 WO2020144841A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/293,915 US11309807B2 (en) 2019-01-11 2019-01-11 Power conversion system and power conversion device
JP2019516568A JP6537761B1 (ja) 2019-01-11 2019-01-11 電力変換システムおよび電力変換装置
PCT/JP2019/000657 WO2020144841A1 (ja) 2019-01-11 2019-01-11 電力変換システムおよび電力変換装置
CN201980087646.9A CN113261171B (zh) 2019-01-11 2019-01-11 电力变换系统以及电力变换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000657 WO2020144841A1 (ja) 2019-01-11 2019-01-11 電力変換システムおよび電力変換装置

Publications (1)

Publication Number Publication Date
WO2020144841A1 true WO2020144841A1 (ja) 2020-07-16

Family

ID=67144589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000657 WO2020144841A1 (ja) 2019-01-11 2019-01-11 電力変換システムおよび電力変換装置

Country Status (4)

Country Link
US (1) US11309807B2 (ja)
JP (1) JP6537761B1 (ja)
CN (1) CN113261171B (ja)
WO (1) WO2020144841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100333A1 (ja) * 2021-12-02 2023-06-08 東芝三菱電機産業システム株式会社 無効電力制御装置、無効電力制御方法、及び無効電力制御プログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693595B1 (ja) 2019-07-09 2020-05-13 富士電機株式会社 系統連系装置
US11942787B2 (en) * 2019-07-23 2024-03-26 Mitsubishi Electric Corporation Power conversion device
US11515704B2 (en) * 2019-11-22 2022-11-29 Battelle Memorial Institute Using distributed power electronics-based devices to improve the voltage and frequency stability of distribution systems
CN115566691A (zh) * 2022-09-13 2023-01-03 华为数字能源技术有限公司 一种无功功率调整方法和光伏发电系统
CN117856267A (zh) * 2024-03-07 2024-04-09 上海融和元储能源有限公司 一种从数据源头抗扰优化处理的孤网系统控制策略及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281669A (ja) * 2001-03-19 2002-09-27 Tokyo Electric Power Co Inc:The 配電線電圧変動補償装置
JP2004173384A (ja) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp 自動電圧調整装置
WO2015029227A1 (ja) * 2013-08-30 2015-03-05 三菱電機株式会社 電圧制御装置および電圧監視機器
WO2016121014A1 (ja) * 2015-01-28 2016-08-04 株式会社日立製作所 電圧制御装置および電圧制御装置の制御方法
JP2016182021A (ja) * 2015-03-25 2016-10-13 東日本旅客鉄道株式会社 無効電力協調制御装置および電力制御システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720957A (ja) * 1993-07-01 1995-01-24 Tokyo Electric Power Co Inc:The 自励式無効電力補償装置
JP4830705B2 (ja) * 2006-08-04 2011-12-07 三菱電機株式会社 無効電力制御装置及び無効電力補償装置
JP2009050119A (ja) 2007-08-22 2009-03-05 Chugoku Electric Power Co Inc:The 自動電圧調整器用電圧測定器
WO2010049976A1 (ja) * 2008-10-31 2010-05-06 三菱電機株式会社 電力変換装置
JPWO2011090210A1 (ja) * 2010-01-25 2013-05-23 三洋電機株式会社 電力変換装置、系統連系装置及び系統連系システム
EP2541750A4 (en) * 2010-02-26 2017-11-29 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus, grid connection apparatus, and grid connection system
US8922062B2 (en) * 2011-03-14 2014-12-30 Sunpower Corporation Automatic voltage regulation for photovoltaic systems
US9680307B2 (en) * 2012-12-21 2017-06-13 General Electric Company System and method for voltage regulation of a renewable energy plant
JP2014176253A (ja) * 2013-03-12 2014-09-22 Aisin Seiki Co Ltd 電力変換装置
JP5750790B2 (ja) 2013-11-01 2015-07-22 通研電気工業株式会社 分散電源系統連系時の系統制御システム及び装置
JP5766322B1 (ja) 2014-03-14 2015-08-19 通研電気工業株式会社 分散電源系統連系時の系統制御システム、装置、及び方法
JP6351331B2 (ja) * 2014-03-28 2018-07-04 株式会社東芝 電力変換装置
JP6969152B2 (ja) * 2017-05-12 2021-11-24 富士電機株式会社 制御装置及び無効電力補償装置
WO2019053941A1 (ja) 2017-09-12 2019-03-21 三菱電機株式会社 分散電源システム
JP7157412B2 (ja) * 2018-04-27 2022-10-20 国立大学法人長岡技術科学大学 三相インバータ
EP3588724A1 (en) * 2018-06-26 2020-01-01 CSEM Centre Suisse D'electronique Et De Microtechnique SA Method of operating a power distribution system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281669A (ja) * 2001-03-19 2002-09-27 Tokyo Electric Power Co Inc:The 配電線電圧変動補償装置
JP2004173384A (ja) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp 自動電圧調整装置
WO2015029227A1 (ja) * 2013-08-30 2015-03-05 三菱電機株式会社 電圧制御装置および電圧監視機器
WO2016121014A1 (ja) * 2015-01-28 2016-08-04 株式会社日立製作所 電圧制御装置および電圧制御装置の制御方法
JP2016182021A (ja) * 2015-03-25 2016-10-13 東日本旅客鉄道株式会社 無効電力協調制御装置および電力制御システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100333A1 (ja) * 2021-12-02 2023-06-08 東芝三菱電機産業システム株式会社 無効電力制御装置、無効電力制御方法、及び無効電力制御プログラム
JP7347712B1 (ja) 2021-12-02 2023-09-20 東芝三菱電機産業システム株式会社 無効電力制御装置、無効電力制御方法、及び無効電力制御プログラム

Also Published As

Publication number Publication date
US20220014116A1 (en) 2022-01-13
US11309807B2 (en) 2022-04-19
JPWO2020144841A1 (ja) 2021-02-18
CN113261171B (zh) 2023-06-23
CN113261171A (zh) 2021-08-13
JP6537761B1 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2020144841A1 (ja) 電力変換システムおよび電力変換装置
US8373312B2 (en) Solar power generation stabilization system and method
US10333346B2 (en) Resiliency controller for voltage regulation in microgrids
JP4306760B2 (ja) 分散型電源
RU2605083C2 (ru) Способ управления электрическим генератором
US9602021B2 (en) Hybrid high voltage direct current converter system and method of operating the same
EP2328259B2 (en) System and method for power management in a photovoltaic installation
US8624561B1 (en) Power conversion having energy storage with dynamic reference
JP5076157B2 (ja) 分散型電源システム及びこのシステムを用いた系統電圧安定化方法
EP3157156A1 (en) Method and apparatus for improved burst mode during power conversion
JP5705076B2 (ja) 分散電源用制御装置および集中型電圧制御システム
JP6455661B2 (ja) 自立運転システム
JP4968105B2 (ja) 分散型電源
JP6818766B2 (ja) 無効電力制御装置、及び無効電力制御方法
WO2022147995A1 (zh) 一种电压调节方法、装置及多元供电系统
KR20080010117A (ko) 태양광 발전 시스템용 3상 전력변환기의 제어장치
US20200343728A1 (en) Multi-input pv inverter system and method
TWI505597B (zh) 智慧型微電網電力品質管理的操作系統
CN107681649B (zh) 一种控制直流微电网母线电压稳定的方法
JP6768571B2 (ja) 電力制御装置、方法及び発電システム
WO2022264303A1 (ja) 無停電電源装置
RU95434U1 (ru) Многофункциональный энергетический комплекс (мэк)
US20230089057A1 (en) Power conversion device
KR101978245B1 (ko) 배전 계통 안정화 시스템
JP3744831B2 (ja) 電力貯蔵システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019516568

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909411

Country of ref document: EP

Kind code of ref document: A1