WO2020143364A1 - Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion - Google Patents
Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion Download PDFInfo
- Publication number
- WO2020143364A1 WO2020143364A1 PCT/CN2019/122631 CN2019122631W WO2020143364A1 WO 2020143364 A1 WO2020143364 A1 WO 2020143364A1 CN 2019122631 W CN2019122631 W CN 2019122631W WO 2020143364 A1 WO2020143364 A1 WO 2020143364A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- bcn
- preparing
- ion supercapacitor
- electrode material
- Prior art date
Links
- 239000002071 nanotube Substances 0.000 title claims abstract description 45
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 40
- 239000007772 electrode material Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 39
- 239000011259 mixed solution Substances 0.000 claims abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 12
- 229910052796 boron Inorganic materials 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000008367 deionised water Substances 0.000 claims abstract description 9
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000011261 inert gas Substances 0.000 claims abstract description 4
- 239000002243 precursor Substances 0.000 claims abstract description 3
- 239000002904 solvent Substances 0.000 claims abstract description 3
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000011889 copper foil Substances 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- -1 nitrogen-containing compound Chemical class 0.000 claims description 3
- 239000011267 electrode slurry Substances 0.000 claims description 2
- 239000002002 slurry Substances 0.000 claims description 2
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 238000005242 forging Methods 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 12
- 238000001354 calcination Methods 0.000 abstract description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 6
- 239000001099 ammonium carbonate Substances 0.000 description 6
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical compound [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 description 6
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical compound [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 229910021538 borax Inorganic materials 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 4
- 239000004328 sodium tetraborate Substances 0.000 description 4
- 235000010339 sodium tetraborate Nutrition 0.000 description 4
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention relates to a preparation method of BCN nanotubes used for lithium ion supercapacitor electrode materials, and belongs to the technical field of lithium ion supercapacitor electrode materials preparation.
- lithium-ion batteries and supercapacitors have become the main research and discussion hotspots.
- the energy density of lithium batteries can reach 150-200Wh/kg, but the lower power density and cycle performance limit its use range, which is mainly due to the redox reaction mechanism limits the transmission and conversion efficiency of lithium ions in active materials .
- the power density of supercapacitors based on electrostatic adsorption mechanism can reach 5-10kW/kg, but the energy density is relatively low. Therefore, how to construct a new energy storage device with high energy density and high power density is particularly important.
- lithium-ion supercapacitor uses a combination of lithium-ion battery negative electrode material and supercharged positive electrode material on the electrode material to achieve the complementary characteristics of the two, with a higher power density than lithium-ion battery,
- the energy density is higher than that of supercapacitors, and the safety performance is good, which can meet the overall requirements of the load on the electrochemical performance of the power supply system in practical applications.
- the energy density of lithium-ion supercapacitors is about twice that of traditional supercapacitors, but compared to lithium-ion batteries, there is still a lot of room for improvement. It is a very important field in this field to further improve the energy density of lithium-ion supercapacitors.
- the invention aims at the deficiency that the voltage window of the existing lithium ion supercapacitor does not exceed 4V, and provides a preparation method of the electrode material BCN nanotube of the lithium ion supercapacitor with an ultra-high voltage window.
- the preparation method of the lithium ion supercapacitor electrode material BCN nanotube of the present invention includes the following steps:
- the mass ratio of the boron source, carbon source and nitrogen source is 0.01-1:0.5-5:5.5-10.
- the boron source includes but is not limited to boron-containing compounds such as boric acid, sodium tetraborate, potassium borate, and sodium metaborate.
- the nitrogen source includes, but is not limited to, urea, ammonium chloride, ammonium carbonate, ammonium bicarbonate and other nitrogen-containing compounds.
- the carbon source includes but is not limited to polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone and other carbon-containing polymer compounds.
- the molecular weight of the carbon source includes but is not limited to 1000-8000.
- the ultrasonic dispersion time is 30-60 min.
- the heating temperature and heating time in the step (2) are 80-120°C and 10-24h, respectively.
- the inert gas in the step (4) is Ar or N 2 .
- the temperature is set to 700-1100°C, and the heating rate is 5°C/min.
- the holding time in the step (4) is 4-6h.
- the BCN nanotubes prepared by the above method are used to prepare the positive electrode and the negative electrode of a lithium ion supercapacitor.
- the BCN nanotubes with relatively high B content are dispersed in an organic reagent to prepare a slurry and coated on aluminum foil. After drying, it is used as a positive electrode ;
- BCN nanotubes with relatively high N content are dispersed in organic reagents to prepare negative electrode slurry and coated on copper foil, and dried as a negative electrode.
- the C content of the BCN nanotube is not less than 50%.
- the organic reagent includes but is not limited to organic reagents such as N-methylpyrrolidone.
- the drying temperature is 80-120°C.
- the process of assembling the lithium ion supercapacitor in the positive electrode and the negative electrode is as follows: the positive electrode and the negative electrode are immersed in the electrolyte, and the separator is placed in the middle to assemble the lithium ion supercapacitor.
- the electrolyte includes but is not limited to lithium-containing organic electrolyte such as lithium hexafluorophosphate.
- the present invention proposes a simple and convenient method for the first time.
- BCN nanotube materials with different B and N content are successfully obtained.
- the BCN nanotube electrode material has a length of 5-10 ⁇ m and a diameter of 200-500nm, this material is applied to the positive and negative electrodes of lithium-ion supercapacitors.
- the assembled lithium-ion supercapacitors can achieve a voltage window of up to 4-5V, with high specific capacity, good cycle stability, and excellent power-energy density. specialty.
- FIG. 5 is a cyclic voltammogram of electrode materials for lithium ion supercapacitors prepared by the present invention.
- FIG. 6 is a charging and discharging diagram of electrode materials for lithium ion supercapacitors prepared by the present invention.
- the obtained mixed solution was added to a beaker and placed on a heating table to dry, the heating temperature was set at 80°C and the heating time was 20h, and the heating device was turned on. After heating, the material is cooled and taken out to obtain white powder.
- the B content and N content of the BCN nanotubes are 19.5% and 10.2%, respectively.
- the B content and N content of the BCN nanotubes were 10.6% and 18.7%, respectively.
- the obtained mixed solution was added to a beaker and placed on a heating table to dry, the heating temperature was set at 120°C and the heating time was 10h, and the heating device was turned on. After heating, the material is cooled and taken out to obtain white powder.
- the B content and N content of the BCN nanotubes are 22.6% and 11.5%, respectively.
- the B content and N content of the BCN nanotubes are 21.7% and 15.6%, respectively.
- the B content and N content of the BCN nanotubes are 20.4% and 17.5%, respectively.
- the B content and N content of the BCN nanotubes are 21.7% and 15.6%, respectively.
- This example is different from Example 1 in that the molecular weight of the polyethylene glycol added in step (1) is adjusted to 5000.
- the B content and N content of the BCN nanotubes in this example are similar to those in Example 1.
- Example 3 Apply about 10 to 20 mg of the prepared BCN nanotubes (B content and N content are 22.6% and 11.5%, respectively) obtained in Example 3 above on aluminum foil, and dry in a vacuum drying oven at a temperature of 80 to 120°C After drying, it is used as a positive electrode.
- BCN nanotubes (B content and N content were 10.6% and 18.7%, respectively) obtained in the above Example 2 was prepared and coated on a copper foil in a vacuum drying oven at a drying temperature of 80 ⁇ 120 °C, after drying as a negative electrode.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
L'invention concerne un procédé de préparation de nanotubes de BCN dans un matériau d'électrode de supercondensateur lithium-ion, le procédé comprenant les étapes suivantes : (1) dissoudre les précurseurs de source de bore, de source de carbone et de source d'azote dans un solvant d'eau désionisée pour préparer une solution mélangée ; (2) chauffer et sécher la solution mélangée ; (3) la refroidir pour obtenir une poudre blanche ; et (4) placer la poudre blanche dans un four tubulaire, introduire un gaz inerte, procéder à la calcination de celle-ci à haute température et la refroidir naturellement afin de préparer les nanotubes de BCN. Les nanotubes de BCN préparés sont utilisés en tant que matériau pour préparer des électrodes positive et négative de supercondensateur lithium-ion à assembler dans un supercondensateur lithium-ion. Un matériau de nanotubes de BCN ayant différents contenus d'éléments B et N est obtenu avec succès selon un procédé simple de calcination en une étape, le matériau de nanotubes de BCN ayant une longueur comprise entre 5 et 10 µm et un diamètre compris entre 200 et 500 nm. Lorsque le matériau de nanotubes de BCN est appliqué à des électrodes positive et négative de supercondensateur lithium-ion, un supercondensateur lithium-ion ainsi assemblé peut atteindre une fenêtre de tension aussi élevée que 4-5 V et présente les caractéristiques d'une capacité spécifique élevée, d'une bonne stabilité de cycle et d'une excellente densité d'énergie de puissance.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910016000.3 | 2019-01-08 | ||
CN201910016000.3A CN109686589B (zh) | 2019-01-08 | 2019-01-08 | 锂离子超级电容器电极材料bcn纳米管的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020143364A1 true WO2020143364A1 (fr) | 2020-07-16 |
Family
ID=66192089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/122631 WO2020143364A1 (fr) | 2019-01-08 | 2019-12-03 | Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109686589B (fr) |
WO (1) | WO2020143364A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114807991A (zh) * | 2022-06-28 | 2022-07-29 | 电子科技大学长三角研究院(湖州) | 一种硼氮共配位铜单原子催化剂的制备方法及其应用 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109686589B (zh) * | 2019-01-08 | 2020-06-05 | 山东大学 | 锂离子超级电容器电极材料bcn纳米管的制备方法 |
CN110280292B (zh) * | 2019-07-09 | 2022-04-29 | 浙江工业大学 | 一种复合铂纳米颗粒和金属氮化物材料催化剂及其制备方法和应用 |
CN111170306A (zh) * | 2020-01-10 | 2020-05-19 | 南昌大学 | 硼/氮双掺杂多孔碳纳米片及其锂硫电池正极材料 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101284655A (zh) * | 2008-05-16 | 2008-10-15 | 深圳市贝特瑞新能源材料股份有限公司 | 类石墨结构的锂离子电池负极材料及其制备方法 |
CN105271215A (zh) * | 2015-11-25 | 2016-01-27 | 北京旭碳新材料科技有限公司 | 一种高密度氮掺杂石墨烯及其制备方法和应用 |
CN106477561A (zh) * | 2016-09-22 | 2017-03-08 | 广西大学 | 一种硼氮双元自掺杂三维褶皱石墨烯电极材料的制备方法 |
CN107082408A (zh) * | 2017-06-22 | 2017-08-22 | 山东大学 | 一种利用冷冻干燥处理制备多孔硼碳氮纳米片的方法 |
CN109686589A (zh) * | 2019-01-08 | 2019-04-26 | 山东大学 | 锂离子超级电容器电极材料bcn纳米管的制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1077608C (zh) * | 1999-07-02 | 2002-01-09 | 中国科学院物理研究所 | 一种生长高定向bcn纳米管材料的方法 |
US8940444B2 (en) * | 2011-05-20 | 2015-01-27 | Alliance For Sustainable Energy, Llc | Hybrid radical energy storage device and method of making |
US9905373B2 (en) * | 2016-01-04 | 2018-02-27 | Nanotek Instruments, Inc. | Supercapacitor having an integral 3D graphene-carbon hybrid foam-based electrode |
CN106784687A (zh) * | 2016-12-21 | 2017-05-31 | 厦门大学 | 一种碳氮复合物空心材料及其制备方法和应用 |
-
2019
- 2019-01-08 CN CN201910016000.3A patent/CN109686589B/zh active Active
- 2019-12-03 WO PCT/CN2019/122631 patent/WO2020143364A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101284655A (zh) * | 2008-05-16 | 2008-10-15 | 深圳市贝特瑞新能源材料股份有限公司 | 类石墨结构的锂离子电池负极材料及其制备方法 |
CN105271215A (zh) * | 2015-11-25 | 2016-01-27 | 北京旭碳新材料科技有限公司 | 一种高密度氮掺杂石墨烯及其制备方法和应用 |
CN106477561A (zh) * | 2016-09-22 | 2017-03-08 | 广西大学 | 一种硼氮双元自掺杂三维褶皱石墨烯电极材料的制备方法 |
CN107082408A (zh) * | 2017-06-22 | 2017-08-22 | 山东大学 | 一种利用冷冻干燥处理制备多孔硼碳氮纳米片的方法 |
CN109686589A (zh) * | 2019-01-08 | 2019-04-26 | 山东大学 | 锂离子超级电容器电极材料bcn纳米管的制备方法 |
Non-Patent Citations (1)
Title |
---|
TABASSUM, H. ET AL.: "Large-scale fabrication of BCN nanotube architecture entangled on a three-dimensional carbon skeleton for energy storage.", JOURNAL OF MATERIALS CHEMISTRY A., vol. 6, no. 42, 3 October 2018 (2018-10-03), XP055718846, ISSN: 2050-748 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114807991A (zh) * | 2022-06-28 | 2022-07-29 | 电子科技大学长三角研究院(湖州) | 一种硼氮共配位铜单原子催化剂的制备方法及其应用 |
CN114807991B (zh) * | 2022-06-28 | 2022-09-16 | 电子科技大学长三角研究院(湖州) | 一种硼氮共配位铜单原子催化剂的制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109686589B (zh) | 2020-06-05 |
CN109686589A (zh) | 2019-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020143364A1 (fr) | Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion | |
JP6445585B2 (ja) | 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池 | |
CN109980179B (zh) | 一种氮碳掺杂改性二氧化锰复合材料及其制备方法 | |
CN107221654B (zh) | 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法 | |
CN110085813B (zh) | 一种硬碳复合材料及其制备方法 | |
CN102867940B (zh) | 一种锂硫电池改性正极的工艺 | |
CN104779376A (zh) | 一种锂硫电池正极材料、制备方法和锂硫电池 | |
WO2018121751A1 (fr) | Procédé de préparation d'une fleur de graphène et son application dans une batterie au lithium-soufre | |
WO2012146046A1 (fr) | Batterie de capacité au polyimide et son procédé de fabrication | |
WO2020164353A1 (fr) | Matériau nanocomposite de carbone poreux dopé avec des atomes métalliques et son procédé de préparation et son utilisation | |
CN102623685A (zh) | 高功率型锂离子电池负极材料及其制备方法和负极片 | |
WO2021088354A1 (fr) | Ferrite de nickel noyau-enveloppe et son procédé de préparation, matériau de ferrite de nickel @c, son procédé de préparation et son utilisation | |
CN112952047B (zh) | 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用 | |
CN112614703B (zh) | 一种离子电容器负极材料及其制备方法和应用 | |
CN104393284A (zh) | 负载氧化镍纳米颗粒的多孔硬碳球负极材料及制备方法 | |
CN103500822A (zh) | 炭改性纳米Li4Ti5O12与多孔石墨烯复合电极材料的制备方法 | |
WO2020108132A1 (fr) | Matériau composite titanate de lithium nitruré-oxyde d'aluminium nitruré, son procédé de préparation et son application | |
WO2018059180A1 (fr) | Alimentation électrique chimique haute puissance et à haute énergie, et son procédé de préparation | |
CN112591725A (zh) | 一种N,P掺杂多孔碳包覆CoP的负极活性材料及制备方法 | |
CN107863505B (zh) | 一种氮化硼纳米管/硅/碳纳米管复合材料及制备、应用 | |
CN103855373A (zh) | 五氧化二钒/石墨烯复合材料及其制备方法和应用 | |
CN114613613A (zh) | 聚多巴胺/石墨烯复合材料锂离子混合电容器及制备方法 | |
CN103094567A (zh) | 一种锂快离子导体复合的锂电池正极材料及其制备方法 | |
CN103515581A (zh) | LiV3O8/石墨烯复合材料及其制备方法和应用 | |
WO2017197675A1 (fr) | Matériau modifié au titanate de lithium et son procédé de fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19908839 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19908839 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19908839 Country of ref document: EP Kind code of ref document: A1 |