WO2020129256A1 - 溶融紡糸装置及び不織布の製造方法 - Google Patents

溶融紡糸装置及び不織布の製造方法 Download PDF

Info

Publication number
WO2020129256A1
WO2020129256A1 PCT/JP2018/047370 JP2018047370W WO2020129256A1 WO 2020129256 A1 WO2020129256 A1 WO 2020129256A1 JP 2018047370 W JP2018047370 W JP 2018047370W WO 2020129256 A1 WO2020129256 A1 WO 2020129256A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling air
air supply
distance
supply unit
partition wall
Prior art date
Application number
PCT/JP2018/047370
Other languages
English (en)
French (fr)
Inventor
正昭 大土井
敦之 川田
横山 哲也
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66429866&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020129256(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020217018511A priority Critical patent/KR102524390B1/ko
Priority to JP2019503501A priority patent/JP6510158B1/ja
Priority to CN201880100224.6A priority patent/CN113195803B/zh
Priority to EP18900577.0A priority patent/EP3690086B1/en
Priority to DK18900577.0T priority patent/DK3690086T3/da
Priority to PCT/JP2018/047370 priority patent/WO2020129256A1/ja
Publication of WO2020129256A1 publication Critical patent/WO2020129256A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series

Definitions

  • the present disclosure relates to a melt spinning device and a method for manufacturing a nonwoven fabric.
  • spunbonded nonwoven fabric As a method for producing spunbonded nonwoven fabric, there is a method in which the spun filament is cooled by cooling air introduced into a cooling chamber, and then the cooling air is drawn as it is as a drawing air through a nozzle and sprayed on a mesh belt.
  • the filament is cooled by blowing cooling air to a large number of continuous filaments melt-spun from a spinning nozzle.
  • a sufficient amount of cooling air is required accordingly.
  • the cooling air is small, the filament is insufficiently cooled, and resin solidification (shot) is likely to occur on the web.
  • shot resin solidification
  • Patent Document 1 a method and an apparatus for producing a non-woven fabric which can produce a non-woven fabric in a stable manner without causing yarn breakage even if the cooling air is increased and reducing the fiber diameter without lowering the productivity.
  • the cooling air introduced into the cooling chamber is divided into at least two stages in the vertical direction, and the wind speed of the cooling air in the lowermost stage is made higher than that of the cooling air in the uppermost stage.
  • Patent Document 1 the method and apparatus for manufacturing a non-woven fabric proposed in Patent Document 1 has a problem that the uniformity (texture) of the mass distribution of the whole non-woven fabric is likely to deteriorate and so-called yarn wobbling tends to occur.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a melt spinning device capable of suppressing yarn breakage and yarn shaking, and a method for manufacturing a nonwoven fabric using this device.
  • a spinning unit including a plurality of spinning nozzles for spinning filaments, A cooling unit for cooling the filament spun from the spinning nozzle, A cooling air supply unit that faces the cooling unit and supplies cooling air to the cooling unit via an air-permeable partition wall,
  • the cooling air supply unit includes a vertically upper first cooling air supply unit and a vertically lower second cooling air supply unit that are vertically divided into two stages through a partition wall, and the air-permeable partition wall of the partition wall.
  • a melt spinning apparatus in which there is a gap between an end portion facing the partition wall and a surface of the air-permeable partition wall facing the partition wall, and a distance (distance A) of the clearance is 55 mm or less.
  • ⁇ 2> The melt spinning apparatus according to ⁇ 1>, wherein the distance A is 5 mm or more.
  • the ratio (distance B/distance A) of the distance (distance B) from the nozzle surface where the spinning nozzle of the spinning section is provided to the partition wall to the distance A (distance B/distance A) is 5 to 50 ⁇ 1> or The melt spinning apparatus according to ⁇ 2>.
  • the ratio of the height (h 2 ) of the second cooling air supply unit to the height (h 1 ) of the first cooling air supply unit is 0.5 to 1.5 ⁇ 1> to ⁇
  • ⁇ 5> The melt spinning apparatus according to any one of ⁇ 1> to ⁇ 4>, wherein the breathable partition wall has a thickness of 10 mm to 50 mm.
  • the ratio of the thickness of the permeable partition to the distance A (thickness of permeable partition/distance A) is 0.5 to 5.0, any one of ⁇ 1> to ⁇ 5>
  • the melt-spinning apparatus according to. ⁇ 7> The melt spinning apparatus according to any one of ⁇ 1> to ⁇ 6>, wherein the breathable partition has a honeycomb shape.
  • the cooling air supply unit includes a rectifying plate that rectifies the cooling air supplied to the cooling unit on the upstream side of the air permeable partition wall in the cooling air supply direction.
  • the melt spinning apparatus according to one. ⁇ 9>
  • the temperature of the cooling air supplied to the first cooling air supply unit is 10° C. to 40° C.
  • the temperature of the cooling air supplied to the second cooling air supply unit is the first cooling air supply
  • the melt spinning apparatus according to any one of ⁇ 1> to ⁇ 8>, which is higher than the temperature of the cooling air supplied to the unit by 10° C. or more and includes a first control unit that controls the temperature to 30° C. to 70° C.
  • ⁇ 11> Further comprising a drawing section for drawing the filament cooled in the cooling section, The distance from the nozzle surface provided with the spinning nozzle of the spinning section to the partition wall (distance B) with respect to the distance from the nozzle surface provided with the spinning nozzle of the spinning section to the inlet of the drawing section (distance C)
  • the melt spinning apparatus according to any one of ⁇ 1> to ⁇ 10>, wherein the ratio (distance B/distance C) is 0.2 to 0.8.
  • ⁇ 12> The method according to any one of ⁇ 1> to ⁇ 11>, further including a collecting unit that collects the cooled and drawn filaments to form a nonwoven web, and is used for producing a spunbonded nonwoven fabric. Melt spinning equipment.
  • a method for producing a non-woven fabric which comprises producing the non-woven fabric from the filaments spun from the plurality of spinning nozzles using the melt spinning apparatus according to any one of ⁇ 1> to ⁇ 12>.
  • the temperature of the cooling air supplied to the first cooling air supply unit is 10 to 40° C.
  • the temperature of the cooling air supplied to the second cooling air supply unit is the first cooling air supply.
  • the present disclosure can provide a melt spinning device capable of suppressing yarn breakage and yarn shaking, and a method for manufacturing a nonwoven fabric using this device.
  • FIG. 6 is a graph showing the relationship between the height of the cooling air supply unit and the wind speed (outlet value) of the cooling air in Examples 1 to 3.
  • 7 is a graph showing the relationship between the height of the cooling air supply unit and the air velocity (outlet value) of the cooling air in Examples 1 to 3 and Comparative Examples 1 to 6.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in other stages. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the melt spinning apparatus of the present disclosure includes a spinning unit including a plurality of spinning nozzles for spinning filaments, a cooling unit for cooling filaments spun from the spinning nozzles, and a cooling partition facing the cooling unit.
  • a cooling air supply unit that supplies cooling air to the cooling unit via a cooling air supply unit, and the cooling air supply unit is a vertically upper first cooling air supply unit that is vertically divided into two stages via a partition wall.
  • a vertically downward second cooling air supply unit and there is a gap between an end of the partition wall facing the breathable partition wall and a surface of the breathable partition wall facing the partition wall,
  • the distance (distance A) is 55 mm or less.
  • the melt spinning apparatus of the present disclosure includes a cooling air supply unit that includes a vertically upper first cooling air supply unit and a vertically lower second cooling air supply unit that are divided into two stages in the vertical direction via partition walls.
  • a cooling air supply unit that includes a vertically upper first cooling air supply unit and a vertically lower second cooling air supply unit that are divided into two stages in the vertical direction via partition walls.
  • the melt spinning apparatus 100 includes a spinning unit 1, a cooling chamber (cooling unit) 3, a cooling air supply unit 4, a breathable partition wall 8, and a stretching unit 9.
  • the cooling air supply unit 4 is divided into two stages via a partition wall 7, and includes a first cooling air supply unit 5 on the vertically upper side and a second cooling air supply unit 6 on the vertically lower side. .. Further, there is a gap between the end of the partition 7 facing the breathable partition 6 and the surface of the breathable partition 6 facing the partition 7.
  • the melt spinning apparatus 100 is an apparatus that discharges the resin composition supplied to the spinning section 1 from a plurality of spinning nozzles into the cooling chamber 3, and cools and draws the discharged filaments. Further, the melt spinning apparatus 100 may be an apparatus used for manufacturing a spunbonded nonwoven fabric, and may include, for example, a collecting unit that forms a nonwoven web on which cooled and drawn filaments are deposited. The woven web may be provided with an entangled portion that heats and pressurizes the web.
  • the melt spinning apparatus 100 includes a spinning unit 1 including a plurality of spinning nozzles for spinning filaments.
  • a spinning unit 1 including a plurality of spinning nozzles for spinning filaments.
  • the resin composition melt-kneaded by an extruder is supplied to the spinning unit 1, and the resin composition supplied to the spinning unit 1 is cooled from a plurality of spinning nozzles provided on the nozzle surface 2.
  • the filament is discharged into the chamber 3.
  • the resin composition may contain the resin used for manufacturing the nonwoven fabric.
  • the resin used for producing the non-woven fabric include polyester resin, polyurethane resin, polyamide resin, and polyolefin resin. Among them, a polyolefin resin is preferable, and a propylene-based polymer is more preferable, in terms of excellent productivity.
  • the propylene-based polymer may be a polymer containing propylene as a constitutional unit, may be a propylene homopolymer, may be a propylene random copolymer, or may be a mixture thereof.
  • the propylene random copolymer is preferably a random copolymer having a propylene content of 50 mol% or more based on all constituent units.
  • the propylene random copolymer is preferably a propylene/ ⁇ -olefin random copolymer.
  • the propylene random copolymer has a propylene content of 70% by mole to 99.5% by mole, preferably 80% by mole to 98% by mole, more preferably 90% by mole to 96% by mole, based on all constituent units. ..
  • an ⁇ -olefin having 2 or more carbon atoms excluding propylene is preferable, an ⁇ -olefin having 2 or 4 to 8 carbon atoms is more preferable, and ethylene that is an ⁇ -olefin having 2 carbon atoms is further preferable. ..
  • ⁇ -olefins include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like.
  • the ⁇ -olefins may be used alone or in combination of two or more.
  • the resin composition may contain other components in addition to the resin used for manufacturing the nonwoven fabric.
  • Other components include, for example, other polymers, organic peroxides, surfactants, colorants, antioxidants such as phosphorus and phenol, weather resistance stabilizers such as benzotriazole, and light resistance such as hindered amines.
  • the melt spinning apparatus 100 includes a cooling chamber 3 that cools the filament spun from the spinning nozzle. Cooling air is supplied from the cooling air supply unit 4 into the cooling chamber 3 through the air-permeable partition wall 8 and the filament is cooled by the supplied cooling air. Further, an exhaust nozzle for exhausting the vapor of the low molecular weight polymer may be mounted between the nozzle surface 2 which is the upper part of the cooling chamber 3 and the cooling air supply unit 4.
  • the melt spinning apparatus 100 includes a cooling air supply unit 4 that faces the cooling chamber 3 and supplies cooling air to the cooling chamber 3 via the air-permeable partition wall 8.
  • the cooling air supply unit 4 includes a vertically upper first cooling air supply unit 5 and a vertically lower second cooling air supply unit 6 that are divided into two stages in the vertical direction. As shown in FIG. 1, the first cooling air supply unit 5 and the second cooling air supply unit 6 supply the cooling air in the arrow direction in FIG.
  • the cooling air supply unit 4 supplies the cooling air to the cooling chamber 3 through the air-permeable partition walls 8 from two facing directions.
  • the cooling air supply unit 4 may include a rectifying plate that rectifies the cooling air supplied to the cooling chamber 3 upstream of the air-permeable partition wall 8 in the cooling air supply direction. As a result, the direction of the cooling air supplied to the cooling chamber 3 is adjusted, and yarn breakage and yarn sway can be suppressed more favorably.
  • the width of the cooling air supply unit 4 is L(m)
  • the height of the cooling air supply unit 4 is h(m)
  • the distance of the gap is d(mm)
  • (L ⁇ h)/d is 0. It is preferable to satisfy 056 or more.
  • the height h of the cooling air supply unit 4 corresponds to the thickness of h 1 +h 2 +the partition wall 7 in FIG. 1, and the width of the cooling air supply unit 4 is the supply direction of the cooling air in FIG.
  • the inner length of the cooling air supply unit 4 excluding the outer wall in the direction orthogonal to the height of the cooling air supply unit 4.
  • the width L of the cooling air supply unit 4 and the height h of the cooling air supply unit 4 mean the width and height at the cooling air outlet of the cooling air supply unit 4. Therefore, (L ⁇ h) means the area of the surface through which the cooling air flows at the cooling air outlet of the cooling air supply unit 4, and (L ⁇ h)/d means the ratio of this area to the gap distance d. ..
  • (L ⁇ h)/d may be 0.056 to 0.614 or 0.112 to 0.448.
  • (L ⁇ h)/d is 0.056 or more, yarn breakage can be suppressed more favorably, and when (L ⁇ h)/d is 0.614 or less, yarn shake is further suppressed. It can be suppressed appropriately.
  • the distance d of the gap may be 50 mm or less, 45 mm or less, or 40 mm or less from the viewpoint of more appropriately suppressing yarn breakage.
  • the distance d of the gap is not particularly limited as long as the gap exists, and may be 5 mm or more, or 10 mm or more from the viewpoint of more preferably suppressing the yarn oscillation.
  • the width L of the cooling air supply unit 4 is not particularly limited, and may be 3 m to 7 m or 4 m to 6 m.
  • the height of the cooling air supply unit 4 is also not particularly limited, and may be 0.4 m to 1.0 m or 0.6 m to 0.8 m.
  • the ratio (distance B/distance A) of the distance (distance B) from the nozzle surface 2 to the partition wall 7 to the distance A that is the gap distance d may be 5 to 50.
  • the ratio of the height (h 2 ) of the second cooling air supply unit 6 to the height (h 1 ) of the first cooling air supply unit 5 may be 0.5 to 1.5, or 0.8 to It may be 1.2.
  • the melt spinning apparatus 100 controls the temperature (first temperature) of the cooling air supplied to the first cooling air supply unit 5 and the temperature (second temperature) of the cooling air supplied to the second cooling air supply unit 6. You may further provide the 1st control part.
  • the above-mentioned first temperature refers to the temperature of the cooling air at the inlet of the first cooling air supply unit 5
  • the above-mentioned second temperature refers to the temperature of the cooling air at the inlet of the second cooling air supply unit 6.
  • the first controller preferably controls the second temperature to be higher than the first temperature from the viewpoint of more preferably suppressing yarn breakage, and the first temperature is 10° C. to 40° C. It is more preferable to control the temperature to be 10° C. or more higher than the first temperature and 30° C. to 70° C.
  • Melt spinning apparatus 100 controls the average wind speed of the cooling air supplied to the first cooling air supply unit 5 (V 1) and a second average wind speed of the cooling air supplied to the cooling air supply unit 6 (V 2) You may further provide the 2nd control part.
  • the second control unit may be the same as or different from the first control unit. It should be noted that V 1 indicates the average wind speed of the cooling air at the inlet of the first cooling air supply unit 5, and V 2 indicates the average air speed of the cooling air at the inlet of the second cooling air supply unit 6.
  • the second control unit controls the average wind speed of the cooling wind so that V 2 becomes larger than V 1 from the viewpoint of suitably suppressing yarn breakage.
  • the second control unit the more suitably suppression of yarn breakage, the ratio of V 1 for V 2 (V 1 / V 2 ), it is preferable to control the beyond 0.7 0 0.01 It is more preferable to control to ⁇ V 1 /V 2 ⁇ 0.5, and it is further preferable to control to 0.05 ⁇ V 1 /V 2 ⁇ 0.4.
  • the melt spinning apparatus 100 includes a breathable partition wall 8 that separates the cooling air supply unit 4 from the cooling chamber 3. Since the breathable partition wall 8 has breathability, the cooling air supplied from the cooling air supply unit 4 is introduced into the cooling chamber 3 via the breathable partition wall 8.
  • the breathable partition wall 8 is not particularly limited as long as it is a partition wall having breathability, and from the viewpoint of rectifying cooling air, it is preferable that it has a honeycomb shape such as a lattice shape such as a square shape, a hexagonal shape, or an octagonal shape. It is more preferable to have a shape.
  • the thickness of the breathable partition wall 8 is preferably 10 mm to 50 mm, more preferably 20 mm to 40 mm, from the viewpoint of strength and rectification of cooling air.
  • the ratio of the thickness of the breathable partition wall to the distance A is preferably 0.5 to 5.0, more preferably 0.5 to 1.5. , 0.8 to 1.2 is more preferable.
  • the melt spinning apparatus 100 further includes a drawing unit 9 that draws the filament cooled in the cooling chamber 3.
  • the extending portion 9 is a narrow bottleneck arranged vertically below the cooling chamber 3 and narrowed from both left and right sides.
  • the cooling wind increases the wind speed in the drawing section 9 to become drawing wind, and draws the cooled filament.
  • the ratio (distance B/distance C) of the distance (distance B) from the nozzle surface 2 to the partition wall 7 to the distance (distance C) from the nozzle surface 2 to the entrance of the extending portion 9 is 0.2 to 0.8. Preferably, it is more preferably 0.2 to 0.6.
  • the method for producing a nonwoven fabric according to the present disclosure is a method for producing a nonwoven fabric from filaments spun from a plurality of spinning nozzles using the melt spinning apparatus according to the present disclosure. By this method, it is possible to obtain a nonwoven fabric in which yarn breakage and yarn shaking are suppressed.
  • the method for producing a nonwoven fabric of the present disclosure includes, for example, a step of discharging a resin composition supplied to a spinning section from a plurality of spinning nozzles into a cooling section, a step of cooling the discharged filament, and a cooled filament. It may include the steps of drawing and collecting the drawn filaments to form a nonwoven web. Furthermore, the method for producing a nonwoven fabric according to the present disclosure may include a step of subjecting the nonwoven web to heat and pressure treatment.
  • the temperature of the cooling air supplied to the first cooling air supply unit is 10°C to 40°C
  • the temperature of the cooling air supplied to the second cooling air supply unit is The temperature of the cooling air supplied to the first cooling air supply unit is preferably 10° C. or more and 30° C. to 70° C.
  • the average wind speed (V 2 ) of the cooling air supplied to the second cooling air supply unit is higher than the average air speed (V 1 ) of the cooling air supplied to the first cooling air supply unit.
  • V 1 average air speed of the cooling air supplied to the first cooling air supply unit.
  • the ratio (V 1 / V 2) of V 1 relative to V 2 is preferably at 0 to exceed 0.7, 0.01 ⁇ V 1 / V 2 ⁇ 0.5 is more preferable, and 0.05 ⁇ V 1 /V 2 ⁇ 0.4 is further preferable.
  • the average wind speed of the cooling air (V 2 ') may be adjusted.
  • the ratio of the 'V 1 for' V 2 (V 1 '/ V 2') may be adjusted to be 0.7 or less than 0, 0 .01 ⁇ V 1 ′/V 2 ′ ⁇ 0.5 may be adjusted, or 0.1 ⁇ V 1 ′/V 2 ′ ⁇ 0.5 may be adjusted.
  • Examples 1 to 3 and Comparative Examples 1 to 6 A nonwoven fabric was manufactured using the melt spinning apparatus shown in FIG. A propylene homopolymer having a melt flow rate of 60 g/10 min measured according to ASTM D 1238 at a load of 2.16 kg and a temperature of 230° C. was used as the resin used for producing the nonwoven fabric. The melting temperature of the resin was 200° C., the single hole discharge rate from the spinning nozzle was 0.57 g/min, and the wind speed of the cooling air was as shown in Table 1.
  • the temperature of the upper cooling air and the temperature of the lower cooling air are 23° C., and the lower cooling air supply unit (second cooling air supply unit) with respect to the height (h 1 ) of the upper cooling air supply unit (first cooling air supply unit)
  • the height (h 2 ) ratio was 1 and the distance B/distance C was 0.47.
  • the thickness of the partition wall was 1/16 of the height of the upper cooling air supply section.
  • the inlet value of the supply unit shown in Table 1 indicates the average wind speed value of the cooling air supplied to the inlet of the upper cooling air supply unit or the lower cooling air supply unit. Further, the outlet value of the supply unit shown in Table 1 refers to the average wind speed value of the cooling air discharged from the outlet (air-permeable partition) of the upper cooling air supply unit or the lower cooling air supply unit.
  • An anemomaster anemometer (Model 6114) manufactured by KANOMAX was used for the wind speed measurement.
  • 2 and 3 are graphs showing the relationship between the height of the cooling air supply unit and the wind speed (outlet value) of the cooling air in Examples 1 to 3 and Comparative Examples 1 to 6. 2 and 3, regarding the height position of the cooling air supply unit, the upper end height position of the upper cooling air supply unit is the upper end of the vertical axis of the graph, and the lower end height position of the lower cooling air supply unit is the vertical direction of the graph. The lower end of the axis and the height position of the diaphragm correspond to the center of the vertical axis of the graph.
  • the nonwoven fabrics obtained in Examples 1 to 3 and Comparative Examples 1 to 6 were evaluated for yarn breakage and yarn wobbling in order to evaluate the spinnability.
  • the upper limit stage wind speed difference (value obtained by subtracting the maximum wind velocity in the lower stage from the maximum wind velocity in the upper stage) was smaller than that in Comparative Examples 1 to 6, and the yarn breakage occurred. And the thread sway was suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

フィラメントを紡出する複数の紡糸ノズルを備える紡出部と、前記紡糸ノズルから紡出されたフィラメントを冷却する冷却部と、前記冷却部と対面し、通気性隔壁を介して前記冷却部に冷却風を供給する冷却風供給部と、を備え、前記冷却風供給部は、隔壁を介して鉛直方向に2段に分割された鉛直上側の第1冷却風供給部及び鉛直下側の第2冷却風供給部を備え、前記隔壁の前記通気性隔壁と対面する端部と前記通気性隔壁における前記隔壁と対面する側の面との間に隙間があり、前記隙間の距離(距離A)は、55mm以下である溶融紡糸装置。

Description

溶融紡糸装置及び不織布の製造方法
 本開示は、溶融紡糸装置及び不織布の製造方法に関する。
 スパンボンド不織布の製造方法としては、紡糸したフィラメントを冷却室に導入した冷却風により冷却したのち、冷却風をそのまま延伸風としてノズルを通して引出し、メッシュベルト上に散布する方法がある。
 スパンボンド不織布の製造工程においては、紡糸ノズルから溶融紡糸された多数の連続フィラメントに冷却風を吹き付けることにより、フィラメントを冷却する。このとき、生産性を上げるためにフィラメントの吐出量を多くした場合、それにともなって十分な量の冷却風が必要となる。冷却風が少ないとフィラメントの冷却が不十分となり、ウェブに樹脂固まり(ショット)が発生しやすい。一方、冷却風が多いと過冷却により糸切れが発生しやすい。
 そこで、冷却風を多くしても糸切れを生じず、かつ生産性を落とさずに繊維径を小さくすることが可能で、不織布を安定的に製造できる不織布の製造方法及び装置が提案されている(例えば、特許文献1を参照)。具体的には、特許文献1では、冷却室に導入される冷却風を上下方向に少なくとも2段に分割し、最下段の冷却風の風速を、最上段の冷却風の風速よりも大きくした不織布の製造方法が提案されている。
特開2002-317372号公報
 しかしながら、特許文献1にて提案されている不織布の製造方法及び装置では、不織布全体の質量分布の均一性(地合い)が悪くなりやすく、いわゆる糸揺れが生じやすいという問題がある。
 本発明は、上記事情に鑑みてなされたものであり、糸切れ及び糸揺れを抑制可能な溶融紡糸装置、並びにこの装置を用いた不織布の製造方法を提供することを目的とする。
 前記課題を解決するための手段には、以下の態様が含まれる。
<1> フィラメントを紡出する複数の紡糸ノズルを備える紡出部と、
 前記紡糸ノズルから紡出されたフィラメントを冷却する冷却部と、
 前記冷却部と対面し、通気性隔壁を介して前記冷却部に冷却風を供給する冷却風供給部と、を備え、
 前記冷却風供給部は、隔壁を介して鉛直方向に2段に分割された鉛直上側の第1冷却風供給部及び鉛直下側の第2冷却風供給部を備え、前記隔壁の前記通気性隔壁と対面する端部と前記通気性隔壁における前記隔壁と対面する側の面との間に隙間があり、前記隙間の距離(距離A)は、55mm以下である溶融紡糸装置。
<2> 前記距離Aは5mm以上である<1>に記載の溶融紡糸装置。
<3> 前記距離Aに対する前記紡出部の紡糸ノズルが設けられたノズル面から前記隔壁までの距離(距離B)の比(距離B/距離A)は、5~50である<1>又は<2>に記載の溶融紡糸装置。
<4> 前記第1冷却風供給部の高さ(h)に対する前記第2冷却風供給部の高さ(h)の比は、0.5~1.5である<1>~<3>のいずれか1つに記載の溶融紡糸装置。
<5> 前記通気性隔壁の厚さは、10mm~50mmである<1>~<4>のいずれか1つに記載の溶融紡糸装置。
<6> 前記距離Aに対する前記通気性隔壁の厚さの比(通気性隔壁の厚さ/距離A)は、0.5~5.0である<1>~<5>のいずれか1つに記載の溶融紡糸装置。
<7> 前記通気性隔壁は、ハニカム形状を有する<1>~<6>のいずれか1つに記載の溶融紡糸装置。
<8> 前記冷却風供給部は、前記通気性隔壁よりも冷却風供給方向の上流側に前記冷却部に供給される冷却風を整流する整流板を備える<1>~<7>のいずれか1つに記載の溶融紡糸装置。
<9> 前記第1冷却風供給部に供給される冷却風の温度を10℃~40℃、及び、前記第2冷却風供給部に供給される冷却風の温度を、前記第1冷却風供給部に供給される冷却風の温度よりも10℃以上高く、かつ30℃~70℃に制御する第1制御部を備える<1>~<8>のいずれか1つに記載の溶融紡糸装置。
<10> 前記第2冷却風供給部に供給される冷却風の平均風速(V)に対する前記第1冷却風供給部に供給される冷却風の平均風速(V)の比(V/V)を、0を超え0.7以下に制御する第2制御部を備える<1>~<9>のいずれか1つに記載の溶融紡糸装置。
<11> 前記冷却部にて冷却されたフィラメントを延伸する延伸部を更に備え、
 前記紡出部の紡糸ノズルが設けられたノズル面から前記延伸部の入り口までの距離(距離C)に対する前記紡出部の紡糸ノズルが設けられたノズル面から前記隔壁までの距離(距離B)の比(距離B/距離C)は、0.2~0.8である<1>~<10>のいずれか1つに記載の溶融紡糸装置。
<12> 冷却及び延伸されたフィラメントを捕集して、不織ウェブを形成する捕集部を更に備え、スパンボンド不織布の製造に用いる<1>~<11>のいずれか1つに記載の溶融紡糸装置。
<13> <1>~<12>のいずれか1つに記載の溶融紡糸装置を用いて前記複数の紡糸ノズルから紡出されるフィラメントから不織布を製造する不織布の製造方法。
<14> 前記第1冷却風供給部に供給される冷却風の温度は10℃~40℃であり、前記第2冷却風供給部に供給される冷却風の温度は、前記第1冷却風供給部に供給される冷却風の温度よりも10℃以上高く、かつ30℃~70℃である<13>に記載の不織布の製造方法。
<15> 前記第2冷却風供給部に供給される冷却風の平均風速(V)に対する前記第1冷却風供給部に供給される冷却風の平均風速(V)の比(V/V)は、0を超え0.7以下である<13>又は<14>に記載の不織布の製造方法。
<16> 前記フィラメントは、プロピレン系重合体を含む<13>~<15>のいずれか1つに記載の不織布の製造方法。
 本開示は、糸切れ及び糸揺れを抑制可能な溶融紡糸装置、並びにこの装置を用いた不織布の製造方法を提供することができる。
本開示の溶融紡糸装置の部分断面を示す概略構成図である。 実施例1~3の冷却風供給部の高さと、冷却風の風速(出口値)との関係を示すグラフである。 実施例1~3及び比較例1~6の冷却風供給部の高さと、冷却風の風速(出口値)との関係を示すグラフである。
 以下、本発明の具体的な実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において実施形態を、図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
[溶融紡糸装置]
 本開示の溶融紡糸装置は、フィラメントを紡出する複数の紡糸ノズルを備える紡出部と、前記紡糸ノズルから紡出されたフィラメントを冷却する冷却部と、前記冷却部と対面し、通気性隔壁を介して前記冷却部に冷却風を供給する冷却風供給部と、を備え、前記冷却風供給部は、隔壁を介して鉛直方向に2段に分割された鉛直上側の第1冷却風供給部及び鉛直下側の第2冷却風供給部を備え、前記隔壁の前記通気性隔壁と対面する端部と前記通気性隔壁における前記隔壁と対面する側の面との間に隙間があり、前記隙間の距離(距離A)は、55mm以下である。
 本開示の溶融紡糸装置は、隔壁を介して鉛直方向に2段に分割された鉛直上側の第1冷却風供給部及び鉛直下側の第2冷却風供給部を備える冷却風供給部を備え、隔壁の通気性隔壁と対面する端部と通気性隔壁における隔壁と対面する側の面との間に隙間を有し、更に、隙間の距離(距離A)が55mm以下である。これにより、鉛直上側の第1冷却風供給部と、鉛直下側の第2冷却風供給部との冷却部内での境目における冷却風の風速差を小さくでき、この境目付近にて風速差の小さい冷却風がフィラメントに供給されるため、風速の異なる冷却風が混合されることによる乱れが抑制されて糸切れ及び糸揺れを抑制することができると推測される。
 以下、図1を用いて本開示の溶融紡糸装置の構成について説明する。図1に示すように、溶融紡糸装置100は、紡出部1と、冷却室(冷却部)3と、冷却風供給部4と、通気性隔壁8と、延伸部9と、を備える。また、冷却風供給部4は、隔壁7を介して2段に分割されたものであり、鉛直上側の第1冷却風供給部5と、鉛直下側の第2冷却風供給部6とを備える。更に、隔壁7の通気性隔壁6と対面する端部と、通気性隔壁6における隔壁7と対面する側の面との間に隙間がある。
 溶融紡糸装置100は、紡出部1に供給された樹脂組成物を複数の紡糸ノズルから冷却室3内に吐出し、吐出されたフィラメントを冷却及び延伸させる装置である。また、溶融紡糸装置100は、スパンボンド不織布の製造に用いる装置であってもよく、例えば、冷却及び延伸させたフィラメントを堆積させる不織ウェブを形成する捕集部を備えていてもよく、不織ウェブを加熱加圧処理する交絡部を備えていてもよい。
 溶融紡糸装置100は、フィラメントを紡出する複数の紡糸ノズルを備える紡出部1を備える。紡出部1には、例えば、押出機にて溶融混練された樹脂組成物が供給され、紡出部1に供給された樹脂組成物が、ノズル面2に設けられた複数の紡糸ノズルから冷却室3内にフィラメントとして吐出される。
 樹脂組成物としては、不織布の製造に用いられる樹脂を含んでいればよい。不織布の製造に用いられる樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリオレフィン樹脂等が挙げられる。中でも、生産性に優れる点で、ポリオレフィン樹脂が好ましく、プロピレン系重合体がより好ましい。
 プロピレン系重合体としては、プロピレンを構成単位として含む重合体であればよく、プロピレン単独重合体であってもよく、プロピレンランダム共重合体であってもよく、これらの混合物であってもよい。
 プロピレンランダム共重合体としては、全構成単位に対するプロピレンの含有率が50モル%以上であるランダム共重合体であることが好ましい。プロピレンランダム共重合体としては、プロピレン・α-オレフィンランダム共重合体であることが好ましい。
 プロピレンランダム共重合体としては、全構成単位に対するプロピレンの含有率が70モル%~99.5モル%が好ましく、80モル%~98モル%がより好ましく、90モル%~96モル%が更に好ましい。
 α-オレフィンとしては、プロピレンを除く炭素数が2以上のα-オレフィンが好ましく、炭素数が2又は4~8のα-オレフィンがより好ましく、炭素数2のα-オレフィンであるエチレンが更に好ましい。
 具体的なα-オレフィンとしては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等が挙げられる。
 α-オレフィンは、1種単独であってもよく、又は2種以上を併用してもよい。
 樹脂組成物としては、不織布の製造に用いられる樹脂とともにその他の成分を含んでいてもよい。その他の成分としては、例えば、他の重合体、有機過酸化物、界面活性剤、着色剤、リン系、フェノール系等の酸化防止剤、ベンゾトリアゾール系等の耐候安定剤、ヒンダードアミン系等の耐光安定剤、ブロッキング防止剤、ステアリン酸カルシウム等の分散剤、滑剤、核剤、顔料、柔軟剤、親水剤、撥水剤、助剤、撥水剤、充填剤、抗菌剤、農薬、防虫剤、薬剤、天然油、合成油などが挙げられる。
 溶融紡糸装置100は、紡糸ノズルから紡出されたフィラメントを冷却する冷却室3を備える。冷却室3内には、通気性隔壁8を介して冷却風供給部4から冷却風が供給され、供給された冷却風によりフィラメントが冷却される。また、冷却室3の上部であるノズル面2と冷却風供給部4との間には、低分子量ポリマーの蒸気を排気するための排気ノズルが装着されていてもよい。
 溶融紡糸装置100は、冷却室3と対面し、通気性隔壁8を介して冷却室3に冷却風を供給する冷却風供給部4を備える。冷却風供給部4は、鉛直方向に2段に分割された鉛直上側の第1冷却風供給部5及び鉛直下側の第2冷却風供給部6を備える。図1に示すように、第1冷却風供給部5及び第2冷却風供給部6は、図1中の矢印方向に冷却風を供給する。
 図1に示すように、冷却風供給部4は、対面する二方向から通気性隔壁8を介して冷却室3に冷却風をそれぞれ供給する。
 冷却風供給部4は、通気性隔壁8よりも冷却風供給方向の上流側に冷却室3に供給される冷却風を整流する整流板を備えていてもよい。これにより、冷却室3に供給される冷却風の方向が整えられ、糸切れ及び糸揺れをより好適に抑制することができる。
 冷却風供給部4の幅をL(m)とし、冷却風供給部4の高さをh(m)とし、隙間の距離をd(mm)とすると、(L×h)/dが0.056以上を満たすことが好ましい。ここで、冷却風供給部4の高さhは、図1中のh+h+隔壁7の厚さに該当し、冷却風供給部4の幅は、図1中の冷却風の供給方向及び冷却風供給部4の高さに直交する方向の冷却風供給部4の外壁を除いた内側の長さである。
 また、冷却風供給部4の幅L及び冷却風供給部4の高さhは、冷却風供給部4の冷却風出口における幅及び高さを意味する。したがって、(L×h)は冷却風供給部4の冷却風出口における冷却風が通過する面の面積を意味し、(L×h)/dは隙間の距離dに対するこの面積の比率を意味する。
 (L×h)/dは、0.056~0.614であってもよく、0.112~0.448であってもよい。(L×h)/dが0.056以上であることにより、糸切れをより好適に抑制することができ、(L×h)/dが0.614以下であることにより、糸揺れをより好適に抑制することができる。
 隙間の距離dは、糸切れをより好適に抑制する点から、50mm以下であってもよく、45mm以下であってもよく、40mm以下であってもよい。
 また、隙間の距離dは、隙間が存在すれば数値は特に限定されず、糸揺れをより好適に抑制する点から、5mm以上であってもよく、10mm以上であってもよい。
 冷却風供給部4の幅Lは特に限定されず、3m~7mであってもよく、4m~6mであってもよい。また、冷却風供給部4の高さも特に限定されず、0.4m~1.0mであってもよく、0.6m~0.8mであってもよい。
 隙間の距離dである距離Aに対するノズル面2から隔壁7までの距離(距離B)の比(距離B/距離A)は、5~50であってもよい。
 第1冷却風供給部5の高さ(h)に対する第2冷却風供給部6の高さ(h)の比は、0.5~1.5であってもよく、0.8~1.2であってもよい。
 溶融紡糸装置100は、第1冷却風供給部5に供給される冷却風の温度(第1温度)及び第2冷却風供給部6に供給される冷却風の温度(第2温度)を制御する第1制御部を更に備えていてもよい。
 なお、前述の第1温度は、第1冷却風供給部5の入口における冷却風の温度を指し、前述の第2温度は、第2冷却風供給部6の入口における冷却風の温度を指す。
 第1制御部は、糸切れをより好適に抑制する点から、第1温度よりも第2温度が高くなるように制御することが好ましく、第1温度を10℃~40℃、及び、第2温度を、第1温度よりも10℃以上高く、かつ30℃~70℃に制御することがより好ましい。
 溶融紡糸装置100は、第1冷却風供給部5に供給される冷却風の平均風速(V)及び第2冷却風供給部6に供給される冷却風の平均風速(V)を制御する第2制御部を更に備えていてもよい。第2制御部は、第1制御部と同じであってもよく、異なっていてもよい。
 なお、Vは、第1冷却風供給部5の入口における冷却風の平均風速を指し、Vは、第2冷却風供給部6の入口における冷却風の平均風速を指す。
 第2制御部は、糸切れを好適に抑制する点から、VよりもVが大きくなるように冷却風の平均風速を制御することが好ましい。
 第2制御部は、糸切れをより好適に抑制する点から、Vに対するVの比(V/V)を、0を超え0.7以下に制御することが好ましく、0.01≦V/V≦0.5に制御することがより好ましく、0.05≦V/V≦0.4に制御することが更に好ましい。
 溶融紡糸装置100は、冷却風供給部4と冷却室3とを隔てる通気性隔壁8を備える。通気性隔壁8は、通気性を有するため、冷却風供給部4から供給された冷却風が通気性隔壁8を介して冷却室3内に導入される。
 通気性隔壁8は、通気性を有する隔壁であれば特に限定されず、冷却風の整流の点から、四角形状等の格子形状、六角形状、八角形状等のハニカム形状を有することが好ましく、ハニカム形状を有することがより好ましい。
 通気性隔壁8の厚さは、強度及び冷却風の整流の点から、10mm~50mmであることが好ましく、20mm~40mmであることがより好ましい。
 距離Aに対する通気性隔壁の厚さの比(通気性隔壁の厚さ/距離A)は、0.5~5.0であることが好ましく、0.5~1.5であることがより好ましく、0.8~1.2であることが更に好ましい。
 溶融紡糸装置100は、冷却室3にて冷却されたフィラメントを延伸する延伸部9を更に備える。延伸部9は、冷却室3の鉛直下側に配置され、左右両側から絞られた細い隘路である。冷却風は延伸部9で風速を増して延伸風となって、冷却されたフィラメントを延伸する。
 ノズル面2から延伸部9の入り口までの距離(距離C)に対するノズル面2から隔壁7までの距離(距離B)の比(距離B/距離C)は、0.2~0.8であることが好ましく、0.2~0.6であることがより好ましい。
[不織布の製造方法]
 本開示の不織布の製造方法は、前述の本開示の溶融紡糸装置を用いて複数の紡糸ノズルから紡出されるフィラメントから不織布を製造する方法である。この方法により、糸切れ及び糸揺れが抑制された不織布を得ることができる。
 本開示の不織布の製造方法は、例えば、紡出部に供給された樹脂組成物を複数の紡糸ノズルから冷却部内に吐出する工程と、吐出されたフィラメントを冷却する工程と、冷却されたフィラメントを延伸する工程と、延伸されたフィラメントを捕集して、不織ウェブを形成する工程と、を含んでいてもよい。更に、本開示の不織布の製造方法は、不織ウェブを加熱加圧処理する工程を含んでいてもよい。
 糸切れをより好適に抑制する点から、第1冷却風供給部に供給される冷却風の温度は10℃~40℃であり、第2冷却風供給部に供給される冷却風の温度は、第1冷却風供給部に供給される冷却風の温度よりも10℃以上高く、かつ30℃~70℃であることが好ましい。
 糸切れを好適に抑制する点から、第1冷却風供給部に供給される冷却風の平均風速(V)よりも第2冷却風供給部に供給される冷却風の平均風速(V)が大きいことが好ましい。また、糸切れをより好適に抑制する点から、Vに対するVの比(V/V)は0を超え0.7以下であることが好ましく、0.01≦V/V≦0.5であることがより好ましく、0.05≦V/V≦0.4であることが更に好ましい。
 更に、V及びVを制御することにより、第1冷却風供給部から冷却部に供給される冷却風の平均風速(V’)及び第2冷却風供給部から冷却部に供給される冷却風の平均風速(V )を調節してもよい。例えば、V及びVを制御することにより、V’に対するV’の比(V’/V’)は0を超え0.7以下となるように調節してもよく、0.01≦V’/V’≦0.5となるように調節してもよく、0.1≦V’/V’≦0.5となるように調節してもよい。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。
[実施例1~3及び比較例1~6]
 図1に示す溶融紡糸装置を用いて不織布の製造を行った。不織布の製造に用いる樹脂としては、ASTM D 1238に準拠し荷重2.16kg温度230℃で測定したメルトフローレート60g/10分のプロピレン単独重合体を用いた。また、樹脂の溶融温度は200℃とし、紡糸ノズルからの単孔吐出量を0.57g/minとし、冷却風の風速は表1に示す通りとした。上段冷却風の温度及び下段冷却風の温度は23℃であり、上段冷却風供給部(第1冷却風供給部)の高さ(h)に対する下段冷却風供給部(第2冷却風供給部)の高さ(h)の比は1であり、距離B/距離Cは0.47であった。また、隔壁の厚さは、上段冷却風供給部の高さの16分の1であった。
 なお、表1に示す供給部入口値は、上段冷却風供給部又は下段冷却風供給部の入口に供給された冷却風の平均風速値を指す。
 また、表1に示す供給部出口値は、上段冷却風供給部又は下段冷却風供給部の出口(通気性隔壁)から排出された冷却風の平均風速値を指す。
 なお、風速測定には、KANOMAX社製のアネモマスター風速計(Model 6114)を用いた。
 実施例1~3及び比較例1~6にて、冷却風供給部の高さと、冷却風の風速(出口値)との関係を示すグラフを図2及び図3に示す。なお、図2及び図3中、冷却風供給部の高さ位置について、上段冷却風供給部の上端高さ位置はグラフの縦軸上端、下段冷却風供給部の下端高さ位置はグラフの縦軸下端、及び隔膜の高さ位置はグラフの縦軸中央と対応する。
 実施例1~3及び比較例1~6で得られた不織布について、紡糸性の評価のため、糸切れ及び糸揺れを評価した。
<糸切れ>
 糸切れは、溶融混練したプロピレン単独重合体を10分間連続で紡糸成形した際の観察結果で評価した。結果を表1に示す。
-評価基準-
 A:糸切れなし
 B:糸切れあり
<糸揺れ>
 糸揺れは、溶融混練したプロピレン単独重合体を紡糸成形し、前記冷却部におけるノズル面から距離Bの位置(隔壁が設けられた高さ位置)での糸揺れ状態を観察することにより評価した。結果を表1に示す。
-評価基準-
 A:糸揺れなし(フィラメントの揺れの振幅が、隣接するフィラメントに接触する可能性がない)
 B:糸揺れあり(フィラメントの揺れの振幅が、隣接するフィラメントに接触する可能性がある)
Figure JPOXMLDOC01-appb-T000001
 表1及び図2、3に示すように、実施例1~3では、比較例1~6よりも上限段風速差(上段の最大風速から下段の最大風速を差し引いた値)が小さく、糸切れ及び糸揺れが抑制されていた。
 1 紡出部
 2 ノズル面
 3 冷却室(冷却部)
 4 冷却風供給部
 5 第1冷却風供給部
 6 第2冷却風供給部
 7 隔壁
 8 通気性隔壁
 9 延伸部
 10 フィラメント
 100 溶融紡糸装置

Claims (16)

  1.  フィラメントを紡出する複数の紡糸ノズルを備える紡出部と、
     前記紡糸ノズルから紡出されたフィラメントを冷却する冷却部と、
     前記冷却部と対面し、通気性隔壁を介して前記冷却部に冷却風を供給する冷却風供給部と、を備え、
     前記冷却風供給部は、隔壁を介して鉛直方向に2段に分割された鉛直上側の第1冷却風供給部及び鉛直下側の第2冷却風供給部を備え、前記隔壁の前記通気性隔壁と対面する端部と前記通気性隔壁における前記隔壁と対面する側の面との間に隙間があり、前記隙間の距離(距離A)は、55mm以下である溶融紡糸装置。
  2.  前記距離Aは5mm以上である請求項1に記載の溶融紡糸装置。
  3.  前記距離Aに対する前記紡出部の紡糸ノズルが設けられたノズル面から前記隔壁までの距離(距離B)の比(距離B/距離A)は、5~50である請求項1又は請求項2に記載の溶融紡糸装置。
  4.  前記第1冷却風供給部の高さ(h)に対する前記第2冷却風供給部の高さ(h)の比は、0.5~1.5である請求項1~請求項3のいずれか1項に記載の溶融紡糸装置。
  5.  前記通気性隔壁の厚さは、10mm~50mmである請求項1~請求項4のいずれか1項に記載の溶融紡糸装置。
  6.  前記距離Aに対する前記通気性隔壁の厚さの比(通気性隔壁の厚さ/距離A)は、0.5~5.0である請求項1~請求項5のいずれか1項に記載の溶融紡糸装置。
  7.  前記通気性隔壁は、ハニカム形状を有する請求項1~請求項6のいずれか1項に記載の溶融紡糸装置。
  8.  前記冷却風供給部は、前記通気性隔壁よりも冷却風供給方向の上流側に前記冷却部に供給される冷却風を整流する整流板を備える請求項1~請求項7のいずれか1項に記載の溶融紡糸装置。
  9.  前記第1冷却風供給部に供給される冷却風の温度を10℃~40℃、及び、前記第2冷却風供給部に供給される冷却風の温度を、前記第1冷却風供給部に供給される冷却風の温度よりも10℃以上高く、かつ30℃~70℃に制御する第1制御部を備える請求項1~請求項8のいずれか1項に記載の溶融紡糸装置。
  10.  前記第2冷却風供給部に供給される冷却風の平均風速(V)に対する前記第1冷却風供給部に供給される冷却風の平均風速(V)の比(V/V)を、0を超え0.7以下に制御する第2制御部を備える請求項1~請求項9のいずれか1項に記載の溶融紡糸装置。
  11.  前記冷却部にて冷却されたフィラメントを延伸する延伸部を更に備え、
     前記紡出部の紡糸ノズルが設けられたノズル面から前記延伸部の入り口までの距離(距離C)に対する前記紡出部の紡糸ノズルが設けられたノズル面から前記隔壁までの距離(距離B)の比(距離B/距離C)は、0.2~0.8である請求項1~請求項10のいずれか1項に記載の溶融紡糸装置。
  12.  冷却及び延伸されたフィラメントを捕集して、不織ウェブを形成する捕集部を更に備え、スパンボンド不織布の製造に用いる請求項1~請求項11のいずれか1項に記載の溶融紡糸装置。
  13.  請求項1~請求項12のいずれか1項に記載の溶融紡糸装置を用いて前記複数の紡糸ノズルから紡出されるフィラメントから不織布を製造する不織布の製造方法。
  14.  前記第1冷却風供給部に供給される冷却風の温度は10℃~40℃であり、前記第2冷却風供給部に供給される冷却風の温度は、前記第1冷却風供給部に供給される冷却風の温度よりも10℃以上高く、かつ30℃~70℃である請求項13に記載の不織布の製造方法。
  15.  前記第2冷却風供給部に供給される冷却風の平均風速(V)に対する前記第1冷却風供給部に供給される冷却風の平均風速(V)の比(V/V)は、0を超え0.7以下である請求項13又は請求項14に記載の不織布の製造方法。
  16.  前記フィラメントは、プロピレン系重合体を含む請求項13~請求項15のいずれか1項に記載の不織布の製造方法。
PCT/JP2018/047370 2018-12-21 2018-12-21 溶融紡糸装置及び不織布の製造方法 WO2020129256A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217018511A KR102524390B1 (ko) 2018-12-21 2018-12-21 용융 방사 장치 및 부직포의 제조 방법
JP2019503501A JP6510158B1 (ja) 2018-12-21 2018-12-21 溶融紡糸装置及び不織布の製造方法
CN201880100224.6A CN113195803B (zh) 2018-12-21 2018-12-21 熔融纺丝装置及无纺布的制造方法
EP18900577.0A EP3690086B1 (en) 2018-12-21 2018-12-21 Melt spinning apparatus and non-woven fabric production method
DK18900577.0T DK3690086T3 (da) 2018-12-21 2018-12-21 Smeltespindingsapparat og fremgangsmåde til fremstilling af ikkevævet stof
PCT/JP2018/047370 WO2020129256A1 (ja) 2018-12-21 2018-12-21 溶融紡糸装置及び不織布の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047370 WO2020129256A1 (ja) 2018-12-21 2018-12-21 溶融紡糸装置及び不織布の製造方法

Publications (1)

Publication Number Publication Date
WO2020129256A1 true WO2020129256A1 (ja) 2020-06-25

Family

ID=66429866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047370 WO2020129256A1 (ja) 2018-12-21 2018-12-21 溶融紡糸装置及び不織布の製造方法

Country Status (6)

Country Link
EP (1) EP3690086B1 (ja)
JP (1) JP6510158B1 (ja)
KR (1) KR102524390B1 (ja)
CN (1) CN113195803B (ja)
DK (1) DK3690086T3 (ja)
WO (1) WO2020129256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112995A1 (ja) * 2021-12-16 2023-06-22 三井化学株式会社 不織布、衛生材料及び不織布の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272195B2 (ja) * 2019-09-12 2023-05-12 王子ホールディングス株式会社 不織布の製造装置
EP4008814A1 (en) 2020-12-04 2022-06-08 Ramina S.R.L. Plant for producing nonwoven fabric

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070839A (en) * 1958-12-24 1963-01-01 Du Pont Controlled quenching apparatus
JPS4636421Y1 (ja) * 1968-07-25 1971-12-15
JPS4998506U (ja) * 1972-12-12 1974-08-24
JPS50119708U (ja) * 1974-03-01 1975-09-30
JPS63275767A (ja) * 1987-04-25 1988-11-14 ライフェンホイゼル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、マシーネンファブリーク 紡績フリースの製造装置
JPH0322070U (ja) * 1989-07-14 1991-03-06
JP2002317372A (ja) 2001-04-20 2002-10-31 Mitsui Chemicals Inc 不織布の製造方法及び装置
JP2007046224A (ja) * 2006-10-20 2007-02-22 Mitsui Chemicals Inc 不織布の製造方法及び装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL53431C (ja) 1938-08-09
US3999910A (en) * 1975-10-08 1976-12-28 Allied Chemical Corporation Filament quenching apparatus
DE3713862A1 (de) * 1987-04-25 1988-11-10 Reifenhaeuser Masch Verfahren und spinnvliesanlage zur herstellung eines spinnvlieses aus synthetischem endlosfilament
US5173310A (en) * 1988-03-24 1992-12-22 Mitsui Petrochemical Industries, Ltd. Device for cooling molten filaments in spinning apparatus
US6168406B1 (en) 1998-11-25 2001-01-02 Ching-Kun Tseng Yarn-forming filament cooling apparatus
JP2002302862A (ja) * 2001-04-06 2002-10-18 Mitsui Chemicals Inc 不織布の製造方法及び装置
DE50211394D1 (de) * 2002-02-28 2008-01-31 Reifenhaeuser Gmbh & Co Kg Anlage zur kontinuierlichen Herstellung einer Spinnvliesbahn
US20060040008A1 (en) 2004-08-20 2006-02-23 Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik Device for the continuous production of a nonwoven web
JP2007063690A (ja) * 2005-08-30 2007-03-15 Teijin Fibers Ltd 糸条冷却装置
JP2008231607A (ja) 2007-03-20 2008-10-02 Toray Ind Inc 紡糸用環状冷却装置および溶融紡糸方法
JP2015014071A (ja) * 2013-07-08 2015-01-22 Tmtマシナリー株式会社 糸条冷却装置
JP6364311B2 (ja) * 2014-10-20 2018-07-25 Tmtマシナリー株式会社 糸条冷却装置
CN105040125B (zh) * 2015-06-22 2017-05-31 泉州惠安长圣生物科技有限公司 涤纶环吹冷却装置及涤纶纺丝冷却方法及涤纶丝生产方法
CN104862794B (zh) * 2015-06-22 2018-05-29 扬州天富龙汽车内饰纤维有限公司 一种环吹风涤纶纺丝冷却装置及方法
CN106400141B (zh) * 2016-11-15 2019-05-07 东华大学 一种静压熔融纺丝装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070839A (en) * 1958-12-24 1963-01-01 Du Pont Controlled quenching apparatus
JPS4636421Y1 (ja) * 1968-07-25 1971-12-15
JPS4998506U (ja) * 1972-12-12 1974-08-24
JPS50119708U (ja) * 1974-03-01 1975-09-30
JPS63275767A (ja) * 1987-04-25 1988-11-14 ライフェンホイゼル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、マシーネンファブリーク 紡績フリースの製造装置
JPH0322070U (ja) * 1989-07-14 1991-03-06
JP2002317372A (ja) 2001-04-20 2002-10-31 Mitsui Chemicals Inc 不織布の製造方法及び装置
JP2007046224A (ja) * 2006-10-20 2007-02-22 Mitsui Chemicals Inc 不織布の製造方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112995A1 (ja) * 2021-12-16 2023-06-22 三井化学株式会社 不織布、衛生材料及び不織布の製造方法

Also Published As

Publication number Publication date
EP3690086A1 (en) 2020-08-05
CN113195803A (zh) 2021-07-30
CN113195803B (zh) 2022-12-09
DK3690086T3 (da) 2022-06-27
KR20210089768A (ko) 2021-07-16
EP3690086B1 (en) 2022-05-25
JP6510158B1 (ja) 2019-05-08
KR102524390B1 (ko) 2023-04-20
JPWO2020129256A1 (ja) 2021-02-15
EP3690086A4 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2020129256A1 (ja) 溶融紡糸装置及び不織布の製造方法
US11060207B2 (en) Multi-zone spinneret, apparatus and method for making filaments and nonwoven fabrics therefrom
TW565641B (en) Method and apparatus for manufacturing nonwoven fabric
JP5260274B2 (ja) ポリフェニレンスルフィドフィラメントヤーンの製造方法
JP2004003080A (ja) 不織繊維ウェブの連続製造用装置
JP4271226B2 (ja) 不織布の製造方法及び装置
US6630087B1 (en) Process of making low surface energy fibers
KR100687597B1 (ko) 라이오셀 섬유용 방사 냉각 장치, 및 이를 이용한 라이오셀섬유의 제조 방법
KR100995296B1 (ko) 흡입 및 분사를 위한 다중 방사 노즐 장치 및 방법
JP3883818B2 (ja) 不織布の製造方法及び装置
US7384583B2 (en) Production method for making nonwoven fabric
KR102148588B1 (ko) 스펀본디드 웨브를 제조하기 위한 디바이스
JPS6235481B2 (ja)
JP7338677B2 (ja) 不織布の製造方法
US8206640B2 (en) Process for collection of continuous fibers as a uniform batt
DE202018006267U1 (de) Schmelzspinnvorrichtung
JP6142265B2 (ja) ポリメチルペンテンモノフィラメント、及び、その製造方法
JP2007031892A (ja) 糸条冷却装置
KR102670281B1 (ko) 부직포의 제조 방법
JP2014074241A (ja) 溶融紡糸装置
WO2023171363A1 (ja) 複合繊維の製造方法および複合口金
CN117488417A (zh) 一种用于pbs纺粘无纺布的冷却牵伸装置及其使用方法
JPH0418107A (ja) 極細繊維の製造方法
JP2003253522A (ja) ポリエステル極細マルチフィラメントの溶融紡糸装置とそれを用いた溶融紡糸方法
JPS59112016A (ja) 溶融紡糸方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019503501

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018900577

Country of ref document: EP

Effective date: 20190723

ENP Entry into the national phase

Ref document number: 20217018511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE