WO2020127215A1 - Kathodeneinheit und verfahren zum herstellen einer kathodeneinheit - Google Patents

Kathodeneinheit und verfahren zum herstellen einer kathodeneinheit Download PDF

Info

Publication number
WO2020127215A1
WO2020127215A1 PCT/EP2019/085581 EP2019085581W WO2020127215A1 WO 2020127215 A1 WO2020127215 A1 WO 2020127215A1 EP 2019085581 W EP2019085581 W EP 2019085581W WO 2020127215 A1 WO2020127215 A1 WO 2020127215A1
Authority
WO
WIPO (PCT)
Prior art keywords
sis
polytetrafluoroethylene
cathode unit
percent
layer
Prior art date
Application number
PCT/EP2019/085581
Other languages
English (en)
French (fr)
Inventor
Felix HIPPAUF
Benjamin SCHUMM
Sebastian TSCHÖCKE
Holger Althues
Stefan Kaskel
Susanne DÖRFLER
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Technische Universität Dresden filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to EP19829091.8A priority Critical patent/EP3900077A1/de
Priority to KR1020217022583A priority patent/KR20210114416A/ko
Priority to CN201980083172.0A priority patent/CN113424334A/zh
Priority to US17/311,408 priority patent/US20220029166A1/en
Priority to JP2021535217A priority patent/JP2022514855A/ja
Publication of WO2020127215A1 publication Critical patent/WO2020127215A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cathode unit and a method for producing a cathode unit.
  • Solid-state batteries represent a promising further development of lithium-ion batteries.
  • Solid-state batteries use a solid-state lithium ion conductor (or sodium ion conductor) as the electrolyte instead of a liquid electrolyte system. This also serves as an ion conductor between active material particles and as an ion-conductive separator between anode and cathode. What is important here is the possibility of large-scale processing of powdered electrode mixtures and the formation of an intimate contact area between solid electrolyte and active materials with as many contact points and as few cavities as possible.
  • Solid-state batteries can be used, among other things, based on the Categorize the electrolyte class (oxidic, sulfidic and polymer-based).
  • Oxide solid electrolytes have a high chemical and mechanical stability. Processing into non-porous and thin electrodes or solid electrolyte membranes, however, is a great challenge due to the high sintering temperatures. Sulfidic electrolyte materials can hardly be separated over a large area.
  • various binder-solvent mixtures for the anode, cathode and electrolyte layer are used, since otherwise the layer underneath may dissolve when the layer is applied.
  • a disadvantage of such processes is the comparatively high binder content of several percent by weight or mass and the resulting higher electrical and ionic resistances.
  • the present invention is therefore based on the object of proposing a cathode unit and a method for its production which overcomes the disadvantages mentioned ge, that is to say a large-scale production of the cathode unit with the lowest possible electrical and ionic resistances.
  • a cathode unit for a solid-state battery preferably an alkaline solid-state battery or lithium battery or sodium battery, has a layer made of a composite material.
  • the composite material has an electrode material, a solid electrolyte material, an electrically conductive conductive additive and polytetrafluoroethylene (PTFE) as a binder.
  • PTFE polytetrafluoroethylene
  • the composite material has less than 1 percent by weight of polytetrafluoroethylene and the polytetrafluoroethylene is at least partially present as a fibrillated polytetrafluoroethylene.
  • fibrillated polytetrafluoroethylene as a binder, the use of binders can be reduced, so that only small amounts are left less than 1 percent by weight of polytetrafluoroethylene of the cathode unit are necessary and therefore the electrical properties are improved.
  • the composite material is typically solvent-free to enable easier processing, application and formation of a free-standing film.
  • the cathode unit can have a current collector made of an electrically conductive material, to which the layer made of a composite material is applied.
  • electrically conductive is to be understood here to mean any material which has an electrical conductivity of more than 10 5 S / m at room temperature, ie 25 ° C.
  • the layer made of a composite material can also be electrically conductive by selecting a proportion of the conductive additive, which is typically also electrically conductive, to be correspondingly high.
  • polytetrafluoroethylene is present in the composite material as at least partially monoaxial and / or biaxially oriented poly tetrafluoroethylene in order to adjust the mechanical properties as desired.
  • the polytetrafluoroethylene is present in the composite material as at least partially monoaxial and / or biaxially oriented poly tetrafluoroethylene in order to adjust the mechanical properties as desired.
  • the polytetrafluoroethylene is present in the composite material as at least partially monoaxial and / or biaxially oriented poly tetrafluoroethylene in order to adjust the mechanical properties as desired.
  • the polytetrafluoroethylene is present in the composite material as at least partially monoaxial and / or biaxially oriented poly tetrafluoroethylene in order to adjust the mechanical properties as desired.
  • Polytetrafluoroethylene is present as completely monoaxial or completely biaxially oriented or aligned polytetrafluoroethylene.
  • the composite material can have the electrode material in an amount of 60 percent by weight to 99 percent by weight, preferably up to 100 percent.
  • the composite material typically has at least
  • the composite material preferably has less than 0.5 percent by weight of polytetrafluoroethylene, particularly preferably between 0.1 percent by weight and 0.4 percent by weight.
  • the electrode material can be sulfur, lithium sulfide (Li 2 S)
  • a transition metal oxide preferably LiCo0 2 , LiNi0 2 , LiNii_ x Co x 0 2 , LiFeP0 4 , LiMn0 2 , LiMn 2 0 4 , Li 2 Mn 3 Ni0 8 , LiNi x Co y Mn z 0 2 , LiNi x Co y Al z 0
  • corresponding sodium-containing analogs preferably Na 2 S, Na x Mn0 2 , Na 3 V 2 (P0 4 ) 3 , NaFeP0 4 , Na 2 FeP0 4 F, NaNiMn0 2 , Na 2 Ti0 7 and / or NaTi 2 (P0 4 ) 3 can be used.
  • the different materials mentioned can also generally be combined with one another to form the electrode.
  • the solid electrolyte material is typically in the powder mixture with between 1 percent by weight and 35 percent by weight.
  • Carbon nanotubes, carbon blacks, graphite, graphene and / or carbon nanofibers with between 1% by weight and up to
  • the solid electrolyte material is typically an electrochemically active material.
  • the leading additive can be an electrochemically inactive material.
  • the electrode material can have a protective layer which is applied to particles of this material. This protective layer is intended to prevent side reactions between the solid electrolyte material and the electrode material.
  • the protective layer can have, for example, Li 2 O-ZrO 2 or other metal oxides.
  • Each particle of the electrode material can have a protective layer with a thickness of typically 2-5 nm.
  • the electrically conductive current conductor typically comprises an electrically conductive material, preferably aluminum, or is made entirely of this material.
  • the current conductor can be designed as a, in particular flat, current conductor layer or current conductor film with a preferably double-sided coating, as expanded metal, as foam, as a fiber fabric, as a fiber fabric or as a current conductor layer provided with a primer layer.
  • the primer layer can also be flat.
  • Polytetrafluoroethylene produced as a binder The powder mixture here has a proportion of less than 1 percent by weight of polytetrafluoroethylene. At least partially fibrillated polytetrafluoroethylene is formed in the powder mixture by the action of shear forces on the powder mixture. The powder mixture is then formed into a flexible composite layer. Preferably, the flexible composite layer is applied to an electrically conductive current collector to form the cathode unit. Provision can also be made to subsequently compress the flexible composite layer and / or the current arrester.
  • a powder mixture which is to be understood as a material in granular form consisting of many small particles with a size of up to 15 pm or a granular or lumpy mixture or bulk material.
  • the powder mixture can be in dry form to simplify handling. In addition, the powder mixture cannot be free-flowing in the sense of the standard DIN EN ISO 6186.
  • dry is to be understood to mean that constituents of the powder mixture are in the form of solids free from liquids or materials that are in a liquid state of aggregation.
  • the powder mixture can be solvent-free, that is, it can be composed without solvent.
  • a "flexible composite layer” is to be understood as a composite layer which can be bent or folded and unfolded at room temperature by up to 180 ° without breaking. A bending radius is preferably 90 pm to 100 pm, particularly preferably 100 miti.
  • the at least partially fibrillated polytetrafluoroethylene can be formed by friction milling, mixing in a worm shaft or in a calender roll device, kneading device, mortar device or a combination of the methods mentioned in order to achieve efficient
  • the formation of the at least partially fibrillated polytetrafluoroethylene is typically carried out at room temperature, but preferably to achieve a binder content of less than 0.5 percent by weight, the formation at elevated temperatures of 60 ° C to 100 ° C, particularly preferably at 90 ° C to 100 ° C, especially at 100 ° C.
  • the polytetrafluoroethylene can also be completely fibrillated.
  • the forming of the powder mixture into the flexible composite layer is typically carried out by rolling, pressing or extrusion. However, a combination of the methods mentioned can also be used.
  • the application of the flexible composite layer to the electrically conductive current collector layer is typically carried out at temperatures between 60 ° C and 120 ° C, preferably 80 ° C to 100 ° C.
  • the described method can be used to produce the described cathode, i. H. the cathode described can be produced by the method described.
  • a solid-state battery or lithium battery according to the invention contains a cathode unit with the properties described.
  • Figure 1 is a schematic side view of a cathode. 2 shows a representation corresponding to FIG. 1, the cathode with a solid electrolyte membrane;
  • FIG. 3 shows a representation corresponding to FIG. 1, the cathode provided with the solid electrolyte membrane and an anode;
  • FIG. 1 shows a schematic lateral view of an electrically conductive current collector layer 1 made of aluminum as a substrate film or carrier film with a first electrode 2, which form a cathode unit.
  • the first electrode 2 is formed in the illustrated embodiment from a composite material in powder form.
  • the composite material has 85 percent by weight lithium-nickel-manganese cobalt (NCM), 13 percent by weight of a solid electrolyte material such as lithium U2S-P2S5,
  • the binder content here relates to the total mass at a ratio NCM: C: SE of 85: 2: 13 (SE is intended to indicate the solid electrolyte material as an abbreviation for "solid electrolyte”).
  • the composite material obtained is powdery, dry and solvent-free, but not free-flowing.
  • the composite material can be mixed in a mortar. Shear forces are exerted on the mixture or powder mixture forming the composite material, which cause fibril formation along the force vector.
  • the composite material is rolled out in a subsequent step on a plate with a roller to a desired layer thickness and laminated onto the carrier film 1.
  • the carrier film 1 has a thickness of less than 20 pm and is optionally provided with a carbon primer.
  • the cathode unit is finally assembled by punching or laser cutting.
  • the composite material can be added as a powder mixture or bulk material directly into a calender nip without solvent additives.
  • different rotation speeds of the two calender rolls are used, for example in a ratio of 10: 9 to 10: 4.
  • a shear force is exerted on the composite material in the gap, which causes fibrils to form along the direction of the roll.
  • the layer is laminated onto the substrate film 1 in a subsequent step and a final assembly takes place by punching or laser cutting.
  • the formation of a film in the calender nip also enables the layers involved to be compacted strongly during film formation. What is important here is coordinated particle size distributions of the powdery materials that are used for the composite material in order to fill gaps in the large particles with smaller ones as space-efficiently as possible and to keep porosity low.
  • the film therefore has a density of 1.7-1.9 g / cm 3 before pressing, which corresponds to a porosity of 50 to 55 percent. After pressing or compacting, the density is usually 3.5 g / cm 3 and the porosity approaches a value of up to 10 percent of the ideal value of 0 percent porosity.
  • the cathode unit obtained in this way thus has the layer sequence of substrate film 1 - first electrode 2.
  • the composition of the first electrode 2 is typically as follows: cathode active material: 60 to 99 percent by weight, solid electrolyte material 13 to 35 percent by weight, lead additive 2 to 5 percent by weight, the Binder (polytetrafluoroethylene) accounts for 0.1 to 1 percent by weight of the total mass.
  • the pressing mentioned above is typically carried out as a process step.
  • All processing steps in which the solid electrolyte material is involved preferably take place under protective gas, for example an inert gas, preferably argon, or nitrogen, or dry air with a dew point below -50 ° C.
  • protective gas for example an inert gas, preferably argon, or nitrogen, or dry air with a dew point below -50 ° C.
  • FIG. 2 the view corresponding to FIG. 1 shows the cathode unit comprising the carrier film 1 and the first electrode 2, a solid electrolyte membrane 3 now being in direct contact, that is to say in direct contact, on one side or surface of the first electrode 2 on which the Carrier film 1 is attached as a current conductor layer in direct contact, the opposite side or surface is arranged. While the carrier film 1 and the first electrode 2 lie flush one above the other, that is to say they have identical dimensions except for their respective thickness, the solid electrolyte membrane 3 is wider than the first electrode 2. Recurring features in this figure and in the following figures have identical reference numerals Mistake.
  • FIG. 3 shows in a view corresponding to FIGS. 1 and 2 a solid-state battery in which an anode unit is placed on the side opposite the solid electrolyte membrane 3 to the structure shown in FIG. 2.
  • the anode unit is formed from a second electrode 4 and a second substrate film 5 as a second current collector layer, which in turn are in direct contact with one another.
  • the second electrode 4 is in direct contact with the solid electrolyte membrane 3.
  • the solid electrolyte membrane ran 3 the second electrode 4 and the second carrier film 5 are aligned with one another, the second carrier film 5 having the smallest thickness, the second electrode 4 having the greatest thickness and the thickness of the solid electrolyte membrane 3 between the thickness of the second electrode 4 and the second carrier film 5.
  • the first electrode can have a thickness of 100 pm
  • the second electrode as a lithium anode, for example, up to 10 pm.
  • the thicknesses of the first carrier film 1 and the second carrier film 5 can also be identical.
  • the thickness of the first electrode 2 is greater than the thickness of the solid electrolyte membrane 3, which in turn has a greater thickness than the first carrier film 1.
  • FIG. 4 shows a scanning electron microscope image (SEM image) of a dry film made of NCM, solid electrolyte (SE), carbon fibers (CNF) in a mass ratio of 85: 13: 2 and 0.3 percent by weight of the total mass of polytetrafluoroethylene (PTFE).
  • SEM image scanning electron microscope image
  • SE solid electrolyte
  • CNF carbon fibers
  • FIGS. 5 to 9 each show discharge voltage profiles of test cells of the solid-state battery described. An electrical voltage is plotted against the capacitance.
  • the proportion of polytetrafluoroethylene in FIG. 5 is 0 percent by weight, in FIG. 6 0.1 percent by weight, in FIG. 7 0.3 percent by weight, in FIG. 8 0.7 percent by weight and in FIG. 10 1 percent by weight.
  • FIG. 10 shows an impedance measurement in a Nyquist diagram, in which an imaginary part is plotted over a real part.
  • the measurement curves show a test cell with a binder content of 0.1 percent by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Die vorliegende Erfindung befasst sich mit einer Kathodeneinheit für eine Festkörperbatterie und ein Verfahren zum Herstellen der Kathodeneinheit. Die Kathodeneinheit weist eine Schicht aus einem Verbundwerkstoff (2) auf, der Elektrodenwerkstoff, einen Festelektrolytwerkstoff, ein elektrisch leitfähiges Leitadditiv und Polytetrafluorethylen als Bindemittel aufweist. Der Verbundwerkstoff weist weniger als 1 Gewichtsprozent Polytetrafluorethylen auf und das Polytetrafluorethylen liegt zumindest teilweise als fibrilliertes Polytetrafluorethylen vor.

Description

Kathodeneinheit und Verfahren zum Herstellen einer Kathodeneinheit
Die vorliegende Erfindung betrifft eine Kathodeneinheit und ein Verfahren zum Herstellen einer Kathodeneinheit.
Festkörperbatterien stellen eine vielversprechende Weiterentwicklung von Lithiumionenbatterien dar. Bei Festkörperbatterien kommt anstelle eines flüs sigen Elektrolytsystems ein als Festkörper vorliegender Lithiumionenleiter (oder Natriumionenleiter) als Elektrolyt zum Einsatz. Dieser dient gleichzeitig als lonenleiter zwischen Aktivmaterialpartikeln und als ionenleitfähiger Sepa rator zwischen Anode und Kathode. Wichtig hierbei sind die Möglichkeit zur großflächigen Prozessierung pulverförmiger Elektrodenmischungen und die Ausbildung einer innigen Kontaktfläche zwischen Festkörperelektrolyt und Aktivmaterialien mit möglichst vielen Kontaktstellen und möglichst wenigen Hohlräumen.
Festkörperbatterien lassen sich unter anderem anhand der verwendeten Elektrolytklasse (oxidische, sulfidische und polymerbasierte) kategorisieren. Oxidische Festkörperelektrolyte besitzen eine hohe chemische und mechani sche Stabilität. Eine Verarbeitung zu unporösen und dünnen Elektroden oder Festelektrolytmembranen stellt aber aufgrund der hohen Sintertemperaturen eine große Herausforderung dar. Auch sulfidische Elektrolytwerkstoffe sind kaum großflächig abzuscheiden. Zum Aufbringen mittels nasschemischer Ver fahren, wie beispielsweise in US 2016/248120 Al beschrieben, werden ver schiedene Binder-Lösungsmittelgemische für Anode, Kathode und Elektrolyt schicht verwendet, da es beim Schichtauftrag sonst zum Anlösen der darunter liegenden Schicht kommen kann. Nachteilig an derartigen Verfahren ist der vergleichsweise hohe Bindergehalt von mehreren Gewichtsprozent bzw. Mas seprozent und daraus resultierende höhere elektrische und ionische Wider stände.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Kathoden einheit und ein Verfahren zu deren Herstellung vorzuschlagen, die die ge nannten Nachteile überwindet, also eine großflächige Herstellung der Katho deneinheit mit möglichst niedrigen elektrischen und ionischen Widerstände ermöglicht.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Kathodeneinheit nach Anspruch 1 und ein Verfahren zum Herstellen einer Kathodeneinheit nach Anspruch 11. Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den abhängigen Ansprüchen beschrieben.
Eine Kathodeneinheit für eine Festkörperbatterie, vorzugsweise eine Alkali- lonen-Festkörperbatterie bzw. Lithium-Batterie oder Natrium-Batterie, weist eine Schicht aus einem Verbundwerkstoff auf. Der Verbundwerkstoff weist einen Elektrodenwerkstoff, einen Festelektrolytwerkstoff, ein elektrisch leit fähiges Leitadditiv und Polytetrafluorethylen (PTFE) als Bindemittel auf. Der Verbundwerkstoff weist weniger als 1 Gewichtsprozent Polytetrafluorethylen auf und das Polytetrafluorethylen liegt zumindest teilweise als fibrilliertes Polytetrafluorethylen vor.
Durch Verwenden von fibrillierten Polytetrafluorethylen als Bindemittel kann ein Bindemitteleinsatz verringert werden, so dass nur noch geringe Mengen von weniger als 1 Gewichtsprozent Polytetrafluorethylen der Kathodeneinheit nötig sind und daher die elektrischen Eigenschaften verbessert werden. Der Verbundwerkstoff ist typischerweise lösungsmittelfrei, um eine einfachere Verarbeitung und ein einfacheres Aufbringen sowie das Ausbilden eines frei stehenden Films zu ermöglichen.
Die Kathodeneinheit kann einen Stromableiter aus einem elektrisch leitfähi gen Werkstoff aufweisen, auf dem die Schicht aus einem Verbundwerkstoff aufgebracht ist. Unter dem Begriff "elektrisch leitfähig" soll hierbei jeder Werkstoff verstanden werden, der bei Raumtemperatur, d. h. 25 °C, eine elektrische Leitfähigkeit von mehr als 105 S/m aufweist. Alternativ oder zu sätzlich kann auch die Schicht aus einem Verbundwerkstoff elektrisch leitfähig sein, indem ein Anteil des Leitadditivs, das typischerweise ebenfalls elektrisch leitfähig ist, entsprechend hoch gewählt wird.
Es kann vorgesehen sein, dass im Verbundwerkstoff das Polytetrafluorethylen als zumindest teilweise monoaxial und bzw. oder biaxial orientiertes Poly tetrafluorethylen vorliegt, um die mechanischen Eigenschaften wie gewünscht einzustellen. Es kann natürlich auch vorgesehen sein, dass das
Polytetrafluorethylen als vollständig monoaxial oder vollständig biaxial orien tiertes bzw. ausgerichtetes Polytetrafluorethylen vorliegt.
Der Verbundwerkstoff kann den Elektroden Werkstoff in einer Menge von 60 Gewichtsprozent bis 99 Gewichtsprozent, vorzugsweise bis zu 100 Prozent, aufweisen. Typischerweise weist der Verbundwerkstoff mindestens
0,1 Gewichtsprozent Polytetrafluorethylen auf, um ausreichend Bindemittel zur Verfügung zu haben. Vorzugsweise weist der Verbundwerkstoff weniger als 0,5 Gewichtsprozent Polytetrafluorethylen auf, besonders vorzugsweise zwischen 0,1 Gewichtsprozent und 0,4 Gewichtsprozent.
Der Elektrodenwerkstoff kann Schwefel, Lithiumsulfid (Li2S), ein
Lithiummetalloxid, ein Natriummetalloxid oder eine Mischung daraus aufwei sen, um beispielsweise eine Sulfid-Kathode zu bilden. Der elektrisch leitfähige Elektrodenwerkstoff kann insbesondere ein Übergangsmetalloxid, vorzugs weise LiCo02, LiNi02, LiNii_xCox02, LiFeP04, LiMn02, LiMn204, Li2Mn3Ni08, LiNixCoyMnz02, LiNixCoyAlz02 (wobei x+y+z=l gilt), Li4Ti50i2 oder Li2FeSi04 oder eine Mischung der genannten Werkstoffe aufweisen. Ebenso können entspre chende natriumhaltige Analoga, vorzugsweise Na2S, NaxMn02, Na3V2(P04)3, NaFeP04, Na2FeP04F, NaNiMn02, Na2Ti07 und/oder NaTi2(P04)3 verwendet werden. Es kann auch vorgesehen sein, dass mehrlagige Oxide des Typs AM02 als Elektrodenwerkstoff verwendet werden, wobei A=Li, Na; M=Co, Mn, Ni ist. Die genannten unterschiedlichen Werkstoffe können auch generell miteina n der kombiniert werden, um die Elektrode auszubilden.
Der Festelektrolytwerkstoff kann einen Werkstoff aus dem System Li2S-P2S5, Li2S-GeS2, Li2S-B2S3 Li2S-SiS2, Li5PS6CI, Li2S-P2S5-LiX (X=CI, Br, I), Li2S-P2S5-Li20, Li2S-P2S5-Li20-Lil, Li2S-SiS2-Lil, Li2S-SiS2-LiBr, Li2S-SiS2-LiCI, Li2S-SiS2-B2S3-Lil, Li2S- SiS2-P2S5-Lil, Li2S-P2S5-ZmSn (wobei m und n ganze Zahlen sind und M ausge wählt ist aus P, Si oder Ge), Li2S-SiS2-Li3P04, Li2S-SiS2-LipMOq (wobei p und q ganze Zahlen sind und M ausgewählt ist aus P, Si oder Ge), Na2S-P2S5, Na2S- GeS2, Na2S-B2S3, Na6PS5CI, Na2S-SiS2, Na2S-P2S5-NaX (X=CI, Br, I), Na2S-P2S5- Na20, Na2S-P2S5-Na20-Nal, Na2S-SiS2-Nal, Na2S-SiS2-NaBr, Na2S-SiS2-NaCI, Na2S-SiS2-B2S3-Nal, Na2S-SiS2-P2S5-Nal, Na2S-P2S5-ZmSn (wobei m und n ganze Zahlen sind und M ausgewählt ist aus P, Si oder Ge), Na2S-SiS2-Na3P04, Na2S- SiS2-NapMOq (wobei p und q ganze Zahlen sind und M ausgewählt ist aus P, Si oder Ge oder eine Mischung daraus aufweisen. Generell kann bei allen in die ser Anmeldung genannten Verbindungen Lithium gegen Natrium ausge tauscht werden. Der Festelektrolytwerkstoff liegt in der Pulvermischung typi scherweise mit zwischen 1 Gewichtsprozent und 35 Gewichtsprozent vor. Als Leitadditiv können Kohlenstoffnanoröhren, Ruße, Graphit, Graphen und bzw. oder Kohlenstoffnanofasern mit zwischen 1 Gewichtsprozent bis
5 Gewichtsprozent in dem Verbundwerkstoff enthalten sein. Typischerweise ist der Feststoffelektrolytwerkstoff ein elektrochemisch aktiver Werkstoff. Das Leitadditiv kann ein elektrochemisch inaktiver Werkstoff sein.
Der Elektrodenwerkstoff kann eine Schutzschicht aufweisen, die auf Partikeln dieses Werkstoffs aufgebracht ist. Diese Schutzschicht soll Nebenreaktionen zwischen dem Festelektrolytwerkstoff und dem Elektrodenwerkstoff verhin dern. Die Schutzschicht kann beispielsweise Li20-Zr02 oder andere Metalloxi de aufweisen. Jedes Partikel des Elektrodenwerkstoffs kann eine Schutz schicht mit einer Dicke von typischerweise 2-5 nm aufweisen. Der elektrisch leitfähige Stromableiter umfasst typischerweise einen elektrisch leitfähigen Werkstoff, vorzugsweise Aluminium, oder ist vollständig aus die sem Werkstoff ausgebildet. Alternativ oder zusätzlich kann der Stromableiter als eine, insbesondere flächige, Stromableiterschicht oder Stromableiterfolie mit vorzugsweise doppelseitiger Beschichtung, als Streckmetall, als Schaum, als Fasergewebe, als Fasergelege oder als mit einer Primerschicht versehene Stromableiterschicht ausgebildet ist. Die Primerschicht kann hierbei ebenfalls flächig ausgebildet sein.
Bei einem Verfahren zum Herstellen einer Kathodeneinheit für eine Festkör perbatterie wird eine Pulvermischung aus einem Elektrodenwerkstoff, einem Festelektrolytwerkstoff, einem elektrisch leitfähigen Leitadditiv und
Polytetrafluorethylen als Bindemittel hergestellt. Die Pulvermischung weist hierbei einen Anteil von unter 1 Gewichtsprozent an Polytetrafluorethylen auf. Es wird zumindest teilweise fibrilliertes Polytetrafluorethylen in der Pul vermischung durch Einwirken von Scherkräften auf die Pulvermischung aus gebildet. Nachfolgend wird die Pulvermischung zu einer biegsamen Verbund schicht umgeformt. Vorzugsweise wird die biegsame Verbundschicht auf ei nen elektrisch leitfähigen Stromableiter zum Bilden der Kathodeneinheit auf gebracht. Es kann auch vorgesehen sein, die biegsame Verbundschicht und bzw. oder den Stromableiter nachfolgend zu verdichten.
Durch eine Pulvermischung, worunter ein in granulärer Form vorhandener Werkstoff aus vielen kleinen Partikeln mit einer Größe bis 15 pm bzw. ein körniges oder stückiges Gemenge oder Schüttgut verstanden werden soll, wird eine einfache Verarbeitung sichergestellt. Die Pulvermischung kann in trockener Form vorliegen, um die Handhabung zu vereinfachen. Zudem kann die Pulvermischung auch nicht rieselfähig im Sinne der Norm DIN EN ISO 6186 sein. Unter "trocken" soll im Rahmen dieser Schrift verstanden werden, dass Bestandteile der Pulvermischung als Festkörper frei von Flüssigkeiten oder sich in einem flüssigen Aggregatzustand befindlichen Werkstoffen vorliegen. Die Pulvermischung kann lösungsmittelfrei sein, also ohne Lösungsmittel zu sammengestellt sein. Unter einer "biegsamen Verbundschicht" soll eine Ver bundschicht verstanden werden, die bei Raumtemperatur um bis zu 180° ge bogen bzw. gefaltet und entfaltet werden kann, ohne zu brechen. Vorzugs weise beträgt ein Biegeradius 90 pm bis 100 pm, besonders vorzugsweise 100 miti.
Die Ausbildung des zumindest teilweise fibrillierten Polytetrafluorethylens kann durch Reibmahlen, Vermengen in einer Schneckenwelle oder in einer Kalanderwalzeinrichtung, Knetvorrichtung, Mörservorrichtung oder einer Kombination der genannten Methoden erfolgen, um eine effiziente
Fibrillierung sicherzustellen. Die Ausbildung des zumindest teilweise fibrillier ten Polytetrafluorethylens erfolgt typischerweise bei Raumtemperatur, vor zugsweise wird jedoch zum Erreichen eines Bindergehalts von weniger als 0,5 Gewichtsprozent die Ausbildung bei erhöhten Temperaturen von 60 °C bis 100 °C, besonders vorzugsweise bei 90 °C bis 100 °C, insbesondere bei 100 °C durchgeführt. Das Polytetrafluorethylen kann aber auch vollständig fibrilliert vorliegen.
Das Umformen der Pulvermischung zu der biegsamen Verbundschicht erfolgt typischerweise durch Walzen, Pressen oder Extrusion. Es kann aber auch eine Kombination der genannten Methoden zum Einsatz kommen.
Das Aufbringen der biegsamen Verbundschicht auf die elektrisch leitfähige Stromableiterschicht wird typischerweise bei Temperaturen zwischen 60 °C und 120 °C, vorzugsweise 80 °C bis 100 °C, durchgeführt.
Das beschriebene Verfahren kann zum Herstellen der beschriebenen Kathode eingesetzt werden, d. h. die beschriebene Kathode ist durch das beschriebene Verfahren herstellbar.
Eine erfindungsgemäße Festkörperbatterie bzw. Lithium-Batterie enthält eine Kathodeneinheit mit den beschriebenen Eigenschaften.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend anhand der Figuren 1 bis 10 erläutert.
Es zeigen:
Fig. 1 eine schematische seitliche Ansicht einer Kathode; Fig. 2 in einer Figur 1 entsprechenden Darstellung die Kathode mit einer Festelektrolytmembran;
Fig. 3 in einer Figur 1 entsprechenden Darstellung die mit der Festelektro lytmembran und einer Anode versehene Kathode;
Fig. 4 eine Rasterelektronenmikroskopaufnahme eines Trockenfilms eines Verbundwerkstoffs;
Fig. 5 ein Entlade-Spannungsprofil einer Testzelle mit einem Bindergehalt von 0 Gewichtsprozent;
Fig. 6 in einer Figur 5 entsprechenden Darstellung das Entlade- Spannungsprofil der Testzelle mit einem Bindergehalt von
0,1 Gewichtsprozent;
Fig. 7 in einer Figur 5 entsprechenden Darstellung das Entlade- Spannungsprofil der Testzelle mit einem Bindergehalt von
0,3 Gewichtsprozent;
Fig. 8 in einer Figur 5 entsprechenden Darstellung das Entlade- Spannungsprofil der Testzelle mit einem Bindergehalt von
0,7 Gewichtsprozent;
Fig. 9 in einer Figur 5 entsprechenden Darstellung das Entlade- Spannungsprofil der Testzelle mit einem Bindergehalt von
1 Gewichtsprozent und
Fig. 10 ein Nyquist-Diagramm des Innenwiderstands der Testzelle.
In Figur 1 ist in einer schematischen seitlichen Ansicht eine elektrisch leitfähi ge Stromableiterschicht 1 aus Aluminium als Substratfolie oder Trägerfolie mit einer ersten Elektrode 2 dargestellt, die eine Kathodeneinheit bilden. Die ers te Elektrode 2 ist in dem dargestellten Ausführungsbeispiel aus einem Ver bundwerkstoff in Pulverform ausgebildet. Der Verbundwerkstoff weist 85 Gewichtsprozent Lithium-Nickel-Mangan-Kobalt (NCM) auf, 13 Gewichtsprozent eines Festelektrolytwerkstoffs wie Lithium U2S-P2S5,
2 Gewichtsprozent elektrisch leitfähiger Kohlenstoffnanoröhren als Leitadditiv und 0,1 Gewichtsprozent Polytetrafluorethylen als Bindemittel. Der Binderge halt bezieht sich hierbei auf die Gesamtmasse bei einem Verhältnis NCM:C:SE von 85:2:13 (SE soll als Abkürzung für "solid electrolyte" den Festelektrolyt werkstoff kennzeichnen). Der erhaltene Verbundwerkstoff ist pulverförmig, trocken und lösemittelfrei, aber nicht rieselfähig. Der Verbundwerkstoff kann in einem Mörser vermengt werden. Dabei werden Scherkräfte auf die den Verbundwerkstoff bildende Mischung bzw. die Pulvermischung ausgeübt, die eine Fibrillenbildung entlang des Kraftvektors bewirken. Der Verbundwerk stoff wird in einem Folgeschritt auf einer Platte mit einer Walze auf eine ge wünschte Schichtdicke ausgewalzt und auf die Trägerfolie 1 auflaminiert. Die Trägerfolie 1 weist eine Dicke von weniger als 20 pm auf und ist gegebenen falls mit einem Kohlenstoffprimer versehen. Durch Stanzen oder Laserschnei den erfolgt eine finale Konfektionierung der Kathodeneinheit.
Alternativ kann der Verbundwerkstoff ohne Lösungsmittelzusätze als Pulver mischung bzw. Schüttgut direkt in einen Kalanderspalt gegeben werden. Wie in der deutschen Patentanmeldung DE 10 2017 208 220 beschrieben, werden unterschiedliche Rotationsgeschwindigkeiten der beiden Kalanderwalzen verwendet, beispielsweise im Verhältnis 10:9 bis 10:4. Vorteilhaft ist ein Ver hältnis der Rotationsgeschwindigkeiten von 2:1, z. B. 10 mm/s:5 mm/s oder 20 mm/s zu 10 mm/s. Hierdurch wird auf den Verbundwerkstoff im Spalt eine Scherkraft ausgeübt, die eine Fibrillenbildung entlang der Walzenlaufrichtung bewirkt. Es kommt zur Schichtausbildung auf der schneller rotierenden Walze. Die Schicht wird in einem Folgeschritt auf die Substratfolie 1 auflaminiert und es erfolgt eine finale Konfektionierung durch Stanzen oder Laserschneiden. Das Ausbilden eines Films im Kalanderspalt ermöglicht zudem eine starke Kompaktierung der beteiligten Schichten bereits während der Filmbildung. Wichtig hierfür sind aufeinander abgestimmte Partikelgrößenverteilungen der pulverförmigen Werkstoffe, die für den Verbundwerkstoff verwendet werden, um Lücken der großen Partikel mit kleineren möglichst raumeffizient aufzufül len und eine Porosität gering zu halten. Der Film weist vor dem Verpressen daher eine Dichte von 1,7-1, 9 g/cm3 auf, was einer Porosität von 50 bis 55 Prozent entspricht. Nach dem Verpressen bzw. Kompaktieren ist die Dichte in der Regel 3,5 g/cm3 und die Porosität nähert sich mit einem Wert von bis zu 10 Prozent dem Idealwert von 0 Prozent Porosität.
In vorteilhafter Weise erfolgt eine Verarbeitung bei erhöhten Temperaturen zwischen 60 °C und 100 °C, was eine deutliche Verminderung des nötigen Bin demittelgehalts bzw. Bindergehalts zur Folge hat. Die hierdurch erhaltene Kathodeneinheit hat somit die Schichtfolge Substratfolie 1 - erste Elektrode 2. Die erste Elektrode 2 ist in ihrer Zusammensetzung typischerweise wie folgt aufgebaut: Kathodenaktivwerkstoff: 60 bis 99 Gewichtsprozent, Festelektro lytwerkstoff 13 bis 35 Gewichtsprozent, Leitadditiv 2 bis 5 Gewichtsprozent, wobei das Bindemittel (Polytetrafluorethylen) 0,1 bis 1 Gewichtsprozent der Gesamtmasse ausmacht. Abschließend wird typischerweise das bereits er wähnte Verpressen als Prozessschritt durchgeführt. Dies erfolgt bei einem Druck von 290 MPa bis 450 MPa, vorzugsweise 300 MPa, um eine Fließfähig keit des Elektrolyts zu gewährleisten. Alle Verarbeitungsschritte, bei denen der Festelektrolytwerkstoff beteiligt ist, finden vorzugsweise unter Schutzgas, beispielsweise eine Edelgas, vorzugsweise Argon, oder Stickstoff, oder Tro ckenluft mit einem Taupunkt kleiner -50 °C statt.
In Figur 2 ist in einer Figur 1 entsprechenden Ansicht die Kathodeneinheit aus Trägerfolie 1 und erster Elektrode 2 gezeigt, wobei nun in direktem Kontakt, also unmittelbar berührendem Kontakt, eine Festelektrolytmembran 3 an eine der Seite bzw. Oberfläche der ersten Elektrode 2, auf der die Trägerfolie 1 als Stromableiterschicht in direktem Kontakt angebracht ist, gegenüberliegenden Seite bzw. Oberfläche angeordnet ist. Während die Trägerfolie 1 und die erste Elektrode 2 fluchtend übereinander liegen, also bis auf ihre jeweilige Dicke, identische Abmessungen aufweisen, ist die Festelektrolytmembran 3 breiter als die erste Elektrode 2. Wiederkehrende Merkmale sind in dieser Figur wie auch in den folgenden Figuren mit identischen Bezugszeichen versehen.
Figur 3 zeigt in einer den Figuren 1 und 2 entsprechenden Ansicht eine Fest körperbatterie, bei der zu dem in Figur 2 gezeigten Aufbau auf einer Seite der Festelektrolytmembran 3 gegenüberliegenden Seite eine Anodeneinheit auf gebracht ist. Die Anodeneinheit ist aus einer zweiten Elektrode 4 und einer zweiten Substratfolie 5 als zweiter Stromableiterschicht gebildet, die wiede rum in direktem Kontakt miteinander stehen. Die zweite Elektrode 4 steht in direktem Kontakt mit der Festelektrolytmembran 3. Die Festelektrolytmemb- ran 3, die zweite Elektrode 4 und die zweite Trägerfolie 5 sind fluchtend über einander angeordnet, wobei die zweite Trägerfolie 5 die geringste Dicke auf weist, die zweite Elektrode 4 die größte Dicke aufweist und die Dicke der Festelektrolytmembran 3 zwischen der Dicke der zweiten Elektrode 4 und der zweiten Trägerfolie 5 liegt. Typischerweise sind die Kapazitäten aufeinander abgestimmt, woraus sich die Dicken ergeben. Die erste Elektrode kann bei spielsweise eine Dicke von 100 pm aufweisen, die zweite Elektrode als Lithiumanode beispielsweise bis zu 10 pm. Es können auch die Dicken der ersten Trägerfolie 1 und der zweiten Trägerfolie 5 identisch sein. Die Dicke der ersten Elektrode 2 ist größer als die Dicke der Festelektrolytmembran 3, diese weist wiederum eine größere Dicke als die erste Trägerfolie 1 auf. Mit dem beschriebenen Verfahren können Batterieelektroden für Primär-und Sekun därbatterien, vorzugsweise mit Lithiumionenverbindung oder Natriumionen verbindung, Festkörpersupercapelektroden oder Schichten aus feuchtigkeits empfindlichen oder lösemittelempfindlichen Werkstoffen, also sulfidische Elektrolyte aller Art, hergestellt werden.
Figur 4 zeigt eine Rasterelektronenmikroskopaufnahme (REM-Aufnahme) ei nes Trockenfilms aus NCM, Feststoffelektrolyt (solid electrolyte, SE), Kohlen stofffasern (CNF) im Massenverhältnis 85:13:2 und 0,3 Gewichtsprozent der Gesamtmasse Polytetrafluorethylen (PTFE).
In den Figuren 5 bis 9 sind jeweils Entlade-Spannungsprofile von Testzellen der beschriebenen Festkörperbatterie dargestellt. Hierbei ist jeweils eine elektrische Spannung über der Kapazität aufgetragen. In Figur 5 beträgt der Anteil an Polytetrafluorethylen 0 Gewichtsprozent, in Figur 6 0,1 Gewichts prozent, In Figur 7 0,3 Gewichtsprozent, in Figur 8 0,7 Gewichtsprozent und in Figur 10 1 Gewichtsprozent.
In Figur 10 ist in einem Nyquist-Diagramm eine Impedanzmessung dargestellt, bei der ein Imaginärteil über einem Realteil aufgetragen ist. Die Messkurven zeigen eine Testzelle mit einem Binderanteil von 0,1 Gewichtsprozent,
0,3 Gewichtsprozent und 1 Gewichtsprozent. Der Innenwiderstand der jewei ligen Festkörperbatterie steigt mit steigendem Anteil an
Polytetrafluorethylen. Lediglich in den Ausführungsbeispielen offenbarte Ausführungsformen kön nen miteinander kombiniert und einzeln beansprucht werden.

Claims

Patentansprüche
1. Kathodeneinheit für eine Festkörperbatterie aufweisend eine Schicht aus einem Verbundwerkstoff (2), der einen Elektrodenwerkstoff, einen Festelektrolytwerkstoff, ein elektrisch leitfähiges Leitadditiv und Polytetrafluorethylen als Bindemittel aufweist, dadurch gekennzeich net, dass der Verbundwerkstoff weniger als 1 Gewichtsprozent
Polytetrafluorethylen aufweist und das Polytetrafluorethylen zumindest teilweise als fibrilliertes
Polytetrafluorethylen vorliegt.
2. Kathodeneinheit nach Anspruch 1, dadurch gekennzeichnet, dass der Verbundwerkstoff (2) den elektrisch leitfähigen Elektrodenwerkstoff in einer Menge von 60 Gewichtsprozent bis 99 Gewichtsprozent auf weist.
3. Kathodeneinheit nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Elektrodenwerkstoff LiCo02, LiNi02, LiNi!-xCox02, LiFeP04, LiMn02, LiMn204, Li2Mn3Ni08, LiNixCoyMnz02, LiNixCoyAlz02 (wobei x+y+z=l gilt), Li4Ti50i2, Li2FeSi04, Na2S, NaxMn02, Na3V2(P04)3, NaFeP04, Na2FeP04F, NaNiMn02, Na2Ti07 und/oder Na- Ti2(P04)3 oder eine Mischung daraus aufweist.
4. Kathodeneinheit nach einem der vorherigen Ansprüche, dadurch ge kennzeichnet, dass der Festelektrolytwerkstoff einen Werkstoff aus dem System Li2S-P2S5, Li2S-GeS2, Li2S-B2S3, Li6PS5CI, Li2S-SiS2, Li2S-P2S5- LiX (X=CI, Br, I), Li2S-P2S5-Li20, Li2S-P2S5-Li20-Lil, Li2S-SiS2-Lil, Li2S-SiS2- LiBr, Li2S-SiS2-LiCI, Li2S-SiS2-B2S3-Lil, Li2S-SiS2-P2S5-Lil, Li2S-P2S5-ZmSn (wobei m und n ganze Zahlen sind und M ausgewählt ist aus P, Si oder Ge), Li2S-SiS2-Li3P04, Li2S-SiS2-LipMOq (wobei p und q ganze Zahlen sind und M ausgewählt ist aus P, Si oder Ge), Na2S-P2S5, Na2S-GeS2, Na2S- B2S3, Na6PS5CI, Na2S-SiS2, Na2S-P2S5-NaX (X=CI, Br, I), Na2S-P2S5-Na20, Na2S-P2S5-Na20-Nal, Na2S-SiS2-Nal, Na2S-SiS2-NaBr, Na2S-SiS2-NaCI, Na2S-SiS2-B2S3-Nal, Na2S-SiS2-P2S5-Nal, Na2S-P2S5-ZmSn (wobei m und n ganze Zahlen sind und M ausgewählt ist aus P, Si oder Ge), Na2S-SiS2- Na3P04, Na2S-SiS2-NapMOq (wobei p und q ganze Zahlen sind und M ausgewählt ist aus P, Si oder Ge) oder eine Mischung daraus aufweist.
5. Kathodeneinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stromableiter (1) Aluminium aufweist oder aus Aluminium ausgebildet ist und/oder als eine Stromableiterschicht mit vorzugsweise doppelseitiger Beschichtung, als Streckmetall, als Fa sergewebe, oder als mit einer Primerschicht versehene
Stromableiterschicht ausgebildet ist.
6. Kathodeneinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Verbundwerkstoff lösungsmittelfrei ist.
7. Kathodeneinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Polytetrafluorethylen als vollständig mono axial oder als vollständig biaxial orientiertes Polytetrafluorethylen vor liegt.
8. Kathodeneinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektrodenwerkstoff eine auf Partikeln des Elektrodenwerkstoffs aufgebrachte Schutzschicht aufweist.
9. Kathodeneinheit nach Anspruch 8, dadurch gekennzeichnet, dass die Schutzschicht Li20-Zr02 aufweist.
10. Festkörperbatterie mit einer Kathodeneinheit nach einem der vorher gehenden Ansprüche.
11. Verfahren zum Herstellen einer Kathodeneinheit für eine Festkörper batterie, bei dem eine Pulvermischung aus einem Elektrodenwerkstoff, einem Festelekt- rolytwerkstoff, einem elektrisch leitfähigen Leitadditiv und Polytetra fluorethylen als Bindemittel hergestellt wird, wobei die Pulvermi schung unter 1 Gewichtsprozent an Polytetrafluorethylen aufweist, wobei zumindest teilweise fibrilliertes Polytetrafluorethylen in der Pulvermi schung durch Einwirken von Scherkräften auf die Pulvermischung aus gebildet wird, nachfolgend die Pulvermischung zu einer biegsamen Verbundschicht (2) umgeformt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Aus bildung des zumindest teilweise fibrillierten Polytetrafluorethylens durch Reibmahlen, Vermengen in einer Schneckenwelle oder in einer Kalanderwalzeinrichtung, Knetvorrichtung, Mörservorrichtung oder ei ner Kombination davon durchgeführt wird.
13. Verfahren nach einem der Ansprüche 11 oder 12, dadurch gekenn zeichnet, dass das Umformen der Pulvermischung zu der biegsamen Verbundschicht (2) durch Walzen, Pressen oder Extrusion durchgeführt wird.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeich net, dass das Aufbringen der biegsamen Verbundschicht (2) auf die Stromableiterschicht (1) durch ein Laminieren bei Temperaturen zwi schen 60 °C und 120 °C durchgeführt wird.
PCT/EP2019/085581 2018-12-18 2019-12-17 Kathodeneinheit und verfahren zum herstellen einer kathodeneinheit WO2020127215A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19829091.8A EP3900077A1 (de) 2018-12-18 2019-12-17 Kathodeneinheit und verfahren zum herstellen einer kathodeneinheit
KR1020217022583A KR20210114416A (ko) 2018-12-18 2019-12-17 음극 유닛 및 이의 제조 방법
CN201980083172.0A CN113424334A (zh) 2018-12-18 2019-12-17 阴极单元和制造阴极单元的方法
US17/311,408 US20220029166A1 (en) 2018-12-18 2019-12-17 Cathode unit and method for producing a cathode unit
JP2021535217A JP2022514855A (ja) 2018-12-18 2019-12-17 カソードユニット及びカソードユニットの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018222129.4 2018-12-18
DE102018222129.4A DE102018222129A1 (de) 2018-12-18 2018-12-18 Kathodeneinheit und Verfahren zum Herstellen einer Kathodeneinheit

Publications (1)

Publication Number Publication Date
WO2020127215A1 true WO2020127215A1 (de) 2020-06-25

Family

ID=69061334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/085581 WO2020127215A1 (de) 2018-12-18 2019-12-17 Kathodeneinheit und verfahren zum herstellen einer kathodeneinheit

Country Status (7)

Country Link
US (1) US20220029166A1 (de)
EP (1) EP3900077A1 (de)
JP (1) JP2022514855A (de)
KR (1) KR20210114416A (de)
CN (1) CN113424334A (de)
DE (1) DE102018222129A1 (de)
WO (1) WO2020127215A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878037A1 (de) 2018-11-06 2021-09-15 QuantumScape Battery, Inc. Elektrochemische zellen mit katholytadditiven und mit lithiumgefüllten granat-separatoren
DK180885B1 (en) * 2020-11-18 2022-06-14 Blue World Technologies Holding ApS Method of producing a self-supported electrode film in a wet process without organic solvent
TW202320375A (zh) * 2021-09-09 2023-05-16 美商科慕Fc有限責任公司 用於高電壓鋰離子二次電池的陰極及用於製造其之乾式法
KR20240110654A (ko) 2021-11-30 2024-07-15 퀀텀스케이프 배터리, 인코포레이티드 고체-상태 배터리를 위한 캐소드액
CA3241189A1 (en) 2021-12-17 2023-06-22 Cheng-Chieh Chao Cathode materials having oxide surface species
WO2023167298A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
JP7485999B2 (ja) * 2022-03-02 2024-05-17 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
DE102022106527A1 (de) 2022-03-21 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur lösungsmittelfreien Elektrodenherstellung sowie Elektrode
WO2023205462A1 (en) * 2022-04-21 2023-10-26 Quantumscape Battery, Inc. Solvent-less cathode composition and process for making
WO2023223066A1 (ja) * 2022-05-19 2023-11-23 日産自動車株式会社 二次電池
JP2024102026A (ja) * 2023-01-18 2024-07-30 ダイキン工業株式会社 テトラフルオロエチレン系ポリマー組成物、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池
CN116404117B (zh) * 2023-06-07 2023-08-11 四川富临新能源科技有限公司 提高钠离子正极材料容量的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254367A (ja) 1986-01-17 1987-11-06 Matsushita Electric Ind Co Ltd 固体電解質二次電池
JP2012099315A (ja) 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 全固体リチウム電池用正極とその製造方法および全固体リチウム電池
JP2012164571A (ja) 2011-02-08 2012-08-30 Sumitomo Electric Ind Ltd 負極体及びリチウムイオン電池
WO2014041108A1 (de) * 2012-09-14 2014-03-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Li-s-batterie mit hoher zyklenstabilität und verfahren zu deren betreiben
EP2820699A1 (de) * 2012-02-28 2015-01-07 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Kathode für lithium-haltige batterien und lösungsmittelfreies verfahren zu deren herstellung
CN105489931A (zh) * 2015-12-24 2016-04-13 国联汽车动力电池研究院有限责任公司 硫化物电解质在制备全固态电池中的应用
US20160248120A1 (en) 2015-02-19 2016-08-25 Samsung Electronics Co., Ltd. All solid secondary battery and method of manufacturing the same
DE102017208220A1 (de) 2017-05-16 2018-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines Trockenfilms sowie Trockenfilm und mit dem Trockenfilm beschichtetes Substrat

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050266298A1 (en) * 2003-07-09 2005-12-01 Maxwell Technologies, Inc. Dry particle based electro-chemical device and methods of making same
US7352558B2 (en) * 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
KR101122500B1 (ko) * 2004-04-16 2012-03-15 미쓰비시 세이시 가부시키가이샤 전기 화학 소자용 세퍼레이터
CN102089907A (zh) * 2008-07-17 2011-06-08 旭硝子株式会社 非水电解质电池用负极复合材料
WO2012001773A1 (ja) * 2010-06-29 2012-01-05 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法、リチウム固体電池の製造方法
EP2689438B1 (de) * 2011-03-23 2022-11-16 Mespilus Inc. Polarisierte elektrode für durchflusskapazitive entionisierung
JP2013089321A (ja) * 2011-10-13 2013-05-13 Samsung Yokohama Research Institute Co Ltd リチウムイオン二次電池及びリチウムイオン二次電池用正極活物質の製造方法
JP5828304B2 (ja) * 2012-06-29 2015-12-02 トヨタ自動車株式会社 複合活物質、固体電池および複合活物質の製造方法
WO2017026269A1 (ja) * 2015-08-10 2017-02-16 ソニー株式会社 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US20190367676A1 (en) * 2017-02-23 2019-12-05 Asahi Kasei Kabushiki Kaisha Composition, Composite Membrane, and Membrane Electrode Assembly
WO2018213891A1 (en) * 2017-05-26 2018-11-29 Aquahydrex Pty Ltd Electrochemical cells for use with gas mixtures
JP6988502B2 (ja) * 2018-01-17 2022-01-05 トヨタ自動車株式会社 全固体電池用正極合剤、全固体電池用正極、全固体電池及びこれらの製造方法
JP2022506189A (ja) * 2018-11-08 2022-01-17 マックスウェル テクノロジーズ インコーポレイテッド 塩及び/又は発泡体を含むエネルギー貯蔵装置用の組成物及び方法
US11411246B2 (en) * 2018-12-06 2022-08-09 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing all-solid secondary battery
DE102018222142A1 (de) * 2018-12-18 2020-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer Festelektrolytmembran oder einer Anode und Festelektrolytmembran oder Anode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254367A (ja) 1986-01-17 1987-11-06 Matsushita Electric Ind Co Ltd 固体電解質二次電池
JP2012099315A (ja) 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 全固体リチウム電池用正極とその製造方法および全固体リチウム電池
JP2012164571A (ja) 2011-02-08 2012-08-30 Sumitomo Electric Ind Ltd 負極体及びリチウムイオン電池
EP2820699A1 (de) * 2012-02-28 2015-01-07 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Kathode für lithium-haltige batterien und lösungsmittelfreies verfahren zu deren herstellung
WO2014041108A1 (de) * 2012-09-14 2014-03-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Li-s-batterie mit hoher zyklenstabilität und verfahren zu deren betreiben
US20160248120A1 (en) 2015-02-19 2016-08-25 Samsung Electronics Co., Ltd. All solid secondary battery and method of manufacturing the same
CN105489931A (zh) * 2015-12-24 2016-04-13 国联汽车动力电池研究院有限责任公司 硫化物电解质在制备全固态电池中的应用
DE102017208220A1 (de) 2017-05-16 2018-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines Trockenfilms sowie Trockenfilm und mit dem Trockenfilm beschichtetes Substrat

Also Published As

Publication number Publication date
US20220029166A1 (en) 2022-01-27
JP2022514855A (ja) 2022-02-16
DE102018222129A1 (de) 2020-06-18
KR20210114416A (ko) 2021-09-23
CN113424334A (zh) 2021-09-21
EP3900077A1 (de) 2021-10-27

Similar Documents

Publication Publication Date Title
EP3900077A1 (de) Kathodeneinheit und verfahren zum herstellen einer kathodeneinheit
EP3900075A2 (de) Verfahren zum herstellen einer festelektrolytmembran oder einer anode und festelektrolytmembran oder anode
DE112020003729T5 (de) Festelektrolyt, festelektrolytschicht und festelektrolytzelle
DE102015222553B4 (de) Kathode für eine Festkörper-Lithium-Batterie und Akkumulator, bei welchem diese eingesetzt wird
WO2012113606A1 (de) Elektrodenmaterial mit hoher kapazität
DE112018002066T5 (de) Festkörper-lithiumionen-sekundärbatterie
WO2018113807A1 (de) Lithium-ionen-festkörperakkumulator sowie verfahren zur herstellung desselben
EP3704752B1 (de) Verfahren und vorrichtung zur herstellung eines funktionselements für eine elektrodeneinheit einer batteriezelle
DE102016215064A1 (de) Beschichteter Festkörperelektrolyt
DE102018114195B4 (de) PEO-PVA-basiertes Bindemittel für Lithium-Schwefel-Batterien
DE102014225052A1 (de) Struktur einer komplexierten Kathode mit Li₂S
DE19751289A1 (de) Wiederaufladbare Lithiumanode für eine Batterie mit Polymerelektrolyt
DE112011102079T5 (de) Aktives Material für eine wiederaufladbare Batterie
EP3008768B1 (de) Lithium-ionen-zelle für eine sekundärbatterie
DE102019211857B3 (de) Lithium-sekundärbatterie, verwendung einer lithium-sekundärbatterie und verfahren zur herstellung einer lithium-sekundärbatterie
DE102020112419A1 (de) Aktives material einer negativen elektrode für eine festkörperbatterie, negative elektrode, die das aktive material verwendet, und festkörperbatterie
DE102017218158A1 (de) Verfahren zur Herstellung einer Elektrode und galvanisches Element umfassend eine Elektrode
DE112022006254T5 (de) Negative elektrode für festelektrolytbatterie und festelektrolytbatterie
WO2019038348A1 (de) Festkörperbatterie auf basis einer ionenleitfähigen matrix aus campher oder 2-adamantanon
DE102018213539A1 (de) (Co-) Polymer mit einer funktionellen Nitril-Gruppe für Festkörperelektrolytmaterial
DE102021211680B4 (de) Elektrode für eine Lithiumionenzelle, Lithiumionenzelle, Verfahren zum Herstellen einer Elektrode für eine Lithiumionenzelle
DE10163389B4 (de) Zink-Elektrode, Verfahren zu deren Herstellung und wiederaufladbare Batterie
DE102023116764A1 (de) Elektrode, festkörperbatterie und verfahren zur herstellung der elektrode
DE102023130384A1 (de) Positivelektrodenmaterial, feststoffbatterie, verfahren zum herstellen eines positivelektrodenmaterials und verfahren zum herstellen einer feststoffbatterie
DE102022116107A1 (de) Festkörperelektrode mit integriertem sulfidseparator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019829091

Country of ref document: EP

Effective date: 20210719