WO2020133381A1 - 一种激光器封装结构 - Google Patents

一种激光器封装结构 Download PDF

Info

Publication number
WO2020133381A1
WO2020133381A1 PCT/CN2018/125438 CN2018125438W WO2020133381A1 WO 2020133381 A1 WO2020133381 A1 WO 2020133381A1 CN 2018125438 W CN2018125438 W CN 2018125438W WO 2020133381 A1 WO2020133381 A1 WO 2020133381A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit layer
bracket
laser
structure according
connection
Prior art date
Application number
PCT/CN2018/125438
Other languages
English (en)
French (fr)
Inventor
陈辉
时军朋
廖启维
黄永特
徐宸科
Original Assignee
泉州三安半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉州三安半导体科技有限公司 filed Critical 泉州三安半导体科技有限公司
Priority to CN201880035524.0A priority Critical patent/CN110710069A/zh
Priority to PCT/CN2018/125438 priority patent/WO2020133381A1/zh
Priority to TW108112710A priority patent/TWI715965B/zh
Publication of WO2020133381A1 publication Critical patent/WO2020133381A1/zh
Priority to US17/139,230 priority patent/US20210126423A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0231Stems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0232Lead-frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction

Definitions

  • the present invention relates to the field of lasers, and particularly to a packaging structure of a high-power laser.
  • semiconductor lasers have excellent characteristics of good monochromaticity, small size, long life, high power density and high speed operation, semiconductor lasers are used in laser ranging, lidar, laser communication, laser simulation weapons, automatic control , Testing equipment and even medical beauty have been widely used, forming a broad market.
  • a laser packaging structure includes: a bracket and a laser chip mounted on the bracket. Further, the bracket includes a front circuit layer on the front of the bracket, a back circuit layer on the back of the bracket, and an internal circuit layer inside the bracket, the internal circuit layer has a plurality of circuit connection units, each circuit connection unit It has a first connection via and a second connection via, where the first connection via is connected to the front circuit layer, the second connection via is connected to the back circuit layer, and the second connection via is located at the circuit connection At one end of the unit, the first connection through-hole is located inside the second connection through-hole; the laser chip is fixed on the front circuit layer of the bracket and can emit a first laser beam.
  • a laser packaging structure includes: a bracket and a laser chip mounted on the bracket. Further, this includes a front circuit layer on the front of the bracket, a back circuit layer on the back of the bracket, and an internal circuit layer inside the bracket.
  • the front circuit layer includes more than two device mounting units, and the mounting unit includes The first area and the second area isolated from each other;
  • the internal circuit layer has a plurality of circuit connection units, each circuit connection unit has a first connection through hole and a second connection through hole, wherein the first connection through hole is connected to the front circuit layer, and the second connection through hole is connected to all The back circuit layer; at least two laser chips are respectively installed in the first area of each mounting unit of the front circuit layer of the bracket, and can emit a first laser beam.
  • the above laser packaging structure can be applied to car headlights, high bay lights, laser TVs or projectors. Taking laser headlights as an example, laser headlights have a higher density of light output and a smaller light angle than LED headlights. The irradiation distance can reach 600 meters, which is twice as far as LED headlights.
  • a laser packaging structure provided by the present invention includes at least the following technical effects
  • bracket circuit Through the design of the bracket circuit, a single or multiple laser chips can be installed in the package;
  • a plurality of laser chip packages can independently control their switches according to requirements to achieve adjustable brightness
  • the back pad of the bracket adopts a thermoelectric separation design
  • the back electrode block is connected by the line, the through hole and the front circuit layer laid by the inner middle layer
  • the back middle heat dissipation block is connected to the back end PCB circuit board or heat sink
  • the metal substrate is directly connected, which facilitates rapid heat dissipation of the package.
  • FIG. 1 is a schematic sectional view illustrating a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a front view after the chip is fixedly soldered on the holder of the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating the internal circuit layer distribution of the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the distribution of the rear circuit layers of the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a structure in which a package body and a PCB substrate are connected according to an embodiment of the present invention.
  • FIG. 6 is a front view illustrating the packaging structure of the second embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating the distribution of the rear circuit layers of the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the internal circuit layer distribution of the second embodiment of the present invention.
  • FIG. 9 is a front view illustrating a packaging structure of a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the internal circuit layer distribution of the third embodiment of the present invention.
  • FIG. 11 is a front view illustrating a package structure of a fourth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the internal circuit layer distribution of the fourth embodiment of the present invention.
  • FIG. 13 is a schematic sectional view illustrating a fifth embodiment of the present invention.
  • FIG. 14 is a front view illustrating the wavelength conversion layer of the package structure shown in FIG.
  • FIG. 15 is a front view illustrating another wavelength conversion layer structure of the package structure shown in FIG.
  • 16 is a schematic sectional view illustrating a modification of the fifth embodiment of the present invention.
  • FIG. 17 is a schematic sectional view illustrating a sixth embodiment of the present invention.
  • FIG. 18 is a schematic diagram illustrating a light source module to which the packaging structure of the present invention is applied.
  • 100 PCB circuit board; 110: substrate of the PCB circuit board; 111: heat dissipation boss; 121: soldering layer;
  • 122 circuit layer; 123: solder mask; 124: insulating layer; 210: bracket; 210A-210D: edge of bracket; 211: bottom of bracket; 2111: lower part of bracket bottom; 2112: high part of bracket bottom; 21 2: Side of the bracket; 213: cavity; 220: laser chip; 220 A: laser chip light output end surface; 230: optical element; 231: reflective surface; 240: cover plate; 241: metal frame; 242: wavelength conversion ; 260: mounting unit on the front of the bracket; 261: first area; 262: second area; 263: third area; 270: internal electrical layer; 271, 273, 275, 277: first circuit connection unit; 2711 : Start end of the first circuit connection unit; 2712: Extension of the first circuit connection unit; 272, 274, 276, 278: Second circuit connection unit; 2721: Start end of the second circuit connection unit; 2722: The first extension to the circuit connection unit; 300: application light source module; 310: laser light source package; 320:
  • Embodiments of the invention [0033] The following describes the laser package structure of the present invention in detail with reference to a schematic diagram. Before further introducing the present invention, it should be understood that since specific embodiments can be modified, the present invention is not limited to the specific embodiments described below . It should also be understood that, since the scope of the present invention is defined only by the appended claims, the embodiments used are only introductory and not restrictive.
  • the following embodiments disclose a package structure including a plurality of laser chips
  • the package includes a bracket and a laser chip mounted on the bracket.
  • the bracket includes a front circuit layer on the front of the bracket, a back circuit layer on the back of the bracket, and an internal circuit layer inside the bracket, wherein the front circuit layer includes more than two device mounting units, and the mounting unit includes A first area and a second area isolated from each other, the internal circuit layer has a plurality of circuit connection units, each circuit connection unit has a first connection through hole and a second connection through hole, wherein the first connection through hole is connected to the front side In the circuit layer, the second connection via is connected to the back circuit layer, and two or more laser chips are respectively mounted on the first area of each mounting unit of the front circuit layer of the bracket.
  • this embodiment discloses a laser package including a bracket 210, a laser chip 220, an optical element 230, and a cover plate 240.
  • the bracket 210 adopts a bowl and cup bracket, which is composed of a bottom portion 211 and a side portion 212, and constructs a cavity 213.
  • the bottom portion 211 is stepped, divided into a high portion 2111 and a low portion 2112.
  • the bracket 210 is preferably a ceramic bracket, for example, A1 2 0 3 , A1N, etc., on which a circuit is provided.
  • the laser chip 220 is placed horizontally on the bottom surface of 210, preferably directly arranged on the high surface 2111 of the bottom, and the optical element 230 is arranged on the low surface 2112 of the bottom of the bracket.
  • the package may use a ceramic substrate with high thermal conductivity as the bracket 210, the bracket is provided with a bowl and a multi-layer platform structure, the platform height difference D is preferably 0.1 ⁇ 0.5mm, for example, may be 0.1 ⁇ 0.3mm.
  • the LD chip 220 is placed horizontally on a higher platform, and the optical element 230 (with a high reverse slope 231) is placed on a lower platform, which reflects the horizontal light emitted from the LD chip 220 and converts it into a vertical light exit to raise the normal At the same time, the light output efficiency is beneficial to the optical design of the device.
  • the light output end surface 220A of the LD chip 220 is at least flush with the vertical surface 2113 of the support step. More preferably, the light output end surface 220A of the LD chip protrudes out of the step to prevent the divergent outgoing light beam from irradiating the solid crystal platform of the support on.
  • the optical element 230 preferably has an inclined side surface 231 and a top
  • the surface 232 and the upper surface 232 have a platform for picking up components by the suction nozzle in the packaging process.
  • the platform area is greater than 0.5x0.5 mm 2 .
  • a reflective layer is formed on the side surface 231 of the optical element 230 to form a reflective surface.
  • the material may be a metal reflective layer such as Ag Al, Au, or an oxide dielectric film reflective layer such as Si0 2 , Ti0 2 MgF 2 A1 2 0 3 .
  • the number of reflecting surfaces may be several, and the shapes or angles of different reflecting surfaces may be different. In the case of multiple reflecting mirrors, the angle of the reflecting surface can be adjusted according to different application requirements to control the overlapping degree of the light spots of multiple chips to realize light sources with different emission angles.
  • the cover plate 240 is provided on the top 214 of the bracket 210 for sealing all the elements in the bowl and cup of the bracket.
  • Silica gel or Au-Sn eutectic can be used to seal the package between the cover plate 240 and the bowl and cup of the holder.
  • the material of the cover plate 240 can be glass, quartz, sapphire, transparent ceramics, etc., and wavelength conversion block materials can be used according to different light color requirements. It should be noted that it is not limited to the use of a cover plate to seal the components on the bracket. In some embodiments, silicone can be filled on the bracket 210 to cover all the components to protect all the components on the bracket 210.
  • the bracket 210 includes a front circuit layer, a back circuit layer 280, and an internal circuit layer 270 laid inside the bracket.
  • FIG. 2 shows a front view of the LD chip 220 fixedly soldered on the bracket 210.
  • 3 shows the distribution diagram of the internal circuit layer 270
  • FIG. 4 shows the distribution diagram of the back circuit layer 280 of the bracket.
  • the front structure of the bracket 210 has four edges 210A to 210D, the middle C block on the front is used to place the optical element 230, and the outer peripheral area is the component mounting area, which is divided into more than two installations Unit 260, the mounting unit includes a first region 261, a second region 262 and a third region 263, the three regions are isolated from each other, the surface is coated with a conductive material, wherein the first region 261 and the third region 263 serve as the first electrode In the block, the second region 262 serves as a second electrode block. As shown in FIG.
  • the internal circuit layer 270 includes a series of circuit connection units 271-274, each circuit connection unit includes an end portion located at the edge of the bracket 210, an extension portion extending toward the inside of the bracket, and located at the extension portion
  • the first through hole A1/A2/C2 shown with a black filled circle
  • the second through hole B 1/B2 at the end shown with a white filled circle
  • the circuit connection unit can be divided into a first circuit connection unit 271/2 73 and a second circuit connection unit 272/274, a mounting unit 260 on the front corresponds to a first circuit connection unit 271 and a Second circuit connection unit 272.
  • 271 and 273 is a first circuit connection unit, including two sets of first through holes (Al, C1) and a set of second through holes B1, wherein A1 is connected to the first area 261 on the front side, and C1 is connected to the third area 263 on the front side, B1 is connected to the back electrode block 281;
  • 272 and 274 are second circuit connection units, including a set of first through holes A2 and a set of second through holes B2, where A2 is connected to the second area 262 on the front, B2 is connected To the electrode block 281 on the back side, thereby connecting the front and back electrode blocks.
  • each circuit connection unit has a starting end located at one edge of the bracket 210 and an extension extending toward the other edge of the bracket, wherein the first through holes Al, A2, C1 are located on the extension, and the second through The holes Bl and B2 are located at the starting end, so that the back electrode blocks 281 can be arranged in the edge area of the bracket 210, as shown in FIG. 4, which is convenient for providing the heat dissipation electrode 282 in the middle area P3.
  • the through hole A1 is closer to the second through hole than the through hole C1, for example, the through hole C1 may be provided at a position away from the extending portion.
  • the end 2711 of the first circuit connection unit 271 is located at the edge 210A of the bracket 210, the extension 2712 extends toward the edge 210C of the bracket, the through hole B1 is located at the end 2711, and the through hole A1 is located near the end of the extension 2712
  • the through hole C1 is located at the tail end of the extension 2712
  • the end 2721 of the second circuit connection unit 272 is located at the edge 210C of the bracket 210
  • the extension 2722 extends toward the edge 210A of the bracket
  • the through hole B2 is at the end In the portion 2721
  • the through hole A2 is located at the trailing end of the extension 2712.
  • the first circuit connection unit 271 and the second circuit connection unit 272 are located in the left area of the bracket, and constitute a first group of circuit connection units, corresponding to the left mounting unit 260 of the front circuit layer, the first circuit connection unit 273 and the second circuit
  • the connection unit 274 is located in the right area of the bracket and constitutes a second group of circuit connection units, corresponding to the right mounting unit of the front circuit layer
  • the blocks A, B, and A'on the front of the bracket 210 constitute the first mounting unit 260, D,
  • E and D' constitute the second mounting unit, where the A and D blocks are the first area, and an LD chip 2 20 is placed respectively, and connected to the second area B/E, A'and D'blocks through the leads 221
  • place an E SD protection element 250 connect to the second area B/E through the lead 251
  • the circuit layers are connected, and the front and back electrode blocks are connected as follows: A/A' is connected to P5, B is connected to P2, D/D' is connected to P4, and E is connected to P1.
  • the optical element 230 may be a reflective element or a prism element with a high reverse slope, and converts the light emitted from the horizontal direction of the LD chip 220 into the vertical direction.
  • the circuit structure of the bracket by designing the circuit structure of the bracket, it can be performed in the package body Single or multiple chips (both configured with ESD protection elements), and the multiple chip packages can independently control their switches according to requirements to achieve adjustable brightness.
  • a heat dissipation block 282 may be provided on the back P3 block of the bracket 210 to achieve thermoelectric separation, in which the back electrode block is connected to the front electrode block through lines, through holes, and heat dissipation in the middle of the back Block P3 is directly connected to the back-end PCB circuit board or heat sink metal substrate, as shown in FIG. 5, which facilitates rapid heat dissipation of the package.
  • the cover plate 240 may be a wavelength conversion material, for example, a glass fluorescent plate, a ceramic fluorescent plate, a single crystal fluorescent plate, etc.
  • the thermal conductivity of the material is greater than 10 W/ m- K.
  • the luminous angle after passing through the wavelength conversion material is less than 90°, and the normal light intensity is the largest. Due to the Stokes shift phenomenon and the efficiency of the wavelength conversion material in the wavelength conversion process, a certain amount of heat will be generated.
  • the high thermal conductivity bowl wall 212 can also be used as a heat dissipation channel for the wavelength conversion material, and the heat generated by the wavelength conversion process can be exported .
  • a high thermal conductivity combination method is used between the cover plate 240 and the bracket 210 to achieve good heat dissipation, and the method includes SAB (Surface Activated
  • cover plate 240 and the bracket 210 can also be bonded by a transparent material with high thermal conductivity, and the thermal conductivity is preferably above lW/(m*K).
  • FIGS. 6 to 8 show a second embodiment of the present invention.
  • FIG. 6 shows a front view of the LD chip 220 fixedly welded on the bracket 210; the distribution of the circuit layers on the back is shown in FIG. 7, and the distribution of the internal circuit layers 270 is shown in FIG. 8.
  • blocks A, B, and A' are the first mounting unit
  • the internal circuit layer 270 has eight circuit connection units, of which 271, 273, 275, and 277 are the first circuit connection units, and 272, 274, 276, and 278 are the second Circuit connection unit.
  • 271 and 272 constitute a first group of circuit connection units, connected to blocks A, B, and A', 273 and 274 constitute a second group of circuit connection units, connected to blocks C, D, and C', 275 and 276 It constitutes a third group of circuit connection units, which are connected to blocks H, J, and H', and 277 and 278 constitute a fourth group of circuit connection units, which are connected to blocks F, G, and F'.
  • the holder 210 of the package can place four LD chips 220, which are placed in blocks A, C, F, and H, respectively, and the ES D protection element 250 is placed in blocks A', C', F', and H'
  • the electrode blocks AA', CC', F-F', and HH' communicate through the circuit layer 270 inside the bracket 210.
  • the connection of each electrode block on the front and back is as follows: A/A' and P4 Connected, B connected to P3, C/C' connected to PI, D connected to P2, F/F' connected to P9, G connected to P8, H/H' connected to P6, J connected to P7.
  • the middle P5 block on the back is a heat dissipation block; the middle E block on the front is placed with an optical element 230 to convert the horizontal outgoing light of the chip into a vertical direction to propagate.
  • FIGS. 9 to 10 show a third embodiment of the present invention.
  • FIG. 9 shows a front view of the LD chip 220 fixedly welded on the bracket 210.
  • the distribution of the internal circuit layer 270 is shown in FIG. 10, and the distribution of the rear circuit layer is shown in FIG. 7 as shown in FIG.
  • the optical element 230 of the package structure is placed along the diagonal line of the bowl, and four mounting units are provided at four corners of the bowl, each mounting unit It includes a first region 261 and a second region 262, where the LD chip 220 is mounted on the first region 261 and is as close as possible to the diagonal diagonal line of the bowl or the diagonal diagonal line.
  • the internal circuit layer 270 has a series of circuit connection units located on the upper and lower edge regions of the bracket, each circuit connection unit has a block structure, wherein the second through hole B 1 is adjacent to the edge of the bracket, A through hole A1 is located inside the second through hole B1.
  • connection of the front and back electrode blocks is as follows: A is connected to P4, B is connected to P3, C is connected to P2, D is connected to P1, F is connected to P9, and G is connected to P8 is connected, H is connected to P7, and J is connected to P6.
  • FIGS. 11 to 12 show a fourth embodiment of the present invention.
  • FIG. 11 shows a front view of the LD chip 220 fixedly welded on the bracket 210.
  • the distribution of the internal circuit layer 270 is shown in FIG. 12, and the distribution of the rear circuit layer is shown in FIG. 7.
  • the optical element 230 of the package structure in this embodiment is also placed along the diagonal of the bowl and cup, and four mounting units are provided at the four corners of the bowl and cup, which differs from the third embodiment in that the bracket 210 is The distribution of the front circuit layer and the internal circuit layer is different.
  • Each mounting unit includes a first region 261, a second region 262, and a third region 263, where the LD chip 220 is mounted on the first region 261 and is as close as possible to the bowl
  • the oblique diagonal line is on the diagonal diagonal line, and the ESD protection element 250 is located in the third region 263. As shown in FIG.
  • the internal circuit layer 270 has a series of first circuit connection units 271, 273, 275, 277 and second circuit connection units 272, 274, 276, 278, wherein the through holes of the first circuit connection unit 271 A1 is connected to the front panel In the first region 261 of the road layer, the via C1 is connected to the third region 263 of the front circuit layer, and the via B1 is connected to the electrode block 281 of the back circuit layer.
  • the through hole B 1 is located in the edge area of the bracket, and the through holes A1 and C 1 are located inside the through hole B 1.
  • the first circuit connection unit 271 includes: a start end 2711, a first extension 2712, a connection 2713, a second extension 2714, and an end 2715 located adjacent to the bracket edge 210C, wherein The through hole B1 is located at the starting end 2711, the through hole A1 is located at the connecting portion 2713, and the through hole C1 is located at the end portion 2715.
  • connection of the front and back electrode blocks is as follows: A/A' is connected to P4, B is connected to P3, C/C' is connected to P1, D is connected to P2, and F/F' is connected to P9 connects, G connects with P8, 11 11' connects with? 6 connection, J and P7 connection.
  • the package size can be reduced to a greater extent, or larger LD chips can be compatible in the same package size.
  • circuit distribution forms have listed several different circuit distribution forms. It should be understood that the present invention is not limited to the above several circuit distribution patterns, and can be based on the specific shape of the bowl or the size and number of laser chips, etc. Factors to design the pattern of each circuit layer, so as to meet the actual application requirements.
  • this embodiment discloses a laser package including a holder 210, a laser chip 220, an optical element 230, and a cover plate 240.
  • the cover plate 240 of this embodiment includes a metal frame 241 and a wavelength conversion layer 242, the metal frame 241 forms an opening and embeds a wavelength conversion material as the wavelength conversion layer 242, the opening of the metal frame 240
  • One or more window structures can be set according to the shape of the light spot, as shown in FIGS. 14 and 15.
  • the light exit area is formed only at the position of the cover plate 240 corresponding to the optical element 230, which reduces the light emission angle of the package, and at the same time, the metal frame 241 with high thermal conductivity can more easily derive the wavelength conversion layer 242 The heat generated.
  • FIG. 16 shows a modified embodiment of the fifth embodiment.
  • the wavelength conversion layer of this embodiment is formed on the metal frame, so that the contact area of the wavelength conversion layer 242 and the metal frame 241 can be increased, and the heat dissipation performance of the wavelength conversion layer 242 can be further improved.
  • this embodiment discloses a laser package, which includes a bracket 210, a laser chip 220, an optical element 230, and a cover plate 240.
  • the optical element 23 of the package 0 is a prism with a high reverse slope, including an incident surface 232, a reflective surface 231, and an exit surface 233.
  • a wavelength conversion layer may be directly provided on the incident surface 232 or the exit surface 233.
  • the optical element is preferably made of high-transmission, high-conductivity and high-conductivity material.
  • the thermal conductivity is preferably 5 W/(m*K) or more, and the transmittance is preferably 80%@ lmm or more.
  • the material It can be high thermal conductivity glass, silica, sapphire, transparent ceramics, etc.
  • FIG. 18 simply shows a light source module using the aforementioned laser package. Since the small-angle light source is easier to illuminate the designated area, the small-angle laser light source has obvious advantages in high-directional lighting or communication fields, such as headlights, industrial and mining lights, fishing lights, navigation lights, projectors, laser TVs, optical communications, etc. .
  • a plurality of laser light sources 310a, 310b, 310c, etc. can be independently controlled to switch through circuit design, and the light emitted from the light source passes through the lens 320 or the reflector (not shown in the figure).
  • the optical system After the optical system is processed; within the irradiatable range 330a, 330b, 330c, etc., to achieve the lighting in the designated area.
  • the high beams within the other party's driving range need to be turned off to ensure road traffic safety.
  • the solution proposed in this embodiment can be controlled to turn on the light sources 330b and 330c, so as to achieve illumination only in the illumination areas 330b and 330c, which not only satisfies its own driving lighting, but also avoids the safety hazards caused by the strong light exposure of the other party.

Abstract

一种激光器封装结构,包括支架(210),包含正面电路层、背面电路层(280)及位于支架(210)内部的内部电路层(270),内部电路层(270)具有复数个电路连接单元(271-274),每个电路连接单元(271-274)具有第一连接通孔(A1/A2/C2)和第二连接通孔(B1/B2),其中第一连接通孔(A1/A2/C2)连接至正面电路层,第二连接通孔(B1/B2)连接至背面电路层(280),第二连接通孔(B1/B2)位于电路连接单元(271-274)的一个端部,第一连接通孔(A1/A2/C2)位于第二连接通孔(B1/B2)的内侧;激光芯片(220),固定于支架(210)的正面电路层上,可发射一第一激光光束。

Description

一种激光器封装结构
技术领域
[0001] 本发明涉及激光器领域, 特别涉及一种高功率激光器的封装结构。
背景技术
[0002] 由于半导体激光器 (LD) 有着单色性好、 体积小、 寿命长、 高功率密度和高 速工作的优异特点, 半导体激光器在激光测距、 激光雷达、 激光通信、 激光模 拟武器、 自动控制、 检测仪器甚至医疗美容等方面已经获得了广泛的应用, 形 成了广阔的市场。
发明概述
技术问题
问题的解决方案
技术解决方案
[0003] 在激光器应用向大功率发展的趋势下, 我们提出一种高功率激光应用的封装结 构。
[0004] 根据本发明的第一方面, 一种激光器封装结构, 包括: 支架和安装于该支架上 的激光芯片。 进一步的, 该支架包含位于该支架正面的正面电路层、 位于该支 架背面的背面电路层及位于该支架内部的内部电路层, 所述内部电路层具有复 数个电路连接单元, 每个电路连接单元具有第一连接通孔和第二连接通孔, 其 中第一连接通孔连接至所述正面电路层, 第二连接通孔连接至背面电路层, 所 述第二连接通孔位于所述电路连接单元的一个端部, 所述第一连接通孔位于所 述第二连接通孔的内侧; 激光芯片固定于该支架的正面电路层上, 可发射一第 一激光光束。
[0005] 根据本发明的第二个方面, 一种激光器封装结构, 包括: 支架和安装于该支架 上的激光芯片。 进一步的, 该包含位于该支架正面的正面电路层、 位于该支架 背面的背面电路层及位于该支架内部的内部电路层, 所述正面电路层包含两个 以上的器件安装单元, 该安装单元包括相互隔离的第一区域、 第二区域; 所述 内部电路层具有复数个电路连接单元, 每个电路连接单元具有第一连接通孔和 第二连接通孔, 其中第一连接通孔连接至所述正面电路层, 第二连接通孔连接 至所述背面电路层; 至少两个以上的激光芯片分别安装于该支架的正面电路层 的各个安装单元的第一区域, 可发射一第一激光光束。
[0006] 上述激光器封装结构可应用于车头灯、 工矿灯、 激光电视或投影仪等。 以激光 车灯为例, 激光车灯比 LED车大灯具有更高密度的光输出和更小的发光角, 照射 距离可达 600米, 是 LED车大灯的两倍之远。
发明的有益效果
有益效果
[0007] 与现有技术相比, 本发明提供的一种激光器封装结构, 至少包括以下技术效果
[0008] ( 1) 通过对支架电路的设计, 可在封装体内安装单颗或者多颗激光芯片;
[0009] (2) 多颗激光芯片封装可根据需求独立控制其开关, 实现亮度可调;
[0010] (3) 支架的背面焊盘采用热电分离设计, 背面电极区块通过内部中间层铺设 的线路、 通孔和正面电路层连接, 背面中间散热区块与后端 PCB电路板或热沉金 属基体直接连接, 利于封装体快速散热。
[0011] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0012] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0013] 图 1是一个剖面示意图, 说明本发明的第一实施例。
[0014] 图 2是一个示意图, 说明在本发明第一实施例的支架上固焊芯片后的正面图。
[0015] 图 3是一个示意图, 说明本发明第一实施例的内部电路层分布。
[0016] 图 4是一个示意图, 本发明第一实施例的背面电路层分布。 [0017] 图 5是一个截面显示图, 说明本发明实施例的封装体与 PCB基板连接的结构。
[0018] 图 6是一个正视图, 说明本发明第二实施例的封装结构。
[0019] 图 7是一个示意图, 说明本发明第二实施例的背面电路层分布。
[0020] 图 8是一个示意图, 本发明第二实施例的内部电路层分布。
[0021] 图 9是一个正视图, 说明本发明第三实施例的封装结构。
[0022] 图 10是一个示意图, 本发明第三实施例的内部电路层分布。
[0023] 图 11是一个正视图, 说明本发明第四实施例的封装结构。
[0024] 图 12是一个示意图, 本发明第四实施例的内部电路层分布。
[0025] 图 13是一个剖面示意图, 说明本发明的第五实施例。
[0026] 图 14是一个正视图, 说明图 13所示的封装结构的波长转换层。
[0027] 图 15是一个正视图, 说明图 13所示的封装结构的另一种波长转换层结构。
[0028] 图 16是一个剖面示意图, 说明本发明的第五实施例的一个变形。
[0029] 图 17是一个剖面示意图, 说明本发明的第六实施例。
[0030] 图 18是一个示意图, 说明应用本发明的封装结构的光源模组。
[0031] 其中, 附图标记说明如下:
[0032] 100: PCB电路板; 110: PCB电路板的基体; 111 : 散热凸台; 121 : 焊接层;
122: 电路层; 123: 阻焊漆; 124: 绝缘层; 210: 支架; 210A-210D: 支架的 边缘; 211 : 支架的底部; 2111: 支架底部的低部; 2112: 支架底部的高部; 21 2: 支架的侧部; 213: 腔体; 220: 激光芯片; 220 A: 激光芯片出光端面; 230 : 光学元件; 231 : 反射面; 240: 盖板; 241 : 金属框架; 242: 波长转换; 260 : 支架正面的安装单元; 261 : 第一区域; 262: 第二区域; 263: 第三区域; 27 0: 内部电层层; 271、 273、 275、 277: 第一电路连接单元; 2711: 第一电路连 接单元的起始端部; 2712: 第一电路连接单元的延伸部; 272、 274、 276、 278 : 第二电路连接单元; 2721: 第二电路连接单元的起始端部; 2722: 第发给电 路连接单元的延伸部; 300: 应用光源模组; 310: 激光光源封装; 320: 模组透 镜; 330: 照明区域范围; Al、 A2、 C1 : 第一通孔; Bl、 B2: 第二通孔。
发明实施例
本发明的实施方式 [0033] 下面结合示意图对本发明的激光器封装结构进行详细的描述, 在进一步介绍本 发明之前, 应当理解, 由于可以对特定的实施例进行改造, 因此, 本发明并不 限于下述的特定实施例。 还应当理解, 由于本发明的范围只由所附权利要求限 定, 因此所采用的实施例只是介绍性的, 而不是限制性的。
[0034] 下面各实施例公开了一种包含多个激光芯片的封装体结构, 该封装体包括支架 和安装于该支架上的激光芯片。 进一步地, 该支架包含位于该支架正面的正面 电路层、 位于该支架背面的背面电路层及位于该支架内部的内部电路层, 其中 正面电路层包含两个以上的器件安装单元, 该安装单元包括相互隔离的第一区 域、 第二区域, 内部电路层具有复数个电路连接单元, 每个电路连接单元具有 第一连接通孔和第二连接通孔, 其中第一连接通孔连接至所述正面电路层, 第 二连接通孔连接至所述背面电路层, 两个以上的激光芯片, 分别安装于该支架 的正面电路层的各个安装单元的第一区域。
[0035] 实施例 1
[0036] 如图 1所示, 本实施例公开一种激光器封装体, 其包括支架 210、 激光芯片 220 、 光学元件 230和盖板 240。
[0037] 其中, 支架 210采用碗杯支架, 由底部 211和侧部 212构成, 并构建一个腔体 213 。 在本实施例中, 较佳的, 底部 211呈台阶状, 分为高部 2111和低部 2112、 。 在 本实施例中支架 210优选采用陶瓷支架, 例如 A1 20 3、 A1N等材质, 其上设有电 路。 激光芯片 220水平放置于 210的底部表面上, 较佳的直接设置在底部的高部 表面 2111, 光学元件 230设置在支架底部的低部 2112表面上。
[0038] 在本实施例中, 封装体可以使用高热导率的陶瓷基板作为支架 210, 支架设置 有碗杯和多层平台结构, 平台高度差 D优选为 0.1~0.5mm, 例如可以为 0.1~0.3mm 。 LD芯片 220水平放置于较高平台上, 光学元件 230 (带有高反斜面 231) 放置于 较低平台, 对 LD芯片 220发出的水平方向光反射后转换成垂直方向的光出射, 提 升法向出光效率的同时利于器件的光学设计。 较佳的, LD芯片 220的出光端面 22 0A至少与支架台阶竖直面 2113平齐, 更佳的, LD芯片的出光端面 220A凸出于台 阶, 防止发散的出射光束照射到支架的固晶平台上。
[0039] 在一个较佳的实施样态中, 光学元件 230优选具有一个倾斜的侧面 231和一个顶 面 232, 上表面 232具有一个供封装制程中吸嘴拾取元件使用的平台, 优选的此 平台面积大于 0.5x0.5mm 2。 进一步的, 在光学元件 230的侧面 231制作高反射率 镀层形成反射面, 材料可以为 Ag Al、 Au等金属反射层, 或者 Si0 2、 Ti0 2 MgF 2 A1 20 3等氧化物介质膜反射层。 反射面数量可以是若干个, 不同反射 面的形状或者角度可以不同。 在多个反射镜情况下, 可根据不同应用需求, 调 整反射面角度而控制多颗芯片出光光斑的交叠程度, 实现不同发光角的光源。
[0040] 盖板 240设置在支架 210的顶部 214, 用于密封支架碗杯内的所有元件。 盖板 240 与支架的碗杯之间可以采用硅胶或者 Au-Sn共晶的方式使封装体密封。 盖板 240 材料可以是玻璃、 石英、 蓝宝石、 透明陶瓷等, 还可以根据不同光色需求采用 波长转换块体材料。 应该说明的, 并不局限于采用盖板进行密封支架上的各个 元件, 一些实施例也可将硅胶填充于支架 210上覆盖住所有元件, 以保护支架 21 0上的所有元件。
[0041] 优选地, 该支架 210包括了正面的电路层、 背面电路层 280及铺设于支架内部的 内部电路层 270, 图 2显示了在支架 210上固焊 LD芯片 220后的正面图, 图 3显示了 内部电路层 270的分布图, 如图 4显示了支架的背面电路层 280的分布图。 下面结 合附图 2-4对正面电路层、 内部电路层和背面电路层之间的连接关系进行详细。
[0042] 如图 2所示, 支架 210的正面结构具有四个边缘 210A~210D, 正面中间 C区块用 于放置光学元件 230, 外周围区域为元件安装区域, 其划分为两个以上的安装单 元 260, 该安装单元包括第一区域 261、 第二区域 262和第三区域 263 , 该三个区 域彼此隔离, 表面涂布有导电材料, 其中第一区域 261和第三区域 263作为第一 电极区块, 第二区域 262作为第二电极区块。 如图 3所示, 该内部电路层 270包括 一系列的电路连接单元 271~274, 每个电路连接单元包括了一个位于支架 210边 缘的端部、 向支架的内部延伸的延伸部、 位于延伸部的第一通孔 A1/A2/C2 (图 示用黑色填充的圆圈示意) 及位于该端部的第二通孔 B 1/B2 (图示用白色填充的 圆圈示意) , 其中第一通孔 A1/A2/C2与正面电极区块连接, 第二通孔 B1/B2与背 面电极区块 281连接。 进一步的, 电路连接单元可以分为第一电路连接单元 271/2 73和第二电路连接单元 272/274, 正面的一个安装单元 260对应于中间电路层 270 的一个第一电路连接单元 271和一个第二电路连接单元 272。 在本实施例中 271和 273为第一电路连接单元, 包括两组第一通孔 (Al、 C1) 、 一组第二通孔 B1, 其中 A1连接至正面的第一区域 261, C1连接至正面的第三区域 263 , B1连接至背 面的电极区块 281 ; 272和 274为第二电路连接单元, 包括一组第一通孔 A2和一组 第二通孔 B2, 其中 A2连接至正面的第二区域 262, B2连接至背面的电极区块 281 , 从而实现了正、 背面电极区块连接。 优选的, 每个电路连接单元具有位于支 架 210的一个边缘的起始端部和一个朝向支架的另一个边缘延伸的延伸部, 其中 第一通孔 Al、 A2、 C1位于延伸部上, 第二通孔 Bl、 B2位于起始端部上, 如此可 以将背面电极区块 281均设置于支架 210的边缘区域, 如图 4所示, 方便在中间区 域 P3设置散热电极 282。 进一步的, 在第一电路连接单元中, 通孔 A1相较于通孔 C1, 更靠近第二通孔设置, 例如通孔 C1可设置在延伸部之远离的位置。 具体的 , 第一电路连接单元 271的端部 2711位于支架 210的边缘 210A, 延伸部 2712朝向 支架的边缘 210C的方向延伸, 通孔 B1位端部 2711, 通孔 A1位于延伸部 2712之靠 近端部的位置, 通孔 C1位于延伸部 2712的尾端; 第二电路连接单元 272的端部 27 21位于支架 210的边缘 210C, 延伸部 2722朝向支架的边缘 210A的方向延伸, 通孔 B2位端部 2721, 通孔 A2位于延伸部 2712的尾端。 第一电路连接单元 271和第二电 路连接单元 272位于支架的左侧区域, 构成第一组电路连接单元, 对应于正面电 路层的左侧安装单元 260, 第一电路连接单元 273和第二电路连接单元 274位于支 架的右侧区域, 构成第二组电路连接单元, 对应于正面电路层的右侧安装单元
[0043] 在本实施例中, 在支架 210的正面 A、 B和 A’区块构成第一个安装单元 260, D、
E和 D’构成第二个安装单元, 其中 A和 D区块为第一区域, 分别放置一颗 LD芯片 2 20, 通过引线 221连接至第二区域 B/E, A’、 D’区块为第三区域, 分别放置一个 E SD保护元件 250, 通过引线 251连接至第二区域 B/E, 正面中间 C区块放置光学元 件 230, 电极区块 A-A’、 D-D’通过内部电路层连通, 正、 背面电极区块连接如下 : A/A’与 P5连接, B与 P2连接, D/D’与 P4连接, E与 P1连接。 光学元件 230可以 是具有高反斜面的反射元件或者棱镜元件, 将 LD芯片 220的水平方向出射光转换 成竖直方向。
[0044] 在本实施例的封装体结构中, 通过对支架的电路结构设计, 可在封装体内进行 单颗或者多颗芯片 (均配置 ESD保护元件) 封装, 且多颗芯片封装可根据需求独 立控制其开关, 实现亮度可调。
[0045] 进一步地, 在支架 210的背面 P3区块可以设置散热区块 282, 实现热电分离, 其 中背面电极区块通过内部中间层铺设的线路、 通孔和正面电极区块连接, 背面 中间散热区块 P3与后端 PCB电路板或热沉金属基体直接连接, 如图 5所示, 利于 封装体快速散热。
[0046] 进一步地, 在一个具体的实施样态中, 该盖板 240可以为波长转换材料, 例如 可以采用玻璃荧光片, 陶瓷荧光片, 单晶荧光片等, 此材料热导率大于 10W/m- K。 优选的, 经过波长转换材料后发光角小于 90°, 并且法向的光强度最大。 由 于波长转换过程中存在斯托克斯位移现象和波长转换材料效率的因素会产生一 定热量, 高热导率的碗杯壁 212同时可作为波长转换材料的散热通道, 将波长转 换过程产生的热量导出。 较佳的, 该盖板 240与支架 210之间采用高导热的结合 方式, 以实现良好的散热, 其方式包含 SAB (Surface Activated
Bonding) 、 ADB(Atomic Diffusion Bonding)等方式, 该盖板 240与支架 210之间 还可采用高导热率的透明材料粘结, 其导热率为 lW/(m*K)以上为佳。
[0047] 实施例 2
[0048] 图 6~8显示了本发明的第二个实施例。 其中图 6显示了在支架 210上固焊 LD芯片 220后的正面图; 背面电路层的分布如图 7所示, 内部电路层 270分布如图 8示。 具体的, 正面电路层中, A、 B和 A’区块为第一安装单元, C、 D和 C’区块为第二 安装单元, H、 J和 H’区块为第三安装单元, F、 G和 F’区块为第四安装单元; 内 部电路层 270具有八个电路连接单元, 其中 271、 273、 275和 277为第一电路连接 单元, 272、 274、 276和 278为第二电路连接单元。 进一步地, 271和 272构成第 一组电路连接单元, 与 A、 B和 A’区块连接, 273和 274构成第二组电路连接单元 , 与 C、 D和 C’区块连接, 275和 276构成第三组电路连接单元, 与 H、 J和 H’区块 连接, 277和 278构成第四组电路连接单元, 与 F、 G和 F’区块连接。
[0049] 该封装体的支架 210可放置四个 LD芯片 220, 分别放置于 A、 C、 F和 H区块, ES D保护元件 250放置于 A’、 C’、 F’、 H’区块, 电极区块 A-A’、 C-C’、 F-F’、 H-H’ 在支架 210内部通过电路层 270连通。 正、 反面各电极区块连接如下: A/A’与 P4 连接, B与 P3连接, C/C’与 PI连接, D与 P2连接, F/F’与 P9连接, G与 P8连接, H /H’与 P6连接, J与 P7连接。 背面中间 P5区块为散热区块; 正面中间 E区块放置光 学元件 230, 对芯片的水平方向出射光转换成竖直方向传播。
[0050] 实施例 3
[0051] 图 9~10显示了本发明的第三个实施例。 其中图 9显示了在支架 210上固焊 LD芯 片 220后的正面图, 内部电路层 270分布如图 10示, 其中背面电路层的分布照参 图 7所示。
[0052] 区别于第二个实施例, 在本实施例中封装体结构的光学元件 230沿碗杯的斜对 角线放置, 在碗杯的四个角落设置四个安装单元, 每个安装单元包括第一区域 2 61和第二区域 262, 其中 LD芯片 220安装于第一区域 261上, 并尽可能靠近碗杯的 倾对角线或位于斜对角线上。 该内部电路层 270如图 10所示, 具有一系列位于支 架的上、 下边缘区域的电路连接单元, 每个电路连接单元呈块状结构, 其中第 二通孔 B 1邻近支架的边缘, 第一通孔 A1位于第二通孔 B1的内侧, 正、 背面电极 区块的连接如下: A与 P4连接, B与 P3连接, C与 P2连接, D与 P1连接, F与 P9连 接, G与 P8连接, H与 P7连接, J与 P6连接。
[0053] 通过如此的电路设计, 一方面可以在一定程度上减小封装体尺寸, 另一方面简 化了内部电路层, 提高了器件的可靠性。
[0054] 实施例 4
[0055] 图 11~12显示了本发明的第四个实施例。 其中图 11显示了在支架 210上固焊 LD 芯片 220后的正面图, 内部电路层 270分布如图 12示, 其中背面电路层的分布照 参图 7所示。
[0056] 本实施例中封装体结构的光学元件 230同样沿碗杯的斜对角线放置, 在碗杯的 四个角落设置四个安装单元, 与第三个实施例的区别在于支架 210之正面电路层 和内部电路层的分布不一样, 每个安装单元包括第一区域 261和第二区域 262和 第三区域 263, 其中 LD芯片 220安装于第一区域 261上, 并尽可能靠近碗杯的倾对 角线或位于斜对角线上, ESD保护元件 250位于第三区域 263。 该内部电路层 270 如图 12所示, 具有一系列第一电路连接单元 271、 273、 275、 277和第二电路连 接单元 272、 274、 276、 278, 其中第一电路连接单元 271的通孔 A1连接至正面电 路层的第一区域 261, 通孔 Cl连接至正面电路层的第三区域 263 , 通孔 B1连接至 背面电路层的电极区块 281。 优选的, 通孔 B 1位于支架的边缘区域, 通孔 A1和 C 1位于通孔 B 1的内侧。 在一个具体的实施样态中, 该第一电路连接单元 271包括 : 位于邻近支架边缘 210C的起始端部 2711、 第一延伸部 2712、 连接部 2713、 第 二延伸部 2714和末端部 2715, 其中通孔 B 1位于起始端部 2711, 通孔 A1位于连接 部 2713, 通孔 C1位于末端部 2715。
[0057] 在本实施例中, 正、 背面电极区块的连接如下: A/A’与 P4连接, B与 P3连接, C/C’与 P1连接, D与 P2连接, F/F’与 P9连接, G与 P8连接, 11 11’与?6连接, J与 P7 连接。 在本实施例中, 可以更大程度地减小封装体尺寸, 或者在相同封装尺寸 中兼容更大尺寸的 LD芯片。
[0058] 前面各实施例列举了几种不同的电路分布形式, 应该理解的是, 本发明并不局 限于上述几种电路分布图案, 可以根据具体的碗杯形状或者激光芯片的尺寸、 数量等因素设计各电路层的图案, 从而达到实际的应用需求。
[0059] 实施例 5
[0060] 如图 13所示, 本实施例公开一种激光器封装体, 其包括支架 210、 激光芯片 220 、 光学元件 230和盖板 240。 区别于第一个实施例 1的是, 本实施例的盖板 240包 含金属框架 241和波长转换层 242, 该金属框架 241形成开口并嵌入波长转换材料 作为波长转换层 242, 金属框架 240的开口可根据光斑形状设置成一个或者多个 窗口结构, 如图 14和 15所示。
[0061] 在本实施例中, 仅在盖板 240对应于光学元件 230的位置形成出光区, 减小封装 体的发光角, 同时具有高热导率的金属框架 241可以更容易导出波长转换层 242 产生的热量。
[0062] 图 16显示了实施例 5的一个变形实施例。 本实施例的波长转换层形成在金属框 框架上, 如此可以增加波长转换层 242与金属框架 241的接触面积, 进一步提升 波长转换层 242的散热性能。
[0063] 实施例 6
[0064] 如图 17所示, 本实施例公开一种激光器封装体, 其包括支架 210、 激光芯片 220 、 光学元件 230和盖板 240。 区别于第一个实施例 1的是, 该封装体的光学元件 23 0为带有高反斜面的棱镜, 包含入射面 232、 反射面 231和出射面 233。 在本实施 例中, 可以直接在入射面 232或者出射面 233上设置波长转称层。 此时该光学元 件优选由高透过、 率高热导率材料精密加工制成, 其热导率为 5W/(m*K)以上为 佳, 透过率为 80%@ lmm以上为佳, 材料可以是高导热玻璃、 二氧化硅、 蓝宝石 、 透明陶瓷等。
[0065] 实施例 7
[0066] 图 18简单显示了一个应用前述激光器封装体的光源模组。 由于小角度光源更容 易实现指定区域照射, 小角度激光光源在高指向性照明或通信领域具有明显优 势, 如车头灯、 工矿灯、 捕鱼灯、 航海灯、 投影仪、 激光电视、 光通信等。 特 别地, 如图 18所示, 在矩阵式光源模组 300中, 多颗激光光源 310a、 310b、 310c 等经过电路设计可独立控制其开关, 光源出射光经过透镜 320或反射镜 (图中未 画出) 光学系统处理后; 在可照射范围 330a、 330b、 330c等区域内, 实现在需要 指定区域的照明。 具体的, 如车大灯应该用中, 在近距离会车或遇到行人时, 需要将对方行驶范围内的远光关闭, 保证道路交通安全。 本实施例提出的方案 即可通过控制打开光源 330b、 330c , 从而实现只在照明区域 330b、 330c中照明, 既满足自身行车照明, 又可避免对方受到强光照射带来的安全隐患。
[0067] 应当理解的是, 上述具体实施方案仅为本发明的部分优选实施例, 以上实施例 还可以进行各种组合、 变形。 本发明的范围不限于以上实施例, 凡依本发明所 做的任何变更, 皆属本发明的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种激光器封装结构, 包括
支架, 包含位于该支架正面的正面电路层、 位于该支架背面的背面电 路层及位于该支架内部的内部电路层, 所述内部电路层具有复数个电 路连接单元, 每个电路连接单元具有第一连接通孔和第二连接通孔, 其中第一连接通孔连接至所述正面电路层, 第二连接通孔连接至背面 电路层, 所述第二连接通孔位于所述电路连接单元的一个端部, 所述 第一连接通孔位于所述第二连接通孔的内侧;
激光芯片, 固定于该支架的正面电路层上, 可发射一第一激光光束。
[权利要求 2] 根据权利要求 1所述的激光器封装结构, 其特征在于: 所述内部电路 层包含四个以上的电路连接单元。
[权利要求 3] 根据权利要求 1所述的激光器封装结构, 其特征在于: 所述内部电路 层包含第一电路连接单元和第二电路连接单元。
[权利要求 4] 根据权利要求 3所述的激光器封装结构, 其特征在于: 所述正面电路 层包含两个以上的器件安装单元, 该安装单元包括相互隔离的第一区 域和第二区域, 其中第一区域与所述内部电路层的第一电路连接单元 形成电性连接, 所述第二区域与所述内部电路层的第二电路连接单元 形成电路连接。
[权利要求 5] 根据权利要求 4所述的激光器封装结构, 其特征在于: 所述正面电路 层的一个安装单元对应于所述内部电路层的一个第一电路连接单元和 一个第二电路连接单元。
[权利要求 6] 根据权利要求 3所述的激光器封装结构, 其特征在于: 所述第一电路 连接单元具有两组以上的第一连接通孔, 分别连接至所述正面电路层 的不同区域。
[权利要求 7] 根据权利要求 6所述的激光器封装结构, 其特征在于: 所述正面电路 层包含两个以上的器件安装单元, 该安装单元包括相互隔离的第一区 域、 第二区域和第三区域, 所述第一区域通过所述第一电路连接单元 与所述第三区域形成电性连接, 所述第二区域与所述内部电路层的第 二电路连接单元形成电性连接。
[权利要求 8] 根据权利要求 7所述的激光器封装结构, 其特征在于: 所述第一区域 的面积大于所述第二区域和第三区域两者的总面积。
[权利要求 9] 根据权利要求 1所述的激光器封装结构, 其特征在于: 所述背面电路 层包括复数个背面电极, 其排布于支架的边缘区域。
[权利要求 10] 根据权利要求 9所述的激光器封装结构, 其特征在于: 所述背面电路 层还包括一个散热电极, 其位于所述支架的中间区域。
[权利要求 11] 根据权利要求 9所述的激光器封装结构, 其特征在于: 所述背面电极 位于所述散热电极的上、 下两侧。
[权利要求 12] 根据权利要求 9所述的激光器封装结构, 其特征在于: 至少包括两个 以上的激光芯片, 每个该激光芯片对应于所述内部电路层的两个电路 连接单元, 和所述背面电路层的两个背面电极。
[权利要求 13] 根据权利要求 1所述的激光器封装结构, 其特征在于: 还包括光学元 件, 设置在所述支架上, 对所述激光芯片发出的水平方向光进行光整 形后变成垂直方向的光射出。
[权利要求 14] 根据权利要求 13所述的激光器封装结构, 其特征在于: 包括两个以上 的所述激光芯片, 所述光学元件位于所述支架的中间区域, 所述激光 芯片位于所述光学元件的外侧。
[权利要求 15] 根据权利要求 13所述的激光器封装结构, 其特征在于: 所述内部电路 层的各个电路连接单元位于所述光学元件对应的位置的外周。
[权利要求 16] 根据权利要求 1所述的激光器封装结构, 其特征在于: 所述第二连接 通孔位于所述支架的边缘区域。
[权利要求 17] 根据权利要求 1所述的激光器封装结构, 其特征在于: 所述支架具有 三个以上的边缘, 所述电路连接单元具有起始端部和延伸部, 该起始 端部位于所述支架的其中一个边缘所在区域, 该延伸部朝向所述支架 的其他的边缘延伸。
[权利要求 18] 根据权利要求 1所述的激光器封装结构, 其特征在于: 所述支架具有 凹槽结构, 其横截面呈矩形结构, 所述激光芯片安装于该凹槽内, 并 靠近该矩形的对角线或位于该对角线上。
[权利要求 19] 一种激光器封装结构, 包括
支架, 包含位于该支架正面的正面电路层、 位于该支架背面的背面电 路层及位于该支架内部的内部电路层, 所述正面电路层包含两个以上 的器件安装单元, 该安装单元包括相互隔离的第一区域、 第二区域; 所述内部电路层具有复数个电路连接单元, 每个电路连接单元具有第 一连接通孔和第二连接通孔, 其中第一连接通孔连接至所述正面电路 层, 第二连接通孔连接至所述背面电路层;
至少两个以上的激光芯片, 分别安装于该支架的正面电路层的各个安 装单元的第一区域, 可发射一第一激光光束。
[权利要求 20] 根据权利要求 19所述的激光器封装结构, 其特征在于: 至少一个安装 单元还包括与第一、 第二区域隔离的第三区域, 所述第三下区域通过 所述内部电路层与所述第一区域形成电性连接; 至少一个抗静电元件 安装于该第三区域。
[权利要求 21] 根据权利要求 20所述的激光器封装结构, 其特征在于: 所述第一电路 连接单元具有两组以上的第一连接通孔, 所述第一区域和第三区域分 别通过一组第一连接通孔与所述第一电路连接单元连接。
[权利要求 22] 根据权利要求 19所述的激光器封装结构, 其特征在于: 所述第二连接 通孔位于所述电路连接单元的一个端部, 所述第一连接通孔位于所述 第二连接通孔的内侧。
[权利要求 23] 根据权利要求 19所述的激光器封装结构, 其特征在于: 所述内部电路 层包含四个以上的电路连接单元。
[权利要求 24] 根据权利要求 19所述的激光器封装结构, 其特征在于: 所述内部电路 层包含第一电路连接单元和第二电路连接单元。
[权利要求 25] 根据权利要求 24所述的激光器封装结构, 其特征在于: 所述正面电路 层的各个安装单元的第一区域通过所述第一电路连接单元与所述第三 区域形成电性连接, 第二区域与所述内部电路层的第二电路连接单元 形成电性连接。
[权利要求 26] 根据权利要求 24所述的激光器封装结构, 其特征在于: 所述正面电路 层的一个安装单元对应于所述内部电路层的一个第一电路连接单元和 一个第二电路连接单元。
[权利要求 27] 根据权利要求 19所述的激光器封装结构, 其特征在于: 所述背面电路 层包括复数个背面电极, 其排布于支架的边缘区域。
[权利要求 28] 根据权利要求 27所述的激光器封装结构, 其特征在于: 所述背面电路 层还包括一个散热电极, 其位于所述支架的中间区域。
[权利要求 29] 根据权利要求 27所述的激光器封装结构, 其特征在于: 所述背面电极 位于所述散热电极的上、 下两侧。
[权利要求 30] 根据权利要求 27所述的激光器封装结构, 其特征在于: 至少包括两个 以上的激光芯片, 每个该激光芯片对应于所述内部电路层的两个电路 连接单元, 和所述背面电路层的两个背面电极。
[权利要求 31] 根据权利要求 19所述的激光器封装结构, 其特征在于: 所述第二连接 通孔位于所述支架的边缘区域。
[权利要求 32] 根据权利要求 19所述的激光器封装结构, 其特征在于: 所述支架具有 三个以上的边缘, 所述电路连接单元具有起始端部和延伸部, 该起始 端部位于所述支架的其中一个边缘所在区域, 该延伸部朝向所述支架 的其他的边缘延伸。
[权利要求 33] 根据权利要求 19所述的激光器封装结构, 其特征在于: 所述支架具有 凹槽结构, 其横截面呈矩形结构, 所述激光芯片安装于该凹槽内, 并 靠近该矩形的对角线或位于该对角线上。
[权利要求 34] 一种光源模组, 其特征在于: 包括前述权利要求 1~33所述的任意一种 激光器封装结构。
[权利要求 35] 根据权利要求 34所述的一种光源模组, 其特征在于: 所述光源模组应 用于车头灯、 工矿灯、 激光电视或投影仪。
PCT/CN2018/125438 2018-12-29 2018-12-29 一种激光器封装结构 WO2020133381A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880035524.0A CN110710069A (zh) 2018-12-29 2018-12-29 一种激光器封装结构
PCT/CN2018/125438 WO2020133381A1 (zh) 2018-12-29 2018-12-29 一种激光器封装结构
TW108112710A TWI715965B (zh) 2018-12-29 2019-04-11 雷射器封裝結構及光源模組
US17/139,230 US20210126423A1 (en) 2018-12-29 2020-12-31 Laser diode packaging structure and light source module including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125438 WO2020133381A1 (zh) 2018-12-29 2018-12-29 一种激光器封装结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/139,230 Continuation-In-Part US20210126423A1 (en) 2018-12-29 2020-12-31 Laser diode packaging structure and light source module including the same

Publications (1)

Publication Number Publication Date
WO2020133381A1 true WO2020133381A1 (zh) 2020-07-02

Family

ID=69192929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125438 WO2020133381A1 (zh) 2018-12-29 2018-12-29 一种激光器封装结构

Country Status (4)

Country Link
US (1) US20210126423A1 (zh)
CN (1) CN110710069A (zh)
TW (1) TWI715965B (zh)
WO (1) WO2020133381A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234429B (zh) * 2020-12-10 2021-07-09 武汉乾希科技有限公司 多通道激光发射器和光通信器件
CN115940875B (zh) * 2022-11-24 2023-06-09 台晶(重庆)电子有限公司 一种温度感应型石英晶体谐振器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2552213Y (zh) * 2002-06-01 2003-05-21 富士康(昆山)电脑接插件有限公司 光学组件之封装结构
CN1578022A (zh) * 2003-07-28 2005-02-09 Tdk株式会社 激光二极管模块
CN1591920A (zh) * 2003-09-01 2005-03-09 株式会社东芝 光半导体装置及光信号输入输出装置
CN1671273A (zh) * 2004-03-16 2005-09-21 株式会社藤仓 具有通孔互连的装置及其制造方法
CN1930695A (zh) * 2003-12-09 2007-03-14 克里公司 半导体发光器件和子支架及其形成方法
JP2009008720A (ja) * 2007-06-26 2009-01-15 Fuji Xerox Co Ltd 光電子回路基板及び光電子回路基板の検査方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810057B1 (en) * 1999-11-25 2004-10-26 Matsushita Electric Industrial Co., Ltd. Semiconductor device and optical pickup device
TW540816U (en) * 2002-05-30 2003-07-01 Hon Hai Prec Ind Co Ltd Semiconductor package
US7095053B2 (en) * 2003-05-05 2006-08-22 Lamina Ceramics, Inc. Light emitting diodes packaged for high temperature operation
JP2006066846A (ja) * 2004-07-29 2006-03-09 Seiko Epson Corp 面発光型装置及びその製造方法
JP5168152B2 (ja) * 2006-12-28 2013-03-21 日亜化学工業株式会社 発光装置
JP2008244440A (ja) * 2007-02-13 2008-10-09 Matsushita Electric Ind Co Ltd 半導体レーザ装置及び画像表示装置
CN201307606Y (zh) * 2008-12-10 2009-09-09 潮州三环(集团)股份有限公司 一种新型陶瓷封装基座
JP2011014769A (ja) * 2009-07-03 2011-01-20 Pearl Lighting Co Ltd 発光ダイオード
JP5920333B2 (ja) * 2011-02-28 2016-05-18 日亜化学工業株式会社 発光装置
US8564004B2 (en) * 2011-11-29 2013-10-22 Cree, Inc. Complex primary optics with intermediate elements
CN203312622U (zh) * 2013-05-21 2013-11-27 青岛海信宽带多媒体技术有限公司 一种to底座
CN107306009B (zh) * 2016-04-25 2021-04-13 住友电工光电子器件创新株式会社 在承载体上提供共面线的光发射器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2552213Y (zh) * 2002-06-01 2003-05-21 富士康(昆山)电脑接插件有限公司 光学组件之封装结构
CN1578022A (zh) * 2003-07-28 2005-02-09 Tdk株式会社 激光二极管模块
CN1591920A (zh) * 2003-09-01 2005-03-09 株式会社东芝 光半导体装置及光信号输入输出装置
CN1930695A (zh) * 2003-12-09 2007-03-14 克里公司 半导体发光器件和子支架及其形成方法
CN1671273A (zh) * 2004-03-16 2005-09-21 株式会社藤仓 具有通孔互连的装置及其制造方法
JP2009008720A (ja) * 2007-06-26 2009-01-15 Fuji Xerox Co Ltd 光電子回路基板及び光電子回路基板の検査方法

Also Published As

Publication number Publication date
TWI715965B (zh) 2021-01-11
TW202026556A (zh) 2020-07-16
US20210126423A1 (en) 2021-04-29
CN110710069A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
US11769985B2 (en) Laser device and light guide member used with the same
JP6626161B2 (ja) 紫外線発光素子パッケージ
US10190740B2 (en) Light source unit and vehicle front lamp using the light source unit
JP5623003B2 (ja) 電磁放射を放出するオプトエレクトロニクス素子および発光モジュール
US6855958B2 (en) Wavelength conversion element for car use
JP5634657B2 (ja) オプトエレクトロニクス素子を製作する方法
US7520647B2 (en) Light source and vehicle lamp
US8258527B2 (en) Lighting device and semiconductor light source device
JP2017126803A (ja) 発光素子パッケージ、光源モジュール及びこれを含む照明システム
EP2677232A1 (en) Light emitting module and lighting device for vehicle
US20210126423A1 (en) Laser diode packaging structure and light source module including the same
TW202021164A (zh) 具有高近場對比度的發光裝置
CN215764914U (zh) 照明装置以及包含该照明装置的汽车外灯
CN109668112A (zh) 一种激光照明灯
WO2019022026A1 (ja) 光源モジュール及び車両用灯具
CN209839951U (zh) 一种led光源和车灯
CN209487933U (zh) 一种激光器封装结构
CN113217873B (zh) 一种激光照明的光路结构
CN214840571U (zh) 一种激光白光照明光源器件
JP7053185B2 (ja) 光源モジュール及び車両用灯具
CN109681839A (zh) 一种远近光一体的激光照明灯
KR20140090887A (ko) 발광 모듈
JP2012015413A (ja) 発光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945236

Country of ref document: EP

Kind code of ref document: A1