WO2020129982A1 - 樹脂封止方法、樹脂封止金型及び樹脂封止装置 - Google Patents

樹脂封止方法、樹脂封止金型及び樹脂封止装置 Download PDF

Info

Publication number
WO2020129982A1
WO2020129982A1 PCT/JP2019/049427 JP2019049427W WO2020129982A1 WO 2020129982 A1 WO2020129982 A1 WO 2020129982A1 JP 2019049427 W JP2019049427 W JP 2019049427W WO 2020129982 A1 WO2020129982 A1 WO 2020129982A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
information
cull
heating
resin
Prior art date
Application number
PCT/JP2019/049427
Other languages
English (en)
French (fr)
Inventor
耕作 益田
教雅 中原
俊嗣 西村
Original Assignee
第一精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019017223A external-priority patent/JP7205261B2/ja
Application filed by 第一精工株式会社 filed Critical 第一精工株式会社
Priority to CN201980084118.8A priority Critical patent/CN113286687B/zh
Publication of WO2020129982A1 publication Critical patent/WO2020129982A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings

Definitions

  • the present invention relates to a resin sealing method, a resin sealing die, and a resin sealing device.
  • resin encapsulation using a large amount of resin is performed due to the demand for increasing the number of semiconductor packages to be taken out from one resin encapsulation or increasing the size of the semiconductor packages. ing.
  • Patent Document 1 As a resin sealing device that attempts to prevent resin unfilling by sufficiently melting the resin, for example, there is a resin sealing device described in Patent Document 1.
  • the resin sealing device described in Patent Document 1 is provided with a required number of pots in one of a fixed type and a movable type, and is provided with a cull portion formed in the other type so as to face the pot.
  • Dedicated heating means are provided in the pot and cull portion.
  • the resin is sufficiently melted to prevent unfilled resin, and the resin after being injected into the cavity is sufficiently cured. could not be obtained, which may lead to defective molding.
  • An object of the present invention is to provide a sealing method, a resin sealing die, and a resin sealing device.
  • the resin sealing method of the present invention is a mold main body provided with a cull block forming a cull which is a resin supply path and a cavity block forming a cavity, a cull block and a cavity.
  • a resin-sealed mold having temperature measurement means for measuring the temperature of at least one of the blocks, heating means for heating the cull block and cavity block, and mold body heating means for heating the mold body.
  • the molding operation includes an adjusting step of adjusting the heating by the heating means based on the information on the temperature change measured by the temperature measuring means in the molding operation executed before the molding operation.
  • the temperature measuring means measures the temperature of at least one of the cull block and the cavity block to obtain information on the temperature change in the cull block and information on the temperature change in the cavity block when resin-sealing the semiconductor element. Can be obtained.
  • the temperature of the cull block or the temperature of the cavity block as used herein means the temperature at the time of measuring the surrounding (vicinity) of the temperature measuring means in the cull block or the cavity block.
  • the adjusting step adjusts the heating by the heating means based on the information of the temperature change measured by the temperature measuring means in the molding operation executed before the molding operation, so that the temperature in the cull block or the cavity block is adjusted. From the change, the heating by the heating means can be adjusted so that the temperature of the cull block or the cavity block becomes a desired temperature. Thereby, the temperature of the mold body can be controlled with high accuracy during the resin sealing.
  • the heating of the cull block and the cavity block by the heating means means that the cull block or the cavity block is heated by the heating means and the heat is transferred in the mold main body, so that the temperature in the vicinity of the surface of each block is increased. Is included.
  • the molding operation performed before the molding operation is based on the molding operation having the adjusting step, and does not target only the molding operation one time before, and that is, before the standard, that is, It includes one that is targeted for the molding operation two or more times before. Therefore, with the molding operation having the adjusting step as a reference, the molding operation two times before or the molding operation three times before may be a target.
  • the cull block and the cavity block are set with a plurality of temperature adjustment regions capable of individually performing temperature measurement by the temperature measurement unit and heating by the heating unit, and heating by the heating unit for each temperature adjustment region.
  • a plurality of temperature adjustment regions capable of individually performing temperature measurement by the temperature measurement unit and heating by the heating unit, and heating by the heating unit for each temperature adjustment region.
  • the adjusting step includes a molding operation performed before the molding operation. Based on the information of the relative temperature between the first temperature adjustment region and the second temperature adjustment region in, and the information of the temperature change of the first temperature adjustment region, by the heating means corresponding to the second temperature adjustment region.
  • the heating means Based on the information of the relative temperature between the first temperature adjustment region and the second temperature adjustment region in, and the information of the temperature change of the first temperature adjustment region, by the heating means corresponding to the second temperature adjustment region.
  • the output of heating by the heating means, the time, and the timing can be adjusted so that the first temperature adjustment region and the second temperature adjustment region have desired temperatures.
  • the adjusting step adjusts the heating output by the heating means, the time and the timing based on the information of the temperature change for each temperature adjustment area
  • the individual molding temperature adjustment area is adjusted from the previous molding operation. From the predicted temperature change in each temperature adjustment region, the heating output by the heating means, the time, and the timing can be adjusted so that the temperature in each temperature adjustment region becomes a desired temperature.
  • the resin sealing method of the present invention a first mold provided with a pot portion for supplying a resin, and a pot portion by mating with the first mold.
  • a resin sealing metal having a second mold provided with a cull block for forming a cull at a position facing each other, a temperature measuring means for measuring the temperature of the cull block, and a heating means for heating the cull block.
  • a mold is a resin sealing method for controlling the temperature of a cull block during a molding operation for resin-sealing a semiconductor element mounted on a base material.
  • the molding operation is performed without resin, and the high temperature arrival time information, which is information about the time from the predetermined reference time until the cull block reaches the required high temperature, and the high temperature information that is the required high temperature.
  • the first information acquisition step of acquiring temperature information and the heating operation is not performed by the heating means, or the heating output of the heating means is lowered to perform the heating, the resin is put in the pot portion, and the molding operation is performed.
  • a low temperature arrival time information which is information on the time from the predetermined reference time until the cull block reaches the required low temperature
  • a low temperature information which is the information on the required low temperature.
  • the cull block of the second mold is heated by the heating means, and the pot portion of the first mold is covered with the resin.
  • Perform molding operation without inserting In addition to performing the molding operation, high temperature arrival time information that is information on the time from the predetermined reference time until the cull block reaches the required high temperature and high temperature information that is the required high temperature information are displayed. get.
  • the heating means is operated under a condition excluding the use of the resin to perform the molding operation, so that the rise of the cal block which changes with the passage of time due to the operation of the heating means. It is possible to obtain temperature information such as high temperature arrival time information and high temperature information regarding temperature.
  • the heating of the cal block of the second mold by the heating means is not performed, or the heating output of the heating means is lowered to perform the heating.
  • a molding operation is performed by putting resin in the pot portion of the mold.
  • low temperature arrival time information that is information on the time from the predetermined reference time until the cull block reaches the required low temperature and low temperature information that is the required low temperature information are displayed. get.
  • the heating means is not operated at the time of resin molding, or the heating output of the heating means is lowered, and the molding operation using the resin is performed under the conditions, It is possible to obtain temperature information such as low temperature arrival time information and low temperature information regarding the temperature decrease of the cal block which changes with the passage of time due to the use of.
  • the temperature of the cull block is controlled to seal the semiconductor element with resin.
  • the temperature of the mold can be controlled with high accuracy during resin sealing.
  • the high temperature arrival time information, the high temperature information, the low temperature arrival time information, the low temperature information and the like are acquired as independent data, for example, only the resin is changed in the same mold.
  • the high temperature arrival time information, the high temperature information, etc. may be left unchanged, and only the low temperature arrival time information, the low temperature information, etc. may be reacquired.
  • the first information acquisition step can be omitted, etc. Work efficiency can be improved.
  • the resin sealing method of the present invention in the molding step to be executed first, high temperature information which is information of the required high temperature of the cull block during the molding step, and the molding step. Acquiring low temperature information that is information of the required low temperature of the cal block in the process, during the molding process executed after the molding process, based on the information including the acquired high temperature information and low temperature information, Cull block temperature control may be performed.
  • high temperature information that is information about the required high temperature of the cull block during the molding process and low temperature that is information about the required low temperature of the cull block during the molding process. Get information and respectively.
  • the temperature of the cull block is controlled based on the acquired information including the high temperature information and the low temperature information. It is possible to perform control that reflects the situation of the temperature change of the cull block.
  • the resin sealing method of the present invention is such that after the first information acquisition step, the second information acquisition step, and the molding step are performed once, only the molding step is repeated.
  • the parameter information obtained by performing the temperature control of the cull block in the molding process executed earlier is the high temperature information that is the required high temperature information of the cull block acquired in the molding process executed earlier and the There may be a case where the cull block temperature control is performed based on the updated parameter information in the molding process executed later by updating the parameter information calculated based on the information including the low temperature information that is the required low temperature information of the block. is there.
  • the first information acquisition process, the second information acquisition process, and the molding process are executed once.
  • high temperature information that is information of the required high temperature of the cull block during the molding process
  • Low temperature information which is information about the required low temperature of the cull block during the molding process
  • the parameter information that has performed temperature control of the cull block in the molding process performed first, high temperature information that is the required high temperature information of the cull block obtained in the molding process performed above, It is updated with the parameter information calculated based on the information including the low temperature information that is the required low temperature information of the cull block.
  • the temperature of the cull block is controlled based on the updated parameter information.
  • the temperature of the cull block which directly reflects the situation of the temperature change of the cull block in the molding process executed earlier, which changes with the passage of time during the molding operation. It will be possible.
  • the predetermined reference time may be the start time of the molding operation.
  • the time control is performed with the start of the molding operation as the reference. Accordingly, for example, the timing of turning on the power or starting the energization can be set to the reference time, and thus it is easy to control in time. Further, even when the type of resin or mold is changed, the standard can be easily grasped, and the condition setting can be facilitated.
  • the term "molding operation" refers to, for example, from a point where a movable die of a mold starts to move to a point where a resin is cured and a semiconductor element mounted on a base material is resin-sealed.
  • the present invention is not limited to this.
  • the molding step is based on information including high temperature arrival time information, high temperature information, low temperature arrival time information and low temperature information.
  • the molding operation may be performed by calculating the heating start time, which is the time from the start of the operation to the heating by the heating means, and the heating set time, which is the set time for heating by the heating means. is there.
  • the molding process is based on the information including the high temperature arrival time information, the high temperature information, the low temperature arrival time information and the low temperature information, and the time from the start of the molding operation to the start of heating by the heating means.
  • the heating start time is calculated.
  • the heating set time which is the set time for heating by the heating means, is calculated. Then, the molding operation is performed based on the calculated information.
  • a required high temperature may be the highest temperature and a required low temperature may be the lowest temperature.
  • the required high temperature such as high temperature arrival time information and high temperature information
  • the required low temperature is the lowest temperature, so it is possible to acquire the information that shows the characteristics of the cull block most at high temperatures.
  • the required low temperature such as low temperature arrival time information and low temperature information is the lowest temperature, it is possible to acquire the information in which the characteristics of the cull block are most apparent at the low temperature. With this information, it becomes possible to perform more suitable temperature control of the cull block with high accuracy.
  • the resin sealing method of the present invention a first mold provided with a pot portion for supplying a resin, and a pot portion by mating with the first mold.
  • a resin sealing metal having a second mold provided with a cull block for forming a cull at a position facing each other, a temperature measuring means for measuring the temperature of the cull block, and a heating means for heating the cull block.
  • a mold is a resin sealing method for controlling the temperature of a cull block during a molding operation for resin-sealing a semiconductor element mounted on a base material.
  • the molding operation is performed without resin, and the high temperature arrival time information, which is information about the time from the predetermined reference time until the cull block reaches the required high temperature, and the high temperature information that is the required high temperature.
  • the temperature information is acquired and the heating is not performed by the heating means, or the heating output of the heating means is lowered to perform the heating, the resin is put in the pot portion, the molding operation is performed, and the predetermined operation is performed.
  • a molding step of controlling the temperature of the cull block based on the information including the high temperature information, the low temperature arrival time information and the low temperature information to seal the semiconductor element with a resin is provided.
  • the cull block of the second mold is heated by the heating means, and the molding operation is performed without putting the resin in the pot part of the first mold. ..
  • high temperature arrival time information that is information on the time from the predetermined reference time until the cull block reaches the required high temperature and high temperature information that is the required high temperature information are displayed. get.
  • the heating of the cull block of the second mold by the heating means is not performed, or the heating output of the heating means is reduced to perform heating, and the resin is placed in the pot section of the first mold.
  • the molding operation In addition to performing the molding operation, low temperature arrival time information that is information on the time from the predetermined reference time until the cull block reaches the required low temperature and low temperature information that is the required low temperature information are displayed. get.
  • the heating means is not operated or the heating output of the heating means is lowered, and by performing the molding operation using the resin under that condition, the It is possible to obtain temperature information such as low temperature arrival time information and low temperature information regarding the temperature decrease of the cal block which changes with the passage of time.
  • the temperature of the cull block is controlled to seal the semiconductor element with resin.
  • the temperature of the mold can be controlled with high accuracy during resin sealing.
  • the resin sealing method of the present invention a first mold provided with a pot portion for supplying a resin, and a pot portion by mating with the first mold.
  • Resin encapsulation having a second mold provided with a cull block forming a cull portion at a facing position, a temperature measuring means for measuring the temperature of the cull block, and a heating means for heating the cull block.
  • the cal block of the second mold is heated by the heating means.
  • the temperature measuring means obtains information relating to the temperature change of the cull block, and the parameter for controlling the temperature of the cull block is calculated from this information.
  • the temperature of the cull block is controlled based on the parameter, and the semiconductor element can be resin-sealed. This makes it possible to control the temperature of the mold at the time of resin sealing with high accuracy.
  • the resin-sealed mold of the present invention is a mold main body provided with a cull block forming a cull which is a resin supply path and a cavity block forming a cavity,
  • the temperature measuring means for measuring the temperature of at least one of the block and the cavity block, the heating means for heating the cull block and the cavity block, the mold body heating means for heating the mold body, and the heating means.
  • An adjusting section for adjusting heating is provided, and the semiconductor element mounted on the base material is sealed with a resin while adjusting the heating by the heating means so that the cull block and the cavity block have desired temperatures.
  • the resin-sealing die has an adjusting portion for adjusting the heating by the heating means, so that the temperature in the cull block and the cavity block can be adjusted during the resin sealing.
  • the adjusting unit predicts the temperature change in the cull block and the cavity block during the molding operation by using the information on the temperature change measured by the temperature measuring means in the molding operation executed before the molding operation. Will be possible.
  • the adjusting unit adjusts the heating by the heating unit based on the information of the temperature change measured by the temperature measuring unit in the molding operation executed before the molding operation, so that the temperature in the cull block and the cavity block is adjusted. From the change, the adjusting unit can adjust the heating by the heating unit so that the temperatures of the cull block and the cavity block become the desired temperatures.
  • the resin sealing device of the present invention is a first mold provided with a pot part for supplying a resin, and a pot part formed by mating with the first mold.
  • a resin encapsulation mold having a second mold having a cull block forming a cull at a position facing each other is used to control the temperature of the cull block to seal the semiconductor element mounted on the base material with a resin.
  • High temperature arrival time information which is information on the time from the predetermined reference time until the cull block reaches the required high temperature
  • high information which is the required high temperature.
  • Temperature information without heating by the heating means, or by lowering the heating output of the heating means to heat, put the resin in the pot part, and perform the molding operation from the predetermined reference time
  • the cull block of the second mold is heated by the heating means, and the molding operation is performed without putting the resin in the pot part of the first mold. ..
  • high temperature arrival time information that is information on the time from the predetermined reference time until the cull block reaches the required high temperature and high temperature information that is the required high temperature information are displayed. It is measured by the temperature measuring means and acquired by the control means.
  • the heating of the cull block of the second mold by the heating means is not performed, or the heating output of the heating means is reduced to perform heating, and the resin is placed in the pot section of the first mold.
  • the molding operation In addition to performing the molding operation, low temperature arrival time information that is information on the time from the predetermined reference time until the cull block reaches the required low temperature and low temperature information that is the required low temperature information are displayed. get.
  • the heating means is not operated or the heating output of the heating means is lowered, and by performing the molding operation using the resin under that condition, the It is possible to obtain temperature information such as low temperature arrival time information and low temperature information regarding the temperature decrease of the cal block which changes with the passage of time.
  • the temperature of the block is controlled to seal the semiconductor element with resin.
  • the temperature of the mold can be controlled with high accuracy during resin sealing.
  • the control means high temperature information that is information of the required high temperature of the cull block during the molding step of resin-sealing the base material,
  • the temperature control of the molding process to be executed later may be performed based on the information including the low temperature information that is the required low temperature of the cull block during the molding process.
  • control means respectively obtains high temperature information which is information of a required high temperature of the cull block during the molding process and low temperature information which is information of a required low temperature of the cull block during the molding process. To do.
  • the cal It is possible to perform control that reflects the status of block temperature changes.
  • the resin sealing device of the present invention is a first mold provided with a pot part for supplying a resin, and a pot part formed by mating with the first mold.
  • a resin encapsulation mold having a second mold having a cull block forming a cull at a position facing each other is used to control the temperature of the cull block to seal the semiconductor element mounted on the base material with a resin.
  • the heating means heats the cull block of the second mold.
  • the temperature measuring means obtains information relating to the temperature change of the cull block, and from this information, the parameter for controlling the temperature of the cull block is calculated by the control means.
  • the temperature of the cull block is controlled by the heating means by the control means based on the parameter, and the semiconductor element can be resin-sealed. This makes it possible to control the temperature of the mold at the time of resin sealing with high accuracy.
  • the present invention provides a resin encapsulation method, a resin encapsulation mold, and a resin encapsulation that enable highly accurate temperature control of a die when encapsulating a semiconductor element mounted on a base material with a resin.
  • a device can be provided.
  • FIG. 1 It is a schematic explanatory drawing which shows the resin sealing device containing the resin sealing metal mold which is an example of the resin sealing metal mold concerning this invention.
  • A is a schematic diagram showing an arrangement of an upper cull sensor and an upper cull heater and an upper cavity sensor and an upper cavity heater in an upper die chess, and (b) is a lower cull sensor and a lower cavity in a lower die chess. It is a schematic diagram showing arrangement of a cull part heater, a lower cavity sensor, and a lower cavity heater, (c) is a schematic front view of an upper metallic mold, and (d) is a schematic front view of a lower metallic mold.
  • FIG. 1 is a schematic diagram showing an arrangement of an upper die set sensor and an upper die set heater in an upper die set, and (b) shows an arrangement of a lower die set sensor and a lower die set heater in a lower die set. It is a schematic diagram showing. It is explanatory drawing regarding the pre-forming method at the time of predictive-controlling an upper cull block, (a) is a flowchart which shows the flow which calculates various parameters from normal shaping
  • FIG. 6 is a graph showing a result of measuring information of temperature change of the cull portion by the cull portion sensor in a resin sealing device in which the cull portion sensor and the cull portion heater are provided in the cull block, ) Is the result of performing the first molding operation without performing the predictive control.
  • (b) is the result of performing the second molding operation by performing the predictive control based on the information of the first temperature change.
  • c) is the result of performing the third molding operation by performing predictive control based on the information of the second temperature change.
  • A) is a flowchart showing a flow of a molding operation for predicting and controlling each temperature adjustment region by individual heater control
  • (b) is a schematic diagram showing the temperature adjustment regions A1 to A9 set in the upper die chess. Is.
  • (A) is a flow showing a flow of a molding operation in which the temperature control area A is predictively controlled by the heater control and the other temperature control areas are controlled by changing the ratio of the output of the cull portion heater in the temperature control area A.
  • (b) is a schematic diagram showing temperature adjustment fields A and B1-B8 set up in upper chess. It is a schematic explanatory drawing which shows an example (with a pot part sensor) of the structure of the resin sealing device which concerns on this invention. It is a schematic explanatory drawing which shows the other example (without a pot part sensor) of the structure of the resin sealing device which concerns on this invention.
  • FIG. 8A is a graph showing the results of temperature measurement by each sensor in the resin sealing device shown in FIG. 8 in a state where the cull heater is not heating
  • FIG. Is a graph showing the results of measuring the temperature with each sensor in the state of being operated for 30 seconds
  • (c) shows the temperature measured with each sensor in the state of operating the cull heater for 30 seconds from 10 seconds before the start of mold closing. It is a graph which shows a result.
  • FIG. 9A is a graph showing the results of temperature measurement by each sensor in a state where the cull heater is not heating in the resin sealing device shown in FIG. 9, and FIG. It is a graph which shows the result of having measured temperature with each sensor in the state where the partial heater was operated for 30 seconds. It is explanatory drawing which shows the timing chart of ON/OFF control of the cull part heater in FIG.12(b).
  • (A) is a graph which shows the result of having measured the temperature by each sensor in the state which is not heated by the cull part heater in the resin sealing device shown in FIG. 9,
  • (b) is a cull part 5 second after a mold closing start.
  • FIG. 9A is a graph showing the results of temperature measurement by each sensor in the resin sealing device shown in FIG. 9 in which the cull heater is operated for 30 seconds at the same time when the mold is closed
  • FIG. 9A is a graph showing the results of temperature measurement by each sensor in the resin sealing device shown in FIG. 9 in which the cull heater is operated for 30 seconds at the same time when the mold is closed
  • FIG. It is a graph which shows the result of having measured the temperature with each sensor in the state which operated the cull part heater for 40 seconds simultaneously with the start of closing.
  • a flow diagram showing two calibration flows, a temperature change of the cull block, an output variation of the cull part heater, and a relationship between molding operation and time are shown.
  • (a) is calibration (1)
  • (b) is calibration It is explanatory drawing of option (2). It is an explanatory view showing an example of ON/OFF control of a cull part heater at the time of a molding operation in actual molding based on the result obtained by calibration. It is a schematic diagram showing an example of information of temperature change at the time of actual molding used for feedback control.
  • the resin sealing device S includes a resin sealing mold M that is an example of the resin sealing mold according to the present invention (see FIG. 1).
  • the resin sealing mold M has a pair of an upper mold 1 and a lower mold 2.
  • the resin sealing device S is a device that clamps the upper mold 1 and the lower mold 2 to resin-mold a semiconductor element (not shown) mounted on a base material such as a lead frame.
  • the position of the lower mold 2 with respect to the upper mold 1 is referred to as “lower” or “lower side”, and the position of the upper mold 1 with respect to the lower mold 2 is referred to as “lower”. It will be called “upper” or “upper”. Further, based on FIG. 1, the left side on the paper surface of FIG. 1 is referred to as “left” or “left side”, and the right side on the paper surface of FIG. 1 is referred to as “right” or “right side”. Further, with reference to FIG.
  • the position of the upper cavity block 121 with respect to the upper cull block 120 is referred to as “outside” or “outer side”, and the position of the upper cull block 120 with respect to the upper cavity block 121 is referred to as “inside” or “inside”. I will call it. Further, based on FIG. 2A, the lower side on the paper surface of FIG. 2 is referred to as “front” or “front side”, and the upper side on the paper surface of FIG. 2 is referred to as “rear” or “rear side”.
  • the upper die 1 is composed of an upper die set 11 and an upper chess 12 (see FIGS. 1 and 2(c)).
  • the lower die 2 is composed of a lower die set 21 and a lower chess 22 (see FIGS. 1 and 2(d)).
  • the upper die set 11 is a frame that supports the upper chess 12 via a support pillar (not shown).
  • the support pillar is a support member that is connected to the upper die set 11 and the upper die chess 12 and supports the upper die chess 12.
  • a cull portion 124 (see FIG. 2A) that is a resin supply path and a cavity (reference numeral omitted) that is a resin molding portion are provided. It is a member to be formed.
  • the lower die set 21 is a frame that supports the lower chess 22 via a support pillar (not shown).
  • the support pillar is a support member that is connected to the lower die set 21 and the lower die chess 22 and supports the lower die chess 22.
  • the upper die chess 12 includes an upper cull block 120, an upper cavity block 121, a first upper holder base 122, and a second upper holder base 123 (FIGS. 1 and 2(c)). reference).
  • the upper cull block 120 is a member that forms a cull portion 124 together with a lower cull block 220, which will be described later, when the mold is clamped.
  • the upper cavity block 121 is a member that forms a cavity together with a lower cavity block 221 described later when the mold is clamped.
  • the first upper holder base 122 and the second upper holder base 123 are members supported by a support pillar (not shown).
  • the support pillar is a support member that is connected to the upper die set 11, the first upper holder base 122 and the second upper holder base 123, and supports the upper chess 12.
  • the upper cull block 120 is provided with an upper cull sensor 130 (see FIGS. 1 and 2(c)).
  • An upper cull heater 140 is provided between the first upper holder base 122 and the second upper holder base 123 and above the upper cull block 120.
  • the upper cull sensor 130 is a temperature measuring unit that measures the temperature of the upper cull block 120 and information on the temperature change with the change of time.
  • the upper cull heater 140 is a heating means for heating the upper cull block 120.
  • the upper cull heater 140 can adjust the temperature of the upper cull block 120 by adjusting the output, adjusting the heating time, and adjusting the heating start timing.
  • the timing of starting heating here corresponds to the timing of heating by the heating means in the claims of the present application.
  • FIG. 2A shows the arrangement of the upper cull sensor 130 and the upper cull heater 140 in the upper die chess 12.
  • One upper cull sensor 130 is provided on the front side and the center of the upper chess 12 (see FIGS. 1 and 2C).
  • the upper cull portion sensor 130 is arranged so as to pass between the cull portions 124 on both sides of the upper cull block 120, as shown in an enlarged view of a region indicated by a symbol P in FIG. ..
  • upper cull heaters 140 are arranged side by side in the left-right direction at the center of the upper die chess 12 (see FIG. 2(a)). Further, the upper cull heater 140 is provided such that its longitudinal direction is parallel to the front-back direction of the upper die chess 12.
  • upper cavity sensors 131 are provided on the left and right upper cavity blocks 121 (see FIGS. 1 and 2(c)).
  • Upper cavity heaters 141 are provided between the first upper holder base 122 and the second upper holder base 123 and above the left and right upper cavity blocks 121 (see FIG. 1).
  • the upper cavity sensor 131 is a temperature measuring means for measuring the temperature of the left and right upper cavity blocks 121 and the information of the temperature change with the change of time.
  • the upper cavity heater 141 is a heating means for heating the left and right upper cavity blocks 121.
  • the upper cavity heater 141 can adjust the temperatures of the left and right upper cavity blocks 121 by adjusting the output, adjusting the heating time, and adjusting the heating start timing.
  • the adjustment of the output of the upper cull heater 140 and the upper cavity heater 141 includes ON/OFF switching of each heater.
  • FIG. 2A shows the arrangement of the upper cavity sensor 131 and the upper cavity heater 141 in the upper die chess 12.
  • Three upper cavity sensors 131 are provided side by side in the front-rear direction in each of the left and right upper cavity blocks 121.
  • one upper cavity heater 141 is arranged side by side outside the upper cull heater 140 in the left-right direction (see FIG. 2A). Further, the upper cavity heater 141 is provided such that its longitudinal direction is parallel to the front-back direction of the upper die chess 12.
  • the upper chess 12 does not necessarily have to be provided with the upper cull sensor 130 and the upper cavity sensor 131, and a structure in which only one sensor is provided may be adopted.
  • the upper cull block 120 and the left and right upper cavity blocks 121 can acquire information on the temperature and the temperature change. It is preferable that the upper chess part 12 is provided with the upper cull sensor 130 and the upper cavity sensor 131 from the viewpoint that the change can be grasped and the heating by the heaters 140 and 141 can be easily adjusted.
  • the number thereof is not particularly limited. Further, the arrangement position of the upper cull sensor 130 can be appropriately changed.
  • the upper mold chess 12 does not necessarily need to be provided with the upper cull heater 140 and the upper cavity heater 141, and a structure in which only one heater is provided may be adopted. However, compared with the structure in which only one heater is provided, the upper cull block 120 and the left and right upper cavity blocks 121 can be heated, and the temperature can be controlled in a finer range in the upper mold 1. It is preferable that the upper die chess 12 is provided with the upper cull heater 140 and the upper cavity heater 141 in order to easily stabilize the temperature of the entire upper die 1.
  • the lower die chess 22 is a member that forms a cull portion 124 and a cavity (reference numeral omitted) together with the upper die chess 12 when the die is clamped.
  • the lower die chess 22 includes a lower cull block 220, a lower cavity block 221, a first lower holder base 222, and a second lower holder base 223 (FIGS. 1 and 2(d)). reference).
  • the lower cull block 220 is a member that forms a cull portion 124 together with the upper cull block 120 when the mold is clamped.
  • the lower cavity block 221 is a member that forms a cavity together with the upper cavity block 121 when the mold is clamped.
  • the first lower holder base 222 and the second lower holder base 223 are members supported by a support pillar (not shown).
  • the support pillar is a support member that is connected to the lower die set 21, the first lower holder base 222 and the second lower holder base 223 and supports the lower die chess 22.
  • the lower cull block 220 is provided with a lower cull sensor 230 (see FIGS. 1 and 2(d)).
  • a lower cull heater 240 is provided between the first lower holder base 222 and the second lower holder base 223 and below the lower cull block 220.
  • the lower cull sensor 230 is a temperature measuring unit that measures the temperature of the lower cull block 220 and the information about the temperature change with time.
  • the lower cull heater 240 is a heating unit that heats the lower cull block 220.
  • the lower cull portion heater 240 can adjust the temperature of the lower cull block 240 by adjusting the output, adjusting the heating time, and adjusting the heating start timing.
  • FIG. 2B shows the arrangement of the lower cull sensor 230 and the lower cull heater 240 in the lower die chess 22.
  • One lower cull sensor 230 is provided on the front side and the center of the lower die chess 22.
  • one lower cull heater 240 is arranged at the center of the lower die chess 22 in the left-right direction (see FIG. 2(b)). Further, the lower cull heater 240 is provided such that its longitudinal direction is parallel to the front-back direction of the lower die chess 22.
  • lower cavity blocks 221 are provided with lower cavity sensors 231 (see FIGS. 1 and 2(d)).
  • Lower cavity heaters 241 are provided between the first lower holder base 222 and the second lower holder base 223 and below the left and right lower cavity blocks 221.
  • the lower cavity sensor 231 is a temperature measuring unit that measures the temperature of the left and right lower cavity blocks 221 and the information about the temperature change with time.
  • the lower cavity heater 241 is a heating means for heating the left and right lower cavity blocks 221.
  • the lower cavity heater 241 can adjust the temperature of the left and right lower cavity blocks 221 by adjusting the output, adjusting the heating time, and adjusting the heating start timing.
  • the adjustment of the outputs of the lower cull heater 240 and the lower cavity heater 241 includes switching ON/OFF of each heater.
  • FIG. 2B shows the arrangement of the lower cavity sensor 231 and the lower cavity heater 241 in the lower die chess 22.
  • Three lower cavity sensors 231 are provided side by side in the front-rear direction on each of the left and right lower cavity blocks 221.
  • one lower cavity heater 241 is arranged side by side on the outside of the lower cull heater 240 in the left-right direction (see FIG. 2B). Further, the lower cavity heater 241 is provided such that its longitudinal direction is parallel to the front-back direction of the lower die chess 22.
  • the lower die chess 22 does not necessarily need to be provided with the lower cull part sensor 230 and the lower cavity sensor 231, and a structure in which only one sensor is provided may be adopted.
  • the lower cull block 220 and the left and right lower cavity blocks 221 can acquire information on temperature and temperature change, and the temperature of the lower mold 2 can be reduced in a finer range.
  • the lower die chess 22 is provided with the lower cull part sensor 230 and the lower cavity sensor 231 from the viewpoint that the change can be grasped and the heating by the heaters 240 and 241 can be easily adjusted.
  • one lower cull sensor 230 does not necessarily have to be provided, and the number thereof is not particularly limited. Further, the arrangement position of the lower cull sensor 230 can be changed appropriately.
  • the lower die chess 22 does not necessarily need to be provided with the lower cull heater 240 and the lower cavity heater 241, and a structure in which only one heater is provided may be adopted.
  • the lower cull block 220 and the left and right lower cavity blocks 221 can be heated, and the temperature can be controlled in a finer range in the lower mold 2.
  • the lower die chess 22 is provided with a lower cull heater 240 and a lower cavity heater 241 from the viewpoint of easily stabilizing the temperature of the entire lower die 2.
  • two lower cavity heaters 241 do not necessarily have to be provided, and the number thereof is not particularly limited. Further, the arrangement position of the lower cavity heater 241 can be appropriately changed.
  • the upper die set 11 is provided with an upper die set heater 111 for heating the upper die chess 12 and an upper die set sensor 110 (see FIGS. 1 and 3(a)).
  • the lower die set 21 is provided with a lower die set heater 211 for heating the lower die chess 22 and a lower die set sensor 210 (see FIGS. 1 and 3B).
  • the upper die set sensor 110 is a temperature measuring means for measuring the temperature of the upper die set 11.
  • the lower die set sensor 210 is a temperature measuring unit that measures the temperature of the lower die set 21.
  • the resin sealing device S includes a control unit, and has a temperature control area for controlling the temperature inside the control unit.
  • This temperature control area is called a temperature control unit.
  • the control unit mentioned here corresponds to the adjusting unit in the claims of the present application.
  • the resin sealing mold M has a temperature adjustment area.
  • a sensor and a heater are provided in this temperature adjustment area.
  • the sensor mentioned here corresponds to any of the above-mentioned upper die set sensor 110, upper cull sensor 130, upper cavity sensor 131, lower die set sensor 210, lower cull sensor 230, and lower cavity sensor 231.
  • the heater mentioned here corresponds to any of the above-mentioned upper die set heater 111, upper cull heater 140, upper cavity heater 141, lower die set heater 211, lower cull heater 240, and lower cavity heater 241. ..
  • the sensor and heater provided in this temperature adjustment area are connected to the temperature control unit.
  • the temperature control unit acquires information on the temperature change in the temperature adjustment region from the sensor provided in the temperature adjustment region during the molding operation in which the resin sealing device S seals the semiconductor element with the resin.
  • control unit acquires information on the temperature change in the temperature adjustment region from the sensor provided in the temperature adjustment region via the temperature control unit.
  • control unit predicts the temperature change in the temperature adjustment region at the time of performing the next molding operation from the information of the temperature change in the temperature adjustment region acquired by the sensor by the molding operation, and calculates various parameters. To do. These various parameters are various information for adjusting the heating by the heater so that the temperature adjustment region has a desired temperature.
  • the desired temperature here means a temperature that is appropriately set depending on the type of resin sealing mold, the type of base material, the type of resin, and the like. The details of various parameters regarding heating by the heater will be described later.
  • control unit instructs the temperature control unit the numerical values of various calculated parameters.
  • the temperature control unit controls the heater based on various parameters instructed by the control unit.
  • the temperature control unit adjusts the output, the heating time, and the heating start timing of the heater for heating the temperature adjustment region based on various parameters instructed by the control unit. Then, the predictive control is performed so that the temperature adjustment region has a desired temperature.
  • the predictive control here is defined as follows. First, as a premise, a reference temperature in the molding operation is set in the resin sealing mold. Then, based on the information about the temperature change in the temperature adjustment region measured in advance, how much heat is applied (or if the amount of heat is suppressed) can reduce the temperature difference from the reference temperature in the temperature adjustment region. It is calculated whether or not it is possible, and the output of the heater for heating the temperature adjustment region, the time for heating, and the timing of starting heating are changed. In this way, by changing various parameters related to heating, the heating of the heater is controlled so that the temperature difference between the temperature of the temperature adjustment region and the reference temperature becomes small in the next molding operation. This is called predictive control.
  • the number of temperature control units set in the control unit is not limited to one, and a plurality of temperature control units can be set.
  • control unit calculates various parameters for the next molding operation by the pre-molding method shown in FIG.
  • the upper cull block 120 is set as a temperature adjustment region for predictive control will be described as an example. That is, a method of calculating various parameters, which is necessary when the temperature control unit controls the upper heater 140 to perform the predictive control, will be described.
  • the base material and the resin to be resin-sealed are supplied to the resin-sealing device S, and the normal molding for resin-sealing the semiconductor element is performed (see FIG. 4(a)).
  • the upper cull heater 140 is turned on for an arbitrary time to perform the molding operation (step S1).
  • Step S2 the control unit calculates various parameters relating to the heating of the upper cull heater 140 so that the upper cull block 120 has a desired temperature when performing the next molding operation. That is, during normal molding, from the information on the temperature change of the upper cull block 120 acquired by the upper cull sensor 130, the temperature change in the upper cull block 120 at the time of performing the next molding operation is predicted, and various parameters are estimated. Is calculated.
  • the various parameters calculated by the control unit include, for example, information for performing ON/OFF control of the upper heater 140.
  • FIG. 4B shows a conceptual diagram of a state in which various parameters are reflected in the ON/OFF control of the upper cull heater 140.
  • timer before heater ON delay (X0) which is the time from the start of the molding operation until the upper cull heater 140 is turned on, the upper cull heater 140 is turned on and finally turned off.
  • heater ON time (Xall) which is the time until it is turned on.
  • information of various parameters is also information on the time for which the upper cull heater 140 is turned off once and the number of times the upper cull heater 140 is turned on and off. Becomes
  • the normal molding is performed by the resin sealing device S, and based on the information on the temperature change of the upper cull block 120 acquired during the molding operation, the upper cull heater 140 of the upper molding part 140 during the next molding operation is performed.
  • Various parameters (X0, X1, X2, X3, X4, etc.) for performing ON/OFF control can be automatically calculated by the control unit.
  • the timing of the start of heating with respect to the start time of the molding operation can be adjusted in various ways. Further, by calculating the heating set time (Xall), it is possible to variously adjust the length of the heating time.
  • the types of various parameters described here are merely examples, and the content of the parameters related to ON/OFF control of the upper heater 140 is not limited to this.
  • molding operation is performed in which continuous molding is performed and prediction control is not performed (first molding) (FIG. 5A), and prediction control is performed.
  • the results of the operation (second molding) (FIG. 5B) and the molding operation of performing predictive control (third molding) (FIG. 5C) were compared.
  • the feedback control referred to here is to realize more stable temperature change in the temperature adjustment region by changing various parameters such as heater ON/OFF time and interval based on the result of the temperature control performed in the predictive control. Means control.
  • FIGS. 5(a) to 5(c) Graphs of temperature changes of the upper cull block 120 in each molding operation are shown in FIGS. 5(a) to 5(c).
  • 5A shows the result of the first molding
  • FIG. 5B shows the result of the second molding
  • FIG. 5C shows the result of the third molding.
  • the mold set temperature was set to 182°C.
  • the temperature of the upper cull block 120 when the temperature of the upper cull block 120 becomes the lowest, the temperature is about 182° C. which is the set temperature of the mold. It was decreased by 5.3°C. Further, after the resin sealing was completed, the temperature of the upper cull block 120 was increased by about 6.9° C. from 182° C. which is the set temperature of the mold.
  • the set temperature of the mold is changed from 182° C. It was about 4°C lower. Further, after the resin sealing was completed, the temperature of the upper cull block 120 was increased by about 1.5° C. from 182° C. which is the set temperature of the mold.
  • the temperature of the upper cull block 120 in the molding operation for performing the predictive control (the third molding), when the temperature of the upper cull block 120 becomes the lowest, from the set temperature of the mold of 182° C. It was about 3.6°C lower. Further, after the resin sealing was completed, the temperature of the upper cull block 120 was increased by about 2° C. from 182° C. which is the set temperature of the mold.
  • the molding operation in which the predictive control is performed is compared with the molding operation (molding first time) in which the predictive control is not performed.
  • the molding operation molding first time
  • the control unit calculates the temperature of the upper cull block 120 based on the temperature change information in the previous molding operation.
  • the temperature controller controls the upper cull heater 140 in the next molding operation, whereby the temperature of the upper cull block 120 can be controlled with high accuracy. That is, it was possible to confirm the effectiveness of performing the predictive control using various parameters calculated by the control unit.
  • By performing the predictive control on the temperature of the cull block it is possible to prevent the mold temperature around the cull part from decreasing and the resin in the cull part from sticking to the mold (cull part).
  • three temperature adjustment areas A4, A5, and A6 are set in the front-rear direction. Further, with respect to the left and right upper cavity blocks 121, three temperature adjustment regions A1, A2 and A3, and A7, A8, and A9 are set in the left and right directions, respectively.
  • the upper cull sensor 130 is arranged in the temperature adjustment areas A4 to A6.
  • the upper cavity sensor 131 is arranged in the temperature adjustment areas A1 to A3 and the temperature adjustment areas A7 to A9.
  • one temperature control unit is connected to a sensor and a heater provided in one temperature adjustment region, and the temperature control unit controls the connected heater based on information of various parameters instructed by the control unit.
  • the resin molding device S performs normal molding for resin-sealing the semiconductor element. Then, with respect to the temperature adjustment areas A1 to A9, the upper cull sensor 130 and the upper cavity sensor 131 acquire information on the temperature change. In addition, the control unit acquires information on the temperature change via the temperature control unit and calculates various parameters.
  • a molding operation (first time) for individually performing predictive control is executed in the temperature adjustment areas A1 to A9 (step S1).
  • the upper cull sensor 130 and the upper cavity sensor 131 acquire temperature change information for the temperature adjustment areas A1 to A9.
  • control unit calculates the content of each various parameter based on the information of the temperature change of each temperature adjustment area A1 to A9 acquired in the molding operation of step S1. Then, the contents of the various parameters used for the predictive control in the molding operation of step S1 are changed to the contents calculated by the control unit, and instructions are given to each temperature control unit (step S2). This further stabilizes the temperature of each of the temperature adjustment regions A1 to A9.
  • each temperature control unit instructed by the control unit controls the connected heater to perform predictive control in the temperature adjustment regions A1 to A9. Then, the molding operation (second time and thereafter) is performed (step S3).
  • the process returns to the step S2 again, and the control is performed based on the temperature change information of each of the temperature adjustment regions A1 to A9 acquired in the previous molding operation.
  • the section calculates various parameters for each temperature adjustment region. Then, various parameters are changed according to the calculated contents, and each temperature control unit is instructed. That is, calculation of various parameters and control of each heater by the temperature control unit based on this calculation are repeatedly performed.
  • step S5 After step S3, if the next molding operation is “none”, the series of steps ends (step S5).
  • the contents of various parameters used for the predictive control of the next molding operation are determined based on the information of the temperature change of the temperature adjustment regions A1 to A9 obtained in the previous molding operation.
  • the temperature control can be performed with high accuracy so that the temperature adjustment regions A1 to A9 approach the desired temperature.
  • the temperature control units in each temperature control region are The heating by the heater can be adjusted by the temperature control unit according to the temperature change. As a result, the temperature of the upper die 1 as a whole can be controlled with higher accuracy.
  • the number of temperature adjustment regions set in the upper cull block 120 and the left and right upper cavity blocks 121 in the upper mold 1 is not limited to nine, and can be changed as appropriate.
  • the upper mold 1 is not necessarily limited to a structure in which a plurality of temperature adjustment regions are set, and a plurality of temperature adjustment regions can be set in the lower mold 2. Further, it is possible to set a plurality of temperature adjustment regions in both the upper mold 1 and the lower mold 2.
  • a total of nine temperature adjustment regions that is, a temperature adjustment region A and temperature adjustment regions B1 to B8 are set in the upper cull block 120 and the left and right upper cavity blocks 121 in the upper mold 1 (FIG. 7(b )reference).
  • three temperature adjustment areas that is, a temperature adjustment area A and temperature adjustment areas B4 and B5 are set in the front-rear direction.
  • three temperature adjustment regions B1, B2, and B3 and B6, B7, and B8 are set in the front and rear directions, respectively.
  • the upper cull sensor 130 is arranged in the temperature adjustment area A and the temperature adjustment areas B4 and B5.
  • An upper cavity sensor 131 is arranged in the temperature adjustment areas B1 to B3 and the temperature adjustment areas B6 to B8.
  • one temperature control unit is set in the control unit.
  • the temperature control unit is connected to the upper cull sensor 130 and the upper cull heater 140 provided in the temperature adjustment area A. Also, the temperature control unit controls the connected upper cull heater 140 based on the information of various parameters instructed by the control unit.
  • each sensor and each heater provided in the temperature adjustment areas B1 to B8 are connected to the control unit. Further, each heater provided in the temperature adjustment areas B1 to B8 is configured such that the controller can change the output ratio of each heater.
  • the resin molding device S performs normal molding for resin-sealing the semiconductor element. Then, for the temperature adjustment area A, the upper cull sensor 130 acquires information on the temperature change. In addition, the control unit acquires information on the temperature change via the temperature control unit and calculates various parameters.
  • a molding operation (first time) for performing predictive control is executed in the temperature adjustment areas A and the temperature adjustment areas B1 to B8 (step S1).
  • the heaters in the temperature adjustment areas B1 to B8 are heated to the same output as the heaters in the temperature adjustment area A.
  • the temperature change area A and the information of various parameters are acquired by the upper cull sensor 130. Further, with respect to the temperature adjustment areas B1 to B8, the upper cull sensor 130 and the upper cavity sensor 131 acquire information on temperature changes.
  • control unit calculates the contents of various parameters based on the information on the temperature change in the temperature adjustment area A acquired in the molding operation in step S1. Then, various parameters are changed according to the calculated contents, and the temperature control unit is instructed. This further stabilizes the temperature of the temperature adjustment area A.
  • the control unit determines the temperature of the temperature adjustment areas A and the temperatures of the temperature adjustment areas B1 to B8 as follows. The respective temperature differences are calculated (step S2). Then, the control unit changes the ratio of the output of each heater in the temperature adjustment regions B1 to B8 on the basis of the information on the temperature difference and the information on the output of the upper heater 140 instructed by the control unit.
  • the heater of the temperature adjustment region B1 is selected based on the content of the temperature difference. Reduce the output ratio.
  • the control unit instructs the temperature control unit to change the ratio of the output of the upper cull heater 140 to a small value so that the temperature adjustment region B1 is provided. It is set as the value of the output of the cavity heater 141.
  • the temperature difference between the temperature of the temperature adjustment area A and the temperature of the temperature adjustment areas B1 to B8 is reduced to stabilize the temperature of the temperature adjustment areas B1 to B8.
  • step S3 using the ratio of the output of each heater set in step S2, a molding operation (second time or later) for performing predictive control is executed in the temperature adjustment regions A and B1 to B8 (step S3).
  • the process returns to the step S2 again, and based on the information of the temperature change of the temperature adjustment area A acquired in the previous molding operation, the control unit performs various operations. Calculate the parameter contents. Then, various parameters are changed according to the calculated contents, and the temperature control unit is instructed. That is, in the temperature adjustment region A, calculation of various parameters and control of the upper cull heater 140 by the temperature control unit based on this calculation are repeatedly performed.
  • the output ratio of each heater in the temperature adjustment areas B1 to B8 is changed. That is, for the temperature adjustment areas B1 to B8, the output ratio of each heater is changed based on the temperature difference between the temperature adjustment areas B1 to B8 and the temperature adjustment area A, and each heater is controlled by the controller based on this change. The control of is repeated.
  • step S5 After step S3, if the next molding operation is “none”, the series of steps ends (step S5).
  • each of the temperature adjustment areas B1 to B8 is based on the temperature change information of the temperature adjustment areas A and B1 to B8 obtained in the previous molding operation.
  • the temperature control can be performed with high accuracy so that the temperature adjustment regions A and B1 to B8 approach the desired temperature.
  • the temperature control of the temperature of the upper mold 1 can be performed with high accuracy with a simple structure.
  • the sensor and heater provided in the temperature adjustment area A do not necessarily need to be connected to the temperature control unit, and a sensor and heater provided in another temperature adjustment area may be connected to the temperature control unit. Can be adopted. Further, the number of temperature control units set in the control unit is not necessarily limited to one, and two or more temperature control units may be set in the control unit as necessary.
  • the number of temperature adjustment regions set in the upper cull block 120 and the left and right upper cavity blocks 121 in the upper mold 1 is not limited to nine, and can be changed as appropriate.
  • the upper mold 1 is not necessarily limited to a structure in which a plurality of temperature adjustment regions are set, and a plurality of temperature adjustment regions can be set in the lower mold 2. Further, it is possible to set a plurality of temperature adjustment regions in both the upper mold 1 and the lower mold 2.
  • the temperature control of the mold is performed with high accuracy. Is possible.
  • the resin-sealing mold of the first embodiment of the present invention enables highly accurate temperature control of the mold when resin-sealing the semiconductor element mounted on the base material. It has become.
  • a resin sealing device A1 which is an example of the resin sealing device according to the present invention has a pair of an upper mold 3 and a lower mold 4.
  • the resin sealing device A1 is a device for sealing the semiconductor element (not shown) mounted on a base material such as a lead frame by resin clamping the upper mold 3 and the lower mold 4.
  • the upper die 3 is composed of an upper die set 31 and an upper die chess 32.
  • the lower die 4 is composed of a lower die set 41 and a lower chess 42.
  • a cull part heater 321 is provided on the upper part of the cull block 320 forming the upper die chess 32 (see FIGS. 8 and 10).
  • the cull block 320 is provided with a cull part sensor 322.
  • one cavity block 323 is provided with a cull side sensor 324 at a position close to the cull block 320 and an upper cabinet center sensor 325 at a far position. (See FIGS. 8 and 10).
  • the cull part heater 321 constitutes a heating means for heating the cull block 320.
  • the cull portion heater 321 can adjust the temperature of the cull block 320 by switching between ON and OFF.
  • the cull heater 321 does not necessarily have to be configured to adjust the temperature of the cull block 320 by switching ON/OFF.
  • the output of the cull portion heater 321 can be adjusted, and a configuration in which the temperature of the cull block 320 is adjusted by increasing or decreasing the output can also be adopted.
  • the cull sensor 322 is a temperature measuring unit that measures the temperature of the cull block 320.
  • the cull side sensor 324 and the upper cabinet center sensor 325 are both temperature measuring means for measuring the temperature of the cavity block 323.
  • the lower die chess 42 has lower cavity blocks 423 on the left and right sides, and pot blocks 420 are provided between the lower cavity blocks 423.
  • the pot block 420 is provided with a plurality of pot portions 424 in two rows, and a pot portion sensor 421 is provided in a part between the rows on the front side in FIG. 10 (see FIG. 10 ).
  • the pot unit sensor 421 is a temperature measuring unit that measures the temperature of the pot block 420.
  • the resin sealing device A2 shown in FIG. 9 is not provided with a pot portion sensor, and this point is a structural difference from the resin sealing device A1 shown in FIG.
  • the upper die set 31 is provided with a plurality of upper die set heaters 311 for heating the upper die chess 32 and an upper die set sensor 310.
  • the lower die set 41 is provided with a plurality of lower die set heaters 411 for heating the lower die chess 42 and a lower die set sensor 410 (see FIGS. 8 and 10).
  • the upper die set sensor 310 is a temperature measuring unit that measures the temperature of the upper die set 31.
  • the lower die set sensor 410 is a temperature measuring unit that measures the temperature of the lower die set 41.
  • the resin sealing device A1 has a control unit.
  • the control unit is connected to each of the sensors and the cull heater 321 and controls the temperature of the cull block 320 by controlling ON/OFF of the cull heater 321 based on the information acquired by each sensor. ..
  • control unit acquires the temperature information measured by the cull portion sensor 322, the upper die set sensor 310, and the lower die set sensor 410 and the time information regarding the measurement, and based on these information, turns on the cull portion heater 321. /OFF is controlled.
  • FIG. 10 shows the arrangement of the cull portion heater 321 and the cull portion sensor 322 of the upper mold 3.
  • the lower die 4 can be provided with a cull heater as in the upper die 3
  • FIG. 10 shows an example of an arrangement in which the pot heater 422 is provided in the pot block 420 of the lower die 4. ing.
  • the cull portion sensor 322 is arranged so as to pass between the cull portions 326 on both sides of the cull block 320, as shown in an enlarged view of the area indicated by the symbol P in FIG. 10.
  • the cull block 320 is formed by a die in which the cull part heater 321 is arranged in the cull block 320 in order to prevent a temperature drop in the cull part during resin injection. It has been proved that the temperature drop can be prevented.
  • Mold temperature 180°C
  • cure time 90 seconds (including transfer time)
  • transfer time 20 seconds
  • amount of resin used diameter 20 mm (12.3 g)
  • number of pot parts 16 pieces/2 frames
  • 1 pot part Number of resins used per piece 2
  • mold size width 350 mm x length 400 mm x thickness 70 mm.
  • each part of the resin sealing device A1 that is the target of temperature measurement is a part where each sensor shown in FIG. 8 is arranged. That is, cull side (cull side sensor 324), upper cabinet center (upper cabinet center sensor 325), cull block (cull part sensor 322), pot block (pot part sensor 421), upper die set (upper die set sensor 310). Also, the lower die set (lower die set sensor 410) is targeted.
  • FIG. 11A shows the result of the temperature measurement of each part in the case of “without the cull part heater”, that is, in the state where the cull part heater 321 is turned off (equivalent to a resin sealing device without the cull part heater 321). Shows. With the cull part heater 321 turned off, when the temperature of the cull block 320 becomes the lowest, the temperature of the cull block 320 decreases from 180°C, which is the set temperature of the mold, to about 170°C by about 10°C. Was there.
  • FIG. 11(b) shows the result of temperature measurement of each part in a state where the cull part heater 321 is turned on for 30 seconds at the same time as the mold closing of the mold, that is, the start of the molding process.
  • the temperature of the cull block 320 was decreased by about 5° C. from 180° C. which is the set temperature of the mold to about 175° C.
  • FIG. 11(c) shows the result of temperature measurement of each part in a state where the cull part heater 321 is turned on for 30 seconds from 10 seconds before the mold is closed.
  • the temperature of the cull block 320 was lowered by about 3° C. from 182° C., which is a temperature slightly elevated from the set temperature of the mold, to about 179° C.
  • the cull heater 321 was turned on for 30 seconds from 10 seconds before the start of mold closing of the mold of FIG. 11(c). In the state, the tendency of the temperature of the cull block 320 to be lowered was remarkably alleviated as compared with the result of FIG. 11A, and was further alleviated as compared with the result of FIG. 11B.
  • the cull block heater 321 is provided and the cull block 320 is heated, so that the cull block 320 after resin sealing is provided. It is possible to reduce the width of the temperature drop. Further, by making the timing of turning on the cull portion heater 321 earlier, the width of the temperature decrease of the cull block 320 can be further reduced. As a result, the effectiveness of the cull heater 321 could be confirmed.
  • FIG. 12A shows the result of the temperature measurement of each part in the state of “without a cull part heater”, that is, in a state where the cull part heater 321 is turned off (equivalent to a resin sealing device without the cull part heater 321). Shows.
  • the cull part heater 321 turned off, when the temperature of the cull block 320 becomes the lowest, the temperature of the cull block 320 is reduced from 180° C. which is the set temperature of the mold to 179° C. which is a slightly lowered temperature. It was about 9° C. down to 170° C.
  • FIG. 12B shows the result of temperature measurement of each part in a state where the cull part heater 321 is turned on for 30 seconds from 10 seconds before the mold is closed.
  • the temperature of the cull block 320 becomes the minimum, the temperature of the cull block 320 is lowered by about 3° C. from about 182° C. which is a slightly elevated temperature from 180° C. which is the set temperature of the mold to about 179° C. Was.
  • FIG. 13 shows a timing chart of ON/OFF of the cull heater 321 in the molding process of resin encapsulation resulting in the result of FIG. 12(b).
  • the cull heater 321 is turned on 10 seconds before the mold starts to be closed, and the on state is maintained for 30 seconds thereafter. Then, two seconds after the mold is closed, the mold is closed and the resin sealing is started. At the time of starting the mold closing, the temperature of the cull block 320 slightly rises to 182° C. as described above.
  • FIG. 14( a) shows the result of temperature measurement of each part when the cull part heater 321 is turned off, and FIG. 14( b) and FIG. 14( c ). It is posted for comparison.
  • FIG. 14B shows the result of temperature measurement of each part in a state where the cull part heater 321 is turned on for 10 seconds 5 seconds after the start of mold closing (ON delay time).
  • ON delay time is the time from the start of mold closing until the cull heater 321 is turned on.
  • FIG. 14C shows the result of temperature measurement of each part when the cull part heater 321 is turned on for 20 seconds at the same time when the mold is closed.
  • the temperature of the cull block 320 was decreased by about 5° C. from 182° C., which was slightly higher than the mold setting temperature of 180° C., to about 177° C.
  • FIG. 15 shows a timing chart of ON/OFF of the cull portion heater 321 in the resin sealing molding process which results in the result of FIG. 14( b ).
  • the cull heater 321 is turned on 5 seconds after the mold starts to be closed, and then the state is kept on for 10 seconds.
  • the mold is closed and resin sealing is started 2 seconds after the mold is closed.
  • the temperature of the cull block 320 is 180° C. while maintaining the set temperature of the mold as described above.
  • FIG. 16(a) shows the result of temperature measurement of each part when the cull part heater 321 is turned on for 30 seconds at the same time when the mold is closed.
  • the temperature of the cull block 320 was lowered by about 5° C. from 180° C. which is the set temperature of the mold to about 175° C.
  • the cull portion heater 321 is turned on for 30 seconds at the same time when the die closing is started. It was found that the temperature decrease of the cull block 320, which was 9° C. lower than the set temperature of, was suppressed to about 5° C.
  • FIG. 16B shows the result of temperature measurement of each part when the cull part heater 321 is turned on for 40 seconds at the same time when the mold is closed.
  • the temperature of the cull block 320 was overshooting in the area indicated by the symbol X in FIG.
  • FIGS. 17A and 17B the molding operation of two calibrations (calibration (1) and calibration (2)) is performed before the actual molding of the base material so that the mold and the resin are molded.
  • the flow at the time of extracting the characteristic as a resin sealing device of composition containing is shown.
  • the capacity of the cull heater 321 is checked.
  • the cull portion heater 321 is turned on at the start of the molding operation (when the mold is closed) (indicated as having a cull portion heater in the drawing).
  • AC 1 second is the time from the start of the molding operation (the start of a series of molding operations starting from the ON of the cull heater in the resin sealing device) to the actual closing of the mold.
  • the B C1 second is the time when the cull heater 321 is turned on.
  • this calibration (1) information on the time when the cull block 320 reaches the maximum temperature is acquired from the reference temperature of the mold. Information on the temperature difference between the reference temperature and the set temperature (temperature rise amount: T C1 ) is also obtained. Further, information on the time from when the cull heater 321 is turned on until the temperature reaches the maximum temperature (reaction time: C C1 ) and the temperature of the cull block 320 after the completion of the molding operation, which is higher than the reference temperature of the mold, are stable. The information (return time: D C1 ) of the time until it is acquired is acquired.
  • the calibration (1) by obtaining the information C C1 of the time from the predetermined reference time until the cull block 320 reaches the maximum temperature, the cull block caused by the material and shape of the cull block 320 is obtained. It is possible to obtain information representing the characteristics of the temperature change when 320 is heated.
  • the time (C C2 ) from the start of the molding operation (at the start of mold closing) until the cull block 320 reaches the minimum temperature and the reference temperature of the mold are lowered.
  • Information on the time until the temperature of the cull block 320 is stabilized after the molding operation is completed (return time: D C2 ) is acquired.
  • the calibration (2) by obtaining the information C C2 of the time from the predetermined reference time until the cull block 320 reaches the minimum temperature, the cull block caused by the material and shape of the cull block 320 is obtained. It is possible to obtain information representing the characteristics of the temperature change when the temperature of 320 is lowered.
  • the control unit performs calculation to actually mold the base material.
  • various parameters (device during molding) for performing ON/OFF control of the cull heater 321 are calculated.
  • the “information relating to the temperature change of the cal block” in the present invention is the information acquired by the operations of the calibration (1) and the calibration (2), for example, the high temperature arrival time information and the high temperature information. , Low temperature arrival time information, low temperature information, and the like.
  • the "information including high temperature arrival time information, high temperature information, low temperature arrival time information and low temperature information” in the present invention means that the information is high temperature arrival time information, high temperature information, low temperature arrival time information.
  • TC1 temperature difference between the block temperature and the reference temperature
  • ⁇ T2 the time until the temperature of the cull block that has risen or fallen above the reference temperature returns and stabilizes after the completion of the molding operation
  • Various parameters (device during molding) for controlling ON/OFF of the cull heater 321 are, for example, “delay before heater ON (X0)” which is the time from the start of the molding operation until the cull heater 321 is turned ON. "The heater ON time (X1), which is the time until the cull portion heater 321 is turned on and finally turned off, and the number of times the cull portion heater 321 is turned on and off (X2).
  • the time for which the cull heater 321 is turned on once (X3).
  • the time for which the cull heater is turned off once (X4) is also a parameter (molding device).
  • the lower part of FIG. 18 shows a conceptual diagram of a state in which the various parameters described above are reflected in the ON/OFF control of the cull heater 321.
  • the molding operation of two calibrations is performed, and the obtained information (for example, T C1 , T C2 , A C1 , C C1 , C C2, D C1, D C2, etc.)
  • various parameters for ON/OFF control of the cull heater 321 during actual molding devices during molding: X0, X1, X2, X3, X4, or the value of temperature drop due to air blow during cleaner operation and
  • the control unit can automatically calculate the cabinet temperature sensor value when controlling the temperature).
  • the timing of the start of heating with respect to the start time of the molding operation can be adjusted in various ways. Further, by calculating the warming set time (X1), the length of the warming time can be adjusted variously.
  • the method of controlling the temperature of the cull portion heater 321 based on the temperature of the cull block 320 that is, the information of the temperature measured by the cull portion sensor 322 has been described, but the temperature of the cull portion heater 321 is controlled. Therefore, other information on the temperature measured by the cull side sensor 324, the upper cabinet center sensor 325, and the pot part sensor 421 can also be used as a device for calculating the parameters.
  • the ON/OFF control of the cull portion heater 321 can be performed with higher accuracy. become.
  • the temperature information obtained in the previous molding step in the actual molding of the base material is used for the next or later molding step.
  • the control can be performed by feeding back to the calculation of various parameters (molding device) for performing ON/OFF control of the cull portion heater 321.
  • the molding steps to be executed later can be set in the order of n+1 immediately after n, or n+2, n+3,... .., n+k can also be set. There is no particular limitation on how to perform the molding process performed first and the molding process performed later.
  • the temperature of the cull block 320 is measured, and a low temperature when the temperature is lower than the reference temperature of the mold (low temperature information) and a high temperature when the temperature is higher than the reference temperature of the mold (high temperature information) ) To get.
  • information ( ⁇ T2) on the temperature difference between the temperature of the cull block 320 and the reference temperature, which has risen above the reference temperature of the mold, may be measured.
  • the adjustment before the heater ON delay (X0) is shortened.
  • the heater ON time (X1) is adjusted to be short.
  • the cull part Adjustments are made such that the output of the heater 321 is reduced, the ON time (X1) is shortened, or the number of times of ON/OFF is increased or decreased. It should be noted that the adjustment of the various parameters (device during molding) described here is merely an example, and the content of the adjustment is not limited to this.
  • the molding step can be repeatedly executed to perform resin sealing of the base material.
  • the cull portion heater 321 is turned ON in the resin sealing of the base material to be executed next time or later.
  • the resin sealing method according to the second embodiment of the present invention enables highly accurate temperature control of the mold during resin sealing. Further, the resin sealing device according to the second embodiment of the present invention is capable of controlling the temperature of the mold with high accuracy during resin sealing.
  • the resin sealing method according to the present invention enables highly accurate temperature control of the mold during resin sealing.
  • the resin-sealing die according to the present invention is capable of controlling the temperature of the die with high accuracy during resin encapsulation.
  • the resin sealing device according to the present invention is capable of highly accurately controlling the temperature of the mold during resin sealing.

Abstract

【課題】基材に載置された半導体素子の樹脂封止を行う際に、高い精度で金型の温度制御が可能な樹脂封止装置を提供する。 【解決手段】 樹脂封止装置Sは、上金型1と下金型2を有し、上金型1の上型チェス12を構成する上カルブロック120には、上カル部センサー130が設けられている。また、第1の上ホルダーベース122と第2の上ホルダーベース123の間、かつ、上カルブロック120の上部には、上カル部ヒーター140が設けられている。また、左右の上キャビティブロック121には、それぞれ上キャビティセンサー131が設けられている。また、第1の上ホルダーベース122と第2の上ホルダーベース123の間、かつ、左右の上キャビティブロック121の上部には、それぞれ上キャビティヒーター141が設けられている。また、樹脂封止装置Sは制御部を備えており、制御部内には温度を制御する温度制御部を有している。

Description

樹脂封止方法、樹脂封止金型及び樹脂封止装置
 本発明は、樹脂封止方法、樹脂封止金型及び樹脂封止装置に関するものである。
 各種半導体パッケージ等を製造する樹脂封止方法において、1回の樹脂封止から取り出す半導体パッケージの個数の増加又は半導体パッケージの大型化等の要望から、大量の樹脂を使用する樹脂封止が行われている。
 そこで、樹脂を充分に溶融させて、樹脂の未充填等を抑止することを試みた樹脂封止装置として、例えば、特許文献1に記載された樹脂封止装置がある。
 この特許文献1に記載された樹脂封止装置は、固定型又は可動型のいずれか一方の型に所要数のポットを設け、他方の型にポットと対向して形成したカル部を備えており、ポット及びカル部に専用の加熱手段を配設している。
実開平2-31130号公報
 ここで、特許文献1に記載された樹脂封止装置では、1回の樹脂封止に用いる樹脂の量が多い場合の温度制御についての担保が充分になされておらず、ポットへ大量の樹脂を投入し、カル部を介してキャビティに樹脂を注入した際にカルブロック周辺の熱が樹脂に奪われ、金型温度が低下してしまうことが懸念される。
 例えば、樹脂に対して、硬化に必要な充分な熱が与えられないため、樹脂を充分に溶融させて樹脂の未充填等を抑止する、また、キャビティに注入した後の樹脂を充分に硬化させるという効果が得られず、成形不良に繋がるおそれがあった。
 また、従来の樹脂封止装置には、ダイセット内に配置したヒーターとセンサーにて金型の温度制御を行うものもあるが、一般にダイセット内のセンサーから、カルブロック又はキャビティブロックまでの距離が遠いため、各ブロックにおける温度の低下を検知することが困難であった。
 また、仮に、センサーでカルブロック又はキャビティブロックにおける温度の低下を検知できたとしても、温度の低下の発生と、検知との間にはタイムラグが生じていた。そのため、リアルタイムで各ブロック周辺の温度制御を行うことができなかった。
 更に、カルブロック又はキャビティブロックにおける温度の低下を検知して、金型を加温する対応を取るとしても、検知後の加温では、再度、金型の温度が上昇するまでに相応の時間を要する。そのため、樹脂が充分に溶融しない、又は、キャビティに注入した後の樹脂が硬化しないという問題を充分に解消することが困難であった。
 本発明は、以上の点を鑑みて創案されたものであり、基材に載置された半導体素子の樹脂封止を行う際に、金型の温度制御を高い精度で行うことが可能な樹脂封止方法、樹脂封止金型及び樹脂封止装置を提供することを目的とするものである。
 上記の目的を達成するために、本発明の樹脂封止方法は、樹脂の供給経路であるカルを形成するカルブロック及びキャビティを形成するキャビティブロックが設けられた金型本体と、カルブロック及びキャビティブロックの少なくとも一方の温度を測定する温度測定手段と、カルブロック及びキャビティブロックを加温する加温手段と、金型本体を加温する金型本体加温手段と、を有する樹脂封止金型で、カルブロック及びキャビティブロックが所望の温度となるように、加温手段による加温の調整を行いながら、基材に載置された半導体素子を樹脂封止する成形動作を行う樹脂封止方法であって、成形動作は、成形動作より前に実行された成形動作で温度測定手段が測定した温度変化の情報に基づいて、加温手段による加温を調整する調整工程を備える。
 ここで、温度測定手段が、カルブロック及びキャビティブロックの少なくとも一方の温度を測定することによって、半導体素子を樹脂封止する際の、カルブロックにおける温度変化の情報や、キャビティブロックにおける温度変化の情報を取得することができる。なお、ここでいうカルブロックの温度、又は、キャビティブロックの温度とは、カルブロック又はキャビティブロックにおける、温度測定手段の周囲(近傍)を測定した際の温度を意味する。
 また、調整工程が、成形動作より前に実行された成形動作で温度測定手段が測定した温度変化の情報に基づいて、加温手段による加温を調整することによって、カルブロック又はキャビティブロックにおける温度変化から、カルブロック又はキャビティブロックの温度が所望の温度となるように、加温手段による加温を調整することができる。これにより、樹脂封止の際に、金型本体の温度制御を高い精度で行うことができる。なお、加温手段によるカルブロック及びキャビティブロックの加温とは、カルブロック又はキャビティブロックを加温手段で加熱して、熱が金型本体内を伝達することで、各ブロックの表面近傍の温度が上昇することを含むものである。また、ここでいう成形動作より前に実行された成形動作とは、調整工程を有する成形動作を基準として、その1回前の成形動作だけを対象とするものではなく、基準より前の、即ち、2回以上前の成形動作を対象とするものを含んでいる。よって調整工程を有する成形動作を基準として、その2回前の成形動作や、その3回前の成形動作が対象となってもよい。
 また、カルブロック及びキャビティブロックに、温度測定手段による温度測定及び、加温手段による加温を個別に行うことが可能な複数の温度調整領域を設定し、温度調整領域ごとに加温手段による加温の出力、時間及び時機を調整する場合には、カルブロック及びキャビティブロックを複数の温度調整領域に分けて、温度調整領域ごとに、加温手段による温度の調整を行うことが可能となる。
 また、温度調整領域として、少なくとも第一の温度調整領域と、第一の温度調整領域とは異なる第二の温度調整領域とを設定し、調整工程が、成形動作より前に実行された成形動作における第一の温度調整領域と第二の温度調整領域との相対温度の情報及び、第一の温度調整領域の温度変化の情報に基づいて、第二の温度調整領域に対応する加温手段による加温の出力、時間及び時機を調整する場合には、第一の温度調整領域と第二の温度調整領域との相対温度の情報と、前の成形動作から予測した第一の温度調整領域における温度変化から、第一の温度調整領域及び第二の温度調整領域が所望の温度となるように、加温手段による加温の出力、時間及び時機を調整することができる。
 また、調整工程が、温度調整領域ごとに、温度変化の情報に基づいて加温手段による加温の出力、時間及び時機を調整する場合には、個々の温度調整領域について、前の成形動作から予測した個々の温度調整領域における温度変化から、個々の温度調整領域における温度が所望の温度となるように、加温手段による加温の出力、時間及び時機を調整することができる。
 また、上記の目的を達成するために、本発明の樹脂封止方法は、樹脂を供給するポット部が設けられた第一の金型と、第一の金型と型合わせしてポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、カルブロックの温度を測定する温度測定手段と、カルブロックを加温する加温手段と、を有する樹脂封止金型で、基材に載置された半導体素子を樹脂封止する成形動作の際に、カルブロックの温度制御を行う樹脂封止方法であって、加温手段で加温を行い、ポット部に樹脂を入れずに、成形動作を行うと共に、所定の基準時から、カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報及び所要の高い温度の情報である高温度情報を取得する第1の情報取得工程と、加温手段で加温を行わず、又は加温手段の加温の出力を下げて加温を行い、ポット部に樹脂を入れて、成形動作を行うと共に、所定の基準時から、カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び所要の低い温度の情報である低温度情報を取得する第2の情報取得工程と、高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報を含む情報に基づき、カルブロックの温度制御を行って、半導体素子を樹脂封止する成形工程とを備える。
 ここで、本発明の樹脂封止方法は、まず、第1の情報取得工程において、加温手段で第二の金型のカルブロックの加温を行い、第一の金型のポット部に樹脂を入れずに成形動作を行う。また、その成形動作を行うと共に、所定の基準時から、カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報及び所要の高い温度の情報である高温度情報を取得する。
 第1の情報取得工程では、樹脂の使用を除外した条件下で加温手段を作動させて成形動作を行うことにより、加温手段の作動に起因する、時間の経過と共に変化するカルブロックの昇温に関する、高温度到達時間情報及び高温度情報等の温度情報を得ることができる。
 次に、第2の情報取得工程において、加温手段による第二の金型のカルブロックの加温を行わず、又は加温手段の加温の出力を下げて加温を行い、第一の金型のポット部に樹脂を入れて、成形動作を行う。また、その成形動作を行うと共に、所定の基準時から、カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び所要の低い温度の情報である低温度情報を取得する。
 第2の情報取得工程では、樹脂成形時において加温手段を作動させず、又は加温手段の加温の出力を下げて、その条件下で、樹脂を使用した成形動作を行うことにより、樹脂の使用に起因し、時間の経過と共に変化するカルブロックの降温に関する、低温度到達時間情報及び低温度情報等の温度情報を得ることができる。
 そして、基材に載置された半導体素子を樹脂封止する成形動作の際に、成形工程において、高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報等を含む情報に基づき、カルブロックの温度制御を行って、半導体素子を樹脂封止する。これにより、樹脂封止の際に、金型の温度制御を高い精度で行うことができる。
 また、本発明において、高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報等は、それぞれ独立したデータとして取得しているので、例えば、同一金型で樹脂のみを変更した場合等は、高温度到達時間情報、高温度情報等はそのままで、低温度到達時間情報、低温度情報等のみを再取得すればよく、この場合は第1の情報取得工程を省略できる等、作業の効率化を図ることができる。
 また、上記の目的を達成するために、本発明の樹脂封止方法は、先に実行される成形工程において、成形工程中のカルブロックの所要の高い温度の情報である高温度情報と、成形工程中のカルブロックの所要の低い温度の情報である低温度情報とを取得し、成形工程より後に実行される成形工程の際に、取得した高温度情報及び低温度情報を含む情報に基づき、カルブロックの温度制御を行う場合がある。
 この場合は、先に実行される成形工程において、成形工程中のカルブロックの所要の高い温度の情報である高温度情報と、成形工程中のカルブロックの所要の低い温度の情報である低温度情報とをそれぞれ取得する。
 そして、その成形工程より後に実行される成形工程の際に、取得した高温度情報及び低温度情報を含む情報に基づき、カルブロックの温度制御を行うことにより、成形動作中の時間の経過に伴うカルブロックの温度変化の状況を反映させた制御が可能になる。
 また、上記の目的を達成するために、本発明の樹脂封止方法は、第1の情報取得工程、第2の情報取得工程及び成形工程を1回ずつ実行した後は、成形工程のみを繰り返し実行し、先に実行される成形工程でカルブロックの温度制御を行ったパラメーター情報を、先に実行される成形工程で取得したカルブロックの所要の高い温度の情報である高温度情報と、カルブロックの所要の低い温度の情報である低温度情報を含む情報に基づき算出したパラメーター情報で更新し、後に実行される成形工程において、更新したパラメーター情報に基づき、カルブロックの温度制御を行う場合がある。
 この場合は、まず、第1の情報取得工程、第2の情報取得工程及び成形工程を1回ずつ実行する。それ以降、成形工程のみを繰り返し実行する際には、一回目の成形工程を含む先に実行される成形工程において、成形工程中のカルブロックの所要の高い温度の情報である高温度情報と、成形工程中のカルブロックの所要の低い温度の情報である低温度情報とをそれぞれ取得する。
 次に、先に実行される成形工程でカルブロックの温度制御を行ったパラメーター情報を、上記先に実行される成形工程で取得したカルブロックの所要の高い温度の情報である高温度情報と、カルブロックの所要の低い温度の情報である低温度情報を含む情報に基づき算出したパラメーター情報で更新する。
 そして、後に実行される成形工程で、上記更新したパラメーター情報に基づき、カルブロックの温度制御を行う。これにより、後に実行される成形工程において、成形動作中に時間の経過と共に変化する、先に実行された成形工程におけるカルブロックの温度変化の状況を直に反映させたカルブロックの温度の制御が可能になる。
 また、上記の目的を達成するために、本発明の樹脂封止方法は、所定の基準時が、成形動作の開始時である場合がある。
 この場合は、所定の基準時が、成形動作の開始時であることにより、成形動作の開始時を基準として、時間的制御を行う。これにより、例えば電源の投入、或いは通電の開始のタイミングを基準時にすることができるので、時間的な制御がしやすい。また、樹脂又は金型の種類が変更された際にも、基準が把握しやすく、条件設定が容易になる。
 なお、「成形動作」の用語は、本発明においては、例えば、金型の可動型が動き始めるところから、樹脂が硬化して基材に載置された半導体素子を樹脂封止したところまでをいうが、これに限定はされない。
 また、上記の目的を達成するために、本発明の樹脂封止方法は、成形工程が、高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報を含む情報に基づき、成形動作の開始から加温手段で加温を開始するまでの時間である加温開始時間及び加温手段で加温を行う設定時間である加温設定時間を算出して、成形動作を行う場合がある。
 この場合は、成形工程が、高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報を含む情報に基づき、成形動作の開始から加温手段で加温を開始するまでの時間である加温開始時間を算出する。また、同様にして、加温手段で加温を行う設定時間である加温設定時間を算出する。そして、算出したこれらの情報に基づき、成形動作を行う。
 また、上記の目的を達成するために、本発明の樹脂封止方法は、所要の高い温度が最高温度であり、かつ所要の低い温度が最低温度である場合がある。
 この場合は、高温度到達時間情報、高温度情報等の所要の高い温度が最高温度であることで、高い温度ではカルブロックの特性が最もよく現れた情報が取得できる。また、低温度到達時間情報、低温度情報等の所要の低い温度が最低温度であることで、低い温度ではカルブロックの特性が最もよく現れた情報が取得できる。これらの情報により、カルブロックのより好適な温度制御を、高い精度で行うことが可能になる。
 また、上記の目的を達成するために、本発明の樹脂封止方法は、樹脂を供給するポット部が設けられた第一の金型と、第一の金型と型合わせしてポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、カルブロックの温度を測定する温度測定手段と、カルブロックを加温する加温手段と、を有する樹脂封止金型で、基材に載置された半導体素子を樹脂封止する成形動作の際に、カルブロックの温度制御を行う樹脂封止方法であって、加温手段で加温を行い、ポット部に樹脂を入れずに、成形動作を行うと共に、所定の基準時から、カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報及び所要の高い温度の情報である高温度情報を取得し、かつ、加温手段で加温を行わず、又は加温手段の加温の出力を下げて加温を行い、ポット部に樹脂を入れて、成形動作を行うと共に、所定の基準時から、カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び所要の低い温度の情報である低温度情報を取得すると共に、高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報を含む情報に基づき、カルブロックの温度制御を行って、半導体素子を樹脂封止する成形工程を備える。
 ここで、本発明の樹脂封止方法は、まず、加温手段で第二の金型のカルブロックの加温を行い、第一の金型のポット部に樹脂を入れずに成形動作を行う。また、その成形動作を行うと共に、所定の基準時から、カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報及び所要の高い温度の情報である高温度情報を取得する。
 樹脂の使用を除外した条件下で加温手段を作動させて成形動作を行うことにより、加温手段の作動に起因する、時間の経過と共に変化するカルブロックの昇温に関する高温度到達時間情報及び高温度情報等の温度情報を得ることができる。
 次に、加温手段による第二の金型のカルブロックの加温を行わず、又は加温手段の加温の出力を下げて加温を行い、第一の金型のポット部に樹脂を入れて、成形動作を行う。また、その成形動作を行うと共に、所定の基準時から、カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び所要の低い温度の情報である低温度情報を取得する。
 樹脂成形時において、加温手段を作動させず、又は加温手段の加温の出力を下げて、その条件下で、樹脂を使用した成形動作を行うことにより、樹脂の使用に起因し、時間の経過と共に変化するカルブロックの降温に関する、低温度到達時間情報及び低温度情報等の温度情報を得ることができる。
 そして、基材に載置された半導体素子を樹脂封止する成形動作の際に、成形工程において、高温度到達時間情報、高温度情報等、低温度到達時間情報及び低温度情報を含む情報に基づき、カルブロックの温度制御を行って、半導体素子を樹脂封止する。これにより、樹脂封止の際に、金型の温度制御を高い精度で行うことができる。
 また、上記の目的を達成するために、本発明の樹脂封止方法は、樹脂を供給するポット部が設けられた第一の金型と、第一の金型と型合わせしてポット部と対向する位置にカル部を形成するカルブロックが設けられた第二の金型と、カルブロックの温度を測定する温度測定手段と、カルブロックを加温する加温手段と、を有する樹脂封止金型で、基材に載置された半導体素子を樹脂封止する成形動作の際に、カルブロックの温度制御を行う樹脂封止方法であって、温度測定手段でカルブロックの温度変化に関係する情報を取得し、情報から、カルブロックの温度制御を行うためのパラメーターを算出する予備動作工程と、パラメーターに基づき、加温手段でカルブロックの温度制御を行って、半導体素子を樹脂封止する成形工程とを備える。
 ここで、本発明の樹脂封止方法は、加温手段で第二の金型のカルブロックの加温を行う。また、予備動作工程において、温度測定手段でカルブロックの温度変化に関係する情報を取得し、この情報から、カルブロックの温度制御を行うためのパラメーターを算出する。
 そして、基材に載置された半導体素子を樹脂封止する成形動作の成形工程において、パラメーターに基づき、カルブロックの温度制御を行って、半導体素子を樹脂封止することができる。これにより、樹脂封止の際の金型の温度制御を高い精度で行うことが可能になる。
 また、上記の目的を達成するために、本発明の樹脂封止金型は、樹脂の供給経路であるカルを形成するカルブロック及びキャビティを形成するキャビティブロックが設けられた金型本体と、カルブロック及びキャビティブロックの少なくとも一方の温度を測定する温度測定手段と、カルブロック及びキャビティブロックを加温する加温手段と、金型本体を加温する金型本体加温手段と、加温手段による加温を調整する調整部と、を有し、カルブロック及びキャビティブロックが所望の温度となるように加温手段による加温の調整を行いながら、基材に載置された半導体素子を樹脂封止する成形動作を行う樹脂封止金型であって、調整部は、成形動作より前に実行された成形動作で温度測定手段が測定した温度変化の情報に基づいて、成形動作で加温手段による加温を調整するように構成される。
 ここで、樹脂封止金型が、加温手段による加温を調整する調整部を有することによって、樹脂封止の際に、カルブロック及びキャビティブロックにおける温度を調整することができる。
 また、調整部が、成形動作より前に実行された成形動作で温度測定手段が測定した温度変化の情報を用いることによって、成形動作の際の、カルブロック及びキャビティブロックにおける温度変化を予測することが可能になる。
 また、調整部が、成形動作より前に実行された成形動作で温度測定手段が測定した温度変化の情報に基づいて、加温手段による加温を調整することによって、カルブロック及びキャビティブロックにおける温度変化から、カルブロック及びキャビティブロックの温度が所望の温度となるように、調整部が加温手段による加温を調整することができる。
 また、上記の目的を達成するために、本発明の樹脂封止装置は、樹脂を供給するポット部が設けられた第一の金型と、第一の金型と型合わせしてポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、を有する樹脂封止金型で、カルブロックの温度制御を行い、基材に載置された半導体素子を樹脂封止する成形動作を行う樹脂封止装置であって、カルブロックの温度を測定する温度測定手段と、カルブロックを加温する加温手段と、加温手段で加温を行い、ポット部に樹脂を入れずに、成形動作を行う際の、所定の基準時から、カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報、所要の高い温度の情報である高温度情報、加温手段で加温を行わず、又は加温手段の加温の出力を下げて加温して、ポット部に樹脂を入れて、成形動作を行う際の、所定の基準時から、カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び所要の低い温度の情報である低温度情報を含む情報に基づき、加温手段を制御する制御手段と、を備える。
 ここで、本発明の樹脂封止装置は、まず、加温手段で第二の金型のカルブロックの加温を行い、第一の金型のポット部に樹脂を入れずに成形動作を行う。また、その成形動作を行うと共に、所定の基準時から、カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報及び所要の高い温度の情報である高温度情報を温度測定手段で測定して、制御手段により取得する。
 樹脂の使用を除外した条件下で加温手段を作動させて成形動作を行うことにより、加温手段の作動に起因する、時間の経過と共に変化するカルブロックの昇温に関する高温度到達時間情報及び高温度情報等の温度情報を得ることができる。
 次に、加温手段による第二の金型のカルブロックの加温を行わず、又は加温手段の加温の出力を下げて加温を行い、第一の金型のポット部に樹脂を入れて、成形動作を行う。また、その成形動作を行うと共に、所定の基準時から、カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び所要の低い温度の情報である低温度情報を取得する。
 樹脂成形時において、加温手段を作動させず、又は加温手段の加温の出力を下げて、その条件下で、樹脂を使用した成形動作を行うことにより、樹脂の使用に起因し、時間の経過と共に変化するカルブロックの降温に関する、低温度到達時間情報及び低温度情報等の温度情報を得ることができる。
 そして、基材に載置された半導体素子を樹脂封止する成形動作の際に、高温度到達時間情報、高温度情報等、低温度到達時間情報及び低温度情報等を含む情報に基づき、カルブロックの温度制御を行って、半導体素子を樹脂封止する。これにより、樹脂封止の際に、金型の温度制御を高い精度で行うことができる。
 また、上記の目的を達成するために、本発明の樹脂封止装置は、制御手段が、基材を樹脂封止する成形工程中のカルブロックの所要の高い温度の情報である高温度情報と、成形工程中のカルブロックの所要の低い温度の情報である低温度情報を含む情報に基づき、後に実行される成形工程の温度制御を行う場合がある。
 この場合は、制御手段が、成形工程中のカルブロックの所要の高い温度の情報である高温度情報と、成形工程中のカルブロックの所要の低い温度の情報である低温度情報とをそれぞれ取得する。
 そして、後に実行される成形工程の際に、取得した高温度情報及び低温度情報を含む情報に基づき、カルブロックの温度制御を行うことにより、先に行う成形動作中の時間の経過に伴うカルブロックの温度変化の状況を反映させた制御が可能になる。
 また、上記の目的を達成するために、本発明の樹脂封止装置は、樹脂を供給するポット部が設けられた第一の金型と、第一の金型と型合わせしてポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、を有する樹脂封止金型で、カルブロックの温度制御を行い、基材に載置された半導体素子を樹脂封止する成形動作を行う樹脂封止装置であって、カルブロックの温度を測定する温度測定手段と、カルブロックを加温する加温手段と、温度測定手段でカルブロックの温度変化に関係する情報を取得し、情報から、カルブロックの温度制御を行うためのパラメーターを算出し、パラメーターに基づき、加温手段によるカルブロックの温度制御を行う制御手段とを備える。
 ここで、本発明の樹脂封止装置は、加温手段で第二の金型のカルブロックの加温を行う。この際に、温度測定手段でカルブロックの温度変化に関係する情報を取得し、この情報から、制御手段でカルブロックの温度制御を行うためのパラメーターを算出する。
 そして、基材に載置された半導体素子を樹脂封止する成形動作において、パラメーターに基づき、制御手段で加温手段によるカルブロックの温度制御を行い、半導体素子を樹脂封止することができる。これにより、樹脂封止の際の金型の温度制御を高い精度で行うことが可能になる。
 本発明は、基材に載置された半導体素子の樹脂封止を行う際に、金型の温度制御を高い精度で行うことが可能な樹脂封止方法、樹脂封止金型及び樹脂封止装置を提供することができる。
本発明に係る樹脂封止金型の一例である樹脂封止金型を含む樹脂封止装置を示す概略説明図である。 (a)は、上型チェスにおける上カル部センサーと上カル部ヒーター及び上キャビティセンサーと上キャビティヒーターの配置を示す概略図であり、(b)は、下型チェスにおける下カル部センサーと下カル部ヒーター及び下キャビティセンサーと下キャビティヒーターの配置を示す概略図であり、(c)は、上金型の概略正面図であり、(d)は、下金型の概略正面図である。 (a)は、上型ダイセットにおける上ダイセットセンサー及び上ダイセットヒーターの配置を示す概略図であり、(b)は、下型ダイセットにおける下ダイセットセンサー及び下ダイセットヒーターの配置を示す概略図である。 上カルブロックを予測制御する際の事前成形方法に関する説明図であり、(a)は、通常成形から各種パラメーターを算出する流れを示すフロー図、(b)は、各種パラメーターを上カル部ヒーターのON/OFF制御に反映させた状態の概念図である。 カルブロックにカル部センサー及びカル部ヒーターを設けた樹脂封止装置において、成形動作を行った際の、カル部の温度変化の情報をカル部センサーで測定した結果を示すグラフであり、(a)は、予測制御をせずに1回目の成形動作を行った結果、(b)は、1回目の温度変化の情報に基づき、予測制御をして2回目の成形動作を行った結果、(c)は、2回目の温度変化の情報に基づき、予測制御をして3回目の成形動作を行った結果である。 (a)は、各温度調整領域を個別のヒーター制御で予測制御する成形動作の流れを示すフロー図であり、(b)は、上型チェスに設定した温度調整領域A1~A9を示す概略図である。 (a)は、温度調整領域Aをヒーター制御で予測制御すると共に、その他の温度調整領域を、温度調整領域Aにおけるカル部ヒーターの出力の割合を変化させて制御する成形動作の流れを示すフロー図であり、(b)は、上型チェスに設定した温度調整領域A及びB1~B8を示す概略図である。 本発明に係る樹脂封止装置の構造の一例(ポット部センサー有り)を示す概略説明図である。 本発明に係る樹脂封止装置の構造の他の例(ポット部センサー無し)を示す概略説明図である。 下金型と上金型を示し、上金型のカル部センサーとカル部ヒーター及び下金型のポット部センサーの配置を示す概略図である。 (a)は、図8に示す樹脂封止装置において、カル部ヒーターで加温しない状態の各センサーで温度測定した結果を示すグラフであり、(b)は、型閉開始と同時にカル部ヒーターを30秒間作動させた状態の各センサーで温度測定した結果を示すグラフであり、(c)は、型閉開始10秒前からカル部ヒーターを30秒間作動させた状態の各センサーで温度測定した結果を示すグラフである。 (a)は、図9に示す樹脂封止装置において、カル部ヒーターで加温しない状態の各センサーで温度測定した結果を示すグラフであり、(b)は、型閉開始10秒前からカル部ヒーターを30秒間作動させた状態の各センサーで温度測定した結果を示すグラフである。 図12(b)におけるカル部ヒーターのON/OFFの制御のタイミングチャートを示す説明図である。 (a)は、図9に示す樹脂封止装置において、カル部ヒーターで加温しない状態の各センサーで温度測定した結果を示すグラフであり、(b)は、型閉開始5秒後にカル部ヒーターを10秒間作動させた状態の各センサーで温度測定した結果を示すグラフであり、(c)は、型閉開始と同時にカル部ヒーターを20秒間作動させた状態の各センサーで温度測定した結果を示すグラフである。 図14(b)におけるカル部ヒーターのON/OFFの制御のタイミングチャートを示す説明図である。 (a)は、図9に示す樹脂封止装置において、型閉開始と同時にカル部ヒーターを30秒間作動させた状態の各センサーで温度測定した結果を示すグラフであり、(b)は、型閉開始と同時にカル部ヒーターを40秒間作動させた状態の各センサーで温度測定した結果を示すグラフである。 2つのキャリブレーションの流れを示すフロー図、カルブロックの温度変化、カル部ヒーターの出力変動及び成形の動作と時間との関係を示し、(a)はキャリブレーション(1)、(b)はキャリブレーション(2)の説明図である。 キャリブレーションで得られた結果に基づき、実成形における成形動作時のカル部ヒーターのON/OFFの制御の一例を示す説明図である。 フィードバック制御に用いる実成形の際の温度変化の情報の一例を示す概略図である。
[第1の実施の形態]
 本発明の第1の実施の形態について説明する。
 図1、図2及び図3を参照して、本発明に係る樹脂封止金型の一例を含む樹脂封止装置の構造の概略を説明する。
 樹脂封止装置Sは、本発明に係る樹脂封止金型の一例である樹脂封止金型Mを備えている(図1参照)。この樹脂封止金型Mは、一対の上金型1及び下金型2を有している。樹脂封止装置Sは、上金型1と下金型2を型締めして、リードフレーム等の基材に載置された半導体素子(図示省略)を樹脂封止する装置である。
 なお、以下の説明においては、図1を基準に、上金型1に対する下金型2の位置を「下」又は「下側」と呼び、下金型2に対する上金型1の位置を「上」又は「上側」と呼ぶこととする。また、図1を基準に、同図の紙面における左方を「左」又は「左側」と呼び、同図の紙面における右方を「右」又は「右側」と呼ぶこととする。また、図1を基準に、上カルブロック120に対する上キャビティブロック121の位置を「外」又は「外側」と呼び、上キャビティブロック121に対する上カルブロック120の位置を「内」又は「内側」と呼ぶこととする。さらに、図2(a)を基準に、同図の紙面における下方を「前」又は「前側」と呼び、同図の紙面における上方を「後」又は「後ろ側」と呼ぶこととする。
 ここで、上金型1は、上型ダイセット11及び上型チェス12で構成されている(図1及び図2(c)参照)。また、下金型2は、下型ダイセット21及び下型チェス22で構成されている(図1及び図2(d)参照)。
 また、上型ダイセット11は、図示しないサポートピラーを介して上型チェス12を支持する枠体である。サポートピラーは、上型ダイセット11及び上型チェス12に接続され、上型チェス12を支持する支持部材である。
 また、上型チェス12は、型締めした際に、下型チェス22と共に、樹脂の供給経路であるカル部124(図2(a)参照)及び樹脂の成形部であるキャビティ(符号省略)を形成する部材である。
 また、下型ダイセット21は、図示しないサポートピラーを介して下型チェス22を支持する枠体である。サポートピラーは、下型ダイセット21及び下型チェス22に接続され、下型チェス22を支持する支持部材である。
 また、上型チェス12は、上カルブロック120と、上キャビティブロック121と、第1の上ホルダーベース122と、第2の上ホルダーベース123を有している(図1及び図2(c)参照)。
 また、上カルブロック120は、型締めした際に、後述する下カルブロック220と共にカル部124を形成する部材である。また、上キャビティブロック121は、型締めした際に、後述する下キャビティブロック221と共に、キャビティを形成する部材である。
 また、第1の上ホルダーベース122及び第2の上ホルダーベース123は、図示しないサポートピラーで支持される部材である。サポートピラーは、上型ダイセット11と、第1の上ホルダーベース122及び第2の上ホルダーベース123に接続され、上型チェス12を支持する支持部材である。
 また、上カルブロック120には、上カル部センサー130が設けられている(図1及び図2(c)参照)。また、第1の上ホルダーベース122と第2の上ホルダーベース123の間、かつ、上カルブロック120の上部には、上カル部ヒーター140が設けられている。
 また、上カル部センサー130は、上カルブロック120の温度と、時間の変化に伴う温度変化の情報を測定する温度測定手段である。
 また、上カル部ヒーター140は、上カルブロック120を加温する加温手段である。上カル部ヒーター140は、出力の調整、加温する時間の調整、及び、加温を始めるタイミングの調整を行うことにより、上カルブロック120の温度を調整することができる。なお、ここでいう加温を始めるタイミングとは、本願請求項における加温手段による加温の時機に該当する。
 また、図2(a)には、上型チェス12における上カル部センサー130と、上カル部ヒーター140の配置を示している。上カル部センサー130は、上型チェス12の前側、かつ、中央部に1つ設けられている(図1及び図2(c)参照)。
 また、上カル部センサー130は、図2(a)の符号Pで示す領域の拡大図に示すように、上カルブロック120の両側にあるカル部124の間を通すようにして配置されている。
 また、上カル部ヒーター140は、上型チェス12の中央部に、左右方向へ3つ並べて配置されている(図2(a)参照)。また、上カル部ヒーター140は、その長手方向が、上型チェス12の前後方向と平行な向きに設けられている。
 また、左右の上キャビティブロック121には、それぞれ上キャビティセンサー131が設けられている(図1及び図2(c)参照)。また、第1の上ホルダーベース122と第2の上ホルダーベース123の間、かつ、左右の上キャビティブロック121の上部には、それぞれ上キャビティヒーター141が設けられている(図1参照)。
 また、上キャビティセンサー131は、左右の上キャビティブロック121の温度と、時間の変化に伴う温度変化の情報を測定する温度測定手段である。
 また、上キャビティヒーター141は、左右の上キャビティブロック121を加温する加温手段である。上キャビティヒーター141は、出力の調整、加温する時間の調整、及び、加温を始めるタイミングの調整を行うことにより、左右の上キャビティブロック121の温度を調整することができる。
 なお、上カル部ヒーター140及び上キャビティヒーター141における出力の調整には、各ヒーターのON/OFFの切り替えが含まれている。
 また、図2(a)には、上型チェス12における上キャビティセンサー131と、上キャビティヒーター141の配置を示している。上キャビティセンサー131は、左右の上キャビティブロック121のそれぞれに、前後方向へ3つ並べて設けられている。
 また、上キャビティヒーター141は、左右方向において、上カル部ヒーター140の外側に、それぞれ1つずつ並べて配置されている(図2(a)参照)。また、上キャビティヒーター141は、その長手方向が、上型チェス12の前後方向と平行な向きに設けられている。
 ここで、必ずしも、上型チェス12に、上カル部センサー130及び上キャビティセンサー131が設けられる必要はなく、いずれか1つのセンサーのみが設けられた構造が採用されてもよい。但し、1つのセンサーのみを設ける構造に比べて、上カルブロック120、及び、左右の上キャビティブロック121で、温度と温度変化の情報が取得でき、上金型1の中でもより細かい範囲で、温度変化が把握可能となり、各ヒーター140、141による加温の調整が行いやすくなる点から、上型チェス12に、上カル部センサー130及び上キャビティセンサー131が設けられることが好ましい。
 また、必ずしも、上カル部センサー130が1つ設けられる必要はなく、その数は特に限定されるものではない。また、上カル部センサー130の配置位置も適宜変更することができる。
 また、必ずしも、上キャビティセンサー131が3つ設けられる必要はなく、その数は特に限定されるものではない。また、上キャビティセンサー131の配置位置も適宜変更することができる。
 また、必ずしも、上型チェス12に、上カル部ヒーター140及び上キャビティヒーター141が設けられる必要はなく、いずれか1つのヒーターのみが設けられた構造が採用されてもよい。但し、1つのヒーターのみを設ける構造に比べて、上カルブロック120、及び、左右の上キャビティブロック121を加温することができ、上金型1の中でもより細かい範囲で温度制御が可能となり、上金型1の全体で温度を安定化させやすくなる点から、上型チェス12に、上カル部ヒーター140及び上キャビティヒーター141が設けられることが好ましい。
 また、必ずしも、上カル部ヒーター140が3つ設けられる必要はなく、その数は特に限定されるものではない。また、上カル部ヒーター140の配置位置も適宜変更することができる。
 また、必ずしも、上キャビティヒーター141が2つ設けられる必要はなく、その数は特に限定されるものではない。また、上キャビティヒーター141の配置位置も適宜変更することができる。
 ここで、下型チェス22は、型締めした際に、上型チェス12と共にカル部124及びキャビティ(符号省略)を形成する部材である。
 また、下型チェス22は、下カルブロック220と、下キャビティブロック221と、第1の下ホルダーベース222と、第2の下ホルダーベース223を有している(図1及び図2(d)参照)。
 また、下カルブロック220は、型締めした際に、上カルブロック120と共にカル部124を形成する部材である。また、下キャビティブロック221は、型締めした際に、上キャビティブロック121と共に、キャビティを形成する部材である。
 また、第1の下ホルダーベース222及び第2の下ホルダーベース223は、図示しないサポートピラーで支持される部材である。サポートピラーは、下型ダイセット21と、第1の下ホルダーベース222及び第2の下ホルダーベース223に接続され、下型チェス22を支持する支持部材である。
 また、下カルブロック220には、下カル部センサー230が設けられている(図1及び図2(d)参照)。また、第1の下ホルダーベース222と第2の下ホルダーベース223の間、かつ、下カルブロック220の下部には、下カル部ヒーター240が設けられている。
 また、下カル部センサー230は、下カルブロック220の温度と、時間の変化に伴う温度変化の情報を測定する温度測定手段である。
 また、下カル部ヒーター240は、下カルブロック220を加温する加温手段である。下カル部ヒーター240は、出力の調整、加温する時間の調整、及び、加温を始めるタイミングの調整を行うことにより、下カルブロック240の温度を調整することができる。
 また、図2(b)には、下型チェス22における下カル部センサー230と、下カル部ヒーター240の配置を示している。下カル部センサー230は、下型チェス22の前側、かつ、中央部に1つ設けられている。
 また、下カル部ヒーター240は、左右方向における、下型チェス22の中央部に1つ配置されている(図2(b)参照)。また、下カル部ヒーター240は、その長手方向が、下型チェス22の前後方向と平行な向きに設けられている。
 また、左右の下キャビティブロック221には、それぞれ下キャビティセンサー231が設けられている(図1及び図2(d)参照)。また、第1の下ホルダーベース222と第2の下ホルダーベース223の間、かつ、左右の下キャビティブロック221の下部には、それぞれ下キャビティヒーター241が設けられている。
 また、下キャビティセンサー231は、左右の下キャビティブロック221の温度と、時間の変化に伴う温度変化の情報を測定する温度測定手段である。
 また、下キャビティヒーター241は、左右の下キャビティブロック221を加温する加温手段である。下キャビティヒーター241は、出力の調整、加温する時間の調整、及び、加温を始めるタイミングの調整を行うことにより、左右の下キャビティブロック221の温度を調整することができる。
 なお、下カル部ヒーター240及び下キャビティヒーター241における出力の調整には、各ヒーターのON/OFFの切り替えが含まれている。
 また、図2(b)には、下型チェス22における下キャビティセンサー231と、下キャビティヒーター241の配置を示している。下キャビティセンサー231は、左右の下キャビティブロック221のそれぞれに、前後方向へ3つ並べて設けられている。
 また、下キャビティヒーター241は、左右方向において、下カル部ヒーター240の外側に、それぞれ1つずつ並べて配置されている(図2(b)参照)。また、下キャビティヒーター241は、その長手方向が、下型チェス22の前後方向と平行な向きに設けられている。
 ここで、必ずしも、下型チェス22に、下カル部センサー230及び下キャビティセンサー231が設けられる必要はなく、いずれか1つのセンサーのみが設けられた構造が採用されてもよい。但し、1つのセンサーのみを設ける構造に比べて、下カルブロック220、及び、左右の下キャビティブロック221で、温度と温度変化の情報が取得でき、下金型2の中でもより細かい範囲で、温度変化が把握可能となり、各ヒーター240、241による加温の調整が行いやすくなる点から、下型チェス22に、下カル部センサー230及び下キャビティセンサー231が設けられることが好ましい。
 また、必ずしも、下カル部センサー230が1つ設けられる必要はなく、その数は特に限定されるものではない。また、下カル部センサー230の配置位置も適宜変更することができる。
 また、必ずしも、下キャビティセンサー231が、左右の下キャビティブロック221のそれぞれに3つ設けられる必要はなく、その数は特に限定されるものではない。また、下キャビティセンサー231の配置位置も適宜変更することができる。
 また、必ずしも、下型チェス22に、下カル部ヒーター240及び下キャビティヒーター241が設けられる必要はなく、いずれか1つのヒーターのみが設けられた構造が採用されてもよい。但し、1つのヒーターのみを設ける構造に比べて、下カルブロック220、及び、左右の下キャビティブロック221を加温することができ、下金型2の中でもより細かい範囲で温度制御が可能となり、下金型2の全体で温度を安定化させやすくなる点から、下型チェス22に、下カル部ヒーター240及び下キャビティヒーター241が設けられることが好ましい。
 また、必ずしも、下カル部ヒーター240が1つ設けられる必要はなく、その数は特に限定されるものではない。また、下カル部ヒーター240の配置位置も適宜変更することができる。
 また、必ずしも、下キャビティヒーター241が2つ設けられる必要はなく、その数は特に限定されるものではない。また、下キャビティヒーター241の配置位置も適宜変更することができる。
 ここで、上型ダイセット11には、上型チェス12を加温する上ダイセットヒーター111と、上ダイセットセンサー110が設けられている(図1及び図3(a)参照)。また、下型ダイセット21には、下型チェス22を加温する下ダイセットヒーター211と、下ダイセットセンサー210が設けられている(図1及び図3(b)参照)。
 また、上ダイセットセンサー110は、上型ダイセット11の温度を測定する温度測定手段である。また、下ダイセットセンサー210は、下型ダイセット21の温度を測定する温度測定手段である。
 また、図示しないが、樹脂封止装置Sは制御部を備えており、制御部内には温度を制御する温度制御エリアを有している。この温度制御エリアを温度制御部という。また、ここでいう制御部は、本願請求項における調整部に該当する。
 また、樹脂封止金型Mには温度調整領域が設定されている。この温度調整領域にはセンサー及びヒーターが設けられている。なお、ここでいうセンサーとは、上述した上ダイセットセンサー110、上カル部センサー130、上キャビティセンサー131、下ダイセットセンサー210、下カル部センサー230、下キャビティセンサー231のいずれかが該当する。また、ここでいうヒーターとは、上述した上ダイセットヒーター111、上カル部ヒーター140、上キャビティヒーター141、下ダイセットヒーター211、下カル部ヒーター240、下キャビティヒーター241のいずれかが該当する。
 この温度調整領域に設けられているセンサー及びヒーターは、温度制御部に接続されている。温度制御部は、樹脂封止装置Sが半導体素子を樹脂封止する成形動作の際に、温度調整領域に設けられたセンサーから温度調整領域における温度変化の情報を取得する。
 また、制御部は、温度制御部を介して、温度調整領域に設けられたセンサーから温度調整領域における温度変化の情報を取得する。
 そして、制御部は、成形動作によってセンサーが取得した、温度調整領域の温度変化の情報から、次の成形動作を行う際の、その温度調整領域における温度変化を予測して、各種パラメーターの算出を行う。この各種パラメーターとは、温度調整領域が、所望の温度となるように、ヒーターによる加温を調整するための各種情報である。
 なお、ここでいう所望の温度とは、樹脂封止金型の種類、基材の種類及び樹脂の種類等によって、適宜設定される温度を意味する。また、ヒーターによる加温に関する各種パラメーターの詳細については後述する。
 また、制御部は、算出した各種パラメーターの数値を温度制御部に指示する。温度制御部は、制御部から指示された各種パラメーターに基づきヒーターを制御する。
 より詳しくは、温度制御部は、制御部から指示された各種パラメーターに基づき、温度調整領域を加温するヒーターについて、出力の調整、加温する時間の調整、及び、加温を始めるタイミングの調整を行い、その温度調整領域が所望の温度となるように予測制御を行う。
 なお、ここでいう予測制御とは、以下のように定義される。まず、前提として、樹脂封止金型に、成形動作における基準の温度が設定されている。そして、事前に測定した温度調整領域の温度変化の情報から、どのくらいの熱量を与えれば(又は、熱量を抑えれば)、その温度調整領域において、基準の温度との温度差を小さくすることができるかを計算して、温度調整領域を加温するヒーターについて、出力、加温する時間、及び、加温を始める時機の変更等を行う。このようにして、加温に関する各種パラメーターを変更することで、次の成形動作の際に、温度調整領域の温度と、基準の温度との温度差が小さくなるようにヒーターの加温を制御することを予測制御とする。
 ここで、制御部において、温度制御部が設定される数は1つに限定されるものではなく、複数の温度制御部を設定することができる。
 続いて、上述した樹脂封止装置Sを用いて行う樹脂封止方法について説明する。なお、以下の内容は、本発明に係る樹脂封止方法の一例である。
[予測制御に用いる各種パラメーターの算出]
 まず、樹脂封止装置Sを用いた樹脂封止方法では、図4(a)に示す事前成形方法により、制御部が次の成形動作のための各種パラメーターを算出する。
 なお、ここでは、上カルブロック120を予測制御する温度調整領域として設定した場合を例に説明する。即ち、温度制御部が上カル部ヒーター140をコントロールして予測制御を行う際に必要となる、各種パラメーターの算出方法について説明する。
 この事前成形方法では、樹脂封止装置Sに樹脂封止の対象となる基材及び樹脂を供給して、半導体素子を樹脂封止する通常成形を行う(図4(a)参照)。また、この通常成形では、上カル部ヒーター140を任意の時間ONにして、成形動作を行う(ステップS1)。
 次に、上述した通常成形の結果から、制御部が、次の成形動作を行う際の、上カルブロック120が所望の温度となるような上カル部ヒーター140の加温に関する各種パラメーターを算出する(ステップS2)。即ち、通常成形の際に、上カル部センサー130が取得した上カルブロック120の温度変化の情報から、次の成形動作を行う際の、上カルブロック120における温度変化を予測して、各種パラメーターの算出を行う。
 ここで、制御部が算出する各種パラメーターとは、例えば、上カル部ヒーター140のON/OFF制御を行う情報が含まれる。なお、図4(b)には、各種パラメーターを上カル部ヒーター140のON/OFF制御に反映させた状態の概念図を示している。
 具体的には、成形動作の開始時から上カル部ヒーター140をONにするまでの時間である「ヒーターON前ディレー(X0)」、上カル部ヒーター140をONにして、最終的にOFFにするまでの時間である「ヒーターON時間(Xall)」の情報がある。
 また、上カル部ヒーター140をONにして、最終的にOFFにするまでの間に、上カル部ヒーター140のONとOFFを切り替える場合での、1回の上カル部ヒーター140のONの時間(X1~X4)の情報がある。
 さらに、図4(b)中に符号を付して示さないが、1回の上カル部ヒーター140のOFFの時間、上カル部ヒーター140のONとOFFを切り替える回数の情報も各種パラメーターの情報となる。
 このように、樹脂封止装置Sで通常成形を行って、その成形動作の際に取得した上カルブロック120の温度変化の情報に基づき、次の成形動作を行う際の上カル部ヒーター140のON/OFF制御を行う各種パラメーター(X0、X1、X2、X3、X4等)を、制御部で自動的に算出することができる。
 なお、加温開始時間(X0)を算出し、これを基準とすることで、成形動作の開始時間に対する加温の始まりのタイミングを様々に調整することができる。また、加温設定時間(Xall)を算出することで、加温をする時間の長さを様々に調整することができる。
 また、ここで述べた各種パラメーターの種類はあくまで一例であり、上カル部ヒーター140のON/OFF制御に関わるパラメーターの内容はこれに限定されるものではない。
[予測制御の有効性について]
 続いて、制御部で算出した各種パラメーターを用いて、上カルブロック120の温度を予測制御することにつき、その有効性を、以下図5を参照して説明する。
 ここでは、樹脂封止装置Sで半導体素子を樹脂封止する成形動作について、連続成形を行い、予測制御を行わない成形動作(成形1回目)(図5(a))、予測制御を行う成形動作(成形2回目)(図5(b))及び、予測制御を行う成形動作(成形3回目)(図5(c))の結果を比較した。
 なお、成形2回目は、制御部により成形1回目の成形動作から各種パラメーターを算出して予測制御を行っている。また、成形3回目は、制御部により成形2回目の成形動作から各種パラメーターを算出して予測制御を行っている。
 このように、連続成形を行う際には、予測制御とフィードバック制御を行ない、温度調整領域の温度について、温度制御を高い精度で行うことが可能となる。なお、ここでいうフィードバック制御とは、予測制御で実施した温度制御の結果から、各種パラメーターであるヒーターON/OFF時間、間隔等を変化させ、温度調整領域において、より安定した温度変化を実現する制御を意味する。
 各成形動作での、上カルブロック120の温度変化のグラフを図5(a)~図5(c)に示す。なお、図5(a)は成形1回目、図5(b)は成形2回目、図5(c)は成形3回目の結果を示している。また、金型の設定温度は182℃に設定した。
 図5(a)に示すように、予測制御を行わない成形動作(成形1回目)では、上カルブロック120の温度が、一番低くなったところで、金型の設定温度である182℃から約5.3℃低下していた。また、樹脂封止の完了後、上カルブロック120の温度は、金型の設定温度である182℃から約6.9℃上昇していた。
 また、図5(b)に示すように、予測制御を行う成形動作(成形2回目)では、上カルブロック120の温度が、一番低くなったところで、金型の設定温度である182℃から約4℃低下していた。また、樹脂封止の完了後、上カルブロック120の温度は、金型の設定温度である182℃から約1.5℃上昇していた。
 また、図5(c)に示すように、予測制御を行う成形動作(成形3回目)では、上カルブロック120の温度が、一番低くなったところで、金型の設定温度である182℃から約3.6℃低下していた。また、樹脂封止の完了後、上カルブロック120の温度は、金型の設定温度である182℃から約2℃上昇していた。
 図5(a)と図5(b)の結果を比べると、予測制御を行わない成形動作(成形1回目)に対して、予測制御を行う成形動作(成形2回目)では、樹脂封止後の上カルブロック120の温度が低下する傾向が緩和されていた。
 また、図5(b)と図5(c)の結果を比べると、予測制御を行う成形動作(成形2回目)に対して、予測制御を行う成形動作(成形3回目)では、樹脂封止後の上カルブロック120の温度が低下する傾向がさらに緩和されていた。
 また、図5(a)と、図5(b)及び図5(c)の結果を比べると、予測制御を行わない成形動作(成形1回目)に対して、予測制御を行う成形動作(成形2回目及び成形3回目)では、樹脂封止後の上カルブロック120の温度が上昇する傾向が緩和されていた。
 このように、図5(a)~図5(c)に示す結果から明らかなように、上カルブロック120の温度について、前の成形動作における、その温度変化の情報に基づき、制御部が算出した各種パラメーターを用いて、次の成形動作で、温度制御部が上カル部ヒーター140をコントロールすることで、上カルブロック120の温度について、温度制御を高い精度で行うことが可能となる。即ち、制御部が算出した各種パラメーターを用いて予測制御を行うことにつき、その有効性を確認することができた。カルブロックの温度について予測制御を行うことで、カル部周辺の金型温度が低下して、カル部内の樹脂が金型(カル部)に貼り付くことを抑止できる。
 続いて、樹脂封止金型の温度制御を行う方法の一例について説明する。
 図6(a)及び図6(b)を用いて、樹脂封止装置Sについて、制御部に複数の温度制御部を設定して、樹脂封止金型の温度制御を行う方法を説明する。
 本方法では、上金型1における上カルブロック120及び左右の上キャビティブロック121に合計9つの温度調整領域A1~A9を設定する(図6(b)参照)。
 より詳細には、上カルブロック120では、前後方向において、A4、A5及びA6の3つの温度調整領域を設定する。また、左右の上キャビティブロック121については、左右のそれぞれに、前後方向において、A1、A2及びA3と、A7、A8及びA9の3つずつの温度調整領域を設定する。
 また、温度調整領域A4~A6には、上カル部センサー130が配置されている。また、温度調整領域A1~A3及び温度調整領域A7~A9には、上キャビティセンサー131が配置されている。
 また、図示しないが、制御部には複数の温度制御部が設定されている。また、1つの温度制御部は、1つの温度調整領域に設けられたセンサー及びヒーターに接続され、温度制御部は、制御部から指示され各種パラメーターの情報に基づき、接続されたヒーターをコントロールする。
 本方法では、上述した上カルブロック120における事前成形方法(図4(a)参照)と同様に、樹脂封止装置Sで、半導体素子を樹脂封止する通常成形を行う。そして、温度調整領域A1~A9について、上カル部センサー130及び上キャビティセンサー131で、その温度変化の情報を取得する。また、制御部は温度制御部を介して、その温度変化の情報を取得し、各種パラメーターを算出する。
 そして、通常成形から算出された温度調整領域A1~A9における各種パラメーター情報に基づき、温度調整領域A1~A9において、個別に予測制御を行う成形動作(1回目)を実行する(ステップS1)。このステップS1の成形動作の際に、温度調整領域A1~A9について、上カル部センサー130及び上キャビティセンサー131で、その温度変化の情報を取得する。
 続いて、ステップS1の成形動作で取得された各々の温度調整領域A1~A9の温度変化の情報に基づき、制御部が各々の各種パラメーターの内容を算出する。そして、ステップS1の成形動作で予測制御に用いた各種パラメーターの内容を、制御部が算出した内容へと変更し、各々の温度制御部に指示する(ステップS2)。これにより、各々の温度調整領域A1~A9の温度について、更なる安定化を図る。
 次に、ステップS2で制御部が算出した各種パラメーターの内容に基づき、制御部の指示を受けた各々の温度制御部が、接続されたヒーターをコントロールして、温度調整領域A1~A9において予測制御を行う成形動作(2回目以降)を実行する(ステップS3)。
 ステップS3の後、次の成形動作が「有り」の場合には、再度、ステップS2に戻り、前の成形動作で取得された各々の温度調整領域A1~A9の温度変化の情報に基づき、制御部が、各々の温度調整領域に関する各種パラメーターを算出する。そして、算出した内容で各種パラメーターを変化させ、各々の温度制御部に指示する。即ち、各種パラメーターの算出と、この算出に基づく温度制御部による各ヒーターのコントロールが繰り返し行われる。
 また、ステップS3の後、次の成形動作が「無し」の場合には、一連の工程が終了する(ステップS5)。
 このように、成形動作を連続的に行う際に、前の成形動作で得られた温度調整領域A1~A9の温度変化の情報に基づき、次の成形動作の予測制御に用いる各種パラメーターの内容を修正することで、温度調整領域A1~A9が、所望の温度に近づくように、温度制御を高い精度で行うことができる。
 また、本方法では、制御部に複数の温度制御部が設定され、1つの温度制御部が、1つの温度調整領域に設けられたセンサー及びヒーターに接続されていることから、各温度調整領域における温度変化に合わせて、温度制御部によってヒーターによる加温を調整することができる。これにより、上金型1の全体として、より一層、温度制御を高い精度で行うことが可能になる。
 ここで、上金型1における上カルブロック120及び左右の上キャビティブロック121に設定する温度調整領域の数は9つに限定されるものではなく、適宜変更することが可能である。
 また、必ずしも、上金型1に、複数の温度調整領域を設定する構造に限定されるものではなく、下金型2に複数の温度調整領域を設定することも可能である。さらに、上金型1及び下金型2の両方に、複数の温度調整領域を設定することも可能である。
 続いて、図7(a)及び図7(b)を用いて、樹脂封止装置Sについて、制御部に1つの温度制御部を設定して、樹脂封止金型の温度制御を行う方法を説明する。
 本方法では、上金型1における上カルブロック120及び左右の上キャビティブロック121に、温度調整領域Aと、温度調整領域B1~B8の、合計9つの温度調整領域を設定する(図7(b)参照)。
 より詳細には、上カルブロック120では、前後方向において、温度調整領域A及び温度調整領域B4、B5の3つの温度調整領域を設定する。また、左右の上キャビティブロック121については、左右のそれぞれに、前後方向において、B1、B2及びB3と、B6、B7及びB8の3つずつの温度調整領域を設定する。
 また、温度調整領域A及び温度調整領域B4、B5には、上カル部センサー130が配置されている。また、温度調整領域B1~B3及び温度調整領域B6~B8には、上キャビティセンサー131が配置されている。
 また、図示しないが、制御部には1つの温度制御部が設定されている。この温度制御部は、温度調整領域Aに設けられた上カル部センサー130及び上カル部ヒーター140に接続されている。また、温度制御部は、制御部から指示された各種パラメーターの情報に基づき、接続された上カル部ヒーター140をコントロールする。
 また、図示しないが、制御部には温度調整領域B1~B8に設けられた各センサー及び各ヒーターが接続されている。また、温度調整領域B1~B8に設けられた各ヒーターは、制御部によって各ヒーターの出力の割合を変更可能に構成されている。
 本方法では、上述した上カルブロック120における事前成形方法(図4(a)参照)と同様に、樹脂封止装置Sで、半導体素子を樹脂封止する通常成形を行う。そして、温度調整領域Aについて、上カル部センサー130で、温度変化の情報を取得する。また、制御部は温度制御部を介して、その温度変化の情報を取得し、各種パラメーターを算出する。
 そして、通常成形から算出された温度調整領域Aにおける各種パラメーター情報に基づき、温度調整領域A及び温度調整領域B1~B8において、予測制御を行う成形動作(1回目)を実行する(ステップS1)。このステップS1の成形動作では、温度調整領域B1~B8の各ヒーターの出力を、温度調整領域Aのヒーターと同じ出力にして、ヒーターによる加温を行う。
 このステップS1の成形動作の際に、温度調整領域Aについて、上カル部センサー130で、温度変化の情報と各種パラメーターの情報を取得する。また、温度調整領域B1~B8について、上カル部センサー130及び上キャビティセンサー131で、温度変化の情報を取得する。
 続いて、図示しないが、ステップS1の成形動作で取得された温度調整領域Aの温度変化の情報に基づき、制御部が各種パラメーターの内容を算出する。そして、算出した内容で各種パラメーターを変化させ、温度制御部に指示する。これにより、温度調整領域Aの温度について、更なる安定化を図る。
 また、ステップS1の成形動作で取得された、温度調整領域A及びB1~B8の温度変化の情報に基づき、制御部が、温度調整領域Aの温度と、温度調整領域B1~B8の温度について、それぞれの温度差を算出する(ステップS2)。そして、この温度差の情報と、制御部が温度制御部に指示した上カル部ヒーター140の出力の情報に基づき、制御部が温度調整領域B1~B8の各ヒーターの出力の割合を変化させる。
 例えば、温度調整領域Aの温度と、温度調整領域B1の温度で、温度調整領域B1の温度の方が高くなっている場合には、その温度差の内容に基づき、温度調整領域B1のヒーターの出力の割合を小さくする。
 より詳細には、各温度調整領域の温度差の内容に基づき、制御部が温度制御部に指示した上カル部ヒーター140の出力の割合を小さく変化させて、温度調整領域B1に設けられた上キャビティヒーター141の出力の値として設定する。
 これにより、次の成形動作において、温度調整領域Aの温度と、温度調整領域B1~B8の温度との温度差を少なくして、温度調整領域B1~B8の温度の安定化を図る。
 次に、ステップS2で設定した各ヒーターの出力の割合を用いて、温度調整領域A及びB1~B8において、予測制御を行う成形動作(2回目以降)を実行する(ステップS3)。
 ステップS3の後、次の成形動作が「有り」の場合には、再度、ステップS2に戻り、前の成形動作で取得された温度調整領域Aの温度変化の情報に基づき、制御部が、各種パラメーターの内容を算出する。そして、算出した内容で各種パラメーターを変化させ、温度制御部に指示する。即ち、温度調整領域Aに対しては、各種パラメーターの算出と、この算出に基づく温度制御部による上カル部ヒーター140のコントロールが繰り返し行われる。
 また、前の成形動作で取得された、温度調整領域A及びB1~B8の温度変化の情報と、制御部が温度制御部に指示した上カル部ヒーター140の出力の情報に基づき、制御部が、温度調整領域B1~B8の各ヒーターの出力の割合を変化させる。即ち、温度調整領域B1~B8に対しては、温度調整領域B1~B8と温度調整領域Aとの温度差に基づく、各ヒーターにおける出力の割合の変更と、この変更に基づく制御部による各ヒーターのコントロールが繰り返し行われる。
 また、ステップS3の後、次の成形動作が「無し」の場合には、一連の工程が終了する(ステップS5)。
 このように、本方法では、成形動作を連続的に行う際に、前の成形動作で得られた温度調整領域A及びB1~B8の温度変化の情報に基づき、温度調整領域B1~B8の各ヒーターの出力の割合を補正することで、温度調整領域A及びB1~B8が、所望の温度に近づくように、温度制御を高い精度で行うことができる。
 また、本方法では、温度調整領域B1~B8の温度制御を行うにあたって、制御部に温度制御部を1つ設定して、温度調整領域Aにおける温度変化を予測すれば足りる。そのため、制御部に複数の温度制御部を設定する構造に比べて、簡易な構造で、上金型1の温度について、温度制御を高い精度で行うことができる。
 ここで、必ずしも、温度調整領域Aに設けられたセンサー及びヒーターが温度制御部に接続される必要はなく、別の温度調整領域に設けられたセンサー及びヒーターが温度制御部に接続される構造も採用しうる。また、必ずしも、制御部に設定される温度制御部の数が1つに限定される必要はなく、必要に応じて、制御部に2つ以上の温度制御部が設定されてもよい。
 また、上金型1における上カルブロック120及び左右の上キャビティブロック121に設定する温度調整領域の数は9つに限定されるものではなく、適宜変更することが可能である。
 また、必ずしも、上金型1に、複数の温度調整領域を設定する構造に限定されるものではなく、下金型2に複数の温度調整領域を設定することも可能である。さらに、上金型1及び下金型2の両方に、複数の温度調整領域を設定することも可能である。
 以上のように、本発明における第1の実施の形態の樹脂封止方法は、基材に載置された半導体素子の樹脂封止を行う際に、金型の温度制御を高い精度で行うことが可能なものとなっている。
 また、本発明における第1の実施の形態の樹脂封止金型は、基材に載置された半導体素子の樹脂封止を行う際に、金型の温度制御を高い精度で行うことが可能なものとなっている。
[第2の実施の形態]
 以下、本発明の第2の実施の形態を説明する。
 図8、図9及び図10を参照して、本発明に係る樹脂封止装置の構造の概略を説明する。
 本発明に係る樹脂封止装置の一例である樹脂封止装置A1は、一対の上金型3及び下金型4を有している。樹脂封止装置A1は、上金型3と下金型4を型締めして、リードフレーム等の基材に載置された半導体素子(図示省略)を樹脂封止する装置である。
 上金型3は、上型ダイセット31及び上型チェス32で構成されている。また、下金型4は、下型ダイセット41及び下型チェス42で構成されている。
 上型チェス32を構成するカルブロック320の上部にはカル部ヒーター321が設けられている(図8及び図10参照)。カルブロック320には、カル部センサー322が設けられている。
 また、上型チェス32を構成する二つのキャビティブロック323のうち、一方のキャビティブロック323には、カルブロック320に近い位置にカル側センサー324が設けられ、遠い位置に上キャビ中央センサー325が設けられている(図8及び図10参照)。
 カル部ヒーター321は、カルブロック320を加温する加温手段を構成する。カル部ヒーター321は、ON/OFFの切り替えにより、カルブロック320の温度を調整することができる。
 ここで、必ずしも、カル部ヒーター321がON/OFFの切り替えにより、カルブロック320の温度を調整するように構成される必要はない。例えば、カル部ヒーター321の出力が調節可能であり、その出力を大きくしたり、小さくしたりすることで、カルブロック320の温度を調整する構成も採用し得る。
 また、カル部センサー322は、カルブロック320の温度を測定する温度測定手段である。カル側センサー324と、上キャビ中央センサー325は、共に、キャビティブロック323の温度を測定する温度測定手段である。
 下型チェス42は、左右側に下キャビティブロック423を有し、各下キャビティブロック423の間には、ポットブロック420が設けてある。ポットブロック420には、複数のポット部424が二列に設けられ、各列の間の図10において手前側の一部には、ポット部センサー421が設けられている(図10参照)。
 ポット部センサー421は、ポットブロック420の温度を測定する温度測定手段である。なお、図9に示す樹脂封止装置A2には、ポット部センサーが設けられておらず、この点が、図8に示す樹脂封止装置A1との構造上の違いである。
 上型ダイセット31には、上型チェス32を加温する複数の上ダイセットヒーター311と、上ダイセットセンサー310が設けられている。また、下型ダイセット41には、下型チェス42を加温する複数の下ダイセットヒーター411と、下ダイセットセンサー410が設けられている(図8及び図10参照)。
 上ダイセットセンサー310は、上型ダイセット31の温度を測定する温度測定手段である。また、下ダイセットセンサー410は、下型ダイセット41の温度を測定する温度測定手段である。
 また、図示しないが、樹脂封止装置A1は制御部を有している。制御部は、上記各センサー及びカル部ヒーター321に接続され、各センサーが取得した情報に基づき、カル部ヒーター321のON/OFFを制御することにより、カルブロック320の温度制御を行うことができる。
 即ち、制御部は、カル部センサー322、上ダイセットセンサー310及び下ダイセットセンサー410が測定した温度の情報及び測定に関する時間の情報を取得し、これら情報に基づいて、カル部ヒーター321のON/OFFを制御する。
 また、図10には、上金型3のカル部ヒーター321とカル部センサー322の配置を示している。なお、下金型4には、上金型3と同様にカル部ヒーターを設けることができ、図10にはポットヒーター422を下金型4のポットブロック420に設ける場合の配置の一例を示している。
 また、カル部センサー322は、図10の符号Pで示す領域の拡大図に示すように、カルブロック320の両側にあるカル部326の間に通すようにして配置されている。
[カル部ヒーターの有効性について]
 以下、上記した樹脂封止装置A1を用いて、基材を樹脂封止する工程における各部の温度変化を測定した結果を示しながら、カル部ヒーター321の有効性を説明する。ここでは、大量の樹脂を必要とする大型の半導体パッケージの製造において、樹脂注入時のカル部の温度低下を防ぐために、カル部ヒーター321をカルブロック320に配置した金型にて、カルブロック320の温度低下を防ぐことができる点を実証した。
 より詳細には、以下の金型成形条件を採用している。
 金型温度:180℃、キュアタイム:90秒(トランスファータイム含む)、トランスファータイム:20秒、使用樹脂量:直径20mm(12.3g)、ポット部の数:16個/2フレーム、1ポット部当たりの使用樹脂個数:2個、金型サイズ:幅350mm×長さ400mm×厚み70mm。なお、本段落以下の説明における樹脂封止装置A1の各部における温度変化の結果は、上記した内容と同じ金型成形条件下で行ったものである。
 まず、図11(a)から図11(c)を参照しながら、図8に示す樹脂封止装置A1におけるカル部ヒーター321の作動によるカルブロック320の温度変化への影響を説明する。
 ここで、温度測定の対象とした樹脂封止装置A1の各部とは、図8に示す各センサーを配置した部分である。即ち、カル側(カル側センサー324)、上キャビ中央(上キャビ中央センサー325)、カルブロック(カル部センサー322)、ポットブロック(ポット部センサー421)、上ダイセット(上ダイセットセンサー310)及び下ダイセット(下ダイセットセンサー410)が対象となる。
 また、後述する図9に示す樹脂封止装置A2(ポット部センサー421無し)を用いて行う温度変化の測定結果(図12、図14、図16参照)についても、同様の部分で各部の温度を測定した結果を示している。
 図11(a)には、「カル部ヒーター無し」、即ち、カル部ヒーター321をOFFにした状態(カル部ヒーター321を設けない樹脂封止装置と同等)での各部の温度測定の結果を示している。カル部ヒーター321をOFFにした状態では、カルブロック320の温度が最低になったところで、カルブロック320の温度は、金型の設定温度である180℃から、約170℃へ約10℃低下していた。
 また、図11(b)では、金型の型閉開始、即ち、成形工程の開始と同時に、カル部ヒーター321を30秒間ONにした状態での各部の温度測定の結果を示している。この場合、カルブロック320の温度が最低になったところで、カルブロック320の温度は、金型の設定温度である180℃から約175℃へ約5℃低下していた。
 図11(a)と図11(b)の結果を比べると、図11(b)の金型の型閉開始と同時に、カル部ヒーター321を30秒間ONにした状態では、樹脂封止後のカルブロック320の温度が低下する傾向が緩和されていた。
 更に、図11(c)では、金型の型閉開始10秒前から、カル部ヒーター321を30秒間ONにした状態での各部の温度測定の結果を示している。この場合、カルブロック320の温度が最低になったところで、カルブロック320の温度は、金型の設定温度からやや上昇した温度である182℃から約179℃へ約3℃低下していた。
 図11(a)、図11(b)及び図11(c)の結果を比べると、図11(c)の金型の型閉開始10秒前から、カル部ヒーター321を30秒間ONにした状態では、カルブロック320の温度が低下する傾向が、図11(a)の結果と比べて大幅に緩和され、図11(b)の結果と比べても更に緩和されていた。
 このように、図11(a)から図11(c)に示す結果から明らかなように、カル部ヒーター321を設けて、カルブロック320を加温することで、樹脂封止後のカルブロック320の温度低下の幅を小さくすることができる。また、カル部ヒーター321をONにするタイミングを早くすることで、カルブロック320の温度低下の幅をより一層小さくすることができる。これにより、カル部ヒーター321の有効性を確認することができた。
 次に、図12から図16を参照しながら、図9に示す樹脂封止装置A2(ポット部センサー421無し)におけるカル部ヒーター321の作動によるカルブロック320の温度変化への影響を説明する。
 図12(a)には、「カル部ヒーター無し」、即ち、カル部ヒーター321をOFFにした状態(カル部ヒーター321を設けない樹脂封止装置と同等)での各部の温度測定の結果を示している。カル部ヒーター321をOFFにした状態では、カルブロック320の温度が最低になったところで、カルブロック320の温度は、金型の設定温度である180℃からやや下降した温度である179℃から約170℃へ約9℃低下していた。
 また、図12(b)では、金型の型閉開始10秒前から、カル部ヒーター321を30秒間ONにした状態での各部の温度測定の結果を示している。この場合、カルブロック320の温度が最低になったところで、カルブロック320の温度は、金型の設定温度である180℃からやや上昇した温度である約182℃から約179℃へ約3℃低下していた。
 図12(a)及び図12(b)の結果を比べると、図12(b)の金型の型閉開始10秒前から、カル部ヒーター321を30秒間ONにした状態では、カルブロック320の温度が低下する傾向が大幅に緩和されていた。即ち、図12(a)及び図12(b)の結果からも、カル部ヒーター321の有効性を確認することができた。
 また、図12(b)の結果となった樹脂封止の成形工程における、カル部ヒーター321のON/OFFのタイミングチャートを図13に示す。図13にあるように、金型の型閉開始の10秒前にカル部ヒーター321をONにして、そこから30秒間ONの状態を維持している。そして、型閉開始から2秒後には金型が閉じて樹脂封止が開始されている。なお、型閉開始の時点では、カルブロック320の温度は、上記したようにやや上昇して182℃になっている。
 次に、カル部ヒーター321のON時間とONタイミングの違いによる各部の温度変化についても確認した。
 図14(a)は、上記図12(a)と同様に、カル部ヒーター321をOFFにした状態での各部の温度測定の結果であり、図14(b)及び図14(c)との比較をするために掲載している。
 図14(b)は、金型の型閉開始5秒後(ONディレー時間)にカル部ヒーター321を10秒間ONにした状態での各部の温度測定の結果を示している。この場合、カルブロック320の温度が最低になったところで、カルブロック320の温度は、金型の設定温度である180℃から約174℃へ約6℃低下していた。なお、ONディレー時間とは、型閉開始からカル部ヒーター321がONとなるまでの時間である。
 また、図14(c)は、金型の型閉開始と同時に、カル部ヒーター321を20秒間ONにした状態での各部の温度測定の結果を示している。この場合、カルブロック320の温度が最低になったところで、カルブロック320の温度は、金型の設定温度である180℃からやや上昇した182℃から約177℃へ約5℃低下していた。
 図14(a)と、図14(b)及び図14(c)の結果を比べると、金型の型閉開始5秒後(ONディレー時間)にカル部ヒーター321を10秒間ONにした状態及び金型の型閉開始と同時に、カル部ヒーター321を20秒間ONにした状態での、樹脂封止後のカルブロック320の温度が低下する傾向が大幅に緩和されていた。これにより、カル部ヒーター321の有効性を確認することがきた。
 また、図14(b)の結果となった樹脂封止の成形工程における、カル部ヒーター321のON/OFFのタイミングチャートを図15に示す。図15にあるように、金型の型閉開始の5秒後にカル部ヒーター321をONにして、そこから10秒間ONの状態を維持している。また、型閉開始から2秒後に金型が閉じて樹脂封止が開始されている。なお、型閉開始の時点では、カルブロック320の温度は、上記したように金型の設定温度が維持されて180℃になっている。
 また、図16(a)では、金型の型閉開始と同時に、カル部ヒーター321を30秒間ONにした状態での各部の温度測定の結果を示している。この場合、カルブロック320の温度が最低になったところで、カルブロック320の温度は、金型の設定温度である180℃から、約175℃へ約5℃低下していた。
 図14(a)及び図16(a)を比較した結果から、カル部ヒーター321を金型の型閉開始と同時に30秒間ONにすることで、カル部ヒーター321がOFFの状態では、金型の設定温度から9℃下がっていたカルブロック320の温度低下が、約5℃に抑えられたことが分かった。
 更に、図16(b)では、金型の型閉開始と同時に、カル部ヒーター321を40秒間ONにした状態での各部の温度測定の結果を示している。この場合、図16(b)中に符号Xで示す領域で、カルブロック320の温度は、オーバーシュートしていた。
 図16(a)及び図16(b)を比較した結果から、カル部ヒーター321をONにする時間が長すぎると、カルブロック320の温度がオーバーシュートしてしまう為、ON時間の設定が重要であることが明らかとなった。
 以下、本発明を適用した樹脂封止装置の制御手段及び樹脂封止方法の一例について説明する。
 図17(a)及び図17(b)では、基材の実成形前に、2つのキャリブレーション(キャリブレーション(1)及びキャリブレーション(2))の成形動作を行うことにより、金型及び樹脂を含む構成の樹脂封止装置としての特性を抽出する際の流れを示している。
 図17(a)に示すように、キャリブレーション(1)では、カル部ヒーター321の能力チェックを行う。この際、ポット部424に樹脂を入れずに、成形動作の開始時(型閉開始時)にカル部ヒーター321をONにする(図中ではカル部ヒーター有と記載)。
 このキャリブレーション(1)では、成形動作の開始時のAC1秒間前からBC1秒間、カル部ヒーター321をONにする条件にして、基材を樹脂封止する一連の成形動作を、上記したように樹脂無しで行うようにする。
 ここで、AC1秒間とは、成形動作の開始時(樹脂封止装置における、カル部ヒーターONから始まる一連の成形動作のスタート時)から実際に金型が閉じるまでの時間である。また、BC1秒間とは、カル部ヒーター321をONにした状態の時間である。
 このキャリブレーション(1)では、金型の基準温度から、カルブロック320が最高温度になった際の時間の情報を取得する。なお、基準温度と設定温度の温度差の情報(温度上昇量:TC1)の情報も得られる。更に、カル部ヒーター321をONにしてから最高温度に到達するまでの時間の情報(反応時間:CC1)及び金型の基準温度よりも上昇した成形動作終了後のカルブロック320の温度が安定するまでの時間の情報(戻り時間:DC1)を取得する。
 また、キャリブレーション(1)において、所定の基準時から、カルブロック320が最高温度に到達するまでの時間の情報CC1を取得することにより、カルブロック320の材質や形状に起因する、カルブロック320が昇温される際の温度変化の特性を表す情報を得ることができる。
 また、図17(b)に示すように、キャリブレーション(2)では、樹脂を使用することによるカルブロック320の温度低下の状況をチェックする。この際、ポット部424に樹脂を入れて、成形動作中は、カル部ヒーター321をOFFのままとする(図中ではカル部ヒーター無と記載)。
 このキャリブレーション(2)では、キャリブレーション(1)のAC1秒間を、成形動作の開始時と、その前の基準時との時間差とする設定条件として採用して、上記したようにカル部ヒーター321をOFFにして、基材を樹脂封止する一連の成形動作を行う。
 このキャリブレーション(2)では、金型の基準温度から、カルブロック320が最低温度になった際の時間の情報を取得する。なお、このカルブロック320の温度低下は、多量の樹脂に熱を奪われた結果生じるものである。更に、基準温度と最低温度の温度差の情報(温度下降量:TC2)も得られる。
 また、キャリブレーション(2)では、成形動作の開始時(型閉開始時)から、カルブロック320が最低温度に到達するまでの時間の情報(CC2)及び金型の基準温度よりも下降した成形動作終了後のカルブロック320の温度が安定するまでの時間の情報(戻り時間:DC2)を取得する。
 また、キャリブレーション(2)において、所定の基準時から、カルブロック320が最低温度に到達するまでの時間の情報CC2を取得することにより、カルブロック320の材質や形状に起因する、カルブロック320が降温される際の温度変化の特性を表す情報を得ることができる。
 次に、図18に示すように、キャリブレーション(1)及びキャリブレーション(2)の動作により取得された情報(デバイス)に基づいて、制御部によって演算が行われ、基材の実成形を行う際の、カル部ヒーター321のON/OFF制御を行う各種パラメーター(成形時デバイス)を算出する。
 なお、本発明にいう「カルブロックの温度変化に関係する情報」とは、上記キャリブレーション(1)及びキャリブレーション(2)の動作により取得された情報、例えば高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報等を含むものである。
 なお、本発明にいう「高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報を含む情報」とは、情報が高温度到達時間情報、高温度情報、低温度到達時間情報及び低温度情報だけの場合もあるし、それらに加えて、例えばカルブロック320の基準温度、カルブロック320の設定温度、カルブロック320の基準温度と設定温度の温度差(TC1)、或いはカルブロックの温度と基準温度の温度差(ΔT2)、更には基準温度よりも上昇又は下降したカルブロックの温度が成形動作終了後に戻って安定するまでの時間(DC1、DC2)等の情報を利用し得ることを意味する。
 カル部ヒーター321のON/OFF制御を行う各種パラメーター(成形時デバイス)とは、例えば、成形動作の開始時からカル部ヒーター321をONにするまでの時間である「ヒーターON前ディレー(X0)」、カル部ヒーター321をONにして、最終的にOFFにするまでの時間である「ヒーターON時間(X1)」、カル部ヒーター321のONとOFFを切り替える回数(X2)が挙げられる。
 また、カル部ヒーター321をONにして、最終的にOFFにするまでの間に、カル部ヒーター321のONとOFFを切り替える場合での、1回のカル部ヒーター321のONの時間(X3)、1回のカル部ヒーターのOFFの時間(X4)も各種パラメーター(成形時デバイス)となる。
 上記した各種パラメーターをカル部ヒーター321のON/OFF制御に反映させた状態の概念図を図18の下段に示している。このように、基材の実成形前に、2つのキャリブレーションの成形動作を行い、取得した情報(例えば、TC1、TC2、AC1、CC1、CC2、C1、C2等)に基づき、実成形時のカル部ヒーター321のON/OFF制御を行う各種パラメーター(成形時デバイス:X0、X1、X2、X3、X4、或いはクリーナー動作時のエアブローによる温度低下の値やキャビティ上の温度を制御する場合のキャビ温度センサー値等)を制御部で自動的に算出することができる。
 なお、加温開始時間(X0)を算出することで、成形動作の開始時間に対する加温の始まりのタイミングを様々に調整することができる。また、加温設定時間(X1)を算出することで、加温をする時間の長さを様々に調整することができる。
 また、ここで述べた各種パラメーター(成形時デバイス)の種類はあくまで一例であり、カル部ヒーター321のON/OFF制御に関わるパラメーターの内容はこれに限定されるものではない。
 また、ここでは、カルブロック320の温度、即ち、カル部センサー322で測定した温度の情報に基づき、カル部ヒーター321の温度を制御する方法を述べたが、カル部ヒーター321の温度を制御するために、その他のカル側センサー324、上キャビ中央センサー325及びポット部センサー421で測定した温度の情報等も、パラメーターを算出するためのデバイスとして使用することができる。
 このように、カル部センサー322で測定した温度の情報に加えて、その他のセンサーで測定した温度情報を用いることで、より高い精度で、カル部ヒーター321のON/OFF制御を行うことが可能になる。
 更に、本発明を適用した樹脂封止装置及び樹脂封止方法では、基材の実成形における先に実行される成形工程で得られた温度の情報を、次回の、或いは後に実行される成形工程において、カル部ヒーター321のON/OFF制御を行う各種パラメーター(成形時デバイス)の算出にフィードバックして制御することもできる。
 なお、先に実行される成形工程の順番をnとしたとき、後に実行される成形工程は、nの直後のn+1の順番で設定することもできるし、或いはそれより後のn+2、n+3、・・・、n+kで設定することもできる。先に実行される成形工程と後に実行される成形工程をどのように行うかは、特に限定されない。
 なお、先に実行される成形工程と後に実行される成形工程がより近いほど、後に実行される成形工程において、先に実行された成形工程におけるカルブロックの温度変化の状況を直に反映させることができ、カルブロックの温度制御を高い精度で行うことが可能になる。
 また、この場合は、キャリブレーション(1)、(2)を行い、当初設定したカル部ヒーター321のON/OFF制御を行う各種パラメーターに基づき、基材の樹脂封止(成形工程)を行う際に、カルブロック320の温度を測定し、金型の基準温度より温度が下がった際の低い温度(低温度情報)と、金型の基準温度から温度が上がった際の高い温度(高温度情報)を取得する。
 そして、図19に示すように、成形動作終了後、金型の基準温度と低い温度の温度差の情報(ΔT0)と、金型の基準温度と高い温度の温度差の情報(ΔT1)を測定すると共に、温度が下がり始めてから設定温度に復帰するまでの時間(t1)と、温度が設定温度から上がり始めてから設定温度に復帰するまでの時間(t2)を計測する。
 また、成形動作終了後に、金型の基準温度よりも上昇した、カルブロック320の温度と基準温度の温度差の情報(ΔT2)を測定するようにしてもよい。
 このように、基材の樹脂封止の実成形の工程中から得られた、金型の基準温度と低い温度の温度差の情報(ΔT0)や、金型の基準温度と高い温度の温度差の情報(ΔT1)と、温度が下がり始めてから設定温度に復帰するまでの時間(t1)と、温度が設定温度から上がり始めてから設定温度に復帰するまでの時間(t2)から、カル部ヒーター321のON/OFF制御を行う各種パラメーター(X0、X1、X2、X3、X4)を制御部が再計算する。
 算出した各種パラメーターで、上記当初設定したカル部ヒーター321のON/OFF制御を行う各種パラメーターを更新(上書き)する。これにより、次回の、或いは後に実行する基材の樹脂封止においては、更新した各種パラメーターを使用したカル部ヒーター321のON/OFF制御の調整が行われ、カルブロック320の温度制御が行われる。
 例えば、金型の基準温度と低い温度の温度差(ΔT0)の値が大きい場合には、ヒーターON前ディレー(X0)の時間を短くする調整が行われる。また、金型の基準温度と高い温度の温度差(ΔT1)の値が大きい場合に、ヒーターON時間(X1)を短くする調整が行われる。
 更には、温度が下がり始めてから設定温度に復帰するまでの時間(t1)と、温度が設定温度から上がり始めてから設定温度に復帰するまでの時間(t2)の時間が長い場合には、カル部ヒーター321の出力を小さくしたり、ONの時間(X1)を短くしたり、或いはON/OFFの回数を増減したりする調整が行われる。なお、ここで述べた各種パラメーター(成形時デバイス)等の調整はあくまで一例であり、調整の内容はこれに限定されるものではない。
 以降は、同様にパラメーター情報の更新を行いながら、成形工程のみを繰り返し実行し、基材の樹脂封止を行うことができる。
 このように、基材の実成形の成形工程中から得られたカルブロック320の温度の情報をフィードバックして、次回の、或いは後に実行する基材の樹脂封止における、カル部ヒーター321のON/OFF制御の各種パラメーターを調整することにより、カルブロック320での温度低下の影響を少なくすることができる。また、樹脂封止装置においては、上記算出パラメーターの手動での入力も可能としている。
 以上のように、本発明における第2の実施形態の樹脂封止方法は、樹脂封止の際に、金型の温度制御を高い精度で行うことが可能なものとなっている。
 また、本発明における第2の実施形態の樹脂封止装置は、樹脂封止の際に、金型の温度制御を高い精度で行うことが可能なものとなっている。
 以上、本発明に係る樹脂封止方法は、樹脂封止の際に、金型の温度制御を高い精度で行うことが可能なものとなっている。
 また、本発明に係る樹脂封止金型は、樹脂封止の際に、金型の温度制御を高い精度で行うことが可能なものとなっている。
 また、本発明に係る樹脂封止装置は、樹脂封止の際に、金型の温度制御を高い精度で行うことが可能なものとなっている。
 本明細書及び特許請求の範囲で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書及び特許請求の範囲に記述された特徴及びその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形態様が可能であるということは言うまでもない。
 S 樹脂封止装置
 M 樹脂封止金型
 1 上金型
 11 上型ダイセット
 110 上ダイセットセンサー
 111 上ダイセットヒーター
 12 上型チェス
 120 上カルブロック
 121 上キャビティブロック
 122 第1の上ホルダーベース
 123 第2の上ホルダーベース
 124 カル部
 130 上カル部センサー
 131 上キャビティセンサー
 140 上カル部ヒーター
 141 上キャビティヒーター
 2 下金型
 21 下型ダイセット
 210 下ダイセットセンサー
 211 下ダイセットヒーター
 22 下型チェス
 220 下カルブロック
 221 下キャビティブロック
 222 第1の下ホルダーベース
 223 第2の下ホルダーベース
 230 下カル部センサー
 231 下キャビティセンサー
 240 下カル部ヒーター
 241 下キャビティヒーター
 A1 樹脂封止装置
 3 上金型
 31 上型ダイセット
 310 上ダイセットセンサー
 311 上ダイセットヒーター
 32 上型チェス
 320 カルブロック
 321 カル部ヒーター
 322 カル部センサー
 323 キャビティブロック
 324 カル側センサー
 325 上キャビ中央センサー
 326 カル部
 4 下金型
 41 下型ダイセット
 410 下ダイセットセンサー
 411 下ダイセットヒーター
 42 下型チェス
 420 ポットブロック
 421 ポット部センサー
 422 ポットヒーター
 423 下キャビティブロック
 424 ポット部
 A2 樹脂封止装置

Claims (16)

  1.  樹脂の供給経路であるカルを形成するカルブロック及びキャビティを形成するキャビティブロックが設けられた金型本体と、前記カルブロック及び前記キャビティブロックの少なくとも一方の温度を測定する温度測定手段と、前記カルブロック及び前記キャビティブロックを加温する加温手段と、前記金型本体を加温する金型本体加温手段と、を有する樹脂封止金型で、前記カルブロック及び前記キャビティブロックが所望の温度となるように、前記加温手段による加温の調整を行いながら、基材に載置された半導体素子を樹脂封止する成形動作を行う樹脂封止方法であって、
     前記成形動作は、前記成形動作より前に実行された前記成形動作で前記温度測定手段が測定した温度変化の情報に基づいて、前記加温手段による加温を調整する調整工程を備える
     樹脂封止方法。
  2.  前記カルブロック及び前記キャビティブロックに、前記温度測定手段による温度測定及び、前記加温手段による加温を個別に行うことが可能な複数の温度調整領域を設定し、前記温度調整領域ごとに前記加温手段による加温の出力、時間及び時機を調整する
     請求項1に記載の樹脂封止方法。
  3.  前記温度調整領域として、少なくとも第一の温度調整領域と、前記第一の温度調整領域とは異なる第二の温度調整領域とを設定し、
     前記調整工程は、前記成形動作より前に実行された前記成形動作における前記第一の温度調整領域と前記第二の温度調整領域との相対温度の情報及び、前記第一の温度調整領域の前記温度変化の情報に基づいて、前記第二の温度調整領域に対応する前記加温手段による加温の出力、時間及び時機を調整する
     請求項2に記載の樹脂封止方法。
  4.  前記調整工程は、前記温度調整領域ごとに、前記温度変化の情報に基づいて前記加温手段による加温の出力、時間及び時機を調整する
     請求項2に記載の樹脂封止方法。
  5.  樹脂を供給するポット部が設けられた第一の金型と、前記第一の金型と型合わせして前記ポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、前記カルブロックの温度を測定する温度測定手段と、前記カルブロックを加温する加温手段と、を有する樹脂封止金型で、基材に載置された半導体素子を樹脂封止する成形動作の際に、カルブロックの温度制御を行う樹脂封止方法であって、
     前記加温手段で加温を行い、前記ポット部に樹脂を入れずに、前記成形動作を行うと共に、所定の基準時から、前記カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報及び前記所要の高い温度の情報である高温度情報を取得する第1の情報取得工程と、
     前記加温手段で加温を行わず、又は前記加温手段の加温の出力を下げて加温を行い、前記ポット部に樹脂を入れて、前記成形動作を行うと共に、前記所定の基準時から、前記カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び前記所要の低い温度の情報である低温度情報を取得する第2の情報取得工程と、
     前記高温度到達時間情報、前記高温度情報、前記低温度到達時間情報及び前記低温度情報を含む情報に基づき、前記カルブロックの温度制御を行って、前記半導体素子を樹脂封止する成形工程とを備える
     樹脂封止方法。
  6.  先に実行される前記成形工程において、前記成形工程中の前記カルブロックの前記所要の高い温度の情報である高温度情報と、前記成形工程中の前記カルブロックの前記所要の低い温度の情報である低温度情報とを取得し、前記成形工程より後に実行される成形工程の際に、取得した前記高温度情報及び前記低温度情報を含む情報に基づき、前記カルブロックの温度制御を行う
     請求項5に記載の樹脂封止方法。
  7.  前記第1の情報取得工程、前記第2の情報取得工程及び前記成形工程を1回ずつ実行した後は、前記成形工程のみを繰り返し実行し、
     先に実行される前記成形工程で前記カルブロックの温度制御を行ったパラメーター情報を、
     先に実行される前記成形工程で取得した前記カルブロックの前記所要の高い温度の情報である高温度情報と、前記カルブロックの前記所要の低い温度の情報である低温度情報を含む情報に基づき算出したパラメーター情報で更新し、
     後に実行される前記成形工程において、前記更新したパラメーター情報に基づき、前記カルブロックの温度制御を行う
     請求項5に記載の樹脂封止方法。
  8.  前記所定の基準時が、前記成形動作の開始時である
     請求項5、請求項6又は請求項7に記載の樹脂封止方法。
  9.  前記成形工程は、
     前記高温度到達時間情報、前記高温度情報、前記低温度到達時間情報及び前記低温度情報を含む情報に基づき、前記成形動作の開始から前記加温手段で加温を開始するまでの時間である加温開始時間及び前記加温手段で加温を行う設定時間である加温設定時間を算出して、前記成形動作を行う
     請求項5、請求項6、請求項7又は請求項8に記載の樹脂封止方法。
  10.  前記所要の高い温度が最高温度であり、かつ前記所要の低い温度が最低温度である
     請求項5、請求項6、請求項7、請求項8又は請求項9に記載の樹脂封止方法。
  11.  樹脂を供給するポット部が設けられた第一の金型と、前記第一の金型と型合わせして前記ポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、前記カルブロックの温度を測定する温度測定手段と、前記カルブロックを加温する加温手段と、を有する樹脂封止金型で、基材に載置された半導体素子を樹脂封止する成形動作の際に、カルブロックの温度制御を行う樹脂封止方法であって、
     前記加温手段で加温を行い、前記ポット部に樹脂を入れずに、前記成形動作を行うと共に、所定の基準時から、前記カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報及び前記所要の高い温度の情報である高温度情報を取得し、かつ、
     前記加温手段で加温を行わず、又は前記加温手段の加温の出力を下げて加温を行い、前記ポット部に樹脂を入れて、前記成形動作を行うと共に、前記所定の基準時から、前記カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び前記所要の低い温度の情報である低温度情報を取得すると共に、
     前記高温度到達時間情報、前記高温度情報、前記低温度到達時間情報及び前記低温度情報を含む情報に基づき、前記カルブロックの温度制御を行って、前記半導体素子を樹脂封止する成形工程を備える
     樹脂封止方法。
  12.  樹脂を供給するポット部が設けられた第一の金型と、前記第一の金型と型合わせして前記ポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、前記カルブロックの温度を測定する温度測定手段と、前記カルブロックを加温する加温手段と、を有する樹脂封止金型で、基材に載置された半導体素子を樹脂封止する成形動作の際に、カルブロックの温度制御を行う樹脂封止方法であって、
     前記温度測定手段で前記カルブロックの温度変化に関係する情報を取得し、前記情報から、前記カルブロックの温度制御を行うためのパラメーターを算出する予備動作工程と、
     前記パラメーターに基づき、前記加温手段で前記カルブロックの温度制御を行って、前記半導体素子を樹脂封止する成形工程とを備える
     樹脂封止方法。
  13.  樹脂の供給経路であるカルを形成するカルブロック及びキャビティを形成するキャビティブロックが設けられた金型本体と、前記カルブロック及び前記キャビティブロックの少なくとも一方の温度を測定する温度測定手段と、前記カルブロック及び前記キャビティブロックを加温する加温手段と、前記金型本体を加温する金型本体加温手段と、前記加温手段による加温を調整する調整部と、を有し、前記カルブロック及び前記キャビティブロックが所望の温度となるように前記加温手段による加温の調整を行いながら、基材に載置された半導体素子を樹脂封止する成形動作を行う樹脂封止金型であって、
     前記調整部は、前記成形動作より前に実行された前記成形動作で前記温度測定手段が測定した温度変化の情報に基づいて、前記成形動作で前記加温手段による加温を調整する
     樹脂封止金型。
  14.  樹脂を供給するポット部が設けられた第一の金型と、前記第一の金型と型合わせして前記ポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、を有する樹脂封止金型で、前記カルブロックの温度制御を行い、基材に載置された半導体素子を樹脂封止する成形動作を行う樹脂封止装置であって、
     前記カルブロックの温度を測定する温度測定手段と、
     前記カルブロックを加温する加温手段と、
     前記加温手段で加温を行い、前記ポット部に樹脂を入れずに、前記成形動作を行う際の、所定の基準時から、前記カルブロックが所要の高い温度に到達するまでの時間の情報である高温度到達時間情報、前記所要の高い温度の情報である高温度情報、前記加温手段で加温を行わず、又は前記加温手段の加温の出力を下げて加温して、前記ポット部に樹脂を入れて、前記成形動作を行う際の、前記所定の基準時から、前記カルブロックが所要の低い温度に到達するまでの時間の情報である低温度到達時間情報及び前記所要の低い温度の情報である低温度情報を含む情報に基づき、前記加温手段を制御する制御手段と、を備える
     樹脂封止装置。
  15.  前記制御手段は、前記半導体素子を樹脂封止する成形工程中の前記カルブロックの前記所要の高い温度の情報である高温度情報と、前記成形工程中の前記カルブロックの前記所要の低い温度の情報である低温度情報を含む情報に基づき、後に実行される前記成形工程の前記温度制御を行う
     請求項14に記載の樹脂封止装置。
  16.  樹脂を供給するポット部が設けられた第一の金型と、前記第一の金型と型合わせして前記ポット部と対向する位置にカルを形成するカルブロックが設けられた第二の金型と、を有する樹脂封止金型で、前記カルブロックの温度制御を行い、基材に載置された半導体素子を樹脂封止する成形動作を行う樹脂封止装置であって、
     前記カルブロックの温度を測定する温度測定手段と、
     前記カルブロックを加温する加温手段と、
     前記温度測定手段で前記カルブロックの温度変化に関係する情報を取得し、前記情報から、前記カルブロックの温度制御を行うためのパラメーターを算出し、前記パラメーターに基づき、前記加温手段によるカルブロックの温度制御を行う制御手段とを備える
     樹脂封止装置。
PCT/JP2019/049427 2018-12-21 2019-12-17 樹脂封止方法、樹脂封止金型及び樹脂封止装置 WO2020129982A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980084118.8A CN113286687B (zh) 2018-12-21 2019-12-17 树脂封装方法,树脂封装金属模具及树脂封装装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-240332 2018-12-21
JP2018240332 2018-12-21
JP2019-017223 2019-02-01
JP2019017223A JP7205261B2 (ja) 2018-12-21 2019-02-01 樹脂封止方法及び樹脂封止装置
JP2019-168237 2019-09-17
JP2019168237 2019-09-17
JP2019-219958 2019-12-04
JP2019219958 2019-12-04

Publications (1)

Publication Number Publication Date
WO2020129982A1 true WO2020129982A1 (ja) 2020-06-25

Family

ID=71101981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049427 WO2020129982A1 (ja) 2018-12-21 2019-12-17 樹脂封止方法、樹脂封止金型及び樹脂封止装置

Country Status (2)

Country Link
CN (1) CN113286687B (ja)
WO (1) WO2020129982A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219418A (ja) * 1985-07-19 1987-01-28 Hitachi Ltd 成形装置
JPH0231130U (ja) * 1988-08-22 1990-02-27
JP2013010216A (ja) * 2011-06-28 2013-01-17 Apic Yamada Corp モールド金型及びこれを備えた樹脂モールド装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099707B2 (ja) * 1995-11-30 2000-10-16 日本電気株式会社 半導体装置の樹脂封止装置
JP5969883B2 (ja) * 2012-10-03 2016-08-17 信越化学工業株式会社 半導体装置の製造方法
JP6028592B2 (ja) * 2013-01-25 2016-11-16 三菱電機株式会社 半導体装置
JP6143665B2 (ja) * 2013-12-26 2017-06-07 Towa株式会社 半導体封止方法及び半導体封止装置
JP6491120B2 (ja) * 2016-02-13 2019-03-27 Towa株式会社 樹脂封止装置、樹脂封止方法及び樹脂成形品の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219418A (ja) * 1985-07-19 1987-01-28 Hitachi Ltd 成形装置
JPH0231130U (ja) * 1988-08-22 1990-02-27
JP2013010216A (ja) * 2011-06-28 2013-01-17 Apic Yamada Corp モールド金型及びこれを備えた樹脂モールド装置

Also Published As

Publication number Publication date
CN113286687B (zh) 2022-05-03
CN113286687A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
US8460586B2 (en) Injection molding method and apparatus for controlling a mold temperature and displacement of an injection screw
CN104890205B (zh) 一种注塑机料筒温度控制方法
US11279082B2 (en) Generative manufacturing of components with a heatable building platform and apparatus for implementing this method
JP6913667B2 (ja) 射出成形装置及びその制御方法
WO2020129982A1 (ja) 樹脂封止方法、樹脂封止金型及び樹脂封止装置
JPS6010893B2 (ja) 金型温度の制御方法およびその装置
JP7205261B2 (ja) 樹脂封止方法及び樹脂封止装置
TWI239287B (en) Device and method for velocity-pressure switching and pressure maintaining for electrically-operated injection molding machine
JP2017132228A (ja) 射出成形機
WO2021054126A1 (ja) 樹脂封止方法及び樹脂封止金型
JP5087585B2 (ja) 射出成形方法及び射出成形装置
JP2021093512A (ja) 樹脂封止方法及び樹脂封止金型
JP7139192B2 (ja) 樹脂成形金型及び成形方法
JP2019534194A5 (ja)
JP5809337B1 (ja) 射出ノズルにおける樹脂の温度制御方法
JPS6034827A (ja) 2軸延伸ブロ−成形壜体成形用1次成形品の加熱電力制御方法
WO2020129728A1 (ja) 樹脂成形金型及び樹脂成形方法
JPS62249723A (ja) 射出成形機の加熱シリンダ温度制御装置
CN107584738A (zh) 一种注塑模具智能化温度控制系统
JP4340366B2 (ja) 鋳造方法
TWI708673B (zh) 注射模製設備及其控制方法
KR20180108998A (ko) 사출 금형 제어 방법
JPH0536220B2 (ja)
JPH09122877A (ja) ダイカストマシンの型締力制御方法及びその装置
CN110744795A (zh) 一种塑胶产品注塑的温控和保压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898442

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898442

Country of ref document: EP

Kind code of ref document: A1