WO2020143364A1 - Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion - Google Patents

Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion Download PDF

Info

Publication number
WO2020143364A1
WO2020143364A1 PCT/CN2019/122631 CN2019122631W WO2020143364A1 WO 2020143364 A1 WO2020143364 A1 WO 2020143364A1 CN 2019122631 W CN2019122631 W CN 2019122631W WO 2020143364 A1 WO2020143364 A1 WO 2020143364A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
bcn
preparing
ion supercapacitor
electrode material
Prior art date
Application number
PCT/CN2019/122631
Other languages
English (en)
Chinese (zh)
Inventor
郝霄鹏
姜和和
史栋
吴拥中
邵永亮
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2020143364A1 publication Critical patent/WO2020143364A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a preparation method of BCN nanotubes used for lithium ion supercapacitor electrode materials, and belongs to the technical field of lithium ion supercapacitor electrode materials preparation.
  • lithium-ion batteries and supercapacitors have become the main research and discussion hotspots.
  • the energy density of lithium batteries can reach 150-200Wh/kg, but the lower power density and cycle performance limit its use range, which is mainly due to the redox reaction mechanism limits the transmission and conversion efficiency of lithium ions in active materials .
  • the power density of supercapacitors based on electrostatic adsorption mechanism can reach 5-10kW/kg, but the energy density is relatively low. Therefore, how to construct a new energy storage device with high energy density and high power density is particularly important.
  • lithium-ion supercapacitor uses a combination of lithium-ion battery negative electrode material and supercharged positive electrode material on the electrode material to achieve the complementary characteristics of the two, with a higher power density than lithium-ion battery,
  • the energy density is higher than that of supercapacitors, and the safety performance is good, which can meet the overall requirements of the load on the electrochemical performance of the power supply system in practical applications.
  • the energy density of lithium-ion supercapacitors is about twice that of traditional supercapacitors, but compared to lithium-ion batteries, there is still a lot of room for improvement. It is a very important field in this field to further improve the energy density of lithium-ion supercapacitors.
  • the invention aims at the deficiency that the voltage window of the existing lithium ion supercapacitor does not exceed 4V, and provides a preparation method of the electrode material BCN nanotube of the lithium ion supercapacitor with an ultra-high voltage window.
  • the preparation method of the lithium ion supercapacitor electrode material BCN nanotube of the present invention includes the following steps:
  • the mass ratio of the boron source, carbon source and nitrogen source is 0.01-1:0.5-5:5.5-10.
  • the boron source includes but is not limited to boron-containing compounds such as boric acid, sodium tetraborate, potassium borate, and sodium metaborate.
  • the nitrogen source includes, but is not limited to, urea, ammonium chloride, ammonium carbonate, ammonium bicarbonate and other nitrogen-containing compounds.
  • the carbon source includes but is not limited to polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone and other carbon-containing polymer compounds.
  • the molecular weight of the carbon source includes but is not limited to 1000-8000.
  • the ultrasonic dispersion time is 30-60 min.
  • the heating temperature and heating time in the step (2) are 80-120°C and 10-24h, respectively.
  • the inert gas in the step (4) is Ar or N 2 .
  • the temperature is set to 700-1100°C, and the heating rate is 5°C/min.
  • the holding time in the step (4) is 4-6h.
  • the BCN nanotubes prepared by the above method are used to prepare the positive electrode and the negative electrode of a lithium ion supercapacitor.
  • the BCN nanotubes with relatively high B content are dispersed in an organic reagent to prepare a slurry and coated on aluminum foil. After drying, it is used as a positive electrode ;
  • BCN nanotubes with relatively high N content are dispersed in organic reagents to prepare negative electrode slurry and coated on copper foil, and dried as a negative electrode.
  • the C content of the BCN nanotube is not less than 50%.
  • the organic reagent includes but is not limited to organic reagents such as N-methylpyrrolidone.
  • the drying temperature is 80-120°C.
  • the process of assembling the lithium ion supercapacitor in the positive electrode and the negative electrode is as follows: the positive electrode and the negative electrode are immersed in the electrolyte, and the separator is placed in the middle to assemble the lithium ion supercapacitor.
  • the electrolyte includes but is not limited to lithium-containing organic electrolyte such as lithium hexafluorophosphate.
  • the present invention proposes a simple and convenient method for the first time.
  • BCN nanotube materials with different B and N content are successfully obtained.
  • the BCN nanotube electrode material has a length of 5-10 ⁇ m and a diameter of 200-500nm, this material is applied to the positive and negative electrodes of lithium-ion supercapacitors.
  • the assembled lithium-ion supercapacitors can achieve a voltage window of up to 4-5V, with high specific capacity, good cycle stability, and excellent power-energy density. specialty.
  • FIG. 5 is a cyclic voltammogram of electrode materials for lithium ion supercapacitors prepared by the present invention.
  • FIG. 6 is a charging and discharging diagram of electrode materials for lithium ion supercapacitors prepared by the present invention.
  • the obtained mixed solution was added to a beaker and placed on a heating table to dry, the heating temperature was set at 80°C and the heating time was 20h, and the heating device was turned on. After heating, the material is cooled and taken out to obtain white powder.
  • the B content and N content of the BCN nanotubes are 19.5% and 10.2%, respectively.
  • the B content and N content of the BCN nanotubes were 10.6% and 18.7%, respectively.
  • the obtained mixed solution was added to a beaker and placed on a heating table to dry, the heating temperature was set at 120°C and the heating time was 10h, and the heating device was turned on. After heating, the material is cooled and taken out to obtain white powder.
  • the B content and N content of the BCN nanotubes are 22.6% and 11.5%, respectively.
  • the B content and N content of the BCN nanotubes are 21.7% and 15.6%, respectively.
  • the B content and N content of the BCN nanotubes are 20.4% and 17.5%, respectively.
  • the B content and N content of the BCN nanotubes are 21.7% and 15.6%, respectively.
  • This example is different from Example 1 in that the molecular weight of the polyethylene glycol added in step (1) is adjusted to 5000.
  • the B content and N content of the BCN nanotubes in this example are similar to those in Example 1.
  • Example 3 Apply about 10 to 20 mg of the prepared BCN nanotubes (B content and N content are 22.6% and 11.5%, respectively) obtained in Example 3 above on aluminum foil, and dry in a vacuum drying oven at a temperature of 80 to 120°C After drying, it is used as a positive electrode.
  • BCN nanotubes (B content and N content were 10.6% and 18.7%, respectively) obtained in the above Example 2 was prepared and coated on a copper foil in a vacuum drying oven at a drying temperature of 80 ⁇ 120 °C, after drying as a negative electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé de préparation de nanotubes de BCN dans un matériau d'électrode de supercondensateur lithium-ion, le procédé comprenant les étapes suivantes : (1) dissoudre les précurseurs de source de bore, de source de carbone et de source d'azote dans un solvant d'eau désionisée pour préparer une solution mélangée ; (2) chauffer et sécher la solution mélangée ; (3) la refroidir pour obtenir une poudre blanche ; et (4) placer la poudre blanche dans un four tubulaire, introduire un gaz inerte, procéder à la calcination de celle-ci à haute température et la refroidir naturellement afin de préparer les nanotubes de BCN. Les nanotubes de BCN préparés sont utilisés en tant que matériau pour préparer des électrodes positive et négative de supercondensateur lithium-ion à assembler dans un supercondensateur lithium-ion. Un matériau de nanotubes de BCN ayant différents contenus d'éléments B et N est obtenu avec succès selon un procédé simple de calcination en une étape, le matériau de nanotubes de BCN ayant une longueur comprise entre 5 et 10 µm et un diamètre compris entre 200 et 500 nm. Lorsque le matériau de nanotubes de BCN est appliqué à des électrodes positive et négative de supercondensateur lithium-ion, un supercondensateur lithium-ion ainsi assemblé peut atteindre une fenêtre de tension aussi élevée que 4-5 V et présente les caractéristiques d'une capacité spécifique élevée, d'une bonne stabilité de cycle et d'une excellente densité d'énergie de puissance.
PCT/CN2019/122631 2019-01-08 2019-12-03 Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion WO2020143364A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910016000.3 2019-01-08
CN201910016000.3A CN109686589B (zh) 2019-01-08 2019-01-08 锂离子超级电容器电极材料bcn纳米管的制备方法

Publications (1)

Publication Number Publication Date
WO2020143364A1 true WO2020143364A1 (fr) 2020-07-16

Family

ID=66192089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122631 WO2020143364A1 (fr) 2019-01-08 2019-12-03 Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion

Country Status (2)

Country Link
CN (1) CN109686589B (fr)
WO (1) WO2020143364A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807991A (zh) * 2022-06-28 2022-07-29 电子科技大学长三角研究院(湖州) 一种硼氮共配位铜单原子催化剂的制备方法及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686589B (zh) * 2019-01-08 2020-06-05 山东大学 锂离子超级电容器电极材料bcn纳米管的制备方法
CN110280292B (zh) * 2019-07-09 2022-04-29 浙江工业大学 一种复合铂纳米颗粒和金属氮化物材料催化剂及其制备方法和应用
CN111170306A (zh) * 2020-01-10 2020-05-19 南昌大学 硼/氮双掺杂多孔碳纳米片及其锂硫电池正极材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101284655A (zh) * 2008-05-16 2008-10-15 深圳市贝特瑞新能源材料股份有限公司 类石墨结构的锂离子电池负极材料及其制备方法
CN105271215A (zh) * 2015-11-25 2016-01-27 北京旭碳新材料科技有限公司 一种高密度氮掺杂石墨烯及其制备方法和应用
CN106477561A (zh) * 2016-09-22 2017-03-08 广西大学 一种硼氮双元自掺杂三维褶皱石墨烯电极材料的制备方法
CN107082408A (zh) * 2017-06-22 2017-08-22 山东大学 一种利用冷冻干燥处理制备多孔硼碳氮纳米片的方法
CN109686589A (zh) * 2019-01-08 2019-04-26 山东大学 锂离子超级电容器电极材料bcn纳米管的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077608C (zh) * 1999-07-02 2002-01-09 中国科学院物理研究所 一种生长高定向bcn纳米管材料的方法
US8940444B2 (en) * 2011-05-20 2015-01-27 Alliance For Sustainable Energy, Llc Hybrid radical energy storage device and method of making
US9905373B2 (en) * 2016-01-04 2018-02-27 Nanotek Instruments, Inc. Supercapacitor having an integral 3D graphene-carbon hybrid foam-based electrode
CN106784687A (zh) * 2016-12-21 2017-05-31 厦门大学 一种碳氮复合物空心材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101284655A (zh) * 2008-05-16 2008-10-15 深圳市贝特瑞新能源材料股份有限公司 类石墨结构的锂离子电池负极材料及其制备方法
CN105271215A (zh) * 2015-11-25 2016-01-27 北京旭碳新材料科技有限公司 一种高密度氮掺杂石墨烯及其制备方法和应用
CN106477561A (zh) * 2016-09-22 2017-03-08 广西大学 一种硼氮双元自掺杂三维褶皱石墨烯电极材料的制备方法
CN107082408A (zh) * 2017-06-22 2017-08-22 山东大学 一种利用冷冻干燥处理制备多孔硼碳氮纳米片的方法
CN109686589A (zh) * 2019-01-08 2019-04-26 山东大学 锂离子超级电容器电极材料bcn纳米管的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TABASSUM, H. ET AL.: "Large-scale fabrication of BCN nanotube architecture entangled on a three-dimensional carbon skeleton for energy storage.", JOURNAL OF MATERIALS CHEMISTRY A., vol. 6, no. 42, 3 October 2018 (2018-10-03), XP055718846, ISSN: 2050-748 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807991A (zh) * 2022-06-28 2022-07-29 电子科技大学长三角研究院(湖州) 一种硼氮共配位铜单原子催化剂的制备方法及其应用
CN114807991B (zh) * 2022-06-28 2022-09-16 电子科技大学长三角研究院(湖州) 一种硼氮共配位铜单原子催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN109686589B (zh) 2020-06-05
CN109686589A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020143364A1 (fr) Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion
JP6445585B2 (ja) 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池
CN109980179B (zh) 一种氮碳掺杂改性二氧化锰复合材料及其制备方法
CN107221654B (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN110085813B (zh) 一种硬碳复合材料及其制备方法
CN102867940B (zh) 一种锂硫电池改性正极的工艺
CN104779376A (zh) 一种锂硫电池正极材料、制备方法和锂硫电池
WO2018121751A1 (fr) Procédé de préparation d'une fleur de graphène et son application dans une batterie au lithium-soufre
WO2012146046A1 (fr) Batterie de capacité au polyimide et son procédé de fabrication
WO2020164353A1 (fr) Matériau nanocomposite de carbone poreux dopé avec des atomes métalliques et son procédé de préparation et son utilisation
CN102623685A (zh) 高功率型锂离子电池负极材料及其制备方法和负极片
WO2021088354A1 (fr) Ferrite de nickel noyau-enveloppe et son procédé de préparation, matériau de ferrite de nickel @c, son procédé de préparation et son utilisation
CN112952047B (zh) 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用
CN112614703B (zh) 一种离子电容器负极材料及其制备方法和应用
CN104393284A (zh) 负载氧化镍纳米颗粒的多孔硬碳球负极材料及制备方法
CN103500822A (zh) 炭改性纳米Li4Ti5O12与多孔石墨烯复合电极材料的制备方法
WO2020108132A1 (fr) Matériau composite titanate de lithium nitruré-oxyde d'aluminium nitruré, son procédé de préparation et son application
WO2018059180A1 (fr) Alimentation électrique chimique haute puissance et à haute énergie, et son procédé de préparation
CN112591725A (zh) 一种N,P掺杂多孔碳包覆CoP的负极活性材料及制备方法
CN107863505B (zh) 一种氮化硼纳米管/硅/碳纳米管复合材料及制备、应用
CN103855373A (zh) 五氧化二钒/石墨烯复合材料及其制备方法和应用
CN114613613A (zh) 聚多巴胺/石墨烯复合材料锂离子混合电容器及制备方法
CN103094567A (zh) 一种锂快离子导体复合的锂电池正极材料及其制备方法
CN103515581A (zh) LiV3O8/石墨烯复合材料及其制备方法和应用
WO2017197675A1 (fr) Matériau modifié au titanate de lithium et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908839

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19908839

Country of ref document: EP

Kind code of ref document: A1