WO2020129945A1 - 積層体及び電子部品 - Google Patents

積層体及び電子部品 Download PDF

Info

Publication number
WO2020129945A1
WO2020129945A1 PCT/JP2019/049302 JP2019049302W WO2020129945A1 WO 2020129945 A1 WO2020129945 A1 WO 2020129945A1 JP 2019049302 W JP2019049302 W JP 2019049302W WO 2020129945 A1 WO2020129945 A1 WO 2020129945A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
layer portion
glass
surface layer
laminate
Prior art date
Application number
PCT/JP2019/049302
Other languages
English (en)
French (fr)
Inventor
裕 千秋
安隆 杉本
坂本 禎章
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020561442A priority Critical patent/JP7180689B2/ja
Priority to CN201980082713.8A priority patent/CN113165982B/zh
Publication of WO2020129945A1 publication Critical patent/WO2020129945A1/ja
Priority to US17/351,633 priority patent/US11924968B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/20Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing titanium compounds; containing zirconium compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/77Uncured, e.g. green
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1003Non-printed inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1006Non-printed filter

Definitions

  • the present invention relates to a laminated body and an electronic component.
  • Patent Document 1 discloses a dielectric material that can be fired at a temperature of 1000° C. or lower and that can be used as a high frequency circuit component and has a low relative dielectric constant and low dielectric loss.
  • the dielectric material is in mass percentage and converted into oxide, 70 to 85% of SiO 2 , 10 to 25% of B 2 O 3 , 0.5 to 5% of K 2 O, and 0 of Al 2 O 3 .
  • It is characterized by comprising 50 to 90% of borosilicate glass containing 0.01 to 1% and 10 to 50% of one or more kinds of SiO 2 fillers selected from the group of ⁇ -quartz, ⁇ -cristobalite and ⁇ -tridymite. ..
  • Patent Document 2 discloses a laminate having high strength and low dielectric constant.
  • the laminated body is a laminated body having a laminated structure composed of a surface layer portion and an inner layer portion, and the surface layer portion and the inner layer portion each include glass and quartz, and are included in the surface layer portion and the inner layer portion.
  • Each of the glasses mentioned contains SiO 2 , B 2 O 3 and M 2 O (M is an alkali metal), and the content of quartz in the surface layer portion is smaller than the content of quartz in the inner layer portion. Is characterized by. If a small amount (0.1 to 10%) of M 2 O is added, the viscosity of the glass is lowered and a large amount of SiO 2 is contained, so that it is said to be effective in lowering the dielectric constant. Further, it is said that Al 2 O 3 in the glass is preferably 0.1 to 5%.
  • borosilicate glass has a large amount of Al 2 O 3 and the smaller the amount of M 2 O (M is an alkali metal), the higher the chemical durability.
  • the present invention has been made to solve the above problems, and an object thereof is to provide a laminate having high chemical durability.
  • the laminated body of the present invention is a laminated body in which a plurality of glass-ceramic layers including glass including SiO 2 , B 2 O 3 , Al 2 O 3 and M 2 O (M is an alkali metal) and quartz are laminated.
  • Al 2 O 3 content of the surface layer portion of the laminate is greater than Al 2 O 3 content of the inner layer portion
  • M 2 O content of the surface layer portion is less than M 2 O content of the inner layer portion It is characterized by
  • An electronic component of the present invention is characterized by including a multilayer ceramic substrate using the laminated body of the present invention, and a chip component mounted on the multilayer ceramic substrate.
  • a laminate having high chemical durability can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of the laminated body.
  • FIG. 2 is a graph showing an example of the Al 2 O 3 content with respect to the distance from the surface of the laminated body.
  • the laminate and the electronic component of the present invention will be described.
  • the present invention is not limited to the following configurations, and can be appropriately modified and applied without departing from the scope of the invention. It should be noted that a combination of two or more individual desirable configurations of the present invention described below is also the present invention.
  • FIG. 1 is a sectional view schematically showing an example of a laminated body.
  • the laminated body 1 is a laminated body in which a plurality of glass ceramic layers 20 are laminated.
  • the laminated body 1 includes internal electrodes.
  • the internal electrodes are composed of conductor films 9, 10 and 11 and via-hole conductor 12.
  • the wiring conductor is for constituting a passive element such as a capacitor or an inductor, or for connecting wiring such as electrical connection between elements.
  • the material of the internal electrode preferably contains Ag or Cu. It is preferable that the internal electrode is Ag or Cu because firing at the sintering temperature of the glass ceramic is possible.
  • the conductor film 9 is formed inside the laminated body 1.
  • the conductor films 10 and 11 are formed on one main surface and the other main surface of the laminated body 1, respectively.
  • the via-hole conductor 12 is provided so as to be electrically connected to any of the conductor films 9, 10 and 11 and penetrate any of the glass ceramic layers 20 in the thickness direction.
  • the surface layer portion 30 is a portion having a high Al 2 O 3 content and a low M 2 O (M is an alkali metal) content.
  • M is an alkali metal
  • a chip component (not shown) can be mounted on the one main surface of the laminate 1 while being electrically connected to the conductor film 10. Further, the conductor film 11 formed on the other main surface of the laminated body 1 is used as an electrical connecting means when the laminated body having the chip parts mounted thereon is mounted on a motherboard (not shown).
  • the glass-ceramic layer in the laminate of the present invention contains glass containing SiO 2 , B 2 O 3 , Al 2 O 3 and M 2 O (M is an alkali metal), and quartz.
  • the content of SiO 2 in the glass is preferably 75% by weight or more, more preferably 80% by weight or more.
  • the dielectric constant of the laminated body can be lowered by increasing the content of SiO 2 .
  • the amount of SiO 2 is too large, the viscosity is high and the sinterability is remarkably reduced.
  • the content of B 2 O 3 in the glass is preferably 5% by weight or more and more preferably 10% by weight or more in order to improve the solubility. In order to reduce volatilization and more effectively suppress phase separation, it is preferably 30% by weight or less, more preferably 25% by weight or less, still more preferably 20% by weight or less. When the phase separation mentioned here occurs, the chemical durability of the laminate is reduced. The phase separation will be described later in detail.
  • the content of Al 2 O 3 in the glass is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, in order to enhance the chemical durability and more effectively suppress the phase separation. It is more preferably 0.5% by weight or more.
  • the amount of Al 2 O 3 is too large, the viscosity increases and the sinterability decreases, so 3% by weight or less is preferable, 2% by weight or less is more preferable, and 1.5% by weight or less is further preferable.
  • M 2 O in glass contributes to improvement in solubility.
  • the type of M 2 O is not particularly limited as long as it is an alkali metal oxide, but Li 2 O, K 2 O and Na 2 O are preferable, and K 2 O is more preferable.
  • M 2 O one kind of alkali metal oxide may be used, or two or more kinds of alkali metal oxide may be used.
  • the content of M 2 O in the glass is preferably 0.2% by weight or more, more preferably 0.5% by weight or more, still more preferably 1.0% by weight or more.
  • it is preferably 5% by weight or less, more preferably 3% by weight or less, still more preferably 2% by weight or less.
  • the glass contained in the glass ceramic layer may further contain an alkaline earth metal oxide such as CaO. Further, other impurities may be contained. When impurities are contained, the preferable content is less than 5% by weight.
  • the proportion of glass in the glass-ceramic layer is preferably 65% by weight or more, more preferably 70% by weight or more, and further preferably 75% by weight or more in order to secure fluidity during sintering. If the amount of glass is too large, degreasing becomes difficult, so the content is preferably 85% by weight or less, more preferably 80% by weight or less.
  • the glass-ceramic layer contains quartz in addition to glass. Quartz is added as a filler. In addition to quartz, Al 2 O 3 filler, ZrO 2 filler, or amorphous silica may be added as a filler.
  • the filler means an inorganic additive that is not contained in glass.
  • the content of the filler in the glass ceramic layer is preferably 15% by weight or more, and more preferably 20% by weight or more. Further, it is preferably 35% by weight or less, more preferably 30% by weight or less, further preferably 25% by weight or less.
  • the dielectric constant of the laminate can be lowered.
  • the relative dielectric constant can be 4.5 or less. This is because both SiO 2 and quartz contained in the glass are materials having a relative dielectric constant of 4.5 or less.
  • the Al 2 O 3 content of the surface layer portion of the laminated body is higher than the Al 2 O 3 content of the inner layer portion, and the M 2 O content of the surface layer portion is the M 2 O content of the inner layer portion. Less than quantity.
  • the Al 2 O 3 content in the layered product can be determined by performing a component analysis with respect to the distance from the surface of the layered product by SIMS (secondary ion mass spectrometry) and measuring the weight ratio of Al 2 O 3. it can. Further, similarly to the Al 2 O 3 content, the M 2 O content is analyzed by SIMS (secondary ion mass spectrometry) with respect to the distance from the surface of the layered product, and the weight ratio of M 2 O is calculated. It can be determined by measuring. It is preferable that the measurement points of the Al 2 O 3 content and the M 2 O content are taken at 250 points or more every 0.04 ⁇ m.
  • FIG. 2 is a graph showing an example of the Al 2 O 3 content with respect to the distance from the surface of the laminated body. From FIG. 2, it can be seen that the Al 2 O 3 content is high in the portion close to the surface of the laminate. The distance from the surface of the laminate larger the content of Al 2 O 3 is reduced, content of Al 2 O 3 is found to be a constant value.
  • the M 2 O content is small in the portion close to the surface of the laminate, which is the reverse of the graph for the Al 2 O 3 content, and the laminate is
  • the M 2 O content increases as the distance from the surface increases, and the M 2 O content also becomes a constant value at the point where the Al 2 O 3 content becomes a constant value.
  • the region where the Al 2 O 3 content becomes a constant value is the inner layer part
  • the region where the Al 2 O 3 content is higher than the inner layer part is the surface layer part. ..
  • the surface layer portion it is also characterized in that M 2 O content is less than M 2 O content of the inner layer portion, but the position of the surface layer portion to be determined by measurement of the content of Al 2 O 3.
  • the thickness at which the surface layer portion is formed in the laminate of the present invention is not particularly limited, but the Al 2 O 3 content and the M 2 O content at the point where the distance from the surface of the laminate is 2 ⁇ m are defined as follows. It can be used as a representative value of Al 2 O 3 content and M 2 O content of the surface layer portion of the laminate. Further, since the Al 2 O 3 content decreases and the M 2 O content increases at the center of the laminated body in the thickness direction, the Al 2 O 3 content and M 2 at the center point of the laminated body in the thickness direction are increased.
  • the O content can be used as a representative value of the Al 2 O 3 content and the M 2 O content of the inner layer portion of the laminate.
  • the “surface layer” and “inner layer” in the above definition are not related to the position of each layer of the glass ceramic layer constituting the laminate of the present invention, and the boundary between the surface layer portion and the inner layer portion does not have to coincide with the boundary between the glass ceramic layers.
  • the high Al 2 O 3 content in the surface layer portion of the laminate improves the chemical durability of the laminate.
  • Chemical durability means water resistance and acid resistance, and if the elution amount of alkali metal ions and divalent or more ions when the laminate reacts with water or an acidic solution is small, the chemical durability is high. It can be said to be expensive.
  • Examples of the type of acid used for evaluation of acid resistance include hydrochloric acid, sulfuric acid, nitric acid and the like.
  • the laminate has acid resistance to an acidic solution having a pH of 1 or more and 4 or less.
  • Borosilicate glass is known to undergo phase separation into (a) a high SiO 2 concentration phase and (b) a high B 2 O 3 and high M 2 O concentration phase when kept at a high temperature for a long time.
  • the phase having high B 2 O 3 and high M 2 O concentration has low chemical durability, and when the glass surface reacts with water, M 2 O is selectively eluted from the phase (b).
  • addition of Al 2 O 3 is effective in preventing phase separation.
  • the same effect can be obtained by adding Al 2 O 3 to the glass base material.
  • the viscosity of the glass is significantly increased, which hinders sintering.
  • the content of Al 2 O 3 in the surface layer portion of the laminated body is increased, sintering is not hindered. Further, in the layered product of the present invention, the content of Al 2 O 3 in the surface layer portion is specifically increased, so that the effect of preventing M 2 O elution is also higher.
  • the surface layer portion of the laminate has a large content of Al 2 O 3 , and the presence of this surface layer portion exerts a particularly high effect on the borosilicate glass having a low dielectric constant. Since aluminoborosilicate glass that has been widely used for LTCC has high water resistance, the effect of forming the surface layer portion containing a large amount of Al 2 O 3 is limited.
  • the thickness of the surface layer portion is preferably 2 ⁇ m or more. When the thickness of the surface layer portion is less than 2 ⁇ m, ions of alkali metal or the like easily pass through the surface layer portion and move to the surface of the laminate, so that the effect of improving the chemical durability is not exerted so much. Further, the thickness of the surface layer portion is preferably 20 ⁇ m or less. If the thickness of the surface layer portion exceeds 20 ⁇ m, the difference in expansion coefficient between the surface layer portion and the inner layer portion is greatly different, and thus cracks are likely to occur during cooling and the strength may be reduced. Further, the thickness of the surface layer portion is more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less.
  • the Al 2 O 3 content in the surface layer portion is preferably 5% by weight or more, more preferably 10% by weight or more, further preferably 20% by weight or more, and 40% by weight or more. Particularly preferred.
  • the M 2 O content in the surface layer portion is preferably 1% by weight or less, more preferably 0.5% by weight or less, further preferably 0.2% by weight or less, and 0.1% by weight or less. It is particularly preferable that the content is not more than weight %. Content of Al 2 O 3 and M 2 O content of the surface layer portion, the distance from the surface of the laminate defining the content of Al 2 O 3 and M 2 O content at the point of 2 ⁇ m as the representative value.
  • the chemical durability is further improved, and the laminate is prevented from water or acid. It is possible to further reduce the amount of ions eluted into.
  • compositions of the glass contained in the surface layer portion and the inner layer portion excluding the Al 2 O 3 content and the M 2 O content may be the same or different, but are preferably the same. ..
  • the relative dielectric constant (measured at 3 GHz) of the laminate is preferably 4.5 or less in order to reduce transmission loss.
  • the relative permittivity of the laminate can be measured by the perturbation method.
  • the laminated body of the present invention can be used as a multilayer ceramic substrate.
  • Chip components can be mounted on the multilayer ceramic substrate, and by mounting the chip components, an electronic component including the multilayer ceramic substrate can be obtained.
  • the electronic component of the present invention comprises a multilayer ceramic substrate using the laminated body of the present invention and a chip component mounted on the multilayer ceramic substrate.
  • the laminated body of the present invention can be applied not only to the above-mentioned multilayer ceramic substrate but also to a chip component mounted on the multilayer ceramic substrate.
  • chip components include LC composite components such as LC filters, capacitors, inductors, and the like.
  • the laminated body of the present invention may be applied to other than the above-mentioned multilayer ceramic substrate or chip component.
  • a pattern of the internal electrodes is formed on the glass ceramic green sheet provided with the internal electrodes by a screen printing method or a photolithography method using a conductive paste.
  • a conductive paste it is preferable to use a conductive paste containing Ag or Cu.
  • a plurality of these glass-ceramic green sheets are laminated and pressure-bonded by a hydrostatic press or the like to form a laminated green sheet.
  • the laminated green sheet is fired to produce a laminated body as a glass ceramic layer.
  • the firing temperature is a temperature at which the glass ceramic green sheet is sintered. For example, it is preferably 900° C. or higher and 1000° C. or lower, 30 minutes or longer and 90 minutes or shorter.
  • the firing atmosphere can be an air atmosphere or a reducing atmosphere.
  • a laminate can be manufactured by the above steps. Each of the steps of providing the surface layer portion in these steps will be described.
  • constraining layers containing Al 2 O 3 are placed on the upper and lower sides of the laminated green sheet.
  • the constraining layer is preferably 100% by weight of Al 2 O 3 (accepts impurities).
  • the constraining layer containing Al 2 O 3 is a sheet that does not substantially sinter at the temperature at which the glass ceramic green sheet sinters. Since the constraining layer does not substantially sinter during firing, shrinkage does not occur and acts on the laminate to suppress shrinkage in the main surface direction. As a result, the dimensional accuracy of the internal electrodes provided in the laminated body can be improved.
  • the constraining layer When the constraining layer is used, Al 2 O 3 of the constraining layer reacts with the glass component on the surface of the laminated green sheet during firing to form a thin reaction layer on the surface of the laminated body.
  • This reaction layer contains many Al 2 O 3, because a small amount of other components, the reaction layer is often content of Al 2 O 3, and M 2 O content is less surface portion.
  • the glass ceramic green sheet is sintered, firing is performed at a temperature at which the constraining layer does not sinter, and the constraining layer is removed from the laminated body after firing by a process such as sandblasting. The restraint layer is removed until the surface layer remains.
  • (Iii) Method of using a glass ceramic green sheet having a large content of Al 2 O 3 as a filler A glass ceramic green sheet for a surface layer obtained by adding a large amount of Al 2 O 3 as a filler to a glass powder is used as a glass ceramic green sheet. prepare. By adding a large amount of Al 2 O 3 as a filler, the content of other components is reduced, so that the glass ceramic green sheet has a low M 2 O content.
  • the glass ceramic green sheet for the surface layer portion is placed on the surface to prepare a laminated green sheet, which is then fired to prepare a laminated body.
  • the glass ceramic layer, which was the glass ceramic green sheet for the surface layer portion becomes a surface layer portion having a high Al 2 O 3 content and a low M 2 O content.
  • a plurality of types of sheets having different contents of Al 2 O 3 as a filler may be prepared and the respective sheets may be arranged so that the content of Al 2 O 3 changes stepwise from the surface layer portion.
  • Al 2 O 3 film Physically forming Al 2 O 3 film on surface of laminated body after firing.
  • the Al 2 O 3 film can be formed by a sputtering apparatus or the like, but the method is not particularly limited. Since M 2 O content in the Al 2 O 3 film is less than M 2 O content in the glass ceramic layer of the inner layer portion, the Al 2 O 3 film is Al 2 O 3 is much content, M 2 O content There is less surface area.
  • DOP dioctyl phthalate
  • the obtained slurry was formed on a PET film by a doctor blade method and dried at 40° C. to prepare a glass ceramic green sheet having a thickness of 50 ⁇ m. This was cut into a predetermined size, 10 layers were laminated and then pressure-bonded to produce a laminated green sheet. An electric furnace was used for the laminated green sheets, and baking was performed at 990° C. for 30 minutes in the air atmosphere to prepare a laminated body.
  • a standard condition No.
  • the glass compositions and sheet compositions of Nos. 1 to 9 are No. Nos. 1 to 4 correspond to Examples 1 to 4, and No. 5 to 9 correspond to Comparative Examples 1 to 5.
  • Example 1 Formation of surface layer portion using constraining layer
  • a laminated green sheet in which a glass ceramic green sheet having an inorganic component of Al 2 O 3 as a constraining layer was laminated on the outermost layer was prepared and fired.
  • a reaction layer having a thickness of several ⁇ m remained on the surface of the laminate.
  • the content of Al 2 O 3 with respect to the distance from the surface of the laminate was measured by SIMS (secondary ion mass spectrometry).
  • the reaction layer is often content of Al 2 O 3 as compared to the inner part, content of Al 2 O 3 is to be monotonically increases toward the surface of the laminate from the inner layer portion was confirmed.
  • FIG. 2 is a result of measuring the Al 2 O 3 content with respect to the distance from the surface of the laminated body in the laminated body of Example 1.
  • Example 2 Formation of surface layer portion by other method
  • a plurality of 2 ⁇ m-thick glass ceramic green sheets each having a stepwise increased Al 2 O 3 content in glass were laminated on the surface of the laminated green sheet, and firing was performed under standard conditions.
  • the Al 2 O 3 content is a laminated body in which the surface layer portion changes stepwise.
  • Example 3 a glass ceramic green sheet having a large content of Al 2 O 3 filler and having a thickness of 5 ⁇ m was laminated on the surface of the laminated green sheet and fired under standard conditions.
  • the glass-ceramic layer derived from the glass-ceramic green sheet containing a large amount of Al 2 O 3 filler is the surface layer portion of the laminate.
  • Example 4 after firing under standard conditions to produce a laminate, the surface of the laminate was physically coated with an Al 2 O 3 film having a thickness of 2 ⁇ m.
  • the Al 2 O 3 film serves as the surface layer portion of the laminated body.
  • Comparative Examples 1 to 5 In Comparative Examples 1, 4, and 5, laminates were manufactured under standard conditions. In Comparative Examples 2 and 3, eight inner layer sheets were laminated, and a laminated green sheet was prepared in which one surface layer each was disposed on the front and back sides, and pressure bonding and firing were performed according to standard conditions.
  • the laminated bodies of Examples 1 to 4 since the Al 2 O 3 content in the surface layer portion is large and the K 2 O content in the inner layer portion is small, the ions in the surface layer portion of the laminate become chemically stable and Al and B , K ion elution is suppressed.
  • Al ions the laminated bodies of Examples 1 to 4 have a higher effect of suppressing ion elution than the laminated bodies of Comparative Examples 1 to 3.
  • B ions the laminated bodies of Examples 1 to 4 have a higher ion elution suppression effect than the laminated bodies of Comparative Examples 1 to 3 and 5.
  • the laminated bodies of Examples 1 to 4 have a higher ion elution suppressing effect than the laminated bodies of Comparative Examples 1 to 5. It can be said that the laminates of Examples 1 to 4 have high chemical stability because they have a high ion elution suppressing effect on K ions having the highest mobility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

本発明の積層体は、SiO、B、Al及びMO(Mはアルカリ金属)を含むガラスと、クォーツとを含むガラスセラミック層が複数層積層された積層体であって、上記積層体の表層部のAl含有量が内層部のAl含有量より多く、上記表層部のMO含有量が上記内層部のMO含有量より少ない。

Description

積層体及び電子部品
本発明は、積層体及び電子部品に関する。
電子部品として、ガラスセラミック層を複数層積層した積層体を使用することが知られている。
特許文献1には、1000℃以下の温度で焼成でき、しかも高周波回路部品として使用可能な低比誘電率、低誘電損失を有する誘電体材料が開示されている。当該誘電体材料は質量百分率で、酸化物に換算してSiOを70~85%、Bを10~25%、KOを0.5~5%、Alを0.01~1%含んでなるホウ珪酸ガラス50~90%とα-石英、α-クリストバライト、β-トリジマイトの群から選ばれる1種以上のSiOフィラー10~50%からなることを特徴とする。
特許文献2には、強度が高く、かつ、誘電率が低い積層体が開示されている。当該積層体は、表層部と内層部とからなる積層構造を有する積層体であって、上記表層部及び上記内層部は、いずれも、ガラス及びクォーツを含み、上記表層部及び上記内層部に含まれるガラスは、いずれも、SiO、B及びMO(Mはアルカリ金属)を含有し、上記表層部におけるクォーツの含有量は、上記内層部におけるクォーツの含有量よりも少ないことを特徴とする。
O添加は少量(0.1~10%)であればガラスの粘度を下げ、多くのSiOを含ませるので誘電率低下に有効であるとされている。また、ガラス中のAlは0.1~5%が好ましいとされている。
特開2002-187768号公報 国際公開第2017/122381号
セラミック積層体を回路基板に使用する場合、洗浄・めっき等の工程で浸食されない化学的耐久性が必要になる。部品実装後は高温、高湿度下で動作することも求められる。これらの過程で浸食作用を受けると、クラック発生により強度が低下したり、絶縁信頼性が低下したりする等の問題が発生する。
一般にホウケイ酸ガラスはAlが多く、MO(Mはアルカリ金属)が少ないほど化学的耐久性が高い。
特許文献1に記載の誘電体材料は誘電率を低くするためにAlの含有量を1%未満と制限しているため、化学的耐久性が低くなっている。
特許文献2に記載の積層体では、特許文献1に比べると積層体中のAlの含有量を多くすることができるため、化学的耐久性は高くなるが、さらに化学的耐久性を高めることが要望されていた。
本発明は上記の問題を解決するためになされたものであり、化学的耐久性の高い積層体を提供することを目的とする。
本発明の積層体は、SiO、B、Al及びMO(Mはアルカリ金属)を含むガラスと、クォーツとを含むガラスセラミック層が複数層積層された積層体であって、上記積層体の表層部のAl含有量が内層部のAl含有量より多く、上記表層部のMO含有量が上記内層部のMO含有量より少ないことを特徴とする。
本発明の電子部品は、本発明の積層体を用いた多層セラミック基板と、上記多層セラミック基板に搭載されたチップ部品と、を備えることを特徴とする。
本発明によれば、化学的耐久性の高い積層体を提供することができる。
図1は、積層体の一例を模式的に示す断面図である。 図2は、積層体の表面からの距離に対するAl含有量の一例を示すグラフである。
以下、本発明の積層体及び電子部品について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
まず、本発明の積層体について説明する。
図1は、積層体の一例を模式的に示す断面図である。
積層体1は、ガラスセラミック層20が複数層積層された積層体である。
積層体1は、内部電極を備えている。内部電極は導体膜9、10及び11並びにビアホール導体12から構成されている。配線導体は、例えばコンデンサ又はインダクタのような受動素子を構成したり、あるいは素子間の電気的接続のような接続配線とするためのものである。
内部電極の材料はAg又はCuを含むことが好ましい。
内部電極がAg又はCuであると、ガラスセラミックの焼結温度における焼成が可能であるため好ましい。
導体膜9は、積層体1の内部に形成される。導体膜10及び11は、それぞれ、積層体1の一方主面上及び他方主面上に形成される。ビアホール導体12は、導体膜9、10及び11のいずれかと電気的に接続され、かつガラスセラミック層20のいずれかを厚み方向に貫通するように設けられる。
積層体1の両方の主面には表層部30が設けられている。表層部30はAl含有量が多く、MO(Mはアルカリ金属)含有量が少ない部分である。
表層部30の構成については後に詳しく説明する。
積層体1の一方主面上には、導体膜10に電気的に接続された状態で、チップ部品(図示しない)を搭載することができる。
また、積層体1の他方主面上に形成された導体膜11は、チップ部品を搭載した積層体を図示しないマザーボード上に実装する際の電気的接続手段として用いられる。
本発明の積層体におけるガラスセラミック層は、SiO、B、Al及びMO(Mはアルカリ金属)を含むガラスと、クォーツとを含む。
ガラス中のSiOの含有量は、75重量%以上が好ましく、80重量%以上がより好ましい。SiOの含有量を多くすることで積層体の誘電率を下げることができる。一方、SiOが多すぎると粘性が高く、焼結性が著しく低下するため95重量%以下が好ましく、90重量%以下がより好ましい。
ガラス中のBの含有量は、溶解性を向上させるため5重量%以上が好ましく、10重量%以上がより好ましい。揮発を減らし相分離をより効果的に抑制するためには30重量%以下が好ましく、25重量%以下がより好ましく、20重量%以下がさらに好ましい。
ここでいう相分離が生じると積層体の化学的耐久性が低下する。相分離については後で詳しく説明する。
ガラス中のAlの含有量は、化学的耐久性を高め、相分離をより効果的に抑制するために0.1重量%以上が好ましく、0.2重量%以上がより好ましく、0.5重量%以上がさらに好ましい。
一方、Alが多すぎると粘性が増大し、焼結性を低下させるため3重量%以下が好ましく、2重量%以下がより好ましく、1.5重量%以下がさらに好ましい。
ガラス中のMOは溶解性の向上に寄与する。
Oの種類としては、アルカリ金属酸化物である限り特に限定されないが、LiO、KO及びNaOであることが好ましく、KOであることがより好ましい。
Oとして、1種類のアルカリ金属酸化物を用いてもよいし、2種類以上のアルカリ金属酸化物を用いてもよい。
Oとして2種類以上のアルカリ金属酸化物を用いる場合、その合計量をMOの含有量とする。
ガラス中のMOの含有量は、0.2重量%以上が好ましく、0.5重量%以上がより好ましく、1.0重量%以上がさらに好ましい。
一方、誘電率を低減し、化学的耐久性を高めるため5重量%以下が好ましく、3重量%以下がより好ましく、2重量%以下がさらに好ましい。
ガラスセラミック層に含まれるガラスは、CaO等のアルカリ土類金属酸化物をさらに含有してもよい。また、その他の不純物が含有されていてもよい。
不純物が含まれる場合の好ましい含有量は5重量%未満である。
ガラスセラミック層中のガラスの割合は焼結時の流動性確保のため65重量%以上が好ましく、70重量%以上がより好ましく、75重量%以上がさらに好ましい。ガラスが多すぎると脱脂が困難になるため85重量%以下が好ましく、80重量%以下がより好ましい。
ガラスセラミック層はガラスの他にクォーツを含む。クォーツはフィラーとして添加されている。クォーツの他にフィラーとしてAlフィラー、ZrOフィラー、アモルファスシリカを添加してもよい。
本明細書において、フィラーとは、ガラスに含まれない無機添加剤を意味する。
ガラスセラミック層におけるフィラーの含有量は15重量%以上が好ましく、20重量%以上が好ましい。また、35重量%以下が好ましく、30重量%以下がより好ましく、25重量%以下がさらに好ましい。
ガラスセラミック層に含まれるガラスにつき、SiOの割合が大きいものを使用し、さらにクォーツを追加すると、積層体の誘電率を低くすることができる。例えば比誘電率を4.5以下にすることができる。
ガラス中に含まれるSiOもクォーツも比誘電率が4.5以下の材料であるためである。
本発明の積層体では、積層体の表層部のAl含有量が内層部のAl含有量より多く、上記表層部のMO含有量が上記内層部のMO含有量より少ない。
積層体におけるAl含有量は、SIMS(2次イオン質量分析法)により、積層体の表面からの距離に対する成分分析を行い、Alの重量割合を測定することにより定めることができる。
また、Al含有量と同様に、MO含有量は、SIMS(2次イオン質量分析法)により、積層体の表面からの距離に対する成分分析を行い、MOの重量割合を測定することにより定めることができる。
Al含有量及びMO含有量の測定点は0.04μmおきに250点以上取るようにすることが好ましい。
図2は、積層体の表面からの距離に対するAl含有量の一例を示すグラフである。
図2からは、積層体の表面に近い部分でAl含有量が多いことが分かる。また、積層体の表面からの距離が大きくなるほどAl含有量が少なくなり、Al含有量は一定値になることが分かる。
O含有量についてはグラフを示していないが、典型的には、Alの含有量のグラフとは逆に積層体の表面に近い部分でMO含有量は少なく、積層体の表面からの距離が大きくなるほどMO含有量は多くなり、Al含有量が一定値になった地点でMO含有量も一定値になる。
図2のようにAl含有量を測定した際にAl含有量が一定値となる領域を内層部とし、Al含有量が内層部より多い領域を表層部とする。
表層部においてはMO含有量が内層部のMO含有量より少なくなるという特徴もあるが、表層部の位置はAl含有量の測定により定めることとする。
本発明の積層体において表層部が形成される厚さは特に限定されるものではないが、積層体の表面からの距離が2μmの地点でのAl含有量及びMO含有量を積層体の表層部のAl含有量及びMO含有量の代表値として使用することができる。
また、積層体の厚さ方向の中心においてAl含有量が少なくなりMO含有量が多くなるので、積層体の厚さ方向の中心地点でのAl含有量及びMO含有量を積層体の内層部のAl含有量及びMO含有量の代表値として使用することができる。
上記規定における「表層」「内層」は本発明の積層体を構成するガラスセラミック層の各層の位置とは関係なく、表層部と内層部の境界はガラスセラミック層の境界と一致する必要はない。
積層体の表層部のAl含有量が多いことにより、積層体の化学的耐久性が向上する。
化学的耐久性とは、耐水性及び耐酸性を意味しており、積層体が水又は酸性溶液と反応した際のアルカリ金属イオンおよび2価以上のイオンの溶出量が少ないと化学的耐久性が高いといえる。
耐酸性の評価に使用する酸の種類としては塩酸、硫酸、硝酸等が挙げられる。また、
積層体がpHが1以上、4以下の酸性溶液に対する耐酸性を有することが好ましい。
ホウケイ酸ガラスは、高温で長時間保持すると(a)高SiO濃度相、と(b)高Bかつ高MO濃度相、とに相分離することが知られている。このうち(b)高Bかつ高MO濃度の相は化学的耐久性が低く、ガラス表面と水が反応する場合は(b)相からMOが選択的に溶出する。Al添加は相分離防止に効果があるといわれている。
ガラス母材にAlを添加しても同じ効果が得られる。しかしながら、この場合ガラスの粘度が著しく上昇して焼結を阻害する。
一方、積層体の表層部においてAlの含有量を多くする場合は焼結を阻害することはない。また本発明の積層体では表層部のAl含有量を特異的に多くするため、MO溶出防止効果もこちらの方が高い。
積層体の表層部ではAlの含有量が多く、この表層部を有することは、低誘電率のホウケイ酸ガラスに対して特異的に高い効果を発揮する。従来からLTCCに広く用いられるアルミノホウケイ酸ガラスは耐水性が高いため、Alの含有量が多い表層部を形成することによる効果は限定的である。
また、ガラスの比誘電率を下げるにはガラス自体のAlを減らしてSiO、Bを増やす必要があるが、この場合相分離しやすくなって化学的耐久性が低下してしまう。
従って、積層体の表層部ではAlの含有量を多くして化学的耐久性を高めるとともに、積層体の内層部ではAlの含有量を減らして比誘電率を下げることが好ましい。
以上のことから、表層部でAlの含有量を多くすることにより、ホウケイ酸ガラスをベースとして誘電率の低い積層体を提供することができる。
表層部の厚さは2μm以上であることが好ましい。表層部の厚さが2μm未満であると、アルカリ金属等のイオンが表層部を通り抜けて、積層体の表面まで移動しやすく、化学的耐久性を向上させる効果がそれほど発揮されない。
また、表層部の厚さは20μm以下であることが好ましい。表層部の厚さが20μmを超えると内層部との膨張係数差が大きく異なるため、冷却時にクラックが発生しやすく強度が低下する可能性がある。
また、表層部の厚さは15μm以下であることがより好ましく、10μm以下であることがさらに好ましい。
表層部のAl含有量は5重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、40重量%以上であることが特に好ましい。
また、表層部のMO含有量は1重量%以下であることが好ましく、0.5重量%以下であることがより好ましく、0.2重量%以下であることがさらに好ましく、0.1重量%以下であることが特に好ましい。
表層部のAl含有量及びMO含有量は、積層体の表面からの距離が2μmの地点でのAl含有量及びMO含有量を代表値として定める。
表層部のAl含有量が5重量%以上であり、表層部のMO含有量は1重量%以下であると、化学的耐久性がより向上し、積層体から水又は酸等に溶出するイオン量をより少なくすることができる。
また、表層部及び内層部に含まれるガラスの組成のうちAl含有量及びMO含有量を除いた組成は同じであっても異なっていてもよいが、同じであることが好ましい。
積層体の比誘電率(3GHzで測定)については伝送損失を低減するため4.5以下であることが好ましい。
積層体の比誘電率は摂動法により測定することができる。
本発明の積層体は、多層セラミック基板として使用することができる。多層セラミック基板にはチップ部品を搭載することができ、チップ部品を搭載することにより多層セラミック基板を備える電子部品とすることができる。
本発明の電子部品は、本発明の積層体を用いた多層セラミック基板と、上記多層セラミック基板に搭載されたチップ部品とを備えることを特徴とする。
本発明の積層体は、上述した多層セラミック基板だけでなく、多層セラミック基板に搭載するチップ部品に適用することが可能である。チップ部品としては、LCフィルタ等のLC複合部品の他、コンデンサ、インダクタ等が挙げられる。
また、本発明の積層体は、上述した多層セラミック基板又はチップ部品以外に適用してもよい。
続いて、本発明の積層体の製造方法について説明する。
表層部を設ける方法は複数あるため、表層部を設ける方法以外の工程について説明し、その後に表層部を設ける方法について説明する。
(1)積層工程
SiO、B、Al及びMO(Mはアルカリ金属)を含むガラス粉末と、クォーツ粉末とバインダー、可塑剤等を混合してセラミックスラリーを調製し、シート状に成形して乾燥させてガラスセラミックグリーンシートを得る。
ガラスセラミックグリーンシートのうち、内部電極を設けるガラスセラミックグリーンシートには、導電性ペーストを用いてスクリーン印刷法やフォトリソグラフィ法により内部電極のパターンを形成する。
導電性ペーストとしてはAg又はCuを含む導電性ペーストを使用することが好ましい。
これらのガラスセラミックグリーンシートを複数層積層して、静水圧プレス等により圧着することにより積層グリーンシートを形成する。
(2)焼成工程
積層グリーンシートを焼成してガラスセラミック層として積層体を製造する。
焼成温度は、ガラスセラミックグリーンシートが焼結する温度で行う。
例えば900℃以上、1000℃以下、30分以上、90分以下とすることが好ましい。
焼成雰囲気は空気雰囲気又は還元雰囲気とすることができる。
上記工程によって積層体を製造することができる。
これらの行程中において表層部を設ける工程をそれぞれ説明する。
(i)拘束層を使用する方法
積層工程において、積層グリーンシートの上下にAlを含む拘束層を載置する。
拘束層はAlが100重量%(不純物は許容する)であることが好ましい。
Alを含む拘束層は、ガラスセラミックグリーンシートが焼結する温度では実質的に焼結しないシートである。
拘束層は、焼成時において実質的に焼結しないので収縮が生じず、積層体に対して主面方向での収縮を抑制するように作用する。その結果、積層体に設けられる内部電極の寸法精度を高めることができる。
拘束層を使用すると焼成時に拘束層のAlが積層グリーンシートの表面でガラス成分と反応して積層体の表面に薄い反応層を形成する。この反応層にはAlが多く含まれ、その他の成分の含有量が少ないので、この反応層はAl含有量が多く、MO含有量が少ない表層部となる。
なお、拘束層を設けた場合はガラスセラミックグリーンシートが焼結し、拘束層が焼結しない温度で焼成を行い、焼成後の積層体からサンドブラスト等の処理により拘束層を除去する。拘束層の除去は表層部が残る程度に行う。
(ii)ガラス中のAl含有量が多いガラスセラミックグリーンシートを使用する方法
ガラスセラミックグリーンシートとして、ガラス粉末中のAlが多くMO含有量が少ない表層部用ガラスセラミックグリーンシートを準備する。
この表層部用ガラスセラミックグリーンシートを表面に配置して積層グリーンシートを作製し、焼成を行って積層体を作製する。
表層部用ガラスセラミックグリーンシートであったガラスセラミック層が、Al含有量が多く、MO含有量が少ない表層部となる。
また、ガラス粉末中のAl含有量が異なる複数種類のシートを作製してAl含有量が表層部から階段状に変化するように各シートを配置してもよい。
(iii)フィラーとしてのAl含有量が多いガラスセラミックグリーンシートを使用する方法
ガラスセラミックグリーンシートとして、ガラス粉末にフィラーとしてのAlを多く加えた表層部用ガラスセラミックグリーンシートを準備する。フィラーとしてのAlを多く加えることでその他の成分の含有量が少なくなるので、MO含有量が少ないガラスセラミックグリーンシートとなる。
この表層部用ガラスセラミックグリーンシートを表面に配置して積層グリーンシートを作製し、焼成を行って積層体を作製する。
表層部用ガラスセラミックグリーンシートであったガラスセラミック層が、Al含有量が多く、MO含有量が少ない表層部となる。また、フィラーとしてのAl含有量が異なる複数種類のシートを作製してAl含有量が表層部から階段状に変化するように各シートを配置してもよい。
(iv)焼成後の積層体にAl膜を形成する方法
焼成後の積層体の表面に物理的にAl膜を形成する。
Al膜の形成はスパッタ装置等により行うことができるがその方法は特に限定されるものではない。
Al膜においてMO含有量は内層部のガラスセラミック層におけるMO含有量よりも少なくなるので、Al膜はAl含有量が多く、MO含有量が少ない表層部となる。
以下、本発明の積層体をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
[標準条件の試料作製]
表1のガラス組成となるようにガラスを調合、溶融、冷却したのち、粒径がd50=1μmとなるよう粉砕した。これを表1のシート組成となるようSiO(石英およびアモルファスシリカ)、Al、ZrOの各種フィラー(いずれもd50=1μm)と混合した。エタノールおよび分散剤を加えてスラリーとし、φ5mmの玉石で16時間粉砕した。さらにバインダーおよび可塑剤(DOP:ジオクチルフタレート)を添加し、再度4時間混合した。得られたスラリーをドクターブレード法によりPETフィルム上に成形し、40℃で乾燥することで厚さ50μmのガラスセラミックグリーンシートを作製した。
これを所定のサイズに切断し、10層を積層したのち圧着して積層グリーンシートを作製した。積層グリーンシートに対して電気炉を使用し、大気雰囲気下で990℃30分の焼成を行って積層体を作製した。以下、これを標準条件と呼称する。
No.1~9のガラス組成及びシート組成は、No.1~4が実施例1~4に対応し、No.5~9が比較例1~5に対応する。
Figure JPOXMLDOC01-appb-T000001
[実施例1:拘束層を使用する表層部形成]
無機成分がAlからなるガラスセラミックグリーンシートを拘束層として最表層に積層した積層グリーンシートを作製し、焼成を行った。積層体の表面には厚さ数μmの反応層が残った。
SIMS(2次イオン質量分析法)により、積層体の表面からの距離に対するAlの含有量を測定した。反応層は内層部に比べてAl含有量が多く、Al含有量は内層部から積層体の表面に向かって単調増加することが確認された。
図2は、実施例1の積層体における積層体の表面からの距離に対するAl含有量を測定した結果である。
[実施例2~4:その他の方法による表層部形成]
実施例2では、積層グリーンシートの表面に、ガラス中のAl含有量を段階的に多くした厚さ2μmのガラスセラミックグリーンシートを複数枚積層して標準条件で焼成を行った。
この場合、Al含有量が表層部から階段状に変化した積層体となる。
実施例3では、積層グリーンシートの表面に、Alフィラーの含有量を多くした厚さ5μmのガラスセラミックグリーンシートを積層して標準条件で焼成を行った。
この場合、Alフィラーの含有量を多くしたガラスセラミックグリーンシートに由来するガラスセラミック層が表層部である積層体となる。
実施例4では、標準条件で焼成して積層体を作製した後に、積層体の表面に厚さ2μmのAl膜を物理的にコーティングした。
この場合、Al膜が表層部である積層体となる。
[比較例1~5]
比較例1、4、5は標準条件で積層体を作製した。比較例2、3は内層シート8層を積層し、この表裏に表層シート各1層を配置した積層グリーンシートを作製し、標準条件にしたがって圧着~焼成を行った。
[Al、KOの含有量測定]
各実施例及び比較例で製造した積層体の表面から深さ2μmの部位におけるAl、KO含有量をSIMSで測定して表層部のAl、KOの含有量とした。
また、積層体の厚さ方向の中心におけるAl、KO含有量をSIMSで測定して内層部のAl、KOの含有量とした。
これらの結果を表2に示した。
[化学的耐久性の評価]
各実施例及び比較例で製造した積層体を80℃の純水中に8時間浸漬し、溶出した元素をICP-MSにより定量した。対象元素はAl、B、Kを選定した。
また、各実施例及び比較例で製造した別の積層体を45℃、pH=2の塩酸溶液に60分間浸漬し、同じ方法で溶出元素を定量した。これらの結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
実施例1~4の積層体では表層部のAl含有量が多く、内層部のKO含有量が少ないため、積層体の表層部におけるイオンが化学的に安定となり、Al、B、Kイオンの溶出が抑制されている。
Alイオンについては、実施例1~4の積層体は、比較例1~3の積層体に比べてイオン溶出抑制効果が高い。
Bイオンについては、実施例1~4の積層体は、比較例1~3、5の積層体に比べてイオン溶出抑制効果が高い。
Kイオンについては、実施例1~4の積層体は、比較例1~5の積層体に比べてイオン溶出抑制効果が高い。
実施例1~4の積層体は、とくに最も移動度の高いKイオンに対するイオン溶出抑制効果が高いので、化学的安定性が高いといえる。
1 積層体
9、10、11 導体膜
12 ビアホール導体
20 ガラスセラミック層
30 表層部

Claims (4)

  1. SiO、B、Al及びMO(Mはアルカリ金属)を含むガラスと、クォーツとを含むガラスセラミック層が複数層積層された積層体であって、
    前記積層体の表層部のAl含有量が内層部のAl含有量より多く、前記表層部のMO含有量が前記内層部のMO含有量より少ないことを特徴とする積層体。
  2. 前記表層部のAl含有量が5重量%以上であり、MO含有量が1重量%以下である請求項1に記載の積層体。
  3. 前記表層部の厚さが2μm以上、20μm以下である請求項1又は2に記載の積層体。
  4. 請求項1~3のいずれかに記載の積層体を用いた多層セラミック基板と、
    前記多層セラミック基板に搭載されたチップ部品と、を備えることを特徴とする電子部品。
PCT/JP2019/049302 2018-12-21 2019-12-17 積層体及び電子部品 WO2020129945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020561442A JP7180689B2 (ja) 2018-12-21 2019-12-17 積層体及び電子部品
CN201980082713.8A CN113165982B (zh) 2018-12-21 2019-12-17 层叠体和电子部件
US17/351,633 US11924968B2 (en) 2018-12-21 2021-06-18 Layered body and electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-239605 2018-12-21
JP2018239605 2018-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/351,633 Continuation US11924968B2 (en) 2018-12-21 2021-06-18 Layered body and electronic component

Publications (1)

Publication Number Publication Date
WO2020129945A1 true WO2020129945A1 (ja) 2020-06-25

Family

ID=71101758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049302 WO2020129945A1 (ja) 2018-12-21 2019-12-17 積層体及び電子部品

Country Status (4)

Country Link
US (1) US11924968B2 (ja)
JP (1) JP7180689B2 (ja)
CN (1) CN113165982B (ja)
WO (1) WO2020129945A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020129858A1 (ja) * 2018-12-20 2021-10-07 株式会社村田製作所 積層体、電子部品及び積層体の製造方法
WO2022085715A1 (ja) * 2020-10-22 2022-04-28 株式会社村田製作所 多層構造体およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056764B2 (ja) * 2018-12-20 2022-04-19 株式会社村田製作所 ガラスセラミック材料、積層体、及び、電子部品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185824A (ja) * 1999-12-24 2001-07-06 Kyocera Corp セラミック配線基板及びその製造方法
JP2002047059A (ja) * 2000-07-31 2002-02-12 Kyocera Corp ガラスセラミック焼結体およびそれを用いた配線基板
JP2008159981A (ja) * 2006-12-26 2008-07-10 Toray Ind Inc セラミックス基板
WO2017002434A1 (ja) * 2015-06-29 2017-01-05 株式会社村田製作所 多層セラミック基板および多層セラミック基板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413620B1 (en) 1999-06-30 2002-07-02 Kyocera Corporation Ceramic wiring substrate and method of producing the same
JP4569000B2 (ja) 2000-12-20 2010-10-27 日本電気硝子株式会社 高周波用低温焼結誘電体材料およびその焼結体
JP4295682B2 (ja) * 2004-06-28 2009-07-15 Tdk株式会社 多層配線基板
US7067026B2 (en) * 2004-11-22 2006-06-27 E. I. Du Pont De Nemours And Company Process for the constrained sintering of a pseudo-symmetrically configured low temperature cofired ceramic structure
US20060110602A1 (en) * 2004-11-22 2006-05-25 Wang Carl B Process for the constrained sintering of a pseudo-symmetrically configured low temperature cofired ceramic structure
WO2008108172A1 (ja) * 2007-03-01 2008-09-12 Murata Manufacturing Co., Ltd. 多層配線基板
JP5263226B2 (ja) * 2010-07-05 2013-08-14 株式会社村田製作所 多層セラミック基板およびその製造方法
TWI564262B (zh) * 2012-02-29 2017-01-01 康寧公司 高cte之硼矽酸鉀核心玻璃與包含其之玻璃物件
WO2016069823A1 (en) * 2014-10-30 2016-05-06 Corning Incorporated Glass-ceramic compositions and laminated glass articles incorporating the same
CN108476593A (zh) * 2016-01-13 2018-08-31 株式会社村田制作所 层叠体以及电子部件
JP6624282B2 (ja) * 2016-04-28 2019-12-25 株式会社村田製作所 多層セラミック基板
US20190233323A1 (en) * 2016-10-03 2019-08-01 Ohara Inc. Optical glass, preform, and optical element
JP7136231B2 (ja) * 2018-12-18 2022-09-13 昭和電工マテリアルズ株式会社 積層板、プリント配線板、半導体パッケージ及び積層板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185824A (ja) * 1999-12-24 2001-07-06 Kyocera Corp セラミック配線基板及びその製造方法
JP2002047059A (ja) * 2000-07-31 2002-02-12 Kyocera Corp ガラスセラミック焼結体およびそれを用いた配線基板
JP2008159981A (ja) * 2006-12-26 2008-07-10 Toray Ind Inc セラミックス基板
WO2017002434A1 (ja) * 2015-06-29 2017-01-05 株式会社村田製作所 多層セラミック基板および多層セラミック基板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020129858A1 (ja) * 2018-12-20 2021-10-07 株式会社村田製作所 積層体、電子部品及び積層体の製造方法
JP7180688B2 (ja) 2018-12-20 2022-11-30 株式会社村田製作所 積層体、電子部品及び積層体の製造方法
WO2022085715A1 (ja) * 2020-10-22 2022-04-28 株式会社村田製作所 多層構造体およびその製造方法

Also Published As

Publication number Publication date
JP7180689B2 (ja) 2022-11-30
CN113165982B (zh) 2022-12-27
CN113165982A (zh) 2021-07-23
US20210315100A1 (en) 2021-10-07
US11924968B2 (en) 2024-03-05
JPWO2020129945A1 (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
JP5104761B2 (ja) セラミック基板およびその製造方法
JP5821975B2 (ja) 複合積層セラミック電子部品
JP6079899B2 (ja) 積層セラミック電子部品
JP5435176B2 (ja) 複合積層セラミック電子部品
WO2020129945A1 (ja) 積層体及び電子部品
WO2017122381A1 (ja) 積層体及び電子部品
WO2014175034A1 (ja) 積層セラミックコンデンサおよびその製造方法
US10262797B2 (en) Multilayer body and electronic component
JP5316545B2 (ja) ガラスセラミック組成物およびガラスセラミック基板
WO2013121929A1 (ja) 複合積層セラミック電子部品
JP7180688B2 (ja) 積層体、電子部品及び積層体の製造方法
JP7494908B2 (ja) ガラスセラミックス及び積層セラミック電子部品
JP6493560B2 (ja) 多層セラミック基板及び電子部品
JP3934841B2 (ja) 多層基板
WO2022191020A1 (ja) ガラスセラミック材料、積層体、及び、電子部品
JP2020015635A (ja) セラミックス組成物及び当該セラミックス組成物を用いた電子部品
JP7056764B2 (ja) ガラスセラミック材料、積層体、及び、電子部品
JP2007173857A (ja) 多層基板およびその製造方法
JP6455633B2 (ja) 多層セラミック基板及び電子装置
JP2007284297A (ja) グリーンシート、これを用いた多層基板およびその製造方法
JP2003026472A (ja) 積層セラミック電子部品の製造方法、積層セラミック電子部品および積層セラミック電子部品製造用の生の複合積層体
JP5533120B2 (ja) 多層セラミック基板の製造方法
JP2006265033A (ja) 低温焼成基板材料及びそれを用いた多層配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899551

Country of ref document: EP

Kind code of ref document: A1