WO2022147995A1 - 一种电压调节方法、装置及多元供电系统 - Google Patents

一种电压调节方法、装置及多元供电系统 Download PDF

Info

Publication number
WO2022147995A1
WO2022147995A1 PCT/CN2021/105753 CN2021105753W WO2022147995A1 WO 2022147995 A1 WO2022147995 A1 WO 2022147995A1 CN 2021105753 W CN2021105753 W CN 2021105753W WO 2022147995 A1 WO2022147995 A1 WO 2022147995A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
bus
controller
energy storage
storage device
Prior art date
Application number
PCT/CN2021/105753
Other languages
English (en)
French (fr)
Inventor
南树功
林宝伟
袁金荣
白雨杨
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022147995A1 publication Critical patent/WO2022147995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present application is based on the CN application number 202110024859.6 and the filing date is January 8, 2021, and claims its priority.
  • the disclosure of the CN application is hereby incorporated into the present application as a whole.
  • the present disclosure relates to the field of electronic power technology, and in particular, to a voltage regulation method, device and multiple power supply system.
  • the inventor found through research that when the off-grid charging pile is off-grid to supply power, the stability is poor, and the voltage of the DC bus will fluctuate greatly.
  • embodiments of the present disclosure provide a voltage regulation method, device, and multiple power supply system, which can solve the problem that the voltage of the DC bus will fluctuate greatly during off-grid power supply.
  • a voltage regulation method is provided, and the method is applied to a multi-component power supply system, the multi-component power supply system includes at least one power generation device and at least one energy storage device; each power generation device is controlled by a corresponding first control The controller is connected to the DC bus, and each energy storage device is connected to the DC bus through the corresponding second controller; wherein, the method includes:
  • the output voltage of the second controller is adjusted to adjust the voltage of the DC bus to be within the preset interval.
  • the step of adjusting the output voltage of the second controller to adjust the voltage of the DC bus to the preset interval includes:
  • the output voltage of the second controller is increased to increase the voltage of the DC bus.
  • the step of reducing the output voltage of the second controller includes:
  • the output voltage of the second controller is decreased by a corresponding amount according to the step-down amplitude.
  • the step-down magnitude is determined according to the following formula:
  • ⁇ U1 ′ is the step-down amplitude
  • ⁇ U1 is the difference between the DC bus voltage and the upper limit value of the preset interval
  • k is an adjustment coefficient, which is a negative number.
  • the step of increasing the output voltage of the second controller includes:
  • the output voltage of the second controller is boosted by a corresponding magnitude according to the boost magnitude.
  • the boost magnitude is determined according to the following formula:
  • ⁇ U2' is the boosting amplitude
  • ⁇ U2 is the difference between the voltage of the DC bus and the lower limit of the preset interval
  • k is an adjustment coefficient, which is a negative number.
  • the method before the step of adjusting the output voltage of the second controller to adjust the voltage of the DC bus within the preset interval, the method further includes:
  • the output voltage of the second controller is adjusted.
  • the step of determining whether the energy storage device meets the voltage regulation requirement includes:
  • the step of judging whether the energy storage device meets the voltage regulation requirement further includes:
  • the second threshold is smaller than the first threshold.
  • the DC bus is connected to the battery of the electrical equipment through a charging pile, and the charging pile is a bidirectional converter;
  • the method further includes:
  • the power supply direction is switched by the charging pile to supply power to the DC bus from the battery in the electrical equipment, and the output voltage of the battery is adjusted to adjust the voltage of the DC bus within the preset interval.
  • a voltage regulation device for implementing the above voltage regulation method, wherein the device includes:
  • a voltage monitoring module configured to monitor the voltage of the DC bus, and determine whether the voltage of the DC bus is within a preset interval
  • a first adjustment module configured to adjust the output voltage of the second controller when the voltage of the DC bus is not within the preset interval, so as to adjust the voltage of the DC bus to the preset interval Inside.
  • the first adjustment module includes:
  • a first adjustment unit configured to reduce the output voltage of the second controller when the voltage of the DC bus is greater than the upper limit of the preset interval, so as to reduce the voltage of the DC bus;
  • the second adjustment unit is configured to increase the output voltage of the second controller to increase the voltage of the DC bus when the voltage of the DC bus is less than the lower limit value of the preset interval.
  • the voltage regulating device further comprises:
  • a judgment module configured to adjust the output voltage of the second controller, so as to judge whether the energy storage device meets the voltage adjustment requirement before adjusting the voltage of the DC bus to the preset interval, and if so, Then, the first adjustment module is triggered to adjust the output voltage of the second controller; otherwise, the first adjustment module is not triggered to adjust the output voltage of the second controller.
  • the judging module includes:
  • a first judging unit configured to judge whether the power of the energy storage device is less than a first threshold when the voltage of the DC bus is greater than the upper limit value of the preset interval, and if so, determine the energy storage device The device meets the voltage regulation requirement; if not, it is determined that the energy storage device does not meet the voltage regulation requirement.
  • the judging module further includes:
  • a second judging unit configured to judge whether the power of the energy storage device is greater than a second threshold when the voltage of the DC bus is less than the lower limit value of the preset interval, and if so, determine the energy storage device The device meets the voltage regulation requirement; if not, it is determined that the energy storage device does not meet the voltage regulation requirement, and the second threshold is smaller than the first threshold.
  • a multi-component power supply system including the above-mentioned voltage regulating device, at least one power generation device, and at least one energy storage device;
  • each power generation device is connected to the DC bus through a corresponding first controller, and each energy storage device is connected to the DC bus through a corresponding second controller.
  • the DC bus is also connected to the battery of the electrical device through a charging pile, and the charging pile is a bidirectional converter configured to control the bidirectional flow of electrical energy.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the above-mentioned voltage adjustment method.
  • the output voltage of the second controller is adjusted to convert the DC
  • the voltage of the busbar is adjusted to a preset interval, thereby ensuring that the voltage of the DC busbar is stable within a certain interval, reducing the fluctuation range of the voltage of the DC busbar, thereby improving the stability of the system.
  • FIG. 1 is a schematic structural diagram of some embodiments of a multiple power supply system according to the present disclosure
  • FIG. 2 is a schematic flowchart of some embodiments of voltage regulation methods according to the present disclosure
  • FIG. 3 is a schematic structural diagram of some embodiments of a voltage regulating device according to the present disclosure.
  • FIG. 4 is a schematic structural diagram of other embodiments of the voltage regulating device according to the present disclosure.
  • FIG. 5 is a schematic diagram of a connection relationship between a plurality of energy storage devices and electric devices connected to a DC bus through a second controller and a charging pile, respectively, in some embodiments of the multi-power supply system according to the present disclosure
  • FIG. 6 is a schematic flowchart of other embodiments of the voltage regulation method according to the present disclosure.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe the controllers, these controllers should not be limited by these terms. These terms are only used to distinguish controllers connected to different devices.
  • the first controller may also be referred to as the second controller, and similarly, the second controller may also be referred to as the first controller, without departing from the scope of the embodiments of the present disclosure.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.
  • FIG. 1 is a schematic structural diagram of some embodiments of a multiple power supply system according to the present disclosure.
  • the multiple power supply system includes at least one power generation device and at least one energy storage device, wherein the at least one power generation device may include a distributed photovoltaic device 1 and a wind power generation device 2 .
  • the distributed photovoltaic device 1 is connected to the DC bus through a first controller 3
  • the wind power generation device 2 is connected to the DC bus through another first controller 3 .
  • the energy storage device 4 may be a battery, and the energy storage device 4 is connected to the DC bus through a second controller 5 .
  • the first controller 3 is used to control the power generation of the distributed photovoltaic equipment 1 or the wind power generation equipment 2, and the second controller 5 is a bidirectional DC/DC converter.
  • the above-mentioned multiple power supply system reserves the grid interface, and can also be connected to the mains network (AC 220V/380V).
  • the mains network is connected to the DC bus through the third controller 6, and the third controller 6 is an AC/DC converter, which is used to convert the alternating current input from the mains network into direct current and output it to direct current busbar.
  • FIG. 2 is a schematic flowchart of some embodiments of voltage regulation methods according to the present disclosure.
  • the voltage adjustment method includes: step S101 and step S102.
  • step S101 the voltage of the DC bus is monitored, and it is determined whether the voltage of the DC bus is within a preset interval.
  • Umin, Ue, and Umax can be set by the user according to actual needs.
  • step S102 when the voltage of the DC bus is not within the preset interval, the output voltage of the second controller is adjusted to adjust the voltage of the DC bus within the preset interval.
  • the voltage adjustment method of this embodiment monitors the voltage of the DC bus and determines whether the voltage of the DC bus is within the preset range, and when the voltage of the DC bus is not within the preset range, adjusts the output voltage of the second controller to The voltage of the DC bus is adjusted to a preset interval, thereby ensuring that the voltage of the DC bus is stable within a certain interval, reducing the fluctuation range of the voltage of the DC bus, and thereby improving the stability of the system.
  • the above step S102 specifically includes: if the voltage of the DC bus is greater than the upper limit Umax of the preset interval, reducing the output voltage of the second controller, to reduce the voltage of the DC bus; if the voltage of the DC bus is less than the lower limit Umin of the preset interval, the output voltage of the second controller is increased to increase the voltage of the DC bus.
  • the step of reducing the output voltage of the second controller specifically includes: according to the DC bus The difference between the voltage and the upper limit Umax of the preset interval determines the step-down range; according to the step-down range, the output voltage of the second controller is reduced by a corresponding range.
  • the step of increasing the output voltage of the second controller specifically includes: determining a boosting range according to a difference between the voltage of the DC bus and a lower limit value of a preset interval; The output voltage of the controller rises by the corresponding magnitude.
  • the above method further includes: judging whether the energy storage device meets the voltage adjustment requirement; if The output voltage of the second controller is adjusted when the voltage regulation requirement is met.
  • Whether the energy storage device meets the voltage regulation requirement is mainly determined by the power of the energy storage device, and is also related to whether the output voltage of the second controller needs to be increased or decreased. Therefore, in some embodiments, it is determined whether the energy storage device meets the requirements for voltage regulation.
  • the step of adjusting the voltage requirement includes: when the voltage of the DC bus is greater than the upper limit value of the preset interval, judging whether the power of the energy storage device is less than a first threshold (for example, 95%); if it is, it means that the energy storage device is not at full capacity If not, it means that the energy storage device is in a fully charged state, and it is determined that the energy storage device does not meet the voltage regulation requirements.
  • a first threshold for example, 95%
  • the power of the energy storage device is greater than the second threshold (for example, 5%); if so, it means that the energy storage device is not in a state of insufficient power, and then determine The energy storage device meets the voltage regulation requirements; if not, the energy storage device is in a state of insufficient power, and the voltage of the DC bus cannot be adjusted by increasing the output voltage, thereby determining that the energy storage device does not meet the voltage regulation requirements.
  • the above-mentioned second threshold is smaller than the first threshold.
  • the DC bus is connected to the battery in the electrical equipment 8 through the charging pile 7.
  • the charging pile is also a bidirectional DC/DC converter. Therefore, after it is determined that the energy storage device does not meet the voltage regulation requirement, the method may further include: switching the power supply direction through the charging pile to supply power from the battery in the electrical equipment to the DC bus, and at the same time adjusting the output of the battery in the electrical equipment voltage, so that the voltage of the DC bus returns to the preset range.
  • FIG. 3 is a schematic structural diagram of some embodiments of a voltage regulating device according to the present disclosure.
  • the voltage regulating device includes: a voltage monitoring module 10 and a first regulating module 20 .
  • the voltage monitoring module 10 is configured to monitor the voltage of the DC bus, and determine whether the voltage of the DC bus is within a preset interval.
  • Umin, Ue, and Umax can be set by the user according to actual needs.
  • the first adjustment module 20 is configured to adjust the output voltage of the second controller when the voltage of the DC bus is not within the preset interval, so as to adjust the voltage of the DC bus to within the preset interval.
  • the output voltage of the second controller is adjusted by the first adjustment module 20, and the voltage of the DC bus is adjusted back to the preset value within the interval.
  • the voltage monitoring module 10 monitors the voltage of the DC bus, and determines whether the voltage of the DC bus is within a preset interval.
  • the output voltage of the second controller is adjusted by the first adjustment module 20 to adjust the voltage of the DC bus to within the preset range, thereby ensuring that the voltage of the DC bus is stable within a certain range In this way, the fluctuation range of the voltage of the DC bus is reduced, thereby improving the stability of the system.
  • FIG. 4 is a schematic structural diagram of other embodiments of the voltage regulating device according to the present disclosure.
  • the above-mentioned first adjustment module 20 includes: a first adjustment unit 201 configured to be configured when the voltage of the DC bus is greater than a preset interval.
  • the limit value Umax is set, the output voltage of the second controller is reduced to reduce the voltage of the DC bus; the second adjustment unit 202 is configured to make the second adjustment unit 202 lower than the lower limit value Umin of the preset interval when the voltage of the DC bus is less than the lower limit value Umin of the preset interval.
  • the output voltage of the controller is boosted to boost the DC bus voltage.
  • the first adjustment unit 201 is configured to: The difference between the voltage of the busbar and the upper limit of the preset interval determines the step-down range; the output voltage of the second controller is reduced by a corresponding range according to the step-down range.
  • the second adjusting unit 202 is specifically configured to: determine the boosting range according to the difference between the voltage of the DC bus and the lower limit value of the preset interval; make the output voltage of the second controller according to the boosting range increase accordingly.
  • the above-mentioned apparatus further includes: a judgment module 30 configured to adjust the output voltage of the second controller, so as to judge the voltage of the DC bus before adjusting the voltage of the DC bus within the preset interval. Whether the energy storage device meets the voltage regulation requirement; if yes, trigger the first regulation module 20 to regulate the output voltage of the second controller, otherwise, do not trigger the first regulation module 20 to regulate the output voltage of the second controller.
  • the module 30 includes: a first judging unit 301, configured to judge whether the power of the energy storage device is less than a first threshold (for example, 95%) when the voltage of the DC bus is greater than the upper limit of the preset interval; if so, determine whether The energy storage device meets the voltage regulation requirement; if not, it means that the energy storage device is in a fully charged state, and it is determined that the energy storage device does not meet the voltage regulation requirement.
  • a first judging unit 301 configured to judge whether the power of the energy storage device is less than a first threshold (for example, 95%) when the voltage of the DC bus is greater than the upper limit of the preset interval; if so, determine whether The energy storage device meets the voltage regulation requirement; if not, it means that the energy storage device is in a fully charged state, and it is determined that the energy storage device does not meet the voltage regulation requirement.
  • the judgment module 30 further includes: a second judgment unit 302 configured to judge whether the power of the energy storage device is greater than the second value when the voltage of the DC bus is less than the lower limit value of the preset interval A threshold value (eg, 5%); if yes, it is determined that the energy storage device meets the voltage regulation requirement; if not, it is determined that the energy storage device does not meet the voltage regulation requirement.
  • a threshold value eg, 5%
  • the above-mentioned second threshold is smaller than the first threshold.
  • the DC bus is connected to the battery in the electrical equipment 8 through the charging pile 7 .
  • the charging pile is also a bidirectional DC/DC converter. Therefore, referring to FIG. 4 , the above-mentioned apparatus may further include a second adjustment module 40: configured to switch the power supply direction through the charging pile to supply power to the DC bus by the battery in the electrical equipment after it is determined that the energy storage device does not meet the voltage adjustment requirements , and adjust the output voltage of the battery in the electrical equipment at the same time, so that the voltage of the DC bus returns to the preset range.
  • the present disclosure also provides an off-grid multi-power supply system.
  • the system includes at least one power generation device, specifically, the power generation device may include a distributed photovoltaic power generation device 1 and a wind energy power generation device 2 .
  • the system also includes at least one energy storage device 4 and a charging pile 7 .
  • the distributed photovoltaic power generation equipment 1 and the wind power generation equipment 2 respectively supply power to the DC bus with the maximum output power through the two first controllers.
  • the energy storage device 4 is connected to the DC bus through a second controller 5, wherein the second controller 5 is bidirectional and can control the bidirectional flow of electric energy.
  • the charging pile 7 is also bidirectional, which can send the energy of the battery of the electric device 8 back to the DC bus to realize the V2G (Vehicle to Grid) function.
  • the above-mentioned multiple power supply system reserves the grid interface, and can also be connected to the mains network (AC 220V/380V).
  • the mains network side is connected to the DC bus through the third controller 6, and the third controller 6, the second controller 5 and the charging pile 7 together maintain a stable and reasonable range of the DC bus.
  • the voltage of the DC bus deviates from Ue due to unstable power supply and is no longer at [Umin, Umax]
  • adjust the output voltage of the second controller 5 connected to the energy storage device 4 and adjust the voltage of the DC bus back to the preset value within the interval.
  • the above Umin, Ue, and Umax can be set by the user according to actual needs.
  • FIG. 5 is a schematic diagram of a connection relationship between a plurality of energy storage devices and electrical devices connected to a DC bus through a second controller and a charging pile, respectively, in some embodiments of the multiple power supply system according to the present disclosure.
  • a plurality of energy storage devices 4 are respectively connected to the DC bus through a plurality of second controllers 5 .
  • the plurality of second controllers 5 and The charging pile 7 can be adjusted.
  • both the second controller 5 and the charging pile 7 operate normally to charge the electrical equipment 8, and the voltage adjustment operation of the DC bus is not performed.
  • the powered device 8 may be an electric vehicle.
  • FIG. 6 is a schematic flowchart of other embodiments of the voltage regulation method according to the present disclosure.
  • the voltage adjustment method includes steps S1 to S8 .
  • step S1 the voltage of the DC bus is acquired in real time.
  • the voltage of the DC bus can be collected in real time through the second controller connected to the DC bus.
  • step S2 it is judged whether the voltage of the DC bus is within the preset interval [Umin, Umax]; if yes, go to step S3; if not, go to step S4.
  • step S3 both the second controller and the charging pile operate normally to charge the electrical equipment.
  • step S4 it is judged whether the energy storage device connected to the second controller meets the voltage regulation requirement; if yes, then step S5 is executed, if not, step S6 is executed.
  • the energy storage device When the capacity of the energy storage device is in a limit state, such as fully charged or insufficient, the energy storage device does not participate in regulation or can only participate in partial regulation. Therefore, before the voltage regulation of the DC bus, it is necessary to judge whether the energy storage device meets the voltage regulation requirements, that is, whether the power of the energy storage device is allowed to be dispatched.
  • the voltage of the DC bus exceeds the upper limit Umax, it is determined whether the capacity of the energy storage device is less than the first threshold value, and if so, the voltage regulation requirement is satisfied, otherwise, the voltage regulation requirement is not satisfied.
  • the voltage of the DC bus is lower than the lower limit value Umin, it is judged whether the capacity of the energy storage device is greater than the second threshold value, and if so, the voltage regulation requirement is satisfied; otherwise, the voltage regulation requirement is not satisfied.
  • step S5 the output voltage of the second controller is adjusted to adjust the voltage of the DC bus.
  • the adjustment coefficient k of each second controller is an inherent parameter of the second controller, which can be set by the user according to the capacity of the energy storage device.
  • the adjustment amount ⁇ U' of the output voltage is negatively correlated with ⁇ U, that is, the adjustment coefficient k is a negative value.
  • step S6 the current energy storage device is not involved in the voltage regulation of the DC bus.
  • step S7 it is judged whether the voltage of the DC bus returns to the preset interval [Umin, Umax]; if so, go to step S8; if not, go back to step S5.
  • step S8 the voltage regulation is ended.
  • the grid connected to the third controller defaults to a power supply that meets voltage regulation requirements and participates in bus voltage regulation.
  • AC/DC converter AC/DC converter
  • the present disclosure also provides a multi-component power supply system, which includes the above-mentioned voltage adjustment device for adjusting the output voltage of the second controller, so as to ensure that the voltage of the DC bus is stable within a certain range and reduce the DC voltage
  • the fluctuation range of the bus voltage improves the stability of the system.
  • the above system further includes at least one power generation device and at least one energy storage device; wherein each of the power generation devices is connected to the DC bus through a corresponding first controller, and each of the energy storage devices is connected through a corresponding second controller to the DC bus; the above-mentioned DC bus is also connected to the battery of the electrical equipment through the charging pile, and the charging pile is a bidirectional converter, which is used to control the bidirectional flow of electric energy.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the voltage adjustment method in the above-mentioned embodiment is implemented.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开提供一种电压调节方法、装置及多元供电系统。该方法应用于多元供电系统,多元供电系统包括至少一个发电设备和至少一个储能设备;每个发电设备通过对应的第一控制器连接至直流母线,每个储能设备通过对应的第二控制器连接至直流母线。该方法包括:监测直流母线电压,并判断直流母线的电压是否在预设区间内;在直流母线电压不在预设区间内时,调节第二控制器的输出电压,以将直流母线的电压调整到预设区间内。本公开实施例能够保证直流母线电压稳定在一定区间内,缩小直流母线电压的波动范围,提高系统的稳定性。

Description

一种电压调节方法、装置及多元供电系统
相关申请的交叉引用
本申请是以CN申请号为202110024859.6,申请日为2021年1月8日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电子电力技术领域,具体而言,涉及一种电压调节方法、装置及多元供电系统。
背景技术
随着新能源汽车保有量的持续增长,新能源汽车与充电桩需求之间的矛盾愈加突出。再加上城市的快速发展,市电网络电力本身就很紧张,并且充电桩功率较大导致配电扩容压力非常大,导致充电桩建设比较困难。而风、光、储等分布式能源的发展给充电桩的建设带来了新的契机。利用风、光、储分布式能源建设离网型充电桩,不需考虑市电网络容量,随时随地可安装建设。
发明内容
发明人经研究发现,离网型充电桩离网供电时,稳定性较差,直流母线的电压会产生较大波动。
有鉴于此,本公开实施例提供一种电压调节方法、装置及多元供电系统,能够解决离网供电时,直流母线的电压会产生较大波动的问题。
在本公开的一个方面,提供了一种电压调节方法,该方法应用于多元供电系统,所述多元供电系统包括至少一个发电设备和至少一个储能设备;每个发电设备通过对应的第一控制器连接至直流母线,每个储能设备通过对应的第二控制器连接至所述直流母线;其中,所述方法包括:
监测所述直流母线的电压,并判断所述直流母线的电压是否在预设区间内;
在所述直流母线的电压不在所述预设区间内时,调节所述第二控制器的输出电压,以将所述直流母线的电压调整到所述预设区间内。
在一些实施例中,调节所述第二控制器的输出电压,以将所述直流母线的电压调 整到所述预设区间内的步骤包括:
如果所述直流母线的电压大于所述预设区间的上限值,则使所述第二控制器的输出电压降低,以降低所述直流母线的电压;
如果所述直流母线的电压小于所述预设区间的下限值,则使所述第二控制器的输出电压升高,以升高所述直流母线的电压。
在一些实施例中,使所述第二控制器的输出电压降低的步骤包括:
根据所述直流母线的电压与所述预设区间的上限值的差值,确定降压幅度;
根据所述降压幅度使所述第二控制器的输出电压降低相应的幅度。
在一些实施例中,依据以下公式确定所述降压幅度:
ΔU1′=k*ΔU1;
其中,ΔU1′为所述降压幅度,ΔU1为所述直流母线电压与所述预设区间的上限值的差值,k为调节系数,取值为负数。
在一些实施例中,使所述第二控制器的输出电压升高的步骤包括:
根据所述直流母线的电压与所述预设区间的下限值的差值,确定升压幅度;
根据所述升压幅度使所述第二控制器的输出电压升高相应的幅度。
在一些实施例中,依据以下公式确定所述升压幅度:
ΔU2′=k*ΔU2;
其中,ΔU2′为所述升压幅度,ΔU2为所述直流母线的电压与所述预设区间的下限值的差值,k为调节系数,取值为负数。
在一些实施例中,调节所述第二控制器的输出电压,以将所述直流母线的电压调整到所述预设区间内的步骤之前,所述方法还包括:
判断所述储能设备是否满足电压调节需求;
如果满足电压调节需求,则调节所述第二控制器的输出电压。
在一些实施例中,判断所述储能设备是否满足电压调节需求的步骤包括:
在所述直流母线的电压大于预设区间的上限值时,判断所述储能设备的电量是否小于第一阈值;
如果是,则确定所述储能设备满足电压调节需求;
如果否,则确定所述储能设备不满足电压调节需求。
在一些实施例中,判断所述储能设备是否满足电压调节需求的步骤还包括:
在所述直流母线的电压小于预设区间的下限值时,判断所述储能设备的电量是否 大于第二阈值;
如果是,则确定所述储能设备满足电压调节需求;
如果否,则确定所述储能设备不满足电压调节需求;
其中,所述第二阈值小于所述第一阈值。
在一些实施例中,所述直流母线通过充电桩连接用电设备的电池,所述充电桩为双向变流器;
在确定所述储能设备不满足电压调节需求后,所述方法还包括:
通过所述充电桩将供电方向切换至由所述用电设备中的电池向直流母线供电,同时调节所述电池的输出电压,以将所述直流母线的电压调整到所述预设区间内。
在本公开的一个方面,提供一种电压调节装置,用于实现上述电压调节方法,其中,该装置包括:
电压监测模块,被配置为监测直流母线的电压,并判断所述直流母线的电压是否在预设区间内;
第一调节模块,被配置为在所述直流母线的电压不在所述预设区间内时,调节所述第二控制器的输出电压,以将所述直流母线的电压调整到所述预设区间内。
在一些实施例中,所述第一调节模块包括:
第一调节单元,被配置为在所述直流母线的电压大于预设区间的上限值时,使所述第二控制器的输出电压降低,以降低所述直流母线的电压;
第二调节单元,被配置为在所述直流母线的电压小于预设区间的下限值时,使所述第二控制器的输出电压升高,以升高所述直流母线的电压。
在一些实施例中,所述电压调节装置还包括:
判断模块,被配置为在调节所述第二控制器的输出电压,以便在将所述直流母线的电压调整到所述预设区间内之前,判断储能设备是否满足电压调节需求,如果是,则触发第一调节模块调节所述第二控制器的输出电压,否则,不触发第一调节模块调节所述第二控制器的输出电压。
在一些实施例中,所述判断模块包括:
第一判断单元,被配置为在所述直流母线的电压大于所述预设区间的上限值时,判断所述储能设备的电量是否小于第一阈值,如果是,则确定所述储能设备满足电压调节需求;如果否,则确定所述储能设备不满足电压调节需求。
在一些实施例中,所述判断模块还包括:
第二判断单元,被配置为在所述直流母线的电压小于所述预设区间的下限值时,判断所述储能设备的电量是否大于第二阈值,如果是,则确定所述储能设备满足电压调节需求;如果否,则确定所述储能设备不满足电压调节需求,所述第二阈值小于所述第一阈值。
在本公开的一个方面,提供一种多元供电系统,包括上述电压调节装置、至少一个发电设备以及至少一个储能设备;
其中,每个发电设备通过对应的第一控制器连接至直流母线,每个储能设备通过对应的第二控制器连接至所述直流母线。
在一些实施例中,所述直流母线还通过充电桩连接用电设备的电池,所述充电桩为双向变流器,被配置为控制电能的双向流动。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述电压调节方法。
根据本公开实施例,通过监测直流母线的电压,并判断直流母线的电压是否在预设区间内,在直流母线的电压不在预设区间内时,调节第二控制器的输出电压,以将直流母线的电压调整到预设区间内,从而保证直流母线的电压稳定在一定区间内,缩小直流母线的电压的波动范围,进而提高系统的稳定性。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为根据本公开多元供电系统的一些实施例的结构示意图;
图2为根据本公开电压调节方法的一些实施例的流程示意图;
图3为根据本公开电压调节装置的一些实施例的结构示意图;
图4为根据本公开电压调节装置的另一些实施例的结构示意图;
图5为根据本公开多元供电系统的一些实施例中多个储能设备、用电设备分别通过第二控制器和充电桩与直流母线进行连接的连接关系示意图;
图6为根据本公开电压调节方法的另一些实施例的流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作在一些实施例中详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本公开实施例中可能采用术语第一、第二、第三等来描述控制器,但这些控制器不应限于这些术语。这些术语仅用来将与不同设备连接的控制器区分开。例如,在不脱离本公开实施例范围的情况下,第一控制器也可以被称为第二控制器,类似地,第二控制器也可以被称为第一控制器。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本公开的可选实施例。
图1为根据本公开多元供电系统的一些实施例的结构示意图。参考图1,在一些 实施例中,该多元供电系统包括至少一个发电设备和至少一个储能设备,其中,至少一个发电设备可以包括分布式光伏设备1和风力发电设备2。分布式光伏设备1通过一个第一控制器3连接至直流母线,风力发电设备2通过另一个第一控制器3连接至直流母线。储能设备4可以为电池,储能设备4通过一个第二控制器5连接至直流母线。
第一控制器3用于控制分布式光伏设备1或者风力发电设备2的发电功率,第二控制器5为双向DC/DC变流器。上述多元供电系统预留电网接口,也可以接入市电网络(AC 220V/380V)。当接入市电网络时,市电网络通过第三控制器6接入直流母线,第三控制器6为AC/DC变流器,用于将市电网络输入的交流电转换为直流电输出至直流母线。
图2为根据本公开电压调节方法的一些实施例的流程示意图。参考图2,在一些实施例中,该电压调节方法包括:步骤S101和步骤S102。
在步骤S101中,监测直流母线的电压,并判断直流母线的电压是否在预设区间内。
由于直流母线的电压处于变化的状态,为保证直流母线的电压始终处于预设区间内,在具体实施时,需要实时监测直流母线的电压。上述预设区间为[Umin,Umax],其中,Umin=Ue-ΔU1,Umax=Ue+ΔU1,Ue为额定目标值,ΔU1为最大允许偏差。上述Umin、Ue、Umax可以由用户根据实际需要自行设定。
在步骤S102中,在直流母线的电压不在预设区间内时,调节第二控制器的输出电压,以将直流母线的电压调整到预设区间内。
当由于供电不稳定造成直流母线的电压偏离额定目标值Ue较多,不再处于预设区间[Umin,Umax]时,调节第二控制器的输出电压,将直流母线的电压调节回预设区间内。
本实施例的电压调节方法通过监测直流母线的电压,并判断直流母线的电压是否在预设区间内,在直流母线的电压不在预设区间内时,调节第二控制器的输出电压,以将直流母线的电压调整到预设区间内,从而保证直流母线的电压稳定在一定区间内,缩小直流母线的电压的波动范围,进而提高系统的稳定性。
为了避免直流母线的电压的波动幅度过大,在一些实施例中,上述步骤S102具体包括:如果直流母线的电压大于预设区间的上限值Umax,则使第二控制器的输出电压降低,以降低直流母线的电压;如果直流母线的电压小于预设区间的下限值 Umin,则使第二控制器的输出电压升高,以升高直流母线的电压。
在调节直流母线的电压的过程中,为了使第二控制器的输出电压的调节量与直流母线的电压实际波动情况相适应,使第二控制器的输出电压降低的步骤具体包括:根据直流母线的电压与预设区间的上限值Umax的差值,确定降压幅度;根据上述降压幅度使第二控制器的输出电压降低相应的幅度。具体地,根据直流母线的电压与预设区间的上限值的差值,确定降压幅度时,所依据的公式为:ΔU1′=k*ΔU1;其中,ΔU1′为降压幅度,ΔU1为直流母线的电压与预设区间的上限值的差值,k为调节系数,取值为负数。
在一些实施例中,使第二控制器的输出电压升高的步骤具体包括:根据直流母线的电压与预设区间的下限值的差值,确定升压幅度;根据升压幅度使第二控制器的输出电压升高相应的幅度。具体地,根据直流母线的电压与预设区间的下限值Umin的差值,确定升压幅度时,所依据的公式为:ΔU2′=k*ΔU2;其中,ΔU2′为升压幅度,ΔU2为直流母线的电压与预设区间的下限值的差值,k为调节系数,取值为负数。需要说明的是,上述调节系数k可以通过实验测试获得。
在储能设备容量处在极限状态,例如充满电或电量不足,此时该储能设备不参与调节或只能参与部分调节。因此,在一些实施例中,在调节第二控制器的输出电压,以将直流母线的电压调整到预设区间内的步骤之前,上述方法还包括:判断储能设备是否满足电压调节需求;如果满足电压调节需求,则调节第二控制器的输出电压。
由于储能设备是否满足电压调节需求主要由储能设备的电量决定,并且,还与需要升高还是降低第二控制器的输出电压有关,因此,在一些实施例中,判断储能设备是否满足电压调节需求的步骤包括:在直流母线的电压大于预设区间的上限值时,判断储能设备的电量是否小于第一阈值(例如95%);如果是,则说明储能设备未处于满电状态,可以进行电压调节,因此确定储能设备满足电压调节需求;如果否,则说明储能设备处于满电状态,确定储能设备不满足电压调节需求。
而在直流母线的电压小于预设区间的下限值时,则判断储能设备的电量是否大于第二阈值(例如5%);如果是,则说明储能设备未处于电量不足状态,进而确定储能设备满足电压调节需求;如果否,则说明储能设备处于电量不足状态,不能通过提高输出电压来调节直流母线的电压,进而确定储能设备不满足电压调节需求。上述第二阈值小于第一阈值。
参考图1,直流母线通过充电桩7连接用电设备8中的电池,在本实施例中,充 电桩也是双向DC/DC变流器。因此,在确定储能设备不满足电压调节需求后,该方法还可以包括:通过充电桩将供电方向切换至由用电设备中的电池向直流母线供电,同时调节用电设备中的电池的输出电压,使直流母线的电压回到预设区间内。
图3为根据本公开电压调节装置的一些实施例的结构示意图。参考图3,该电压调节装置包括:电压监测模块10和第一调节模块20。电压监测模块10被配置为监测直流母线的电压,并判断所述直流母线的电压是否在预设区间内。
由于直流母线的电压处于变化的状态,为保证直流母线的电压始终处于预设区间内,在具体实施时,需要实时监测直流母线的电压。预设区间为[Umin,Umax],其中,Umin=Ue-ΔU1,Umax=Ue+ΔU1,Ue为额定目标值,ΔU1为最大允许偏差。上述Umin、Ue、Umax可以由用户根据实际需要自行设定。
第一调节模块20被配置为在所述直流母线的电压不在预设区间内时,调节第二控制器的输出电压,以将直流母线的电压调整到预设区间内。
当由于供电不稳定造成直流母线的电压偏离Ue,不再处于预设区间[Umin,Umax]时,通过第一调节模块20调节第二控制器的输出电压,将直流母线的电压调节回预设区间内。
本实施例的电压调节方法通过电压监测模块10监测直流母线的电压,并判断直流母线的电压是否在预设区间内。在直流母线的电压不在预设区间内时,通过第一调节模块20调节第二控制器的输出电压,以将直流母线的电压调整到预设区间内,从而保证直流母线的电压稳定在一定区间内,缩小直流母线的电压的波动范围,进而提高系统的稳定性。
图4为根据本公开电压调节装置的另一些实施例的结构示意图。为了避免直流母线的电压的波动幅度过大,参考图4,在一些实施例中,上述第一调节模块20包括:第一调节单元201,被配置为在直流母线的电压大于预设区间的上限值Umax时,使第二控制器的输出电压降低,以降低直流母线的电压;第二调节单元202,被配置为在直流母线的电压小于预设区间的下限值Umin时,使第二控制器的输出电压升高,以升高直流母线的电压。
在调节直流母线的电压的过程中,为了使第二控制器的输出电压的调节量与直流母线的电压实际波动情况相适应,在一些实施例中,第一调节单元201被配置为:根据直流母线的电压与预设区间的上限值的差值,确定降压幅度;根据上述降压幅度使第二控制器的输出电压降低相应的幅度。具体地,根据直流母线的电压与预设区间的 上限值的差值,确定降压幅度时,所依据的公式为:ΔU1′=k*ΔU1;其中,ΔU1′为降压幅度,ΔU1为直流母线的电压与预设区间的上限值的差值,k为调节系数,取值为负数。
在一些实施例中,第二调节单元202具体被配置为:根据直流母线的电压与预设区间的下限值的差值,确定升压幅度;根据升压幅度使第二控制器的输出电压升高相应的幅度。具体地,根据直流母线的电压与预设区间的下限值的差值,确定升压幅度时,所依据的公式为:ΔU2′=k*ΔU2;其中,ΔU2′为升压幅度,ΔU2为直流母线的电压与所述预设区间的下限值的差值,k为调节系数,取值为负数。
在储能设备容量处在极限状态,例如充满电或电量不足,此时该储能设备不参与调节或只能参与部分调节。因此,参考图4,在一些实施例中,上述装置还包括:判断模块30,被配置为在调节第二控制器的输出电压,以便在将直流母线的电压调整到预设区间内之前,判断储能设备是否满足电压调节需求;如果是,则触发第一调节模块20调节第二控制器的输出电压,否则,不触发第一调节模块20调节第二控制器的输出电压。
由于储能设备是否满足电压调节需求,主要由储能设备的电量决定,并且,还与需要升高还是降低第二控制器的输出电压有关,因此,参考图4,在一些实施例中,判断模块30包括:第一判断单元301,被配置为在直流母线的电压大于预设区间的上限值时,判断储能设备的电量是否小于第一阈值(例如95%);如果是,则确定储能设备满足电压调节需求;如果否,则说明储能设备处于满电状态,则确定储能设备不满足电压调节需求。
参考图4,在一些实施例中,判断模块30还包括:第二判断单元302,被配置为在直流母线的电压小于预设区间的下限值时,判断储能设备的电量是否大于第二阈值(例如5%);如果是,则确定储能设备满足电压调节需求;如果否,则确定储能设备不满足电压调节需求。上述第二阈值小于第一阈值。
参考图1,直流母线通过充电桩7连接用电设备8中的电池,在本实施例中,充电桩也是双向DC/DC变流器。因此,参考图4上述装置还可以包括第二调节模块40:被配置为在确定储能设备不满足电压调节需求后,通过充电桩将供电方向切换至由用电设备中的电池向直流母线供电,同时调节用电设备中的电池的输出电压,使直流母线的电压回到预设区间内。
参考图1,在一些实施例中,本公开还提供了一种离网型多元供电系统。该系统 包括至少一个发电设备,具体地,发电设备可以包括分布式光伏发电设备1和风能发电设备2。该系统还包括至少一个储能设备4和充电桩7。分布式光伏发电设备1和风能发电设备2分别通过两个第一控制器,以最大输出功率向直流母线供电。储能设备4通过第二控制器5连接直流母线,其中第二控制器5是双向的,可以控制电能双向流动。充电桩7也是双向的,可以将用电设备8的电池的能量送回直流母线,实现V2G(Vehicle to Grid)功能。
上述多元供电系统预留电网接口,也可以接入市电网络(AC 220V/380V)。当应用于接入市电网络场景时,市电网络侧通过第三控制器6接入直流母线,第三控制器6、第二控制器5和充电桩7一起维持直流母线稳定合理范围。第三控制器6、第二控制器5和充电桩7之间并无直接通讯,各自仅利用监测到的直流母线的电压与额定值的偏差各自进行调节。
系统正常运行时,母线电压需稳定在预设区间内,其中,预设区间为[Umin,Umax],其中,Umin=Ue-ΔU1,Umax=Ue+ΔU1,Ue为额定目标值,ΔU1为最大允许偏差。当由于供电不稳定造成直流母线的电压偏离Ue,且不再处于[Umin,Umax]时,调节与储能设备4连接的第二控制器5的输出电压,将直流母线的电压调节回预设区间内。上述Umin、Ue、Umax可以由用户根据实际需要自行设定。
图5为根据本公开多元供电系统的一些实施例中多个储能设备、用电设备分别通过第二控制器和充电桩与直流母线进行连接的连接关系示意图。参考图5,在一些实施例中,多个储能设备4分别通过多个第二控制器5接入直流母线,当直流母线的电压不在预设区间内时,多个第二控制器5及充电桩7均可进行调节。在直流母线的电压处在预设区间内时,第二控制器5和充电桩7均正常运行,为用电设备8充电,不进行直流母线的电压调节操作。在一些实施例中,用电设备8可以为电动汽车。
图6为根据本公开电压调节方法的另一些实施例的流程示意图。参考图6,在一些实施例中,电压调节方法包括:步骤S1到步骤S8。
在步骤S1中,实时获取直流母线的电压。
上述基于母线电压波动的控制方案,可通过与直流母线连接的第二控制器实时采集直流母线的电压。
在步骤S2中,判断直流母线的电压是否在预设区间[Umin,Umax]内;如果是,则执行步骤S3;如果否,则执行步骤S4。
判断直流母线的电压是否在预设区间[Umin,Umax]内,如果母线电压波动较大, 超出预设区间,则需要通过第二控制器调节第二控制器的输出电压,以调节直流母线的电压,使其回到预设区间内。
在步骤S3中,第二控制器和充电桩均正常运行,为用电设备充电。
在步骤S4中,判断第二控制器连接的储能设备是否满足电压调节需求;如果是,则执行步骤S5,如果否,则执行步骤S6。
在储能设备的容量处在极限状态,例如充满电或电量不足,此时该储能设备不参与调节或只能参与部分调节。因此,在进行直流母线的电压调节之前,需要判断储能设备是否满足电压调节需求,即储能设备的电量是否允许被调度。
例如,在直流母线的电压超出上限值Umax的情况下,判断储能设备的容量是否小于第一阈值,如果是,满足电压调节需求,否则,不满足电压调节需求。在直流母线的电压低于下限值Umin的情况下,判断储能设备的容量是否大于第二阈值,如果是,满足电压调节需求,否则,不满足电压调节需求。
在步骤S5中,调节第二控制器的输出电压,以调节直流母线的电压。
判断储能设备满足上述条件后,根据监测到的直流母线的电压与上限值Umax或者下限值Umin的差值ΔU,调节第二控制器的输出电压,其中,输出电压的调节量ΔU′=k*ΔU,k为调节系数。
各第二控制器的调节系数k为第二控制器的固有参数,用户可根据储能设备的容量自行设定。在本实施例中,输出电压的调节量ΔU′与ΔU负相关,即调节系数k为负值。
具体地,当直流母线的电压超过上限值Umax时,ΔU为正,第二控制器的输出电压的调节量ΔU′为负;当直流母线的电压低于下限值Umin时,ΔU为负,第二控制器的输出电压的调节量ΔU′为正。
在步骤S6中,使当前储能设备不参与直流母线的电压调节。
在步骤S7中,判断直流母线的电压是否回到预设区间[Umin,Umax]内;如果是,则执行步骤S8;如果否,则返回步骤S5。
在步骤S8中,结束电压调节。
此外,在上述多元供电系统并网运行时,第三控制器(AC/DC变流器)连接的电网默认为是满足电压调节需求的电源,参与母线电压调节。另外当系统中接入多个充电桩和用电设备时,如果用电设备的电池满足电压调节需求,也可参与母线电压调节。
在一些实施例中,本公开还提供一种多元供电系统,该系统包括上述电压调节装 置,用于调节第二控制器的输出电压,以使保证直流母线的电压稳定在一定区间内,缩小直流母线的电压的波动范围,提高系统的稳定性。
上述系统还包括至少一个发电设备、至少一个储能设备;其中,每个所述发电设备通过对应的第一控制器连接至直流母线,每个所述储能设备通过对应的第二控制器连接至直流母线;上述直流母线还通过充电桩连接用电设备的电池,该充电桩为双向变流器,用于控制电能双向流动。
在本公开实施例中,还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述实施例中的电压调节方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (18)

  1. 一种电压调节方法,所述方法应用于多元供电系统,所述多元供电系统包括至少一个发电设备和至少一个储能设备;每个发电设备通过对应的第一控制器连接至直流母线,每个储能设备通过对应的第二控制器连接至所述直流母线;其中,所述方法包括:
    监测所述直流母线的电压,并判断所述直流母线的电压是否在预设区间内;
    在所述直流母线电压不在所述预设区间内时,调节所述第二控制器的输出电压,以将所述直流母线的电压调整到所述预设区间内。
  2. 根据权利要求1所述的方法,其中,调节所述第二控制器的输出电压,以将所述直流母线的电压调整到所述预设区间内的步骤包括:
    如果所述直流母线的电压大于所述预设区间的上限值,则使所述第二控制器的输出电压降低,以降低所述直流母线的电压;
    如果所述直流母线的电压小于所述预设区间的下限值,则使所述第二控制器的输出电压升高,以升高所述直流母线的电压。
  3. 根据权利要求2所述的方法,其中,使所述第二控制器的输出电压降低的步骤包括:
    根据所述直流母线的电压与所述预设区间的上限值的差值,确定降压幅度;
    根据所述降压幅度使所述第二控制器的输出电压降低相应的幅度。
  4. 根据权利要求3所述的方法,其中,依据以下公式确定所述降压幅度:
    ΔU1′=k*ΔU1;
    其中,ΔU1′为所述降压幅度,ΔU1为所述直流母线的电压与所述预设区间的上限值的差值,k为调节系数,取值为负数。
  5. 根据权利要求2所述的方法,其中,使所述第二控制器的输出电压升高的步骤包括:
    根据所述直流母线的电压与所述预设区间的下限值的差值,确定升压幅度;
    根据所述升压幅度使所述第二控制器的输出电压升高相应的幅度。
  6. 根据权利要求5所述的方法,其中,依据以下公式确定所述升压幅度:
    ΔU2′=k*ΔU2;
    其中,ΔU2′为所述升压幅度,ΔU2为所述直流母线的电压与所述预设区间的下限 值的差值,k为调节系数,取值为负数。
  7. 根据权利要求1至6中任一项所述的方法,其中,调节所述第二控制器的输出电压,以将所述直流母线的电压调整到所述预设区间内的步骤之前,所述方法还包括:
    判断所述储能设备是否满足电压调节需求;
    如果满足电压调节需求,则调节所述第二控制器的输出电压。
  8. 根据权利要求7所述的方法,其中,判断所述储能设备是否满足电压调节需求的步骤包括:
    在所述直流母线的电压大于预设区间的上限值时,判断所述储能设备的电量是否小于第一阈值;
    如果是,则确定所述储能设备满足电压调节需求;
    如果否,则确定所述储能设备不满足电压调节需求。
  9. 根据权利要求8所述的方法,其中,判断所述储能设备是否满足电压调节需求的步骤还包括:
    在所述直流母线的电压小于预设区间的下限值时,判断所述储能设备的电量是否大于第二阈值;
    如果是,则确定所述储能设备满足电压调节需求;
    如果否,则确定所述储能设备不满足电压调节需求;
    其中,所述第二阈值小于所述第一阈值。
  10. 根据权利要求8所述的方法,其中,所述直流母线通过充电桩连接用电设备的电池,所述充电桩为双向变流器;
    在确定所述储能设备不满足电压调节需求后,所述方法还包括:
    通过所述充电桩将供电方向切换至由所述用电设备中的电池向直流母线供电,同时调节所述电池的输出电压,以将所述直流母线的电压调整到所述预设区间内。
  11. 一种电压调节装置,用于实现权利要求1至10中任一项所述的电压调节方法,其中,所述装置包括:
    电压监测模块,被配置为监测直流母线的电压,并判断所述直流母线的电压是否在预设区间内;
    第一调节模块,被配置为在所述直流母线电压不在所述预设区间内时,调节所述第二控制器的输出电压,以将所述直流母线的电压调整到所述预设区间内。
  12. 根据权利要求11所述的电压调节装置,其中,所述第一调节模块包括:
    第一调节单元,被配置为在所述直流母线的电压大于预设区间的上限值时,使所述第二控制器的输出电压降低,以降低所述直流母线的电压;
    第二调节单元,被配置为在所述直流母线的电压小于预设区间的下限值时,使所述第二控制器的输出电压升高,以升高所述直流母线的电压。
  13. 根据权利要求11所述的电压调节装置,还包括:
    判断模块,被配置为在调节所述第二控制器的输出电压,以便在将所述直流母线的电压调整到所述预设区间内之前,判断储能设备是否满足电压调节需求,如果是,则触发第一调节模块调节所述第二控制器的输出电压,否则,不触发第一调节模块调节所述第二控制器的输出电压。
  14. 根据权利要求13所述的电压调节装置,其中,所述判断模块包括:
    第一判断单元,被配置为在所述直流母线的电压大于所述预设区间的上限值时,判断所述储能设备的电量是否小于第一阈值,如果是,则确定所述储能设备满足电压调节需求;如果否,则确定所述储能设备不满足电压调节需求。
  15. 根据权利要求14所述的电压调节装置,其中,所述判断模块还包括:
    第二判断单元,被配置为在所述直流母线的电压小于所述预设区间的下限值时,判断所述储能设备的电量是否大于第二阈值,如果是,则确定所述储能设备满足电压调节需求;如果否,则确定所述储能设备不满足电压调节需求,所述第二阈值小于所述第一阈值。
  16. 一种多元供电系统,包括权利要求11~15任一所述的电压调节装置、至少一个发电设备以及至少一个储能设备;
    其中,每个发电设备通过对应的第一控制器连接至直流母线,每个储能设备通过对应的第二控制器连接至所述直流母线。
  17. 根据权利要求16所述的系统,其中,所述直流母线还通过充电桩连接用电设备的电池,所述充电桩为双向变流器,被配置为控制电能的双向流动。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的方法。
PCT/CN2021/105753 2021-01-08 2021-07-12 一种电压调节方法、装置及多元供电系统 WO2022147995A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110024859.6 2021-01-08
CN202110024859.6A CN112821378A (zh) 2021-01-08 2021-01-08 一种电压调节方法、装置及多元供电系统

Publications (1)

Publication Number Publication Date
WO2022147995A1 true WO2022147995A1 (zh) 2022-07-14

Family

ID=75869838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105753 WO2022147995A1 (zh) 2021-01-08 2021-07-12 一种电压调节方法、装置及多元供电系统

Country Status (2)

Country Link
CN (1) CN112821378A (zh)
WO (1) WO2022147995A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821378A (zh) * 2021-01-08 2021-05-18 珠海格力电器股份有限公司 一种电压调节方法、装置及多元供电系统
CN113746170B (zh) * 2021-09-03 2024-02-09 阳光电源(上海)有限公司 一种储能系统及其离网过载保护方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967112A (zh) * 2015-06-26 2015-10-07 上海电力学院 光储式电动汽车充电站的直流微网协调控制方法
CN108832612A (zh) * 2018-07-02 2018-11-16 东北大学 一种基于分层管理的直流微电网控制方法和系统
CN109866643A (zh) * 2019-03-29 2019-06-11 清华大学 一种光储充直流微网控制方法
CN111231713A (zh) * 2020-03-27 2020-06-05 上海电气集团股份有限公司 一种电动汽车充放电系统及控制方法
CN112821378A (zh) * 2021-01-08 2021-05-18 珠海格力电器股份有限公司 一种电压调节方法、装置及多元供电系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368170B (zh) * 2013-06-26 2016-08-24 许继电气股份有限公司 一种多端柔性直流输电系统的换流器及其控制方法
CN106849156A (zh) * 2017-01-06 2017-06-13 许继集团有限公司 一种直流微电网并离网切换母线电压控制平滑方法及系统
CN107769189B (zh) * 2017-10-31 2023-08-25 珠海格力电器股份有限公司 直流微电网结构
CN108281952B (zh) * 2018-02-10 2024-04-16 珠海格力电器股份有限公司 光伏供电系统及其供电控制方法
CN109617042A (zh) * 2018-12-21 2019-04-12 浙江众邦机电科技有限公司 一种工业缝纫机直流母线电压的控制装置
EP3696930A1 (de) * 2019-02-15 2020-08-19 Siemens Aktiengesellschaft Gleichspannungsnetz mit variabler spannung
CN110635511A (zh) * 2019-10-24 2019-12-31 湖南大学 一种光伏储能混合系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967112A (zh) * 2015-06-26 2015-10-07 上海电力学院 光储式电动汽车充电站的直流微网协调控制方法
CN108832612A (zh) * 2018-07-02 2018-11-16 东北大学 一种基于分层管理的直流微电网控制方法和系统
CN109866643A (zh) * 2019-03-29 2019-06-11 清华大学 一种光储充直流微网控制方法
CN111231713A (zh) * 2020-03-27 2020-06-05 上海电气集团股份有限公司 一种电动汽车充放电系统及控制方法
CN112821378A (zh) * 2021-01-08 2021-05-18 珠海格力电器股份有限公司 一种电压调节方法、装置及多元供电系统

Also Published As

Publication number Publication date
CN112821378A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN107785931B (zh) 一种小型电能管理与协调控制一体化装置
WO2018006681A1 (zh) 无功补偿方法、装置、光伏并网逆变器及计算机存储介质
WO2022147995A1 (zh) 一种电压调节方法、装置及多元供电系统
US11394221B2 (en) Method and system for controlling DC bus voltage
US11190013B2 (en) System and control method of all-DC power supply and storage for building
WO2018103251A1 (zh) 直流微电网的控制设备及控制方法、直流微电网系统
WO2022105265A1 (zh) 一种供电功率调节方法、装置及供电系统
WO2020144841A1 (ja) 電力変換システムおよび電力変換装置
CN109888845B (zh) 一种交直流混合微电网
KR20160027499A (ko) 주간모드 및 야간모드 기능을 구비한 태양광발전 시스템의 제어 방법
WO2022110824A1 (zh) 能量调度方法、装置及系统
JP2017051083A (ja) 発電システム、発電方法およびプログラム
CN109391011A (zh) 一种不间断电源中高压锂电池管理系统
US9680370B2 (en) Power converting system and method of controlling the same
WO2024169361A1 (zh) 一种多机并联储能系统及其充放电控制方法
WO2021232418A1 (zh) 充电控制方法、储能模块及用电设备
WO2024131045A1 (zh) 光伏设备以及提升光伏设备的光伏利用率的方法
CN117096936A (zh) 供电电路的控制方法、供电设备及储能设备
CN207039235U (zh) 一种充电系统
CN113067345B (zh) 光伏交流系统的功率因数补偿方法、控制器及系统
JP4569223B2 (ja) 電源装置
JP4337687B2 (ja) 電源装置
CN114597949A (zh) 一种基于下垂控制的逆变器功率补偿方法
JP2021093193A (ja) 電力制御システム
JP4402874B2 (ja) 燃料電池の給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917038

Country of ref document: EP

Kind code of ref document: A1