WO2020125489A1 - 清洁机器人及其控制方法和地面处理系统 - Google Patents

清洁机器人及其控制方法和地面处理系统 Download PDF

Info

Publication number
WO2020125489A1
WO2020125489A1 PCT/CN2019/124253 CN2019124253W WO2020125489A1 WO 2020125489 A1 WO2020125489 A1 WO 2020125489A1 CN 2019124253 W CN2019124253 W CN 2019124253W WO 2020125489 A1 WO2020125489 A1 WO 2020125489A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning robot
mopping module
mopping
robot according
module
Prior art date
Application number
PCT/CN2019/124253
Other languages
English (en)
French (fr)
Inventor
张士松
毋宏兵
谢明健
徐建强
钟红风
李佶
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2020125489A1 publication Critical patent/WO2020125489A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4052Movement of the tools or the like perpendicular to the cleaning surface
    • A47L11/4055Movement of the tools or the like perpendicular to the cleaning surface for lifting the tools to a non-working position
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4072Arrangement of castors or wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4091Storing or parking devices, arrangements therefor; Means allowing transport of the machine when it is not being used
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/028Refurbishing floor engaging tools, e.g. cleaning of beating brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning

Definitions

  • the invention relates to the field of robots, in particular to a cleaning robot and its control method and ground processing system.
  • the current intelligent mopping machine or intelligent sweeping and mopping machine is equipped with a mop to wipe the ground and improve the cleanliness of the ground.
  • a mop to wipe the ground and improve the cleanliness of the ground.
  • indoor obstacles such as steps, thresholds, etc.
  • the machine cannot pass the obstacles, and most of them choose to avoid these obstacles.
  • more and more decorative objects such as carpets are used in the existing indoor environment.
  • interference between the mop and the carpet often occurs, which causes the carpet to be stained by stains on the mop.
  • the problem to be solved by the present invention is to provide a cleaning robot capable of automatically lifting the cleaning device, a control method thereof and a ground treatment system.
  • a cleaning robot includes: a fuselage; a walking device that supports the fuselage and drives the cleaning robot to move on a work surface; On the fuselage, the cleaning work is performed on the working surface; the control device controls the walking device to drive the cleaning robot to move; the power device provides power to the walking device; the cleaning robot further includes a lifting device, and the lifting device includes A lifting mechanism and a support, wherein the control device can control the lifting mechanism to raise the cleaning device from a first position relative to a work surface to a second position; the support is used to lift the cleaning device At this time, a support point relative to the working surface that is different from the walking device is provided.
  • the support member includes a support wheel.
  • the cleaning device includes a mopping module.
  • the cleaning robot is a household and/or indoor service robot.
  • the mopping module includes a mopping floor for detachably installing the wiper.
  • it further includes a liquid tank, and the control device controls the liquid tank to supply liquid to the mopping module when the cleaning robot is working, and stops feeding the mopping module when the mopping module is lifted
  • the ground module supplies liquid.
  • the mopping module is disposed at the front end of the bottom of the fuselage.
  • the support point is located between the mopping module and the walking device.
  • the support point is located before the mopping module.
  • the force of the support member on the working surface when the mopping module is in the second position is greater than the force of the support member on the working surface when the mopping module is in the first position.
  • the lifting mechanism includes a mopping module lifting mechanism that can drive the mopping module to lift from a first position to a second position relative to the work surface.
  • the lifting mechanism of the mopping module includes a lifting mechanism.
  • the lifting mechanism includes a lifting motor and a transmission mechanism.
  • the lifting motor drives the transmission mechanism to drive the mopping module to move up and down.
  • the transmission mechanism includes: a first linkage mechanism composed of a four-stage linkage, the first linkage mechanism includes: a first linkage mechanism with one end fixedly connected to the lifting motor, and one end with A second link mechanism linked with the other end of the first link mechanism, a third link mechanism linked with the other end and a third link mechanism linked with the other end of the second link mechanism A fourth link mechanism that is linked with the other end of the third link mechanism and another end that is linked with the mopping module, and the lifting motor drives the first linkage mechanism to drive the mopping module to move up and down.
  • the transmission mechanism includes: a second linkage mechanism composed of two-stage links
  • the second linkage mechanism includes: a fifth linkage mechanism fixedly connected to the lifting motor, the One end of the five-link mechanism is linked with one end of the sixth link mechanism, the other end of the sixth link mechanism is linked with the mopping module, and the lifting motor drives the second linkage mechanism to drive the mopping module move up and down.
  • the transmission mechanism includes: a first cam mechanism, an edge portion of the first cam mechanism is connected to the mopping module, and the lifting motor drives the first cam mechanism to rotate, so The first cam mechanism drives the mopping module to move up and down.
  • the transmission mechanism further includes: a lifting frame, the first cam mechanism is installed in the lifting frame, the first cam mechanism is connected to the mopping module through the lifting frame,
  • the lifting motor drives the first cam mechanism to rotate, the first cam mechanism drives the lifting frame to move up and down, and the lifting frame drives the mopping module to move up and down.
  • the transmission mechanism includes a gear screw engagement device or a belt transmission device.
  • the mopping module lifting mechanism includes a swing mechanism that drives the cleaning device to swing to raise the mopping module from the first position to the second position relative to the work surface.
  • the mopping module is detachably mounted on the fuselage.
  • the transmission mechanism further includes: a second cam mechanism or a lever mechanism, the lifting motor drives the second cam mechanism or the lever mechanism to rotate, and the second cam mechanism or the lever mechanism When the lever mechanism contacts the mopping module, it can apply downward force to the mopping module, thereby separating the mopping module from the fuselage.
  • the fuselage further includes a limit device, the limit device includes a first inclined surface and a second inclined surface, when the mopping module is in the first position, the second cam mechanism The edge of the first part of abuts against the first inclined surface; when the mopping module is in the separated position, the edge of the second part of the second cam mechanism abuts against the second inclined surface.
  • the transmission mechanism includes: a first cam mechanism, an edge portion of the first cam mechanism is connected to the mopping module, and the lifting motor drives the first cam mechanism to rotate, so The first cam mechanism drives the mopping module to move up and down, and the first cam mechanism moves synchronously with the second cam mechanism or the lever mechanism.
  • a protruding device is provided downward on the fuselage, and the protruding device and the mopping module generate relative motion to contact the mopping module, so that the mopping module and the mopping module The fuselage is separated.
  • the mopping module lifting mechanism is also used to drive the mopping module to lift from a second position opposite to the working surface to a third position where the mopping module is removed.
  • the fuselage is provided with a push-pull electromagnet and a push rod matched with the iron core of the push-pull electromagnet.
  • the control device controls the position by energizing the push-pull electromagnet
  • the push rod acts on the mopping module, thereby separating the mopping module from the fuselage.
  • an electromagnet is provided on the fuselage to cooperate with the magnet on the mopping module, and the control device controls the mowing by controlling the magnitude or direction of the current passing through the electromagnet
  • the ground module is separated from the fuselage.
  • the control device judges the position of the mopping module relative to the working surface by comparing the detection signal with a preset value.
  • the position detection device of the mopping module includes a magnetic detection sensor, and the position marker is a magnetic element.
  • the magnetic detection sensor is a Hall sensor
  • the magnetic element is a magnet or magnetic steel.
  • the support is movably connected to the fuselage, and when the mopping module is in the second position, the distance between the support and the top of the fuselage is greater than the mopping When the module is in the first position, the distance between the support and the top of the fuselage.
  • the lifting device includes a support adjustment mechanism that drives the support to fall when the mopping module is lifted, and drives the support when the mopping module falls Pack away.
  • the supporting member adjustment mechanism is linked with the mopping module lifting mechanism.
  • the support adjustment mechanism includes: a rack and pinion engagement device or a connecting rod device.
  • the lifting device includes an elastic member that connects the support member and the fuselage.
  • the lifting mechanism includes a movable support mechanism that connects the support member and the fuselage; the control device controls the movable support mechanism to drive the support member to extend Out position, so that the mopping module is lifted from the first position relative to the work surface to the second position; the control device controls the movable support mechanism to drive the support member to the stowed position, so that the mopping floor The module falls from the second position relative to the work surface to the first position.
  • the movable support mechanism includes a swing mechanism or a lifting mechanism that drives the support member to fall or retract, so that the mopping module is lifted or dropped.
  • the cleaning robot further includes a radar sensor and/or an optical sensor, and the height of the radar sensor and/or the optical sensor is substantially unchanged when the support member is dropped or retracted.
  • it further includes a detection device, and the control device controls the lifting mechanism to adjust the position of the mopping module relative to the work surface according to the detection result of the detection device.
  • the detection device includes an environment detection sensor and/or an own state detection sensor.
  • the environment detection sensor is an obstacle detection sensor, and when the environment detection sensor detects an obstacle, the control device controls the lifting mechanism to place the mopping module in the second position; After the cleaning robot crosses the obstacle, the control device controls the lifting mechanism to place the mopping module in the first position.
  • the obstacle detection sensor includes a visual sensor or an infrared sensor or a laser sensor or an ultrasonic sensor.
  • the environment detection sensor is used to detect the ground state.
  • the control device controls the lifting mechanism to place the mopping module in the first position. Two positions; when the environment detection sensor detects that the ground state is the floor, the control device controls the lifting mechanism to make the mopping module in the first position.
  • the environment detection sensor is a visual sensor or a radar sensor
  • the control device determines the ground state based on the ground image acquired by the visual sensor or the ground material type detected by the radar sensor.
  • the control device when the environment detection sensor detects that the cleaning robot reaches the base station, controls the lifting mechanism to raise the mopping module to the second position.
  • the mopping module is detachably mounted on the fuselage, and when the detection device detects that the cleaning robot reaches the position of unloading the wiper, the control device controls the lifting mechanism to drive The mopping module is raised from a second position opposite the working surface to a third position where the mopping module is removed or the control device controls the mopping module to be separated from the fuselage at the second position opposite the working surface.
  • the control device controls the lifting mechanism to drive the mopping module to the first position or the fourth position.
  • the fourth position is higher than or equal to the first position and lower than the second position.
  • the environment detection sensor is a distance measuring sensor or a positioning sensor.
  • the distance measuring sensor is an infrared sensor or a laser sensor or an ultrasonic sensor.
  • the positioning sensor is a magnetic detection sensor.
  • the magnetic detection sensor is a Hall effect sensor or a reed switch effect sensor.
  • the self-state detection sensor is used to detect the degree of staining or damage of the mopping module.
  • the replacement program of the mopping module is started.
  • the control device controls the lifting mechanism to place the mopping module in the second position.
  • the self-state detection sensor is a capacitive sensor or a resistive sensor or a visual sensor.
  • the self-state detection sensor is used to detect the cleaning time or cleaning area of the cleaning robot.
  • a mopping module replacement program is started.
  • the control device controls the lifting mechanism to place the mopping module in the second position.
  • the self-state detection sensor is further used to detect the cleaning frequency of the cleaning robot, and increase or decrease the preset value according to the cleaning frequency.
  • the self-state detection sensor is further used to detect the cleaning frequency of the cleaning robot, and increase or decrease the preset value according to the cleaning frequency.
  • the self-state detection sensor is used to detect the cleaning frequency of the cleaning robot.
  • a mopping module replacement program is started, and under the mopping module replacement program, The control device controls the lifting mechanism to place the mopping module in the second position.
  • the self-state detection sensor is a signal receiver for receiving the cleaning frequency or cleaning time or cleaning area of the cleaning robot sent from the user terminal.
  • the self-state detection sensor is a timer or a counter or an odometer.
  • the control device controls the cleaning robot to return to the base station.
  • the detection device is used to detect the battery power.
  • the control device controls the cleaning robot to start returning to the base station, and at the same time, the control device controls the lifting mechanism Put the mopping module in the second position.
  • the control device controls the lifting mechanism to place the mopping module in the second position.
  • the self-state detection sensor is a collision sensor, and when the detected collision frequency is greater than a preset value, the control device determines that the cleaning robot is trapped or stuck.
  • the self-state detection sensor is a speed sensor or an acceleration sensor.
  • the control device determines that the cleaning robot is trapped or Stuck.
  • the speed sensor is a wheel speed sensor.
  • the self-state detection sensor is a positioning sensor for acquiring the current position of the cleaning robot.
  • the control device determines The cleaning robot is stuck or stuck.
  • the positioning sensor is a laser ranging sensor or a visual sensor.
  • the self-state detection sensor is a tilt sensor
  • the control device determines whether the posture of the cleaning robot is tilted upward or downward according to the detection result of the tilt sensor and the size of the preset value.
  • the control device judges that the attitude of the cleaning robot is inclined upward
  • the control device controls the lifting mechanism to raise the mopping module to a second position
  • the control device judges that the attitude of the cleaning robot is downward
  • the control device controls the lifting mechanism to lower the mopping module to the first position.
  • a control method of a cleaning robot wherein the cleaning robot includes: a fuselage; a walking device that supports the fuselage and drives the cleaning robot to move; a cleaning device that is installed on the fuselage to perform cleaning on a work surface Work; a control device that controls the walking device to drive the cleaning robot to move; a power device that provides power to the walking device; includes the steps of: starting the cleaning robot into a working state, controlling the cleaning device to be in a first position relative to the work surface; Whether the cleaning device needs to be lifted, and if so, control the cleaning device to be lifted from the first position to the second position relative to the work surface, while providing a support point relative to the work surface that is different from the walking device.
  • the cleaning device includes a mopping module.
  • the mopping module when an obstacle is detected, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to a second position. After the cleaning robot passes the obstacle, the mopping module is controlled to return to the first position position.
  • a mopping module replacement procedure is started, and under the mopping module replacement procedure, it is determined that the mopping module needs to be lifted and controlled The mopping module is raised to the second position.
  • a mopping module replacement program when it is detected that the cleaning time or cleaning area of the cleaning robot reaches a preset value, a mopping module replacement program is started. Under the mopping module replacement program, it is determined that the mopping module needs to be lifted, and the The mopping module is raised to the second position.
  • a mopping module replacement program is started, and under the mopping module replacement program, it is determined that the mopping module needs to be lifted, and the mopping floor is controlled The module is raised to the second position.
  • the mopping module when the carpet is detected, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to a second position; when the floor is detected, the mopping module is controlled to return to the first position.
  • a program for returning to the base station is started. Under the returning program for the base station, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to the second position.
  • the mopping module when it is detected that the cleaning robot is trapped or stuck, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be lifted to the second position.
  • the detected collision frequency is greater than a preset value, it is determined that the cleaning robot is trapped or stuck.
  • the mopping module when it is determined that the cleaning robot's posture is tilted upward, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to a second position; when it is determined that the cleaning robot's posture is tilted down , Then the mopping module is controlled to descend to the first position.
  • the mopping module when it is detected that the cleaning robot reaches the base station, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be lifted to the second position.
  • the mopping module when it is detected that the cleaning robot reaches the position of unloading the mopping module, the mopping module is controlled to be raised from the second position opposite the working surface to the third position where the mopping module is disassembled or the control station is controlled.
  • the mopping module is separated from the fuselage at a second position opposite the working surface.
  • an electromagnet is provided on the fuselage, which cooperates with the magnet on the mopping module.
  • the mopping module when it is detected that the cleaning robot reaches the position where the mopping module is loaded, the mopping module is controlled to move to the first position or the fourth position.
  • the fourth position is higher than or equal to the first position and lower than the second position.
  • the mopping module is disposed at the front end of the fuselage.
  • the support point is located between the mopping module and the walking device.
  • the support point is located before the mopping module.
  • a ground processing system includes a base station and a cleaning robot, wherein the cleaning robot includes a fuselage; a walking device that supports the fuselage and drives the cleaning robot to move; a control device that controls the walking device to drive the cleaning robot to move;
  • the power device provides power for the walking device;
  • the ground treatment system also includes a mopping module that can be installed on the fuselage to perform mopping work;
  • the cleaning robot also includes a lifting device and a detection device, and the lifting device includes a lifting device A mechanism and a support, wherein the control device can control the lifting mechanism to lift the mopping module from a first position to a second position relative to the work surface;
  • the support is used for the mopping module When lifting, provide a support point relative to the work surface that is different from the walking device;
  • a detection device for detecting whether the mopping module needs to be replaced;
  • the base station is provided with a mop slot for holding the mopping module, And a mopping module replacement device; when the detection device detects that the mopping
  • the lifting mechanism includes a mopping module lifting mechanism, and when the detection device detects that the degree of staining or damage of the mopping module reaches a preset value, the control device controls the cleaning robot to start the mopping module
  • the replacement procedure under the replacement procedure of the mopping module, returns to the base station, and controls the lifting mechanism of the mopping module to raise the mopping module from the first position to the second position relative to the work surface.
  • the mopping module is detachably mounted on the fuselage, and when the cleaning robot reaches the position of unloading the mopping module at the base station, the control device controls the lifting mechanism of the mopping module to The mopping module is raised from a second position relative to the working surface to a third position where the mopping module is removed or the control device controls the mopping module to be separated from the fuselage at the second position relative to the working surface.
  • control device controls the cleaning robot to continue to move, and when the base station is loaded with the mop module, the control device controls the lifting mechanism to place the mop module in the first position or the fourth position ,
  • the fourth position is higher than or equal to the first position, and lower than the second position.
  • the beneficial effect of the present invention is that the cleaning robot can detect whether the cleaning device needs to be lifted during work, and control the lifting and falling of the cleaning device according to the detection result. Therefore, even when the ground state changes, such as when encountering a carpet, or when encountering obstacles, it has better passability, and can avoid staining the carpet or obstacles.
  • the control device controls the lifting device to lift the mopping module in time, which can effectively prevent secondary pollution or cross-contamination, and the cleaning effect is better.
  • FIG. 1 is a schematic diagram of a ground processing system according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a cleaning robot according to one embodiment of the present invention.
  • FIG. 3 is a top view of the cleaning robot shown in FIG. 2;
  • FIG. 4 is a block diagram of a cleaning robot in an embodiment of the invention.
  • FIG. 5 is a schematic diagram of a cleaning robot with a mopping module in a first position according to one embodiment of the present invention
  • FIG. 6 is a schematic diagram of the cleaning robot shown in FIG. 5 when the mopping module is in the second position;
  • FIG. 7 is a schematic diagram of a cleaning robot with a mopping module in a first position according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the cleaning robot shown in FIG. 7 when the mopping module is in the second position;
  • FIG. 9 is a structural diagram of a lifting mechanism of a mopping module of a cleaning robot according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a lifting mechanism of a mopping module of a cleaning robot according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the cleaning robot shown in FIG. 5 when the mopping module is in the third position;
  • FIG. 12 is a schematic diagram of the cleaning robot shown in FIG. 5 when the mopping module comes off;
  • FIG. 13 to 14 are schematic diagrams of the support of the cleaning robot movably connected to the fuselage according to one embodiment of the present invention.
  • 15 to 16 are schematic diagrams of a movable connection of a cleaning robot according to another embodiment of the present invention to a fuselage;
  • FIG. 17 is a schematic view of the support of the cleaning robot movably connected to the fuselage of another embodiment of the present invention.
  • 18 to 20 are schematic views of the support of the cleaning robot movably connected to the fuselage of another embodiment of the present invention.
  • 21 is a partial schematic diagram of a cleaning robot according to another embodiment of the invention.
  • FIG. 22 is a schematic diagram of a cleaning robot working normally according to another embodiment of the present invention.
  • FIG. 23 is a schematic diagram of the cleaning robot of FIG. 22 detecting the carpet and lifting the mopping module;
  • FIG. 24 is a schematic diagram of the cleaning robot of FIG. 22 moving on the carpet and lifting the mopping module;
  • FIG. 25 is a schematic diagram of the cleaning robot of FIG. 22 when it contacts the floor again after passing through the carpet;
  • 26 is a schematic diagram of a cleaning robot working normally according to another embodiment of the present invention.
  • FIG. 27 is a schematic diagram of the cleaning robot mopping module shown in FIG. 26 lifted over obstacles;
  • FIG. 28 is a schematic diagram of the cleaning robot mopping module shown in FIG. 26 after being lifted over an obstacle;
  • FIG. 29 is a schematic diagram of the normal operation of the cleaning robot according to one embodiment of the present invention.
  • FIG. 30 is a schematic diagram of the cleaning robot body shown in FIG. 29 being lifted over obstacles;
  • FIG. 31 is a schematic diagram of the cleaning robot body shown in FIG. 29 after crossing an obstacle
  • FIG. 32 is a schematic diagram of the normal operation of the cleaning robot according to another embodiment of the present invention.
  • FIG. 33 is a schematic diagram of the cleaning robot of FIG. 32 over the obstacle, when the front of the fuselage is lifted, the mopping module rises;
  • Fig. 34 is a schematic diagram of the cleaning robot of Fig. 32 when the rear of the fuselage is lifted and the mopping module is lowered;
  • FIG. 35 is a schematic diagram of the cleaning robot of FIG. 32 when contacting the ground again after crossing the obstacle.
  • 37 to 39 are schematic diagrams of a cleaning robot automatically changing a mop in one embodiment of the present invention.
  • Fig. 40 to Fig. 43 are schematic diagrams of the process of the cleaning robot automatically changing the mop according to another embodiment of the present invention.
  • FIG. 44 is a schematic diagram of a cleaning robot according to another embodiment of the present invention.
  • FIG. 45 is a top view of the cleaning robot shown in FIG. 44;
  • 46 is a schematic structural diagram of a lifting mechanism of a mopping module according to a third embodiment
  • FIG. 48 is a schematic structural diagram of a lifting mechanism of a mopping module of a fifth embodiment
  • FIGS. 49 to 50 are schematic diagrams showing that the support of the cleaning robot according to another embodiment of the present invention is movably connected to the fuselage;
  • FIG. 51 is a schematic diagram of the support of the cleaning robot movably connected to the fuselage of another embodiment of the present invention.
  • 52 to 53 are schematic diagrams of the movable member of the cleaning robot connected to the fuselage according to another embodiment of the present invention.
  • 55 to 57 are schematic diagrams of the falling process of the mopping module of the cleaning robot according to one embodiment of the present invention.
  • 58 to 60 are schematic diagrams of the falling process of the mopping module of the cleaning robot according to another embodiment of the present invention.
  • 61 to 65 are schematic diagrams of a process in which the cleaning robot detects the ground state and controls the lifting of the mopping module according to another embodiment of the present invention.
  • 66 to 69 are schematic diagrams of a process in which the cleaning robot detects the ground state and controls the lifting of the mopping module according to another embodiment of the present invention.
  • 70 is a schematic diagram of installation of a position detection device and position marker of a mopping module of a cleaning robot according to an embodiment of the invention.
  • 71 is a schematic diagram of the cleaning robot of the fifth embodiment when the mopping module is in the first position
  • 73 is a schematic diagram of a mop dropping structure of the mopping module of the cleaning robot of the fifth embodiment
  • FIG. 74 is a schematic structural diagram of a stop device of the cleaning robot of FIG. 71.
  • Push-pull electromagnet 62 Push rod
  • FIG. 1 it is a schematic diagram of a ground processing system according to an embodiment of the present invention
  • the ground processing system includes a base station 2 and a cleaning robot 1.
  • the cleaning robot 1 may be a household and/or indoor service robot, such as a floor cleaning robot.
  • the floor cleaning robot may be an automatic mopping machine, or an automatic mopping and sweeping machine, or an automatic sweeping machine.
  • the cleaning robot 1 works in the work area to complete tasks such as mopping and sweeping.
  • the program for returning to the base station is started to clean
  • the robot 1 returns to the base station 2 to complete the automatic replacement operation of the wiper and/or the charging operation.
  • the base station 2 includes a bottom plate 207, a support plate 206, and an upper plate 205, wherein the upper plate 205 is connected to the bottom plate 207 through the support plate 206; the upper plate 205 is provided with a new mop slot 203, an old mop slot 204, and a mop replacement device (not shown in the figure) (Shown), the mop changing device may use a lifting mechanism, a swing mechanism, etc., and the projection of the new mop slot 203 and the old mop slot 204 on the bottom plate 207 corresponds to the second parking position 202 and the first parking of the cleaning robot 1 on the bottom plate 207 Position 201; It can be understood that the positions of the old and new mop slots 203 and 204 are not fixed.
  • the positions of the new and old mop slots 203 and 204 can also be swapped.
  • the cleaning robot 1 completes the unloading of the old wiper at the first docking position 201, and is recovered by the mop replacement device of the base station 2, and the new wiper is released by the mop replacement device of the base station 2, so that the cleaning robot 1 is at the second docking position Complete loading of new wipes.
  • the wiper can be a mop, wet wipes, cleaning paper, sponge wipe, etc. In the embodiment of the present invention, the wiper is used as an example of the mop, to expand the description, when the wiper is other types, the same applies, no longer Expand the details.
  • the cleaning robot 1 is a cleaning robot, specifically an automatic mopping machine.
  • the cleaning robot 1 includes a body 11, a detection device 10, a control device 30, a walking device 40, a cleaning device 50, a power supply device 60 and a power device 70.
  • the walking device 40 supports the body 11 and drives the cleaning robot 1 to move, which is disposed at the rear end of the body 11.
  • the walking device 40 specifically includes two driving wheels 12 located on both sides of the cleaning robot 1 and can be independently driven by the power device 70.
  • Such an arrangement can control the traveling speed and direction of the walking device 40 by controlling the speed and speed difference of the two driving wheels, so that the cleaning robot 1 can move and steer flexibly and accurately.
  • the walking device 40 may have other forms, such as a crawler type.
  • the power device 70 provides power for the movement and work of the cleaning robot 1. Specifically, it includes a motor located in the cleaning robot 1 and a transmission structure connected to the motor to provide power for the walking device 40.
  • the transmission mechanism is connected to the walking device 40, and the motor drives the transmission mechanism to work.
  • the transmission function of the transmission mechanism causes the walking device 40 to move.
  • the walking device 40 receives the engagement of the control device 30 and drives the cleaning robot 1 to automatically walk on the work surface.
  • the control device 30 is the control center of the cleaning robot 1, and is electrically connected to devices such as the power device 70, the power supply device 60, and the detection device 10, and receives information sent from each device.
  • the control device 30 controls the power device 70 to drive the walking device 40 to drive the cleaning robot 1 to move, and controls the cleaning robot 1 to perform various actions or tasks such as work area switching, returning to the base station, and charging.
  • the control device 30 may be an embedded digital signal processor (Digital Signal Processor, DSP), a microprocessor (Micro Processor Unit, MPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a programmable logic device (Programmable Logic Device) , PLD) System on Chip (SOC), Central Processing Unit (CPU) or Field Programmable Gate Array (FPGA), etc.
  • DSP Digital Signal Processor
  • MPU Micro Processor Unit
  • ASIC Application Specific Integrated Circuit
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic device
  • SOC Central Processing Unit
  • CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • the power supply device 60 provides working energy for the control device 30, the power device 70, the detection device 10, and the like of the cleaning robot 1.
  • the power supply device 60 is usually a rechargeable battery, which provides power for the operation of the cleaning robot, or can be connected to an external power source for charging; preferably, the power supply device 60 has a charging or discharging protection unit, which can protect the charging or discharging of the power supply device 60 .
  • the cleaning device 50 is used to be mounted on the body 11.
  • the cleaning device 50 includes a mopping module 14, wherein the mopping module 14 includes a mopping floor, and a mop can be detachably installed for performing the mopping work of the cleaning robot 1.
  • the mopping module 14 is disposed at the front end of the fuselage 11, the mopping area is larger, and the mopping effect is better.
  • the mopping module may also be disposed 14 at the middle or rear end of the fuselage 11.
  • the cleaning robot 1 is an automatic sweeping and dragging machine, including a dust collecting device and a cleaning device, wherein the cleaning device 50 includes a mopping module, a roller brush, and a side brush.
  • the mopping module 14 is disposed at the front of the fuselage 11 and is located between the roller brush 41 and the roller brush 42 and the driving wheel 12, such an arrangement facilitates the cleaning robot 1 to sweep the floor first Mopping the floor again to enhance the cleaning effect.
  • the roller brush and side brush mechanism adopt the common roller brush and side brush in the industry to clean dust and other debris on the ground, corners, etc.
  • the dust collecting device includes a dust box 39, a fan and other components. The dust removed by the roller brush 41 and the roller brush 42 is collected into the dust box 39.
  • the cleaning robot 1 of the embodiment of the present invention further includes a lifting device for lifting the cleaning device 50.
  • the lifting device is used to lift the mopping module 14.
  • the lifting device includes a lifting mechanism, wherein the control device 30 can control the lifting mechanism to lift the mopping module 14 from the first position to the second position relative to the work surface.
  • the first position is raised to the second position, and the lifting action may be performed in a direction perpendicular to the work surface, or may be performed in a direction at an angle to the work surface.
  • FIGS. 5 and 6 it is a schematic diagram of the mopping module in the first position and the mopping module in the second position in one embodiment of the present invention.
  • the control device 30 controls the lifting mechanism to move the mopping module 14 away from the work surface and lift from the first position to the second position.
  • the lifting process is performed in a direction perpendicular to the work surface of.
  • the body 11 of the cleaning robot 1 is not lifted during the lifting process of the mopping module 14, that is, the mopping module 14 is displaced relative to the body 11 of the cleaning robot 1.
  • FIGS. 7 and 8 it is a schematic diagram of the mopping module in the first position and the mopping module in the second position in another embodiment of the present invention.
  • the control device 30 controls the lifting mechanism to move the mopping module 14 away from the work surface and lift from the first position to the second position.
  • the lifting process is at an angle to the work surface Direction.
  • the body 11 of the cleaning robot 1 is lifted during the lifting of the mopping module 14, and the mopping module does not cause displacement relative to the body 11 of the cleaning robot 1.
  • the control device can determine whether the mopping module needs to be lifted according to the detection result of the detection device, and control the lifting and falling of the mopping module through the lifting device.
  • the advantage of this is that the cleaning robot has better passability even when it encounters changes in the ground state, such as when encountering carpets or obstacles, and can avoid staining the carpet or obstacles.
  • the control device controls the lifting device to lift the mopping module in time, which can effectively prevent secondary pollution or cross-contamination, and the cleaning effect is better.
  • the lifting device includes a support member, which can provide a support point relative to the work surface of the walking device 40 when the mopping module 14 is raised.
  • the support member includes a support wheel 13, as shown in FIGS. 5 to 8.
  • the driving wheel 12 supports the rear end of the fuselage 11. It is in contact with the work surface and supports the front of the fuselage.
  • the cleaning robot 1 completes the mopping work while moving; but when the mopping module is lifted, if there is no support, the front of the fuselage 11 If it falls under its own weight and contacts the work surface, then at this time, under the action of the drive wheel 12, the cleaning robot 1 is pushed to continue to move, and the front end of the fuselage 11 has been in contact with the work surface, which will hinder the cleaning robot 1. mobile.
  • a support member is provided for the cleaning robot 1 so that when the mopping module 14 is lifted, the support member provides a support point different from the walking device 40 relative to the work surface, which can avoid the occurrence of the above phenomenon, as shown in FIGS. 6 and 8 Show.
  • the support point is located between the mopping module 14 and the driving wheel 12.
  • the advantage of this arrangement is that the space available for the mopping module 14 is increased, that is, it can provide a larger Mopping area to improve the cleaning efficiency of the cleaning robot.
  • the support point may also be provided at the front end of the fuselage 11, for example, the support point is provided before the mopping module 14.
  • the above-mentioned supporting member may be fixedly connected to the fuselage 11 or may be movably connected to the fuselage 11; it can always be in contact with the work surface to provide a support point, for example, it can be connected to the work surface when the mopping module 14 is not raised It is in contact, but in a floating state. When the mopping module 14 is lifted, it is in close contact with the work surface and plays a supporting role. It is also possible to contact the working surface only when the mopping module 14 is raised to provide a support point.
  • the lifting mechanism of the cleaning robot 1 includes a mopping module lifting mechanism (not shown in the figure), which can drive the mopping module 14 from relative to the work surface Lifted the first position to the second position.
  • the lifting mechanism of the mopping module is an elevating mechanism.
  • the elevating mechanism may include an elevating motor, a transmission mechanism, and an elevating detection unit.
  • the elevating motor is used to drive the transmission mechanism to drive the mopping module 14 to move up and down.
  • the detection result controls the up and down movement of the mopping module.
  • the lifting detection unit can detect whether the mopping module 14 reaches the first position or the second position of the corresponding working surface according to the rotation angle of the motor or the rotation angle of the transmission shaft or the position change of the lifting mechanism of the mopping module Position and other conditions, when these conditions are reached, the control device controls the lifting motor to pause. For example: during the ascent of the mopping module from the first position relative to the work surface to the second position, the lift detection unit detects whether the rotation angle of the lift motor reaches a preset threshold, which is in phase with the mopping module When corresponding to the second position of the working surface, etc., the rotation angle of the lifting motor is related.
  • the control device controls the lifting motor to suspend work, that is, to control the mopping module to suspend ascent;
  • the control device controls the lifting motor to continue to work, that is, controls the mopping module to continue to rise.
  • the lifting detection unit may be a grating, a Hall sensor or an infrared sensor, etc.
  • the rotation angle of the motor may be detected through the grating
  • the Hall sensor may detect the rotation angle of the transmission shaft
  • the infrared sensor may detect the lifting mechanism of the mopping module
  • the mopping module lifting mechanism may also be a swing mechanism, and the swing mechanism is used to drive the mopping module 14 to be lifted from a first position relative to the work surface to a second position.
  • the lifting mechanism of the mopping module can adjust the distance of the mopping module 14 relative to the working surface.
  • the lifting mechanism of the mopping module includes a lifting mechanism and a fixed plate 20.
  • the lifting mechanism is fixedly connected to the fixed plate 20, and the mopping module 14 is installed on the fixed plate 20.
  • the lifting mechanism includes a lifting motor 15 and a transmission mechanism, wherein the transmission mechanism includes a gear 16 screw 17 meshing device, and also includes a lifting frame 19, the lifting motor 15 drives the transmission mechanism to drive the mopping module 14 up and down.
  • the lifting frame 19 drives the mopping module 14 to move up and down relative to the working surface under the action of the lifting mechanism.
  • a slide slot 22 is provided on the lifting frame 19, and a corresponding protrusion (not shown in the figure) is provided on the fuselage 11, through the cooperation of the slide slot 22 and the protrusion, the up and down of the mopping module 14 relative to the fuselage 11 is completed mobile.
  • the lifting mechanism of the mopping module may also be a swing mechanism.
  • the lifting frame 19 drives the mopping module 14 to swing under the action of the swing mechanism, thereby adjusting the distance of the mopping module 14 relative to the work surface.
  • the moving path of the module 14 is arc-shaped.
  • the specific structure is a commonly used structure of the adjusting device, which will not be repeated here.
  • FIG. 10 it is a structural diagram of a lifting mechanism of a mopping module according to another embodiment.
  • the lifting mechanism of the mopping module includes a lifting mechanism and a fixed plate 20.
  • the lifting mechanism is fixedly connected to the fixed plate 20, and the mopping module 14 is installed on the fixed plate 20.
  • the lifting mechanism includes a lifting motor 15 and a transmission mechanism.
  • the lifting motor 15 drives the transmission mechanism to move the mopping module 14 up and down.
  • the transmission mechanism includes a belt transmission device, and further includes a lifting frame 19.
  • the motor shaft of the lifting motor 15 is connected to the two-stage gear reduction mechanism 16, and the two ends of the output shaft of the reduction mechanism 16 are respectively connected with a belt transmission device composed of three gears 24 and a chain 23, the belt transmission device and the lifting frame 19 is fixedly connected, so that the mopping module 14 is moved during the transmission process.
  • a transmission mechanism formed in cooperation with a rack and pinion device can also be used.
  • the lifting mechanism of the mopping module may include: a lifting mechanism and a fixed plate 20.
  • the lifting mechanism may include: a lifting motor 15 and a transmission mechanism, and the lifting motor 15 drives the transmission mechanism to drive the mopping module up and down.
  • the transmission mechanism may include a gear transmission shaft interference device, a first linkage mechanism composed of a four-stage link, and the two first linkage mechanisms and the fixed plate 20 are rotatably connected by a pin shaft.
  • the motor shaft of the lifting motor 15 is respectively connected to the two gears 24 and the transmission shaft 47 is an interference device.
  • the two linkage shafts 47 respectively drive the first linkage mechanism.
  • the first linkage mechanism may include: one end is fixedly connected to the lifting motor 15
  • the first link mechanism 43, the second link mechanism 44 whose one end is linked to the other end of the first link mechanism 43, the first end which is rotatably connected to the fuselage, and the other end which is linked to the other end of the second link mechanism 44
  • the three link mechanism 45, one end is linked to the other end of the third link mechanism 45, and the fourth link mechanism 46 is linked to the fixed plate 20 at the other end.
  • the lifting motor drives the first linkage mechanism to drive the fixed plate 20 to move up and down.
  • the ground module lifting mechanism drives the ground module to move during the transmission process.
  • FIG. 47 it is a schematic structural diagram of a lifting mechanism of the mopping module of the fourth embodiment.
  • the lifting mechanism of the mopping module may include: a lifting mechanism and a fixed plate 20.
  • the lifting mechanism may include: a lifting motor 15 and a transmission mechanism.
  • the lifting motor 15 drives the transmission mechanism to drive the mopping module up and down.
  • the transmission mechanism may include a gear transmission shaft interference device and a second linkage mechanism composed of a two-stage link.
  • the two second linkage mechanisms and the fixed plate 20 may be rotated by pins fixed on the fuselage Connection.
  • the motor shaft of the lifting motor 15 is connected to an interference device of a gear transmission shaft 47, and two ends of the transmission shaft 47 are respectively connected to a second linkage mechanism composed of two-stage links.
  • the second linkage mechanism may include: a transmission shaft 47 Fifth link mechanism 48 fixedly connected, one end of the fifth link mechanism 48 is linked with one end of the sixth link mechanism 49, the other end of the sixth link mechanism 49 is linked with the fixed plate 20, and the lift motor 15 drives the second
  • the linkage mechanism drives the fixed plate 20 to move up and down, so as to drive the mopping module to move during the transmission process of the mopping module lifting mechanism.
  • the lifting mechanism of the mopping module may include: a lifting mechanism and a fixed plate 20.
  • the lifting mechanism may include: a lifting motor 15 and a transmission mechanism.
  • the lifting motor 15 drives the transmission mechanism to drive the mopping module up and down.
  • the transmission mechanism may include a combined device of the gear transmission shaft interference device, the first cam mechanism 51, and the lifting frame 19, wherein the lifting frame 19 is fixedly connected to the fixed plate 20, and the first cam mechanism 51 is installed in the lifting In the rack 19, the mopping module 14 is mounted on the lifting rack 19.
  • the motor shaft of the lifting motor 15 is connected to an interference device of a gear transmission shaft 47, and the two ends of the transmission shaft 47 are respectively connected to a combination device of the first cam mechanism 51 and the lifting frame 19.
  • the first cam mechanism 51 is connected to the transmission shaft 47
  • the central point rotates, drives the lifting frame 19 to move up and down, and controls the lifting of the fixed plate 20, so as to realize the lifting of the mopping module 14 relative to the working surface.
  • 52 is a schematic diagram of the structure of the mopping module when it is lifted. When the first cam mechanism 51 rotates upward to contact the upper length of the lifting frame 19, the mopping module is in the raised state at the second position.
  • the first cam mechanism 51 may be a complete disc, or the first cam mechanism may also be a semicircle, a 30-degree circle, or other circumstances, satisfying the distance between the rotation center point of the first cam mechanism and the edge of the first cam mechanism Just bad.
  • the non-circular center of the first cam mechanism can be used as a center point to ensure that there are various heights of the fixed plate during the operation of the lifting mechanism, and the lifting module can be lifted relative to the working surface. It can be understood that there may not be a lifting frame, the edge portion of the first cam mechanism is connected to the mopping module, the lifting motor drives the first cam mechanism to rotate, and the first cam mechanism drives the mopping module to move up and down.
  • connection mentioned in this application may be a direct connection or an indirect connection.
  • the mopping module can move up and down to adjust the position under the action of the lifting motor, and can also be adjusted by swinging the left and right or left or right or back and forth of the swing motor.
  • the mopping module 14 is detachably installed on the body 11.
  • the mopping module 14 is installed on the fixed plate 20 through magnetic attraction.
  • the mop module 14 is provided with magnetic elements such as magnets, magnetic strips, etc., and the magnetic element 18 provided on the fixed plate 20
  • the mopping module 14 can also be installed on the fixing plate 20 by providing pin holes on the mopping module 14 and cooperating with corresponding pins provided on the fixing plate 20.
  • the fuselage 11 is provided with a convex device (not shown in the figure) downward, such as a top post or a convex ball, etc., the convex device and the mopping module 14 produce relative motion and contact with the mopping module 14 to make the mop
  • the module 14 is separated from the body 11.
  • the number of the protruding devices is 2, and the projection of the mopping floor falls on both ends of the mopping floor. Of course, the number of the protruding devices may be one or more.
  • the mopping module 14 further includes a third position relative to the work surface. As shown in FIG. 11, it is a schematic diagram of the cleaning robot of the present invention when the mopping module is in the third position. Specifically, the mopping module 14 is detachably mounted on the fuselage 11, and the mopping module lifting mechanism is also used to drive the mopping module 14 to be lifted from the second position relative to the working surface to the third position where the mopping module 14 is removed. When the mopping module 14 is raised to the third position, the protruding device contacts the mopping module 14 to provide the mopping module 14 with a downward force to separate the mopping module 14 from the fuselage 11 (see FIG.
  • the mopping module 14 can be removed at a third position relative to the work surface, of course, not in the third position, such as removing the mopping module 14 at the second position, at this time the convex device
  • the lifting mechanism is included, and it moves toward the mopping module 14 under the action of the lifting mechanism and contacts the mopping module 14 to provide the mopping module 14 with a downward force to separate the mopping module 14 from the fuselage 11.
  • the mopping module 14 can be detachably mounted on the fuselage 11 by other means, for example, by providing an electromagnet on the fuselage 11 and a magnet on the mopping module 14, the control device 30 controls The magnitude or direction of the current through the electromagnet, thereby controlling the separation and separation of the mopping module 14 and the fuselage 11, such as when the control device 30 controls the current direction through the electromagnet to be a positive direction, the mopping module 14 and the fuselage 11 suck When the mopping module 14 needs to be separated from the fuselage 11, the control device 30 can control the direction of the current through the electromagnet in the reverse direction; the mopping module 14 can also be controlled by controlling the presence or absence of the current through the electromagnet When the electric current passes through the electromagnet, the mopping module 14 is attracted to the fuselage 11, and when there is no current to pass through the electromagnet, the mopping module 14 is separated from the fuselage 11.
  • the electromagnet 59 is provided on the fuselage 11, and the magnet 60 is provided on the mopping module 14 to attract the magnetic element 18 on the fixed plate 20, wherein the number of magnets It can be 2, 4, or 6, but of course it can also be other values, which is not limited here.
  • the mopping module 14 When the mopping module 14 is working normally, no current passes through the electromagnet 59, and the mopping module 14 is in close contact with the ground (as shown in Figure 55); when the mopping device 14 needs to be disassembled, the mopping module lifting mechanism drives the mopping module 14 is raised to the disassembly position (as shown in FIG.
  • the control device 30 controls the magnitude of the current through the electromagnet 59 to generate a repulsive force to overcome the suction force of the mopping module 14 and the fixed plate 20, thereby making the mopping module 14 and the fixed plate
  • the separation of 20, that is, separation from the fuselage 11, the mopping module 14 comes off (as shown in FIG. 57).
  • the advantage of this embodiment is that, when the mopping module 14 is working, there is no need to always energize the electromagnet. It is only necessary to energize the electromagnet when the mopping module 14 is lifted to the disassembly position, thereby causing the mopping module to fall off, thus saving energy and avoiding interference when the electromagnet is always energized.
  • a push-pull electromagnet 61 and a push rod 62 matched with its iron core are used.
  • the mopping module 14 When the mopping module 14 is working normally, no current flows on the push-pull electromagnet 61.
  • the mopping module 14 is in close contact with the ground (as shown in Figure 58); when the mopping device 14 needs to be removed, the mopping module lifting mechanism drives the mopping module 14 to the disassembly position (as shown in Figure 56) and controls the device 30 Control to start the push-pull electromagnet 61, the push rod extends instantaneously and contacts the mopping module 14 to give it a downward force (as shown in FIG.
  • the advantage of this embodiment is that when the mopping module 14 is working, there is no need to always energize the push-pull electromagnet. It is only necessary to energize the push-pull electromagnet when the mopping module 14 is lifted to the disassembly position, and the push rod is extended, thereby causing the mopping module to fall off.
  • the push rod directly acts on the mopping module to separate it from the fuselage, and there is no need to pass a large current to the push-pull electromagnet, so it saves energy and is more reliable.
  • the mopping module 14 can also be detachably mounted on the fuselage 11 by other means.
  • the mop lifts The mechanism may further include: a second cam mechanism 52, similar to the first cam mechanism 51, which is also installed at both ends of the transmission shaft 47 separately from the first cam mechanism 51.
  • the second cam mechanism 52 and the first cam mechanism 51 move synchronously, and the second cam mechanism 52 and the first cam mechanism 51 cannot overlap, and the second cam mechanism 52 can directly contact the mopping module 14 during the rotation.
  • the lift motor 15 drives the second cam mechanism 52 to rotate.
  • the second cam mechanism 52 When the second cam mechanism 52 contacts the mopping module 14, the mopping module is in the second position, and the second cam mechanism 52 can apply downward The force is applied so that the mopping module 14 is separated from the fuselage in the schematic diagram of the mop dropping structure in the mopping module shown in FIG. 54.
  • the second cam mechanism 52 may be a complete circle, or may be a semicircle, a 30-degree circle, or other cases, and rotates around the non-circular center of the cam. It can be understood that a lever mechanism (not shown) or the like may be used instead of the second cam mechanism, which is not limited in this application.
  • the cleaning robot 1 further includes a mop module position detection device, which is provided on the fuselage, a mop module lifting mechanism is provided with a position mark, and the mop module position detection device is used For detecting the position mark and outputting the detection signal value; the control device 30 determines the position of the mopping module 14 relative to the work surface according to the comparison of the detection signal value and the preset value.
  • the position detection device of the mopping module includes a magnetic detection sensor, such as a Hall sensor, etc., and the position is marked as a magnetic element, such as magnetic beads or magnetic steel.
  • the control device 30 compares the signal value with a preset value to determine whether the mopping module 14 is in the desired working position; of course, the cleaning robot body can also correspond to the mopping module Set different position markers at different positions of the system, such as different infrared identifiers, set the mop module position detection device on the mopping module lifting device, such as an infrared sensor, identify the infrared identifier through the infrared sensor, and output a detection signal to the control device 30, and then determine whether the mopping module 14 is in a desired working position,
  • control device 30 compares the current value of the lift motor 15 with a preset current value to determine whether the lift motor 15 is blocked, and combines with the position detection device of the mopping module provided on the fuselage, The comparison between the signal value output by the detected position mark on the lifting mechanism of the mopping module and the preset value determines the current position of the mopping module 14. With this method, the position detection accuracy of the mopping module can be further improved.
  • the cleaning robot 1 further includes a limit device 63, which includes a first slope 64 and a second slope 65.
  • the cleaning robot 1 further includes a mopping module position detection device 67, which is provided on the fuselage and includes a magnetic detection sensor, such as a Hall sensor, etc.
  • a position mark 66 is provided on the lifting frame, and the position mark 66
  • the magnetic elements such as magnetic beads or magnetic steel, drive the first cam mechanism 51 and the second cam mechanism 52 to rotate when the lifting motor 15 rotates.
  • the magnetic detection sensors detect different magnetic field strengths and output different signal values.
  • the lifting motor 15 drives the first cam mechanism 51 and the second cam mechanism 52 to rotate clockwise during the rotation in the first direction
  • the second part edge of the second cam mechanism 52 abuts on the second inclined surface 65
  • the lifting motor The current of 15 changes and the current value increases.
  • the control device 3 compares the current value with the preset current value. When the current value is greater than or equal to the preset current value, it is judged that the lift motor 15 is blocked, and the control device 30 By comparing the signal value detected by the Hall sensor at this time with the first preset value, when the signal value reaches the first preset value, it is determined that the mopping module 14 is located at the separated position, as shown in FIG.
  • the control device 3 compares the current value with the preset current value. When the current value is greater than or equal to the preset current value, it is determined that the lift motor 15 is blocked. At the same time, the control device 30 compares the signal value detected by the Hall sensor with the second preset value at this time, and when the signal value reaches the second preset value, it determines that the mopping component 14 is located at the first position, as shown in FIG. 71 As shown.
  • the control device 30 compares the signal value detected by the Hall sensor at this time with the first preset value, When the signal value reaches the first preset value, and at the same time, the control device 3 detects the current value of the elevator motor, and when the current value is less than the preset current value, it is determined that the elevator motor 15 is not blocked, and the mopping module is determined 14 is in the second position, as shown in Figure 72; where the first direction and the second direction are opposite.
  • the rotation speed of the lifting motor 15 can also be detected.
  • the detected position of the mopping module is raised
  • the signal value output by the position marker on the mechanism is compared with the preset value to determine the current position of the mopping module 14 to determine the current position of the mopping module; in the fourth implementation, it is also possible to detect whether the mopping module is installed On the fuselage, combined with the above-mentioned lifting motor stall detection method or the above-mentioned using the mopping module position detection device on the fuselage, the detected signal value and the preset value of the position mark on the lifting mechanism of the mopping module are detected Comparison of values to determine the current position of the mopping module, as to whether the mopping module is installed on the fuselage, specifically, the lifting frame 19 is provided with a magnetic sensor, such as a Hall sensor, on the mopping floor of the mopping module A magnetic element, such as a magnet, is provided, and the magnetic element is detected by a magnetic sensor
  • the cleaning robot 1 further includes a stop device 68 which is fixedly installed outside the front end of the bottom plate of the lifting mechanism of the mopping module.
  • the wire first contacts the stop device 68, and under the action of the stop device 68, passes along the bottom of the stop device 68, so as to avoid applying force to the mopping module 14 and causing the mopping module 14 Separated from the lifting device of the mop module.
  • the mopping module 14 includes a mopping floor and a mop (not shown), and the mop is detachably installed on the mop.
  • rubber thread strips are provided on the mopping floor at intervals, and the mop is fixed on the mopping floor by rubber thread strips; in another embodiment, an adhesive strip is provided on the mopping floor, and the mop is directly pasted on the mopping floor; of course, understandably Yes, the mop can also be installed on the mop floor by mechanical means such as snaps.
  • the mop can be a dry mop or a wet mop; it can be a reusable mop or a disposable wet tissue.
  • four vertical grooves may be provided inside the lifting frame.
  • a pressure spring 17 is provided. When the mopping module 14 is working, the pressure spring 17 exerts downward squeezing force on the mopping module 14 under the influence of the gravity of the cleaning device.
  • the lifting device When the mopping module 14 of the cleaning robot 1 is lifted, a support member is required to provide a support point different from that of the driving wheel.
  • the lifting device further includes a support wheel 13, which provides a different support point for the mopping module 14 than the driving wheel 12 when the mopping module is lifted from the first position to the second position relative to the working surface.
  • the support is movably connected to the fuselage 11.
  • the distance between the support and the top of the fuselage 11 is greater than when the mopping module 14 is in the first position. The distance from the top of the fuselage 11.
  • FIG. 13 to FIG. 14 it is a schematic view of a support member that can be movably connected to a fuselage according to an embodiment of the present invention.
  • the lifting device of the cleaning robot 1 includes a support adjustment mechanism 29 that drives the support wheel 13 to retract when the mopping module 14 falls.
  • the control device 30 controls the mopping module 14 to lift, and at this time, the support wheel 13 is in a falling state.
  • the lifting device of the cleaning robot 1 includes a support adjustment mechanism 29 that drives the support wheel 13 to fall when the mopping module 14 is lifted when the mopping module 14 is lifted.
  • the support wheel 13 contacts the work surface for cleaning
  • the robot 1 provides a support point relative to the work surface that is different from the drive wheel 12.
  • the supporting member adjusting mechanism 29 includes a lifting mechanism (not shown in the figure).
  • the lifting mechanism includes a lifting motor and a transmission mechanism.
  • the lifting motor drives the transmission mechanism to drive the support wheel 13 to move up and down.
  • the support adjustment mechanism 29 includes a swing mechanism (not shown in the figure).
  • the swing mechanism includes a swing motor, and the swing motor drives the transmission mechanism to drive the support.
  • the wheel 13 moves to the stowed position when the mopping module 14 is in a normal working state (as shown in FIG. 15); the drive transmission mechanism drives the support wheel 13 to move to the falling position when the mopping module 14 is raised (as shown in FIG. 16) Show).
  • the support adjustment mechanism and the mopping module lifting mechanism are mutually linked.
  • the supporting member adjustment mechanism can be linked in the following manner: a gear rack engagement device or a connecting rod device.
  • FIGS. 49 to 50 it is a schematic diagram of another embodiment of the present invention in which a supporting member can be movably connected to a fuselage.
  • the schematic diagram is a linkage mode using a rack and pinion engagement device. Specifically, it may include: The first rack 53 linked with the lifting mechanism of the mopping module, the fixed gear 54 meshed with the first rack 53 and the second rack 55 meshed with the fixed gear 54, the second rack 55 is linked with the support wheel 13. Two chutes are respectively provided on the body, and the first rack 53 and the second rack 55 move up and down in the chute, respectively. As shown in FIG. 50, the lifting mechanism of the mopping module drives the first rack 53 to rise.
  • FIG. 51 it is a schematic view of another embodiment of the present invention in which a supporting member can be movably connected to a fuselage.
  • the schematic diagram is a linkage method using a link device. Specifically, it may include: a fixed connection with a transmission shaft 47
  • the fifth link mechanism 48, one end of the fifth link mechanism 48 is linked with the sixth link mechanism 49, and the other end of the fifth link mechanism 48 is linked with the support wheel 13, corresponding to the body corresponding to the support wheel 13 Is provided with a chute
  • the transmission shaft drives the fifth link mechanism 48 to rotate
  • the fifth link mechanism 48 drives the mopping module to raise the support wheel 13 when it is lifted, and when the mopping module falls, the support wheel 13 is retracted.
  • FIGS. 52 to 53 it is a schematic view of another embodiment of the present invention in which a supporting member can be movably connected to a fuselage.
  • the schematic view is another linkage method using a linkage device, which may include: a seventh linkage ⁇ 56, the eighth link mechanism 57.
  • One end of the eighth link mechanism 57 is linked with the support wheel 13, the other end of the eighth link mechanism is linked with one end of the seventh link mechanism 56 through a pin, and the other end of the seventh link mechanism 56 is in contact with the fixed plate 20
  • a slide groove is provided at the fuselage corresponding to the eighth link mechanism 57, and the eighth link mechanism 57 can move up and down in the slide groove.
  • the seventh link mechanism 58 drives the eighth link mechanism 57 to descend through the transmission action of the pin, and the support wheel 13 descends. That is, when the mopping module is in the lifted state, the support wheel plays a supporting role; when the fixed plate is lowered, the link mechanism drives the support wheel up.
  • an elastic sleeve is optionally provided on the pin, preferably a return spring, which is coaxial with the pin. One end of the return spring is in contact with the fuselage, and the other end is in contact with the seventh link mechanism 58, so that when the spring is reset, the seventh link mechanism 58 can effectively follow the mopping module downward movement, so that the support can be effectively controlled Round 13 goes up.
  • a connecting member such as a pin can also be used to replace the connection and reset function of the return spring, and a pin connected to the fixed plate 20 is provided at the other end of the seventh link mechanism 56 to achieve mopping Interlocking of the module and the seventh link mechanism 56.
  • the return spring may or may not be installed on the pin.
  • the support wheel 13 is movably connected to the fuselage 11.
  • the mopping module 14 When the mopping module 14 is not lifted, it is in contact with the working surface, but is in a floating state. When the mopping module 14 is lifted, it is in close contact with the working surface and plays a supporting role.
  • FIG. 17 it is a schematic view of a support member movably connected to a fuselage according to one embodiment of the present invention.
  • the supporting member is in a floating state when the cleaning robot 1 is working normally, and when the mopping module 14 is lifted by the lifting mechanism, it functions to support the fuselage 11.
  • the lifting device includes an elastic member 31.
  • the elastic member 31 is a compression spring, and the compression spring connects the support wheel 13 and the fuselage.
  • the support wheel 13 When the cleaning robot is working normally, the support wheel 13 is in a floating state under the action of the pressure spring. When the mopping module 14 is lifted by the mopping module lifting mechanism, the pressure spring is compressed downward by the gravity of the fuselage. The support wheel 13 is provided to exert downward force, that is, the support member functions to support the fuselage 11 when the mopping module 14 is lifted.
  • the support wheel 13 is movably connected to the fuselage 11 and only contacts the working surface to provide a support point when the mopping module 14 is raised. At the same time, while the support wheel 13 provides a different support point from the drive wheel 12, the front end of the body 11 of the cleaning robot 1 is also lifted.
  • FIG. 18 to FIG. 20 it is a schematic view of another embodiment of the present invention in which the supporting member can be movably connected to the fuselage.
  • the lifting device of the cleaning robot 1 includes a support adjustment mechanism 29, wherein the support adjustment mechanism 29 connects the support wheel 13 and the fuselage 11; the control device 30 controls the support adjustment mechanism 29 to drive the support wheel 13 in the extended position, thereby dragging the floor
  • the module 14 is lifted from the first position relative to the work surface to the second position; the control device 30 controls the support adjustment mechanism 29 to drive the support wheel 13 to the retracted position, so that the mopping module 14 is moved from the second position relative to the work surface Fall to the first position.
  • the support adjustment mechanism 29 connects the support wheel 13 and the fuselage 11; the control device 30 controls the support adjustment mechanism 29 to drive the support wheel 13 to the retracted position.
  • the control device 30 only controls the support adjustment mechanism 29 to drive the support wheel 13 in the extended position, thereby lifting the mopping module 14 from the first position relative to the work surface To the second position, the front end of the fuselage 11 is lifted at this time, and the position of the mopping module 14 relative to the fuselage 11 has not been changed.
  • the mop lifting device can be controlled to move the mopping module 14 relative to the fuselage 11 at the same time.
  • the control device 30 controls the mopping module lifting mechanism to raise the mopping module 14, and the support adjustment mechanism 29 drives the support wheel 13 to fall when the mopping module 14 is lifted.
  • the support wheel 13 is in contact with the work surface, providing the cleaning robot 1 with a support point different from the drive surface 12 with respect to the work surface.
  • the support adjustment mechanism includes a swing mechanism that drives the support wheel 13 to retract or fall, and may also include a lifting mechanism that drives the support wheel 13 to retract or fall.
  • the support wheel 13 is fixedly connected to the fuselage 11 and the distance from the top of the fuselage 11 is fixed. It can always be in contact with the working surface, or it can only be in contact with the working surface when the mopping module is raised to provide a support point different from the driving wheel 12.
  • the cleaning robot 1 includes a driven wheel. Specifically, the driven wheel is installed on the fuselage through a connecting member. The specific installation method is a conventional method, which will not be expanded in detail here. The driven wheel can be used as a support wheel.
  • the lifting mechanism of the cleaning robot 1 includes a movable support mechanism 26, which is connected to the support wheel 13 and the body 11; in this embodiment, the movable support The mechanism 26 includes a swing mechanism (not shown).
  • the swing mechanism drives the support wheel 13 to fall or retract, so that the mopping module 14 is lifted or dropped; in other embodiments, the movable support mechanism 26 includes a lifting mechanism that lifts The mechanism drives the support wheel 13 to fall or retract, so that the mopping module 14 is lifted or dropped.
  • the control device 30 controls the movable support mechanism 26 to drive the support wheel 13 in the extended position, thereby raising the mopping module 14 from the first position relative to the work surface to the second position (as shown in FIG. 8); the control device 30 Control the movable support mechanism 26 to drive the support wheel 13 to the retracted position, so that the mopping module 14 falls from the second position relative to the work surface to the first position (as shown in FIG. 7).
  • the cleaning robot when the support 13 of the cleaning robot falls or is retracted, it can be ensured that the height of the radar sensor and/or the optical sensor on the cleaning robot remains substantially unchanged.
  • the cleaning robot needs to maintain the balance of the fuselage at all times.
  • a radar sensor and/or an optical sensor and/or a visual sensor such as an infrared sensor or a laser ranging sensor LDS, or an optical flow sensor, a device for navigation and/or obstacle detection.
  • LDS laser ranging sensor
  • an optical flow sensor a device for navigation and/or obstacle detection.
  • the detection results of these devices will be affected, thereby affecting the normal operation of the cleaning robot.
  • the height of the radar sensor and/or the optical sensor on the cleaning robot substantially unchanged, the accuracy of the detection result of the cleaning robot can be ensured.
  • the cleaning device further includes a liquid tank 33, the mopping module 14 is disposed on the fixed plate 20, and the liquid tank 33 is disposed between the mopping module lifting device and the control device 30 between.
  • the control device 30 controls the liquid tank 33 to supply liquid to the mopping module 14 when the cleaning robot 1 is working normally, and to stop supplying liquid to the mopping module 14 when the mopping module 14 of the cleaning robot 1 is raised.
  • the control device 30 controls the cleaning device 50 and the walking device 40 to complete the cleaning mode, wherein the cleaning mode is the mopping mode; when the mopping module 14 is not working, the control device 30 controls the mopping module 14 to be raised from the first position relative to the work surface To the second position, the control device 30 controls the liquid tank 33 to stop supplying the mop module 14 with liquid.
  • This has the advantage that it can prevent the floor or the carpet from getting wet when the mopping module of the cleaning robot 1 is not working. In addition, it can prevent the floor from dripping liquid to damage the floor when the cleaning robot 1 is stuck for a long time.
  • the liquid contained in the liquid tank is water; in another embodiment, the liquid contained in the liquid tank is a mixture of water and detergent.
  • the cleaning robot 1 further includes a detection device 10, and the control device 30 controls the lifting mechanism to adjust the height of the mopping module 14 according to the detection result of the detection device 10.
  • the detection device 10 includes an environment detection sensor and/or a self-state detection sensor.
  • the environment detection sensor of the cleaning robot 1 may be used to detect a specific scene in the working environment of the cleaning robot 1, such as detecting obstacles in the working environment and working environment The ground state, whether the cleaning robot 1 has reached the base station, etc.
  • the cleaning robot 1's own state detection sensor can be used to detect whether the cleaning robot 1 mop needs to be replaced, the cleaning robot 1's battery power, whether the cleaning robot 1 is trapped or stuck, the cleaning robot 1's inclination, etc.
  • the cleaning robot is stuck or stuck Live the cleaning robot.
  • the detection device 10 can monitor the surrounding environmental conditions encountered by the cleaning robot in real time and its own state in real time, and feed back the detection results to the control device 30 in real time, the control device 30 according to the detection of the detection device 10
  • the lifting mechanism is controlled in time to adjust the height of the mopping module 14, which avoids the inability to cross over obstacles and dirty carpets, and prevents the cleaning robot from being stuck and unable to move, while also avoiding the mopping module
  • the pollution of the working environment caused by the failure to lift in time in addition, the cleaning robot can be controlled to start the mop replacement program according to the degree of staining or damage of the mopping module, lift the mopping module in time, and start to return to the base station, and complete the mop recycling at the base station replace.
  • the detection device 10 of the cleaning robot 1 includes an environment detection sensor for detecting the ground state.
  • the control device 30 controls the lifting mechanism to place the mopping module 14 in the second position
  • the control device 30 controls the lifting mechanism to make the mopping module 14 in the first position.
  • the detection device 10 detects that the working surface of the cleaning robot 1 has changed from the floor to the carpet state, it sends a signal to the control device 30, which controls the mopping module lifting mechanism to drive the mopping module 14 from the work surface.
  • the first position 34 is raised to the second position 36, which avoids the obstruction of the carpet to the mopping module 14 by the carpet, and also prevents the stains on the mopping module 14 from getting on the carpet; the detection device 10 detects the floor state again At this time, a signal is sent to the control device 30, and the control device 30 controls the mopping module lifting mechanism to drive the mopping module 14 to fall from the second position 36 relative to the work surface to the first position 34.
  • the movable support mechanism can also be controlled by the control device 30 to drive the lifting of the mopping module, the movable support mechanism connects the support and the fuselage; the control device 30 controls the movable support mechanism to drive the support in the extended position, so that The mopping module 14 is raised from the first position relative to the working surface to the second position; at this time, the front end of the fuselage is raised as a whole, and the same effect can be achieved.
  • the force of the support on the work surface changes.
  • the force of the support on the work surface when the mopping module 14 is in contact with the work surface is less than when the mopping module 14 of the cleaning robot 1 is lifted. The force of the support on the working surface.
  • FIGS. 22 to 25 it is an embodiment of the cleaning robot 1 controlling the lifting process of the mopping module. It is detected that when the cleaning robot 1 is working on the floor, the lifting mechanism is not activated, the mopping module 14 is in close contact with the floor, and the support is not in contact with the floor (see FIG. 22).
  • the cleaning robot 1 When the cleaning robot 1 is walking, when the environment detection sensor detects that the working surface of the cleaning robot 1 has changed from the floor to the carpet state, it sends a signal to the control device 30, which controls the lifting motor of the lifting mechanism of the mopping module to rotate forward.
  • the lifting motor drives the transmission mechanism to drive the mopping module 14 upward, so that the mopping module 14 is lifted from the first position 34 relative to the work surface to the second position 36, and at the same time, the support wheel 13 falls under the action of the support adjustment mechanism Work surface contact (as shown in Figure 23).
  • the cleaning robot 1 works on the carpet 35, the mopping module 14 is always in a lifted state (as shown in FIG. 24).
  • the environment detection sensor again detects that the working surface of the cleaning robot 1 has changed from the carpet state to the floor state, and sends a signal to the control device 30, which controls the lifting motor of the lifting mechanism of the mopping module.
  • the lifting motor drives the transmission mechanism to drive the mopping module 14 to move down and return to the state of contact with the floor, and at the same time, the support wheel 13 is lifted up by the support adjustment mechanism (as shown in FIG. 25).
  • the environment detection sensor is a visual sensor, and the control device 30 judges the state of the working surface according to the change of the ground image acquired by the vision sensor; in another embodiment, the environment detection sensor is a radar sensor, and the control device 30 detects according to the radar sensor The type of ground material to be judged the state of the working surface.
  • the environment detection sensor is a current sensor, and the state of the work surface is determined according to the current change detected by the current sensor. For example, the current sensor detects the current change when the cleaning robot 1 encounters the carpet 35 to determine the state of the work surface.
  • the lifting mechanism of the mopping module can also adopt other structural methods, such as a swing mechanism, which can also achieve the same functional effect.
  • the detection device 10 of the cleaning robot 1 is used to detect the ground state.
  • the control device 30 controls the lifting mechanism to place the mopping module 14 in the second position, and the support is adjusted When the mopping module 14 is lifted, the mechanism drives the support member to fall, and the cleaning robot 1 continues to advance; if the detection device 10 detects that the ground state is a carpet, the cleaning robot 1 moves back, and when the floor is detected again, the control device 30 controls the lifting mechanism to make the drag
  • the ground module 14 is in the first position, and the support adjustment mechanism drives the support to be retracted when the mopping module falls; if the detection device 10 detects that the ground state is the floor, the control device 30 controls the lifting mechanism to make the mopping module 14 in the first position At the position, the support adjustment mechanism drives the support to retract when the mopping module falls, and the cleaning robot 1 continues to advance.
  • FIGS. 61 to 65 it is another embodiment of the cleaning robot 1 detecting the ground state and controlling the lifting process of the mopping module. It is detected that when the cleaning robot 1 is working on the floor, the lifting mechanism is not activated, the mopping module 14 is in close contact with the floor, and the support is not in contact with the floor (see FIG. 61).
  • the cleaning robot 1 When the cleaning robot 1 is walking, when the environment detection sensor detects that the working surface of the cleaning robot 1 changes from a flat surface to a step, it sends a signal to the control device 30, which controls the lifting motor of the lifting mechanism of the mopping module to rotate forward, and the lifting motor
  • the driving transmission mechanism drives the mopping module 14 to move upward, thereby raising the mopping module 14 from the first position 34 relative to the work surface to the second position 36, and at the same time, the support wheel 13 falls under the action of the support adjustment mechanism to the work surface Contact (as shown in Figure 62).
  • the cleaning robot 1 continues to move forward.
  • the cleaning robot 1 retreats away from the carpet until it again detects that the ground state is a floor, and sends a signal to the control device 30, which controls the mopping module
  • the lifting motor of the lifting mechanism is reversed.
  • the lifting motor drives the transmission mechanism to drive the mopping module 14 to move down and return to the state of contact with the floor.
  • the support wheel 13 is retracted under the action of the supporting member adjustment mechanism (see FIGS.
  • the cleaning robot 1 moves back to the carpet 35 after detecting the carpet.
  • the stain on the mop can be more effectively prevented from staining the carpet 35, especially when the carpet 35 is thick or the carpet When the hair is longer, it stains or even ruins the carpet.
  • the environment detection sensor is a step detection sensor and a ground state detection sensor, where the step detection sensor and the ground detection sensor may be the same sensor or different sensors.
  • the step detection sensor is a TOF sensor
  • the ground state detection sensor is an ultrasonic sensor.
  • the position and number of sensors such as being mounted on the front end or bottom plate of the body 11.
  • the steps are detected by the TOF sensor scanning distance measurement or the TOF sensor scanning imaging, and the steps are detected according to the acquired image information; the carpet is detected according to the signal intensity received by the ultrasonic sensor, and the distance can also be calculated according to the transmission and reception time of the ultrasonic sensor to detect the carpet.
  • the self-state detection sensor is used to detect the degree of inclination.
  • the self-state detection sensor is a tilt sensor, such as a six-axis sensor, and the environment detection sensor is an ultrasonic sensor.
  • the control device 30 determines whether the posture of the cleaning robot 1 is tilted upward or downward according to the detection result of the tilt sensor and the size of the preset value.
  • control device 30 judges that the posture of the cleaning robot 1 is inclined upward, the control device 30 controls the lifting mechanism to raise the mopping module 14 to the second position, and at the same time, the support wheel 13 falls under the action of the support adjustment mechanism and the work surface Contact (as shown in Figure 66).
  • the cleaning robot 1 continues to move forward. If the ultrasonic sensor detects that the work surface is in the state of a carpet, the cleaning robot 1 retreats away from the carpet.
  • control device 30 judges that the posture of the cleaning robot 1 is tilted downward, and the ultrasonic sensor detects that the ground state is the floor again, it sends a signal to the control device 30, which controls the lifting motor of the lifting mechanism of the mopping module to reverse,
  • the lifting motor drives the transmission mechanism to drive the mopping module 14 downward to restore the state of contact with the floor, and at the same time, the support wheel 13 is retracted under the action of the support adjustment mechanism (as shown in FIGS. 67 to 68); if the ultrasonic sensor detects When the working surface is in the state of the floor, a signal is sent to the control device 30.
  • the control device 30 controls the lifting motor of the lifting mechanism of the mopping module to reverse, and the lifting motor drives the transmission mechanism to drive the mopping module 14 to move down to restore the state of contact with the floor At the same time, the support wheel 13 is retracted under the action of the support adjustment mechanism, and the cleaning robot continues to move forward (as shown in FIGS. 67 and 69).
  • the environment detection sensor can detect the material of the working surface, such as carpet or floor, and further, it can also be detected as the type of floor, such as wood or tiles, etc.
  • the control device 30 detects the environment detection sensor
  • the floor type controls the amount of liquid that the liquid tank 33 injects into the mopping module 14.
  • the supply of the liquid amount of the mopping module can be appropriately reduced to prevent damage to the wooden floor caused by an excessive amount of liquid.
  • the environment detection sensor is a visual sensor
  • the control device 30 determines the material when the work surface is a floor according to the ground image acquired by the visual sensor; in another embodiment, the environment detection sensor is a radar sensor, and the control device 30 is based on The detection result of the radar sensor judges that the working surface is the type of floor.
  • the environment detection sensor of the cleaning robot 1 is an obstacle detection sensor.
  • the control device 30 controls the lifting mechanism to place the mopping module 14 in the second position; when the control device 30 After controlling the cleaning robot to cross the obstacle, the control device 30 controls the lifting mechanism to place the mopping module 14 in the first position.
  • the control device 30 controls the mopping module lifting mechanism to drive the mopping module 14 to be lifted from the first position 34 relative to the work surface To the second position 36; when the control device 30 controls the cleaning robot to cross the obstacle, the control device 30 controls the mopping module lifting mechanism to drive the mopping module 14 to fall from the second position 36 relative to the work surface to the first position 34.
  • the cleaning robot 1 controls the lifting process of the mopping module 14 when it encounters an obstacle; the cleaning robot 1 works on the floor, at this time, the lifting mechanism is not activated, The mopping module 14 is in close contact with the floor, and the support is suspended and does not contact the floor (as shown in FIG. 26). While the cleaning robot 1 is walking, the obstacle 37 is detected by the obstacle detection sensor. At this time, a signal is sent to the control device 30 of the cleaning robot 1.
  • the control device 30 controls the lifting motor of the lifting mechanism of the mopping module to rotate forward, and the lifting motor drives the transmission mechanism to drive the mopping module 14 to move upward, thereby causing the mopping module 14 to move from
  • the first position 34 of the work surface is raised to the second position 36 (as shown in FIG. 27), and at the same time, the support wheel 13 falls under the action of the support adjustment mechanism to contact the work surface, and the cleaning robot 1 continues to move forward over the obstacle 37
  • the control device 30 controls the lifting motor of the lifting mechanism of the mopping module to reverse, and the lifting motor drives the transmission mechanism to drive the mopping module 14 downward, so that the mopping module 14 returns to the ground close to the ground
  • the support wheel 13 is lifted by the support adjustment mechanism.
  • the cleaning robot 1 controls the lifting process of the mopping module 14 when it encounters an obstacle
  • the obstacle detection sensor detects that there is an obstacle in front of the cleaning robot 1, it sends a signal to the control device 30.
  • the control device 30 controls the movable support mechanism 26 to drive the support wheel 13 to extend out of the fuselage 11, so that the movable support mechanism 26 Under the action, the front end of the cleaning robot is lifted, and the mopping module 14 is also lifted, which is convenient for the cleaning robot 1 to cross obstacles.
  • the cleaning robot 1 crosses the obstacle, it sends a signal to the control device 30.
  • the control device 30 controls the movable support mechanism 26 to drive the support wheel 13 to be retracted. At this time, the mopping module 14 descends and returns to the state of contacting the work surface.
  • the obstacle detection sensor 38 is installed on the cleaning robot body 11, and the specific position is not limited. For example, it is installed on the front wall or the base of the cleaning robot, and the number of sensors includes at least one or more.
  • the cleaning robot 1 works on the floor. At this time, the lifting mechanism is not activated, and the mopping module 14 is in close contact with the floor (as shown in FIG. 29).
  • the cleaning robot 1 is walking, the obstacle 37 is detected by the obstacle detection sensor 38. At this time, a signal is sent to the control device 30 of the cleaning robot 1.
  • the control device 30 controls the swing mechanism of the movable support mechanism 26 to drive the support wheel 13 to fall into contact with the work surface, that is, in the extended position, so that the mopping module 11 is relatively
  • the first position 34 of the surface is raised to the second position 36 (as shown in FIG. 30)
  • the cleaning robot 1 continues to move forward over the obstacle 37, and after passing the obstacle 37, the control device 30 controls the swing motor drive of the movable support mechanism 26
  • the support wheel 13 is raised, that is, in the stowed position, so that the mopping module 11 is restored to the first position 34, that is, the position in contact with the working surface and working normally (as shown in FIG. 31).
  • the above process not only allows the cleaning robot 1 to easily pass through the obstacle 37, but also prevents dirt on the mop from remaining on the obstacle.
  • the movable support mechanism 26 can also adopt other structural methods, such as a lifting mechanism, which can also achieve the same functional effect.
  • the obstacle detection sensor includes a visual sensor, and the type of obstacle is determined according to the image acquired by the control device 30 according to the visual sensor.
  • the obstacle detection The sensor includes an infrared or laser detection sensor, and the control device 30 determines the type of obstacle, such as whether it is a step, according to the detection result of the infrared or laser detection sensor.
  • the obstacle detection sensor includes an ultrasonic sensor, and the distance between the cleaning robot and the obstacle is determined according to the sending and receiving time of the ultrasonic sensor.
  • two ultrasonic sensors are symmetrically arranged at the front end of the cleaning robot 1 , When one of the ultrasonic sensors emits ultrasonic waves, the other ultrasonic sensor does not send, and both ultrasonic sensors receive; the detection areas of the two ultrasonic sensors partially overlap, and the overlapping part at least partially covers the blind areas of the two, which is convenient for reducing the blind area, Better detection of obstacles.
  • the control device 30 controls the lifting mechanism to raise the mopping module 14 to the second position.
  • the control device 30 may control the lifting mechanism to raise the mopping module 14 to the second position.
  • the detection device 10 includes an environment detection sensor, and the lifting mechanism includes a mopping module lifting mechanism.
  • the control device 30 controls the mopping module lifting mechanism to drive the mopping module 14 from the relative Lifted from the first position on the working surface to the second position.
  • the mopping module 14 is detachably mounted on the fuselage 11, and when the environment detection sensor detects that the cleaning robot 1 has reached the position 201 for unloading the mop, the control device 30 controls the lifting mechanism of the mopping module to drive the mopping module 14 from the opposite working surface. The second position is raised to the third position where the mopping module is removed. At this time, the mopping module 14 is in contact with the top post on the fuselage 11 and is separated from the fuselage 11 at the third position under the force of the top post. When the environment detection sensor detects that the cleaning robot reaches the position 202 for loading the mop, the control device 30 controls the mop module lifting mechanism to drive the mop module 14 to the first position or the fourth position.
  • the fourth position is higher than or equal to the first position and lower than the second position.
  • the mopping module 14 is attracted to the fuselage 11 through magnetic attraction.
  • the mop module is provided with a magnet
  • the fuselage 11 is provided with a magnetic element.
  • the control device 30 controls the mopping module 14 to be separated from the fuselage 11 from the second position opposite the working surface.
  • the lifting motor 15 of the lifting mechanism of the mopping module drives the second cam mechanism 52 to rotate, so that the mopping module 14 contacts the second cam mechanism 52 and separates from the body 11 under the action of the second cam mechanism 52.
  • the environment detection sensor is a ranging sensor or a positioning sensor.
  • the distance measuring sensor is an infrared sensor or a laser sensor or an ultrasonic sensor
  • the positioning sensor is a magnetic detection sensor, such as a Hall effect sensor or a reed switch effect sensor.
  • the position of the cleaning robot is determined by the distance measuring sensor or the positioning sensor, and then the replacement of the mopping module 14 is completed.
  • the detection device 10 of the cleaning robot 1 includes a self-state detection sensor for detecting the degree of stains or damage of the mop.
  • the control device 30 controls the lifting mechanism to place the mopping module 14 in the second position.
  • the control device 30 controls the cleaning robot 1 to start the return base station procedure.
  • the lifting mechanism includes a mopping module lifting mechanism.
  • the control device 30 controls the mopping module lifting mechanism to place the mopping module 14 in the second position; it is understandable that the lifting mechanism includes a movable support mechanism The supporting mechanism connects the supporting member and the fuselage, and the control device controls the movable supporting mechanism to drive the supporting member in the extended position, and can also raise the mopping module from the first position relative to the work surface to the second position.
  • the self-state detection sensor is a capacitive sensor; in another embodiment, the self-state detection sensor is a resistive sensor; in another embodiment, the self-state detection sensor is a visual sensor.
  • the lifting mechanism is controlled to raise the mopping module 14 to the second position, which can prevent the use of If the mop is already dirty, the mop will become more and more dirty, and even make the floor that has been cleaned dirty, bringing a poor user experience and failing to achieve the effect of independent cleaning; on the other hand, the mopping module is raised to the second position When the mop is in this position, it can also prevent the obstacles from passing through, the carpet from passing through when the carpet is encountered, or even stain the carpet.
  • the detection device 10 of the cleaning robot 1 includes its own state detection sensor for detecting the cleaning time or cleaning area of the cleaning robot.
  • the control device 30 controls the lifting mechanism to place the mopping module 14 in the second position.
  • the control device 30 controls the cleaning robot 1 to start the return base station procedure.
  • the lifting mechanism includes a mopping module lifting mechanism.
  • the control device 30 controls the mopping module lifting mechanism to place the mopping module 14 in the second position; similarly, the lifting mechanism includes a movable support mechanism connected to the movable support mechanism The support and the fuselage, the control device controls the movable support mechanism to drive the support in the extended position, and also can raise the mopping module from the first position relative to the work surface to the second position.
  • the self-state detection sensor is also used to detect the cleaning frequency of the cleaning robot, and increases or decreases the preset value according to the cleaning frequency, thereby more precisely controlling when to replace the mop.
  • the time for replacing the mopping module can also be adjusted according to the actual cleaning frequency of the user.
  • the cleaning robot stores the cleaning frequency and the time for replacing the mopping module corresponding to the cleaning frequency, and the user can manually enter his own Cleaning frequency, the cleaning robot chooses the corresponding time to replace the mopping module.
  • users can also set the cleaning frequency remotely through APP and other devices.
  • the mop replacement procedure can also be started directly according to the cleaning frequency of the cleaning robot.
  • the self-state detection sensor is used to detect the cleaning frequency of the cleaning robot.
  • the mopping module replacement program is started. Under the mopping module replacement program, the control device controls the lifting mechanism to make the mopping module in The second position.
  • the self-state detection sensor is a timer, in another embodiment, the self-state detection sensor is a counter, and in another embodiment, the self-state detection sensor is an odometer. Calculate the cleaning time of the cleaning robot according to the output value of the timer or estimate the working area of the cleaning robot according to the output value of the odometer, and record the number of times the user uses the cleaning robot every week or month through the counter, such as the number of startups, or the cleaning robot Weekly or monthly cleaning time or area to calculate the cleaning frequency of the cleaning robot.
  • the self-state detection sensor is a signal receiver for receiving the cleaning frequency or cleaning time or cleaning area of the cleaning robot sent from the user terminal.
  • the signal receiver may be a wired or wireless receiver.
  • the wireless receiver When it is a wireless receiver, such as a Bluetooth device, etc., it receives the time schedule sent by the user terminal.
  • the time schedule includes weekly or monthly working days, and/or Or the daily working hours, etc.
  • the working frequency of the cleaning robot is obtained.
  • the detection device 10 of the cleaning robot 1 includes a self-state detection sensor for detecting the degree of inclination of itself, specifically the self-state detection sensor is an inclination sensor, and the control device 30 is based on the detection result and preset of the inclination sensor The magnitude of the value determines whether the posture of the cleaning robot 1 is tilted upward or downward.
  • the control device 30 determines that the posture of the cleaning robot 1 is tilted upward, the control device 30 controls the lifting mechanism to raise the mopping module 14 to the second position
  • the control device 30 controls the lifting mechanism to lower the mopping module 14 to the first position.
  • the cleaning robot 1 controls the lifting process of the mopping module 14 when it encounters an obstacle.
  • the control device 30 determines that the posture of the cleaning robot 1 is inclined upward or downward according to the detection result of the tilt sensor and the size of the preset value, and when the detection result reaches the preset value and is positive, the control device 30 determines the cleaning robot 1 If the detection result reaches a preset value and is negative, the control device 30 determines that the attitude of the cleaning robot 1 is inclined downward.
  • the mopping module 14 is in close contact with the floor (as shown in FIG.
  • the control device 30 judges that the posture of the cleaning robot 1 is tilted upward according to the detection result of the tilt sensor. At this time, the control device 30 controls the mopping module lifting mechanism to raise the mopping module 14 to the second position (as shown in FIG.
  • the control device 30 determines that the posture of the cleaning robot 1 is tilted downward according to the detection result of the tilt sensor, and the control device controls The lifting mechanism of the mopping module lowers the mopping module 14 to the first position (as shown in FIGS. 34 and 35); after the cleaning robot 1 has passed the obstacle, the mopping work continues.
  • the tilt sensor can be a gyroscope or a six-axis sensor.
  • the tilt sensor detects the inclination of the cleaning robot 1 to determine the posture direction of the cleaning robot, and then controls the lifting of the mopping module 14, which is low in cost, does not require complex algorithms, and is simple and reliable.
  • the control device 30 is used to detect the battery power of the battery device 60, such as by detecting the voltage or current of the battery device 60.
  • the control device 30 determines that the battery of the cleaning robot 1 is fed, and starts to return to the base station for charging.
  • the control device 30 controls the cleaning robot 1 to start the return base station, and at the same time, the control device 30 controls the lifting mechanism to place the mopping module 14 in the second position.
  • the control device 30 controls the mopping module lifting mechanism to lift the mopping module 14 from the first position to the second position relative to the work surface.
  • the control device 14 can also control the movable support mechanism 26 to drive the support The wheel 13 is in the extended position, thereby raising the mopping module 14 from the first position relative to the work surface to the second position.
  • the advantage of this is that when the cleaning robot 1 feeds, most of the cases are because of long hours of work and the power consumption is too fast. At this time, the mop 28 is dirty. If the mop 28 is not lifted in time, the cleaning robot 1 is on the way back During cleaning, the ground that has been cleaned will be soiled again. In addition, it can prevent the cleaning robot from encountering obstacles during the process of returning to charging, unable to pass through the obstacles, or being trapped or stuck and unable to escape, resulting in cleaning The robot battery device is over-discharged, damaging the battery.
  • the control device 30 controls the lifting mechanism to place the mopping module 14 in the second position.
  • the lifting device includes a mopping module lifting mechanism.
  • the control device 30 controls the mopping module lifting mechanism to cause the mopping module 14 to move from the first position relative to the work surface. One position is raised to the second position.
  • the movable support mechanism can also be controlled by the control device 30 to drive the lifting of the mopping module, the movable support mechanism connects the support and the fuselage; the control device 30 controls the movable support mechanism to drive the support in the extended position, so that The mopping module 14 is raised from the first position relative to the work surface to the second position; at this time, the front section of the fuselage is raised as a whole, and the same effect can be achieved.
  • the self-state detection sensor is a collision sensor, and the control device 30 determines that the cleaning robot 1 is trapped when the detected collision frequency is greater than a preset value.
  • the self-state detection sensor is a speed sensor or an acceleration sensor.
  • the detection device 10 includes a wheel speed sensor, such as a photoelectric encoder or a Hall sensor. When the detected wheel speed continues to be outside the preset value range When it is inside, the control device 30 determines that the cleaning robot 1 is trapped.
  • the self-state detection sensor is a positioning sensor, such as a vision sensor or a laser ranging sensor, which is used to obtain the current position of the cleaning robot.
  • the control device 30 Determine if the cleaning robot is stuck or stuck.
  • the cleaning robot 1 inevitably encounters wires and other objects.
  • the cleaning robot 1 is trapped or stuck by such charged objects, if the mopping module 14 is not lifted in time, on the one hand, the cleaning robot 1 is not easy to escape.
  • the mop 21 is placed on such objects for a long time, the wires may be wetted, which may cause danger.
  • the cleaning robot is trapped or stuck.
  • the mopping module If the mopping module is not lifted in time, it will be in contact with the floor for a long time, especially if it is a wooden floor, the floor is easy to damage; if the cleaning robot encounters For water pools, etc., when the walking wheel slips and cannot move forward, the mopping module is lifted in time, and the support wheel provides front-end support, which makes the cleaning robot easier to escape; if it encounters a protrusion, the cleaning cleaner is trapped When it is stuck, the mopping module can be lifted in time, and it can also be released from the trap in time.
  • the cleaning robot completes the lifting and replacement of the mop completely autonomously, without human intervention, has a high degree of intelligence, reduces the burden on people, and is highly efficient and hygienic.
  • FIG. 36 it is a flowchart of the cleaning robot control method of the present invention; this embodiment provides a cleaning robot control method for controlling the cleaning robot described in Embodiment 1 of the present invention.
  • the cleaning robot 1 includes a fuselage 11; a walking device 40 that supports the fuselage 11 and drives the cleaning robot 1 to move; a cleaning device 50 that is installed on the fuselage 11 to perform cleaning work on a work surface; a control device 30 that controls the walking device 40 drives the cleaning robot 1 to move; a power device to provide power for the walking device 40; specifically includes the following steps:
  • S100 Start the cleaning robot into the working state, and control the cleaning device to be in the first position relative to the working surface;
  • the cleaning device 50 of the cleaning robot of the present invention includes a mopping module.
  • step S200 of the embodiment of the present invention specifically includes:
  • the mopping module When an obstacle is detected, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to a second position. After the cleaning robot passes the obstacle, the mopping module is controlled to return to the first position.
  • step S200 of the embodiment of the present invention specifically includes:
  • the mopping module replacement procedure is started. Under the mopping module replacement procedure, it is determined that the mopping module needs to be raised, and the mopping module is controlled to be raised to the second position.
  • step S200 of the embodiment of the present invention specifically includes:
  • a mopping module replacement program is started. Under the mopping module replacement program, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to a second position.
  • step S200 of the embodiment of the present invention specifically includes:
  • the mopping module replacement procedure is started. Under the mopping module replacement procedure, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to the second position.
  • step S200 of the embodiment of the present invention specifically includes:
  • the mopping module When the carpet is detected, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to the second position; when the floor is detected, the mopping module is controlled to return to the first position.
  • step S200 of the embodiment of the present invention specifically includes:
  • the program of returning to the base station is started. Under the program of returning to the base station, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be raised to the second position.
  • step S200 of the embodiment of the present invention specifically includes:
  • the mopping module When it is detected that the cleaning robot is trapped or stuck, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be lifted to the second position.
  • the detected collision frequency is greater than a preset value, it is determined that the cleaning robot is trapped.
  • step S200 of the embodiment of the present invention specifically includes:
  • step S200 of the embodiment of the present invention specifically includes:
  • the mopping module When it is detected that the cleaning robot reaches the base station, it is determined that the mopping module needs to be lifted, and the mopping module is controlled to be lifted to the second position.
  • the mopping module when it is detected that the cleaning robot reaches the position of unloading the mopping module, the mopping module is controlled to be raised from the second position relative to the work surface to the third position where the mopping module is removed or the mopping module is controlled Separated from the fuselage in a second position opposite the working surface.
  • an electromagnet is provided on the fuselage to cooperate with the magnet on the mopping module.
  • the mopping module when it is detected that the cleaning robot reaches the position where the mopping module is loaded, the mopping module is controlled to move to the first position or the fourth position.
  • the mopping module is attracted by magnetic action, so as long as the distance between the mopping module and the fuselage is controlled within the magnetic force range, a new mopping module can be attracted.
  • the fourth position is higher than or equal to the first position and lower than the second position.
  • the mopping module is disposed at the front end of the fuselage.
  • the support point is located between the mopping module and the walking device.
  • the support point is located before the mopping module.
  • the control device 30 of the cleaning robot 1 controls the lifting and lowering of the mopping module according to the detection result of the detection device, so that the cleaning robot can cross the obstacle, enhance the passability of the cleaning robot, and does not pollute the obstacle; It avoids the cleaning robot from getting stuck, and it is easy to get out of sleep when it gets stuck; so that the cleaning robot can pass through the carpet, etc., and avoid staining the carpet; at the same time, the cleaning robot automatically returns to the base station to replace the old and new mop, which is more intelligent Reduce the burden on people, avoid secondary pollution and cross-contamination caused by the mopping module not being lifted in time, and the user experience is better.
  • FIG. 37 to FIG. 39 it is a schematic diagram of a cleaning robot automatically changing a mop in one embodiment of the present invention.
  • the base station 2 is the above-mentioned base station.
  • the cleaning robot 1 includes a fuselage 11; the walking device 40 supports the fuselage 11 and drives the cleaning robot 1 to move; the cleaning device 50 is used to be installed on the fuselage 11, and the cleaning device 50 includes a mop Floor module 14; a control device 30, which controls the walking device 40 to drive the cleaning robot 1 to move; a power device, which provides power to the walking device 40; the cleaning robot 1 further includes a lifting device, which includes a lifting mechanism and a support, wherein the control device can control The lifting mechanism lifts the mopping module 14 from the first position to the second position relative to the work surface; the support is used to provide a support point relative to the work surface of the walking device 40 when the mopping module 14 is lifted.
  • the lifting mechanism of the cleaning robot 1 includes a mopping module lifting mechanism.
  • the mopping module 14 is detachably mounted on the fuselage 11, specifically the mopping module 14 is disposed on the fuselage 11 through magnetic attraction.
  • the control device 30 controls the cleaning robot 1 to start the mopping module replacement procedure, and returns under the mopping module replacement procedure Base station 2 and control the lifting mechanism of the mopping module to raise the mopping module 14 from the first position to the second position relative to the work surface, and at the same time, the support includes a support wheel 13 which provides a difference when the mopping module 14 is lifted The support point of the drive wheel 12 relative to the working surface.
  • the lifting device includes a support adjustment mechanism, which drives the support wheel to fall when the mopping module 14 is lifted, thereby providing a support point (as shown in FIG. 37).
  • the detection device 10 includes a capacitive sensor or a resistive sensor, and the control device 30 determines whether the mop needs to be replaced according to the comparison between the capacitance or resistance value of the mop output from the detection device 10 and a preset value.
  • the base station 2 is provided with an infrared emission sensor, and the detection device 10 on the cleaning robot 1 includes an infrared reception sensor.
  • the infrared receiving sensor is turned on to receive the signal of the infrared transmitting sensor of the base station 2, the detection device 10 detects the strength of the received signal, and the control device 30 judges the cleaning robot according to the detection signal strength of the detection device 10 1 Whether it has reached base station 2.
  • the intensity of the signal detected by the cleaning robot 1 is greater than the preset intensity value, it means that the cleaning robot 1 has been sufficiently close to the base station 2, at this time, the infrared emission sensor stops emitting signals, and the cleaning robot 1 stops detecting the signal; if the signal strength is not greater than At the preset intensity value, the cleaning robot 1 continues to approach the base station 2 until the signal intensity detected by the cleaning robot 1 is greater than the preset intensity value.
  • the detection device 10 of the cleaning robot 1 may also include other ranging sensors, such as an ultrasonic sensor, wherein the number of ultrasonic sensors is two, and they are respectively arranged at the front end of the cleaning robot 1 at intervals.
  • the detection device 10 may also include a positioning sensor for determining the position of the base station 2 and guiding the cleaning robot 1 to move to the position of the base station 2.
  • the positioning sensor is a Hall effect sensor, and a positioning block corresponding to the positioning sensor is pre-installed on the base station 2, the positioning block may be a magnet or a magnetic steel, when the cleaning robot 2 arrives at the base station 2
  • the detection device 10 is used to detect whether the value of the detection signal output by the positioning sensor reaches a preset value, and the control device 30 determines the position of the cleaning robot 1 on the base station floor 207 according to the output result of the detection device 10.
  • the value of the detection signal output here may be the magnitude of the intensity of the detection signal output by the positioning sensor to detect the positioning block, for example, reflected as a current or voltage value. It may also be a digital value obtained after the detection signal output by the positioning device detecting the limit element is subjected to signal processing, such as analog-to-digital conversion.
  • the positioning sensor may also include a reed switch sensor.
  • the control device 30 controls the cleaning robot 2 to stop moving.
  • the control device 30 controls the mopping module lifting mechanism to control the mopping module 14 to be lifted from the second position relative to the work surface to remove the mop
  • the third position (as shown in Figure 38).
  • the top post provided on the fuselage 11 is in contact with the mopping module 14 and provides the mopping module 14 with a downward force to overcome the suction force of the mopping module 14 and the fuselage 11 so that the mopping module 14 The body 11 is separated.
  • control device 30 controls the separation of the mopping module 14
  • the manner in which the control device 30 controls the separation of the mopping module 14 can also take other forms, and it is not necessary to control the mopping module lifting mechanism to control the mopping module 14 to be lifted from the second position relative to the work surface to the removal of the mop
  • the third position can also be controlled by the control device 30 to separate the mopping module 14 from the fuselage 11 at a second position relative to the working surface.
  • the device 30 controls the current passing through the electromagnet to disconnect or change the direction of the current, thereby controlling the separation of the mopping module 14 from the fuselage 11 at a second position relative to the work surface, and can also be driven by the lifting motor 15 of the mopping module lifting mechanism
  • the second cam mechanism 52 rotates so that the mopping module 14 contacts the second cam mechanism 52 and separates from the body 11 under the action of the second cam mechanism 52.
  • the new mopping slot 203 of the base station 2 places the new mopping module in the second docking position 202 of the base station 2, that is, the base station loading mop position.
  • the cleaning robot 1 continues to move toward the base station. If the value of the detection signal output by the positioning sensor reaches the second preset value, the second docking position 202 of the base station 2 is located, and the control device 30 The cleaning robot 1 is controlled to stop moving, and the mopping module lifting mechanism of the cleaning robot 1 is controlled to fall to a position where it is attracted to the new mopping module, as shown in the first position (as shown in FIG. 39). After the new mopping module is loaded, the cleaning robot 1 drives away from the base station 2, and when it leaves the base station 2, the old mop is recovered to the old mop trough 204 under the action of the mopping module replacement device.
  • the cleaning robot 1 can automatically return to the base station 2 to replace the mopping module 14, which is more intelligent.
  • a certain number of new mopping modules are placed in the new mop slot, so there is no need for manual participation for a long period of time, reducing human burden.
  • the mop of the mopping module can use disposable wet paper towels. The mopping module does not need to be cleaned manually, and is clean and hygienic.
  • FIG. 40 to FIG. 43 it is a schematic diagram of a cleaning robot automatic replacement process of another embodiment of the present invention; this mop replacement process differs from the mop replacement process shown in FIGS. 35 to 37 in that when the cleaning robot 1 After reaching the first docking position 201 of the base station 2, the mopping position of the base station 2 is reached, and after the mopping module 14 is separated from the fuselage 11 at the docking position, the cleaning robot 1 does not continue to move toward the base station 2 but backward Exit base station 2 (as shown in Figure 42). After the cleaning robot 1 retreats outside the base station 2, the old mopping module unloaded at the first docking position 201 is recovered into the old mop trough under the action of the old mop recycling device. At this time, the cleaning robot 1 continues to move toward the base station 2 until it reaches the second docking position 202 of the base station 2, repeats the above process until the replacement of the new mop is completed, and drives away from the base station 2.
  • the benefit of the above automatic mop replacement process is that before the cleaning robot installs a new mop, the old mop in the first docking position of the base station has been recovered, which prevents the drive wheel or support wheel from passing through the old mop and staining the wheel , And then enter the work area to work, soil the work area, so the cleaning effect is better.
  • the cleaning robot 1 can replace the mop at the base station 2 and charge at the base station 2 at the same time.
  • the cleaning robot 1 includes a first charging interface
  • the base station 2 includes a second charging interface.
  • the first charging interface is aligned with the second charging interface.
  • the first charging interface of this embodiment includes a wireless charging receiving terminal
  • the second charging interface includes a wireless charging transmitting terminal.
  • the first charging interface of this embodiment includes a first conductive terminal
  • the second charging interface includes a second conductive terminal.
  • the first conductive terminal and the second conductive terminal are aligned, where the first conductive terminal includes a charging joint and the second conductive terminal includes a charging pole piece; or the first conductive terminal includes a charging joint and the second conductive terminal includes a charging rod and the like.

Abstract

一种清洁机器人(1)及其控制方法和地面处理系统,其中地面处理系统包括清洁机器人(1)和基站(2)。基站(2)包括底板(207),支撑板(206)和上板(205),其中上板(205)通过支撑板(206)与底板(207)连接。清洁机器人(1)包括:机身(11),行走装置(40),支撑机身(11)并带动所清洁机器人(1)移动;清洁装置(50),用于安装在机身(11)上,清洁装置(50)包括拖地模块(14);控制装置(30),控制行走装置(40)带动清洁机器人(1)移动;动力装置(70),为行走装置(40)提供动力;还包括抬升装置,其包括抬升机构和支撑件,其中控制装置(30)能够控制抬升机构使拖地模块(14)从相对于工作表面的第一位置抬升至第二位置;支撑件,用于在拖地模块(14)抬升时,提供不同于行走装置(40)的相对于工作表面的支撑点;控制装置(30)根据检测装置(10)的检测结果,控制清洁机器人(1)回归基站(2)及在基站(2)更换拖布,因此无需人工干预,智能化程度高,减轻人的负担。控制装置(30)控制抬升装置及时地抬升拖地模块(14),即使遇到地面状态发生变化,或者遇到障碍物等,也具有更好的通过性;在清洁机器人(1)回归基站(2)或者切换工作区域的时候,防止二次污染或交叉污染,清洁效果更佳。

Description

清洁机器人及其控制方法和地面处理系统
本申请要求了申请日为2018年12月21日,申请号为201811572174.X和申请日为2019年03月29日,申请号为201910250331.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及机器人领域,特别是涉及清洁机器人及其控制方法和地面处理系统。
背景技术
随着科学技术的发展,智能的清洁机器人为人们所熟知,不仅如此,智能清扫机、智能拖地机等类似的家庭服务机器人,以其清洁方便、省时省力的特点,使人们摆脱了繁琐的家务劳动而步入了寻常百姓的家庭生活。
目前的智能拖地机或者智能扫拖一体机具备拖布以对地面进行擦拭,提升地面的清洁度。清洁机器人在工作时,经常会碰到室内的障碍物,如台阶,门槛等,在遇到这些障碍物时,导致机器无法越过障碍物,大多选择避开这些障碍物。而且现有室内环境中越来越多的使用地毯等装饰物,清洁机器人移动到地毯上时,经常发生拖布与地毯形成干涉,而导致地毯被拖布上的污渍弄脏的情况。另外,当清洁机器人拖地一段时间后,拖布需要更换时或需要切换到另一房间,比如从厨房到卧室,如不及时更换拖布,往往会导致干净的地面再次被弄脏或者交叉污染等。
发明内容
为克服现有技术的缺陷,本发明所要解决的问题是提供一种可自动抬升清洁装置的清洁机器人及其控制方法和地面处理系统。
本发明解决现有技术问题所采用的技术方案是:一种清洁机器人包括:机身;行走装置,支撑所述机身并带动所述清洁机器人在工作表面移动;清洁装置,用于安装在所述机身上,对工作表面执行清洁工作;控制装置,控制所述行走装置带动所述清洁机器人移动;动力装置,为行走装置提供动力;所述清洁机器人还包括抬升装置,所述抬升装置包括抬升机构和支撑件,其中所述控制装置能够控制所述抬升机构使所述清洁装置从相对于工作表面的第一位置 抬升至第二位置;所述支撑件,用于在所述清洁装置抬升时,提供不同于所述行走装置的相对于工作表面的支撑点。
在其中一个实施例中,所述支撑件包括支撑轮。
在其中一个实施例中,所述清洁装置包括拖地模块。
在其中一个实施例中,所述清洁机器人为家用和/或者室内服务机器人。
在其中一个实施例中,所述拖地模块包括拖地板,所述拖地板用于可拆卸地安装擦拭件。
在其中一个实施例中,还包括液体箱,所述控制装置控制所述液体箱在清洁机器人工作时给所述拖地模块供液体,在所述拖地模块被抬升时,停止给所述拖地模块供液体。
在其中一个实施例中,所述拖地模块设置于所述机身底部前端。
在其中一个实施例中,所述支撑点位于所述拖地模块和所述行走装置之间。
在其中一个实施例中,所述支撑点位于所述拖地模块之前。
在其中一个实施例中,所述拖地模块位于第二位置时所述支撑件对工作表面的作用力,大于所述拖地模块位于第一位置时所述支撑件对工作表面的作用力。
在其中一个实施例中,所述抬升机构包括拖地模块抬升机构,能够带动所述拖地模块从相对于工作表面的第一位置抬升至第二位置。
在其中一个实施例中,所述拖地模块抬升机构包括升降机构,所述升降机构包括升降电机和传动机构,所述升降电机驱动所述传动机构带动所述拖地模块上下移动。
在其中一个实施例中,所述传动机构包括:由四级连杆组成的第一联动机构,所述第一联动机构包括:一端与所述升降电机固定连接的第一连杆机构、一端与所述第一连杆机构的另一端联动的第二连杆机构、一端与所述机身可转动的相连另一端与所述第二连杆机构的另一端联动的第三连杆机构、一端与所述第三连杆机构的另一端联动另一端与拖地模块联动的第四连杆机构,所述升降电机驱动所述第一联动机构带动所述拖地模块上下移动。
在其中一个实施例中,所述传动机构包括:由两级连杆组成的第二联动机构,所述第二联动机构包括:与所述升降电机固定连接的第五连杆机构,所述第五连杆机构一端与第六连杆机构的一端联动,所述第六连杆机构的另一端与所述拖地模块联动,所述升降电机驱动所述第二联动机构带动所述拖地模块上 下移动。
在其中一个实施例中,所述传动机构包括:第一凸轮机构,所述第一凸轮机构的边缘部分的与所述拖地模块相连,所述升降电机驱动所述第一凸轮机构转动,所述第一凸轮机构带动所述拖地模块上下移动。
在其中一个实施例中,所述传动机构还包括:升降架,所述第一凸轮机构安装在所述升降架内,所述第一凸轮机构通过所述升降架与所述拖地模块相连,所述升降电机驱动所述第一凸轮机构旋转,所述第一凸轮机构带动所述升降架上下移动,所述升降架带动所述拖地模块上下移动。
在其中一个实施例中,所述传动机构包括齿轮螺杆啮合装置或者带传动装置。
在其中一个实施例中,所述拖地模块抬升机构包括摆动机构,所述摆动机构带动所述清洁装置摆动以使所述拖地模块从相对于工作表面的第一位置抬升至第二位置。
在其中一个实施例中,所述拖地模块可拆卸地安装在所述机身上。
在其中一个实施例中,所述传动机构还包括:第二凸轮机构或杆机构,所述升降电机驱动所述第二凸轮机构或所述杆机构旋转,在所述第二凸轮机构或所述杆机构接触到所述拖地模块时,能向所述拖地模块施加向下的作用力,从而使所述拖地模块与所述机身分离。
在其中一个实施例中,所述机身上还包括限位装置,所述限位装置包括第一斜面和第二斜面,当所述拖地模块处于第一位置时,所述第二凸轮机构的第一部分边缘与所述第一斜面相抵接;当所述拖地模块处于分离位置时,所述第二凸轮机构的第二部分边缘与所述第二斜面相抵接。
在其中一个实施例中,所述传动机构包括:第一凸轮机构,所述第一凸轮机构的边缘部分的与所述拖地模块相连,所述升降电机驱动所述第一凸轮机构转动,所述第一凸轮机构带动所述拖地模块上下移动,所述第一凸轮机构与所述第二凸轮机构或所述杆机构同步运动。
在其中一个实施例中,所述机身朝下设置有凸起装置,所述凸起装置与所述拖地模块产生相对运动而与所述拖地模块接触,从而使拖地模块与所述机身分离。
在其中一个实施例中,所述拖地模块抬升机构还用于带动所述拖地模块从相对工作表面的第二位置抬升至拆卸所述拖地模块的第三位置。
在其中一个实施例中,所述机身上设置有推拉式电磁铁以及与所述推拉式 电磁铁铁芯配接的推杆,所述控制装置通过给所述推拉式电磁铁通电,控制所述推杆作用于所述拖地模块,从而使所述拖地模块与所述机身分离。
在其中一个实施例中,所述机身上设置有电磁铁,与所述拖地模块上的磁铁配合,所述控制装置通过控制经过所述电磁铁的电流大小或方向,从而控制所述拖地模块与所述机身的吸合分离。
在其中一个实施例中,还包括拖地模块位置检测装置,所述拖地模块位置检测装置设置在所述机身上,所述拖地模块抬升机构上设置有位置标记,所述位置检测装置用于检测所述位置标记,并输出检测信号;所述控制装置通过将所述检测信号与预设值对比,来判断所述拖地模块相对于所述工作表面的位置。
在其中一个实施例中,所述拖地模块位置检测装置包括磁检测传感器,所述位置标记为磁性元件。
在其中一个实施例中,所述磁检测传感器为霍尔传感器,所述磁性元件为磁铁或者磁钢。
在其中一个实施例中,所述支撑件可活动地连接于所述机身,在所述拖地模块位于第二位置时,所述支撑件与所述机身顶部的距离大于所述拖地模块位于第一位置时,所述支撑件与所述机身顶部的距离。
在其中一个实施例中,所述抬升装置包括支撑件调节机构,所述支撑件调节机构在所述拖地模块抬升时带动所述支撑件下落,在所述拖地模块下落时带动所述支撑件收起。
在其中一个实施例中,所述支撑件调节机构与所述拖地模块抬升机构联动。
在其中一个实施例中,所述支撑件调节机构包括:齿轮齿条啮合装置或连杆装置。
在其中一个实施例中,所述抬升装置包括弹性件,所述弹性件连接所述支撑件和所述机身。
在其中一个实施例中,所述抬升机构包括活动支撑机构,所述活动支撑机构连接所述支撑件和所述机身;所述控制装置控制所述活动支撑机构带动所述支撑件运动至伸出位置,从而使所述拖地模块从相对于工作表面的第一位置抬升至第二位置;控制装置控制所述活动支撑机构带动所述支撑件运动至收起位置,从而使所述拖地模块从相对于工作表面的第二位置下落至第一位置。
在其中一个实施例中,所述活动支撑机构包括摆动机构或升降机构,所述 摆动机构或升降机构驱动所述支撑件下落或收起,从而使所述拖地模块被抬升或者下落。
在其中一个实施例中,所述清洁机器人还包括雷达传感器和/或光学传感器,所述支撑件下落或收起时所述雷达传感器和/或光学传感器的高度大致不变。
在其中一个实施例中,还包括检测装置,所述控制装置根据所述检测装置的检测结果控制所述抬升机构调节所述拖地模块相对于工作表面的位置。
在其中一个实施例中,所述检测装置包括环境检测传感器和/或自身状态检测传感器。
在其中一个实施例中,所述环境检测传感器为障碍物检测传感器,当所述环境检测传感器检测到障碍物时,所述控制装置控制所述抬升机构使所述拖地模块处于第二位置;当所述清洁机器人越过障碍物后,所述控制装置控制所述抬升机构使所述拖地模块处于第一位置。
在其中一个实施例中,所述障碍物检测传感器包括视觉传感器或者红外传感器或者激光传感器或者超声波传感器。
在其中一个实施例中,所述环境检测传感器用于检测地面状态,当所述环境检测传感器为检测到地面状态为地毯时,所述控制装置控制所述抬升机构使所述拖地模块处于第二位置;当所述环境检测传感器为检测到地面状态为地板时,所述控制装置控制所述抬升机构使所述拖地模块处于第一位置。
在其中一个实施例中,所述环境检测传感器为视觉传感器或者雷达传感器,所述控制装置根据视觉传感器获取的地面图像判断地面状态或者根据雷达传感器检测到的地面材料类型判断地面状态。
在其中一个实施例中,所述环境检测传感器检测到所述清洁机器人到达基站时,所述控制装置控制所述抬升机构使所述拖地模块抬升至第二位置。在其中一个实施例中,所述拖地模块可拆卸地安装在所述机身上,所述检测装置检测到清洁机器人到达卸载擦拭件的位置时,所述控制装置控制所述抬升机构带动所述拖地模块从相对工作表面的第二位置抬升至拆卸所述拖地模块的第三位置或者所述控制装置控制所述拖地模块在相对工作表面的第二位置与所述机身分离。
在其中一个实施例中,所述环境检测传感器检测到清洁机器人到达装载擦拭件的位置时,所述控制装置控制所述抬升机构带动所述拖地模块运动至第一位置或第四位置。
在其中一个实施例中,所述第四位置高于或等于所述第一位置,且低于所述第二位置。
在其中一个实施例中,所述环境检测传感器为测距传感器或定位传感器。
在其中一个实施例中,所述测距传感器为红外传感器或者激光传感器或者超声波传感器。
在其中一个实施例中,所述定位传感器为磁检测传感器。
在其中一个实施例中,所述磁检测传感器为霍尔效应传感器或者干簧管效应传感器。
在其中一个实施例中,所述自身状态检测传感器用于检测拖地模块的污渍程度或破损程度,当拖地模块的污渍程度或破损程度达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,控制装置控制所述抬升机构使所述拖地模块处于第二位置。
在其中一个实施例中,所述自身状态检测传感器为电容式传感器或电阻式传感器或者视觉传感器。
在其中一个实施例中,所述自身状态检测传感器用于检测清洁机器人的清洁时间或者清洁面积,当所述清洁时间或者清洁面积达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,控制装置控制所述抬升机构使所述拖地模块处于第二位置。
在其中一个实施例中,所述自身状态检测传感器还用于检测清洁机器人的清洁频率,根据所述清洁频率增大或者减少所述预设值。
在其中一个实施例中,所述自身状态检测传感器还用于检测清洁机器人的清洁频率,根据所述清洁频率增大或者减少所述预设值。
在其中一个实施例中,所述自身状态检测传感器用于检测清洁机器人的清洁频率,当所述清洁频率达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,控制装置控制所述抬升机构使所述拖地模块处于第二位置。
在其中一个实施例中,所述自身状态检测传感器为信号接收器,用于接收从用户终端发送的所述清洁机器人的清洁频率或者清洁时间或者清洁面积。
在其中一个实施例中,所述自身状态检测传感器为计时器或者计数器或者里程计。
在其中一个实施例中,在所述拖地模块更换程序下,所述控制装置控制所述清洁机器人回归基站。
在其中一个实施例中,所述检测装置用于检测电池电量,当电池电量低于 预设值时,所述控制装置控制所述清洁机器人启动回归基站,同时所述控制装置控制所述抬升机构使所述拖地模块处于第二位置。
在其中一个实施例中,当所述自身状态检测传感器检测到清洁机器人被困住或卡住时,所述控制装置控制所述抬升机构使所述拖地模块处于第二位置。
在其中一个实施例中,所述自身状态检测传感器为碰撞传感器,当检测到的碰撞频率大于预设值时,则所述控制装置判断所述清洁机器人被困住或卡住。
在其中一个实施例中,所述自身状态检测传感器为速度传感器或者加速度传感器,当检测到的速度或者加速度持续不在预设值范围内时,则所述控制装置判断所述清洁机器人被困住或卡住。
在其中一个实施例中,所述速度传感器为轮速传感器。
在其中一个实施例中,所述自身状态检测传感器为定位传感器,用于获取所述清洁机器人的当前位置,当所述当前位置在预设时间内保持不变时,所述控制装置判断所述清洁机器人被困住或者卡住。
在其中一个实施例中,所述定位传感器为激光测距传感器或者视觉传感器。
在其中一个实施例中,所述自身状态检测传感器为倾斜传感器,所述控制装置根据倾斜传感器的检测结果与预设值的大小,判断所述清洁机器人的姿态向上倾斜或者向下倾斜,当所述控制装置判断所述清洁机器人的姿态向上倾斜时,则所述控制装置控制所述抬升机构使所述拖地模块抬升至第二位置;当所述控制装置判断所述清洁机器人的姿态向下倾斜时,则所述控制装置控制所述抬升机构使所述拖地模块下降至第一位置。
一种清洁机器人的控制方法,其中清洁机器人包括:机身;行走装置,支撑所述机身并带动所述清洁机器人移动;清洁装置,用于安装在所述机身上,对工作表面执行清洁工作;控制装置,控制所述行走装置带动所述清洁机器人移动;动力装置,为行走装置提供动力;包括步骤:启动清洁机器人进入工作状态,控制清洁装置处于相对于工作表面的第一位置;判断清洁装置是否需要抬升,若是,控制清洁装置从相对于工作表面的第一位置抬升至第二位置,同时提供不同于所述行走装置的相对于工作表面的支撑点。
在其中一个实施例中,所述清洁装置包括拖地模块。
在其中一个实施例中,当检测到障碍物时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置,清洁机器人越过障碍物后,控制所述拖地模块恢复 至第一位置。
在其中一个实施例中,当检测到拖地模块的污渍程度或破损程度达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
在其中一个实施例中,当检测到清洁机器人的清洁时间或者清洁面积达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
在其中一个实施例中,当检测到清洁机器人的清洁频率达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
在其中一个实施例中,当检测到地毯时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置;当检测到地板时,控制所述拖地模块恢复至第一位置。
在其中一个实施例中,当检测到的电池电量低于预设值时,启动回归基站程序,在回归基站程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
在其中一个实施例中,当检测到清洁机器人被困住或卡住时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
在其中一个实施例中,当检测到的碰撞频率大于预设值时,则判断所述清洁机器人被困住或者卡住。
在其中一个实施例中,当检测到的速度或者加速度持续不在预设值范围内时,则判断所述清洁机器人被困住或者卡住。
在其中一个实施例中,当检测到所述清洁机器人当前位置在预设时间内保持不变时,则判断所述清洁机器人被困住或者卡住。
在其中一个实施例中,当判断所述清洁机器人的姿态向上倾斜时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置;当判断所述清洁机器人的姿态向下倾斜时,则控制所述拖地模块下降至第一位置。
在其中一个实施例中,当检测到清洁机器人到达基站时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
在其中一个实施例中,当检测到清洁机器人到达卸载拖地模块的位置时,控制所述拖地模块从相对工作表面的第二位置抬升至拆卸所述拖地模块的第三位置或者控制所述拖地模块在相对工作表面的第二位置与所述机身分离。
在其中一个实施例中,所述机身上设置有电磁铁,与所述拖地模块上的磁铁配合,当检测到清洁机器人到达卸载拖地模块的位置时,通过控制所述电磁铁的电流大小或方向,从而控制所述拖地模块在第二位置与所述机身分离。
在其中一个实施例中,当检测到清洁机器人到达装载拖地模块的位置时,控制所述拖地模块运动至第一位置或第四位置。
在其中一个实施例中,所述第四位置高于或等于所述第一位置,且低于所述第二位置。
在其中一个实施例中,所述拖地模块设置于所述机身前端。
在其中一个实施例中,所述支撑点位于所述拖地模块和所述行走装置之间。
在其中一个实施例中,所述支撑点位于所述拖地模块之前。
一种地面处理系统,包括基站和清洁机器人,其中清洁机器人包括机身;行走装置,支撑所述机身并带动所述清洁机器人移动;控制装置,控制所述行走装置带动所述清洁机器人移动;动力装置,为行走装置提供动力;所述地面处理系统还包括拖地模块,能够安装在机身上,执行拖地工作;所述清洁机器人还包括抬升装置和检测装置,所述抬升装置包括抬升机构和支撑件,其中所述控制装置能够控制所述抬升机构使所述拖地模块从相对于工作表面的第一位置抬升至第二位置;所述支撑件,用于在所述拖地模块抬升时,提供不同于所述行走装置的相对于工作表面的支撑点;检测装置,用于检测拖地模块是否需要更换;所述基站设置有拖布槽,用于盛放所述拖地模块,及拖地模块更换装置;所述检测装置检测到所述拖地模块需要更换时,控制装置控制所述清洁机器人启动拖地模块更换程序,在所述拖地模块更换程序下,回归所述基站及在所述基站更换拖地模块;在所述拖地模块更换程序下,控制装置控制所述抬升机构使所述拖地模块抬升至至少第二位置。
在其中一个实施例中,所述抬升机构包括拖地模块抬升机构,所述检测装置检测到拖地模块的污渍程度或破损程度达到预设值时,控制装置控制所述清洁机器人启动拖地模块更换程序,在所述拖地模块更换程序下,回归所述基站,并控制所述拖地模块抬升机构使所述拖地模块从相对于工作表面的第一位置抬升至第二位置。
在其中一个实施例中,所述拖地模块可拆卸地安装在所述机身上,当所述清洁机器人到达基站卸载拖地模块位置后,所述控制装置控制所述拖地模块抬升机构使所述拖地模块从相对于工作表面的第二位置抬升至拆卸拖地模块的 第三位置或者所述控制装置控制所述拖地模块在相对工作表面的第二位置与所述机身分离。
在其中一个实施例中,所述控制装置控制清洁机器人继续移动,当到达基站装载拖地模块位置后,所述控制装置控制所述抬升机构使所述拖地模块处于第一位置或者第四位置,所述第四位置高于或等于所述第一位置,且低于所述第二位置。
与现有技术相比,本发明的有益效果是:清洁机器人在工作的过程中,能够检测是否需要抬升清洁装置,并且根据检测结果,控制清洁装置的抬升和下落。因此在即使遇到地面状态发生变化,例如遇到地毯时,或者遇到障碍物等,也具有更好的通过性,且可以避免弄脏地毯或者障碍物等。另外在清洁机器人回归基站或者切换工作区域的时候,控制装置控制抬升装置及时地抬升拖地模块,能有效地防止二次污染或交叉污染,清洁效果更佳。
附图说明
为了更清楚地说明本发明具体实施方式的技术方案,下面将对具体实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的其中一个实施例的地面处理系统的示意图;
图2为本发明的其中一个实施例的清洁机器人的示意图;
图3为图2所示的清洁机器人的俯视图;
图4为本发明的一实施例中的清洁机器人的模块图;
图5为本发明的其中一个实施例的清洁机器人的拖地模块处于第一位置时的示意图;
图6为图5所示的清洁机器人的拖地模块处于第二位置时的示意图;
图7为本发明的另外一个实施例的清洁机器人的拖地模块处于第一位置时的示意图;
图8为图7所示的清洁机器人的拖地模块处于第二位置时的示意图;
图9为本发明的其中一个实施例的清洁机器人的拖地模块抬升机构的结构图;
图10为本发明的另外一个实施例的清洁机器人的拖地模块抬升机构的结构图;
图11为图5所示的清洁机器人的拖地模块处于第三位置时的示意图;
图12为图5所示的清洁机器人的拖地模块脱落时的示意图;
图13至图14为本发明的其中一个实施例的清洁机器人的支撑件活动连接于机身的示意图;
图15至图16为本发明的另外一个实施例的清洁机器人的支撑件活动连接于机身的示意图;
图17为本发明的另外一个实施例的清洁机器人的支撑件活动连接于机身的示意图;
图18至图20为本发明的另外一个实施例的清洁机器人的支撑件活动连接于机身的示意图;
图21为本发明的另外一个实施例的清洁机器人的局部的示意图;
图22为本发明的另外一个实施例的清洁机器人正常工作的示意图
图23为图22的清洁机器人检测到地毯,拖地模块抬升的示意图;
图24为图22的清洁机器人在地毯移动,拖地模块抬升的示意图;
图25为图22的清洁机器人通过地毯后,重新接触地板时的示意图;
图26为本发明的另外一个实施例的清洁机器人正常工作的示意图;
图27为图26所示的清洁机器人拖地模块抬升越障的示意图;
图28为图26所示的清洁机器人拖地模块抬升越障后的示意图;
图29为本发明的其中一个实施例的清洁机器人正常工作的示意图;
图30为图29所示的清洁机器人机身抬升越障的示意图;
图31为图29所示的清洁机器人机身越障后的示意图;
图32为本发明的另外一个实施例的清洁机器人正常工作的示意图;
图33为图32的清洁机器人翻越障碍物,机身前部被抬起时,拖地模块上升的示意图;
图34为图32的清洁机器人越过障碍物,机身尾部被抬起时,拖地模块下降时的示意图;
图35为图32的清洁机器人越过障碍物后,重新接触地面时的示意图。
图36为本发明的清洁机器人控制方法的流程图;
图37至图39为本发明的其中一个实施例的清洁机器人自动更换拖布过程示意图;
图40至图43为本发明的另外一个实施例的清洁机器人自动更换拖布过 程示意图。
图44为本发明的另外一个实施例的清洁机器人的示意图;
图45为图44所示的清洁机器人的俯视图;
图46为第三实施例的拖地模块抬升机构结构示意图;
图47为第四实施例的拖地模块抬升机构结构示意图;
图48为第五实施例的拖地模块抬升机构结构示意图;
图49至图50为本发明的另外一个实施例的清洁机器人的支撑件活动连接于机身的示意图;
图51为本发明的另外一个实施例的清洁机器人的支撑件活动连接于机身的示意图;
图52至图53为本发明的另外一个实施例的清洁机器人的支撑件活动连接于机身的示意图;
图54为第五实施例的拖地模块中拖布掉落结构示意图;
图55至图57为本发明的其中一个实施例的清洁机器人的拖地模块脱落过程示意图;
图58至图60为本发明的另外一个实施例的清洁机器人的拖地模块脱落过程示意图;
图61至图65为本发明的另外一个实施例的清洁机器人检测地面状态并控制拖地模块升降的过程示意图;
图66至图69为本发明的另外一个实施例的清洁机器人检测地面状态并控制拖地模块升降的过程示意图。
图70为本发明的一实施例的清洁机器人的拖地模块位置检测装置与位置标记的安装示意图;
图71为第五实施例的清洁机器人的拖地模块处于第一位置时的示意图;
图72为第五实例的清洁机器人的拖地模块处于第二位置时的示意图;
图73为第五实施例的清洁机器人的拖地模块的拖布掉落结构示意图;
图74为图71的清洁机器人的止挡装置的结构示意图。
其中,相关元件对应编号如下:
1、清洁机器人                2、基站
10、检测装置                 20、固定板
30、控制装置                 40、行走装置
50、清洁装置                  11、机身
12、驱动轮                    13、支撑轮
14、拖地模块                  15、升降电机
16、两级齿轮减速机构          17、压力弹簧
18、磁性元件                  19、升降架
21、螺杆                      22、滑槽
23、链条                      24、齿轮
29、支撑件调节机构            31、弹性件
33、液体箱                    34、第一位置
35、地毯                      36、第二位置
37、障碍物                    38、障碍物检测传感器
39、集尘盒                    201、第一停靠位置
202、第二停靠位置             203、新拖布槽
204、旧拖布槽                 205、上板
206、支撑板                   207、底板
60、电源装置                  70、动力装置
41、滚刷                      42、边刷
43、第一连杆机构              44、第二连杆机构
45、第三连杆机构              46、第四连杆机构
47、传动轴                    48、第五连杆机构
49、第六连杆机构              51、第一凸轮机构
52、第二凸轮机构              53、第一齿条
54、固定齿轮                  55、第二齿条
56、第七连杆机构              57、第八连杆机构
58、弹性件                    26、活动支撑机构
59、磁铁                      60、电磁铁
61、推拉式电磁铁              62、推杆
63、限位装置                  64、第一斜面
65、第二斜面                  66、位置标记
67、磁检测装置                68、止挡装置
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,为本发明的其中一个实施例的地面处理系统的示意图;该地面处理系统,包括基站2和清洁机器人1。清洁机器人1可以是家用和/或者室内服务机器人,如地面清洁机器人。具体的,地面清洁机器人可以是自动拖地机,或自动拖扫一体机,或自动扫地机。清洁机器人1在工作区域内工作,完成拖地、扫地等任务,在清洁机器人1需要回归基站2的时候,如检测到清洁装置需要更换时或者清洁机器人1需要充电时,启动回归基站程序,清洁机器人1回归到基站2完成擦拭件自动更换动作和/或充电动作。
基站2包括底板207,支撑板206和上板205,其中上板205通过支撑板206与底板207连接;上板205上设置有新拖布槽203,旧拖布槽204及拖布更换装置(图中未示出),拖布更换装置可以采用升降机构,摆动机构等,且新拖布槽203和旧拖布槽204在底板207上的投影对应于清洁机器人1在底板207的第二停靠位置202和第一停靠位置201;可以理解的是,新旧拖布槽203、204的位置不是固定的,如在其他实施例中,新旧拖布槽203、204的位置也是可以对换的。清洁机器人1在第一停靠位置201完成旧擦拭件的卸载,并由基站2的拖布更换装置回收,且由基站2的拖布更换装置释放新的擦拭件,从而使清洁机器人1在第二停靠位置完成新擦拭件的装载。其中该擦拭件可以为拖布、湿纸巾、清洁纸,海绵擦等,在本发明的实施例中,以擦拭件为拖布为例,展开叙述,当擦拭件为其他类型时,同样适用,不再展开赘述。
如图2至图3所示,为本发明的其中一个实施例的清洁机器人。在本实施例中,清洁机器人1为清洁机器人,具体为自动拖地机。结合图4,清洁机器人1包括机身11、检测装置10、控制装置30、行走装置40、清洁装置50、电源装置60和动力装置70。
行走装置40支撑机身11并带动清洁机器人1移动,其设置在机身11后端。在本实施例中,行走装置40具体包括位于清洁机器人1两侧的两个驱动轮12,可被动力装置70独立驱动。这样的设置能够通过控制两个驱动轮的速度和速度差,来控制行走装置40的行驶速度和方向,使得清洁机器 人1的行走和转向灵活而准确。行走装置40可以有其他的形式,例如为履带式等。
动力装置70为清洁机器人1的移动和工作提供动力。具体地,包括位于清洁机器人1内的电机及与电机连接的传动结构,为行走装置40提供动力。传动机构与行走装置40连接,电机驱动传动机构工作,传动机构的传动作用使得行走装置40运动。行走装置40接收控制装置30的指合,带动清洁机器人1在工作表面自动行走。
控制装置30是清洁机器人1的控制中枢,与动力装置70、电源装置60、检测装置10等装置电连接,接收各个装置发来的信息。控制装置30控制动力装置70驱动行走装置40带动清洁机器人1移动,并且控制清洁机器人1执行工作区域切换、返回基站以及充电等各类动作或任务等。控制装置30可以是嵌入式数字信号处理器(Digital Signal Processor,DSP)、微处理器(Micro Processor Unit,MPU)、特定集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)芯上系统(System on Chip,SOC)、中央处理器(Central Processing Unit,CPU)或者现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
电源装置60为清洁机器人1的控制装置30、动力装置70及检测装置10等提供工作的能量。电源装置60通常为可充电的电池,为清洁机器人运行提供电力,或者可连接外部电源进行充电;优选的,电源装置60带有充电或者放电保护单元,能够对电源装置60的充电或放电进行保护。
清洁装置50,用于安装在机身11上。清洁装置50包括拖地模块14,其中拖地模块14包括拖地板,能够可拆卸地安装拖布,用于执行清洁机器人1的拖地工作。在本实施例中,拖地模块14设置在机身11前端,拖地面积更大,拖地效果更佳。当然可以理解地是,在其他实施例中,拖地模块也可以设置14在机身11的中端或者后端。
在另一实施例中,清洁机器人1为自动扫拖一体机,包括集尘装置和清洁装置,其中清洁装置50包括拖地模块、滚刷及边刷。在本实施例中,参见图44至图45,拖地模块14设置在机身11中前部,位于滚刷41及滚刷42和驱动轮12的中间,这样的布局方便清洁机器人1先扫地再拖地,增强清洁效果。滚刷及边刷机构采用业界常见的滚刷、边刷,用于清洁地面、墙角等处的尘屑等杂物;集尘装置包括集尘盒39,风扇等组件,利用风扇产生吸力,将滚刷41、滚刷42 等清理的尘屑收集至集尘盒39。
本发明的实施例的清洁机器人1还包括抬升装置,用于抬升清洁装置50。一实施例中,抬升装置用于抬升拖地模块14。抬升装置包括抬升机构,其中控制装置30能够控制抬升机构使拖地模块14从相对于工作表面的第一位置抬升至第二位置。此处第一位置抬升至第二位置,抬升动作可以是在垂直于工作表面的方向上进行,也可以是与工作表面呈一定夹角的方向上进行。
如图5和图6所示,为本发明的其中一个实施例中的拖地模块处于第一位置时和拖地模块处于第二位置时的示意图。当拖地模块14处于第一位置时,其与工作表面紧贴,在该状态下进行拖地工作。当拖地模块14需要抬升时,控制装置30控制抬升机构使拖地模块14离开工作表面,从第一位置抬升至第二位置,本实施中,该抬升过程是在垂直于工作表面的方向进行的。本实施例中,清洁机器人1的机身11在拖地模块14抬升过程中并未被抬升,即拖地模块14相对于清洁机器人1的机身11产生了位移。
如图7和图8所示,为本发明的另外一个实施例中的拖地模块处于第一位置时和拖地模块处于第二位置时的示意图。同样当拖地模块14处于第一位置时,其与工作表面紧贴,在该状态下进行拖地工作。当拖地模块14需要抬升时,控制装置30控制抬升机构使拖地模块14离开工作表面,从第一位置抬升至第二位置,本实施中,该抬升过程是在与工作表面成一定夹角的方向进行的。本实施中,清洁机器人1的机身11在该拖地模块14抬升过程中被抬升,而拖地模块相对于清洁机器人1的机身11未产生位移。
清洁机器人在工作的过程中,控制装置能够根据检测装置的检测结果,判断是否需要抬升拖地模块,并通过抬升装置控制拖地模块的抬升和下落。这样做的好处是,清洁机器人在即使遇到地面状态发生变化,例如遇到地毯时,或者遇到障碍物等,也具有更好的通过性,且可以避免弄脏地毯或者障碍物等。另外在清洁机器人回归基站或者切换工作区域的时候,控制装置控制抬升装置及时地抬升拖地模块,能有效地防止二次污染或交叉污染,清洁效果更佳。
一实施例中,抬升装置包括支撑件,支撑件可在拖地模块14抬升时,提供不同于行走装置40的相对于工作表面的支撑点。该支撑件包括支撑轮13,如图5至8所示。如图5和图7所示,当清洁机器人1的拖地模块处于第一位置,即与工作表面紧贴,进行拖地工作时,驱动轮12支撑着机身11后端,拖地模块因与工作表面接触,支撑着机身前端,在驱动轮12的作用下,清洁机器人1 边移动边完成拖地工作;但是当拖地模块被抬升时,如无支撑件的作用,机身11前端在自身重量的作用下下落,与工作表面接触,那么此时在驱动轮12的作用下,推动清洁机器人1继续移动,而机身11前端,一直与工作表面接触,则会阻碍清洁机器人1的移动。如工作表面为地板,则在清洁机器人1移动过程中还会使地板出现划痕;如工作表面为地毯,则清洁机器人1机身前端与地毯接触,出现卡死,无法越过地毯等现象;如工作表面存在台阶等障碍物,则清洁机器人1将无法通过障碍物。因此为清洁机器人1设置支撑件,使得拖地模块14被抬升时,支撑件提供了不同于行走装置40的相对于工作表面的支撑点,可避免上述现象的出现,如图6和图8所示。
如图5至图8所示,一实施例中,该支撑点位于拖地模块14和驱动轮12之间,这样设置的好处是拖地模块14可设置的空间增加,即能够提供较大的拖地面积,提高清洁机器人的清洁效率。当然可以理解的是,该支撑点也可以设置在机身11前端,例如该支撑点设置在拖地模块14之前。另外上述支撑件可以是固定连接于机身11,也可以是活动连接于机身11;可以始终与工作表面接触,提供支撑点,例如可以在拖地模块14未被抬升时,就与工作表面接触,但处于浮动状态,在拖地模块14被抬升时,与工作表面紧贴,起支撑作用。也可以仅仅在拖地模块14抬升时,才与工作表面接触,提供支撑点。
如图5和图6所示,一实施中,清洁机器人1的抬升机构包括拖地模块抬升机构(图中未示出),该拖地模块抬升机构能够带动拖地模块14从相对于工作表面的第一位置抬升至第二位置。本实施例中,拖地模块抬升机构为升降机构,升降机构可以包括升降电机、传动机构以及升降检测单元,利用升降电机驱动传动机构从而带动拖地模块14上下移动,控制装置根据升降检测单元的检测结果控制拖地模块的上下移动。
在本申请的一个实施例中,升降检测单元可以根据电机旋转角度或者传动轴旋转角度或拖地模块抬升机构的位置变化来检测拖地模块14是否达到相对应工作表面的第一位置或第二位置等情况,当达到这些情况时,控制装置控制升降电机暂停。例如:拖地模块在从相对于工作表面的第一位置上升至第二位置的过程中,升降检测单元检测升降电机的旋转角度是否达到预设阈值,该预设阈值与当拖地模块处于相对应工作表面的第二位置等情况时,升降电机的转动角度有关。在拖地模块的移动过程中,当升降检测单元检测到升降电机的旋转角度达到与第二位置相对应的角度阈值时,控制装置控制升降电机暂停工作,也就是控制拖地模块暂停上升;当升降检测单元检测到升降电机或传动机 构的旋转角度或旋转弧度未达到预设阈值时,控制装置控制升降电机继续工作,也就是控制拖地模块继续上升。在本申请的一个实施例中,升降检测单元可以是光栅、霍尔传感器或红外传感器等情况,可以通过光栅检测电机旋转角度,霍尔传感器检测传动轴旋转角度,红外传感器检测拖地模块抬升机构的位置变化等,本申请对此不做限定。
在其他实施例中,拖地模块抬升机构也可以为摆动机构,利用摆动机构驱动拖地模块14从相对于工作表面的第一位置抬升至第二位置。
如图9所示,为本实施例的拖地模块抬升机构结构图。本实施例中,拖地模块抬升机构,能够调节拖地模块14相对于工作表面的距离。具体地,拖地模块抬升机构包括升降机构和固定板20,升降机构与固定板20固定连接,拖地模块14安装在固定板20上。升降机构包括升降电机15和传动机构,其中传动机构包括齿轮16螺杆17啮合装置,还包括升降架19,升降电机15驱动传动机构带动拖地模块14上下移动。具体地,升降架19在升降机构的作用下,带动拖地模块14相对于工作表面上下移动。
升降架19上设置有滑槽22,机身11上设置有对应的凸起(图中未示出),通过滑槽22与凸起的配合,完成拖地模块14相对于机身11的上下移动。当然可以理解的是,也可以通过设置在升降架和机身的内外螺纹的配合,完成拖地模块14相对于机身11的上下移动。在其他实施中,拖地模块抬升机构也可以为摆动机构,升降架19在摆动机构的作用下,带动拖地模块14摆动,从而调节拖地模块14相对于工作表面的距离,此时拖地模块14的移动路径为弧线型。具体结构为调节装置常用结构,在此不再赘述。
如图10所示,为另一实施例的拖地模块抬升机构结构图。拖地模块抬升机构包括升降机构和固定板20。升降机构与固定板20固定连接,拖地模块14安装在固定板20上。具体地,升降机构包括升降电机15和传动机构,升降电机15驱动传动机构带动拖地模块14上下移动,在本实施例中传动机构包括带传动装置,还包括升降架19。具体地,升降电机15的电机轴连接两级齿轮减速机构16,在减速机构16的输出轴的两端分别连接着由三个齿轮24及链条23组成的带传动装置,带传动装置与升降架19固定连接,从而在传动的过程中带动拖地模块14移动。可以理解的是,也可采用齿轮齿条装置等配合形成的传动机构。
如图46所示,为第三实施例的拖地模块抬升机构结构示意图。拖地模块抬升机构可以包括:升降机构以及固定板20,升降机构可以包括:升降电 机15以及传动机构,升降电机15驱动传动机构带动拖地模块上下移动。在本实施例中,传动机构可以包括齿轮传动轴过盈装置、由四级连杆组成的第一联动机构,两个第一联动机构与固定板20通过销轴可转动的连接。具体的,升降电机15的电机轴分别连接两个齿轮24传动轴47过盈装置,通过两个传动轴47分别带动第一联动机构,第一联动机构可以包括:一端与升降电机15固定连接的第一连杆机构43、一端与第一连杆机构43的另一端联动的第二连杆机构44、一端与机身可转动的相连另一端与第二连杆机构44的另一端联动的第三连杆机构45、一端与第三连杆机构45的另一端联动另一端与固定板20联动的第四连杆机构46,升降电机驱动第一联动机构带动固定板20上下移动,从而在拖地模块抬升机构的传动过程中带动拖地模块移动。
如图47所示,为第四实施例的拖地模块抬升机构结构示意图。拖地模块抬升机构可以包括:升降机构以及固定板20,升降机构可以包括:升降电机15以及传动机构,升降电机15驱动传动机构带动拖地模块上下移动。在本实施例中,传动机构可以包括齿轮传动轴过盈装置、由两级连杆组成的第二联动机构,两个第二联动机构与固定板20通过固定在机身上的销轴可转动的连接。具体的,升降电机15的电机轴连接一个齿轮传动轴47过盈装置,传动轴47的两端分别连接着由两级连杆组成的第二联动机构,第二联动机构可以包括:与传动轴47固定连接的第五连杆机构48,第五连杆机构48一端与第六连杆机构49的一端联动,第六连杆机构49的另一端与固定板20联动,升降电机15驱动第二联动机构带动固定板20上下移动,从而在拖地模块抬升机构的传动过程中带动拖地模块移动。
如图48所示,为第五实施例的拖地模块抬升机构结构示意图。拖地模块抬升机构可以包括:升降机构以及固定板20,升降机构可以包括:升降电机15以及传动机构,升降电机15驱动传动机构带动拖地模块上下移动。在本实施例中,传动机构可以包括齿轮传动轴过盈装置、第一凸轮机构51以及升降架19的组合装置,其中,升降架19与固定板20固定连接,第一凸轮机构51安装在升降架19内,拖地模块14安装在升降架19上。具体的,升降电机15的电机轴连接一个齿轮传动轴47过盈装置,传动轴47的两端分别连接着第一凸轮机构51以及升降架19的组合装置,第一凸轮机构51以传动轴47为中心点旋转,带动升降架19上下移动,并控制固定板20的升降,实现拖地模块14相对于工作表面的升降。如图52所示为拖地模块抬升时的结构示意图,当第一凸轮机 构51向上旋转至接触到升降架19的上边长时,此时拖地模块处于第二位置的抬升状态。第一凸轮机构51可以是一个完整的圆盘,或者该第一凸轮机构也可以是半圆、30度的圆等其他情况,满足第一凸轮机构的转动中心点到第一凸轮机构的边缘存在距离差即可。第一凸轮机构旋转时可以以该第一凸轮机构的非圆心为中心点转动,保证在升降机构工作的过程中,固定板存在多种高度情况,实现拖地模块相对于工作表面的升降。可以理解的是,也可以不存在升降架,第一凸轮机构的边缘部分的与拖地模块相连,升降电机驱动第一凸轮机构转动,第一凸轮机构带动拖地模块上下移动。
值得说明的是,本申请中所提及的相连可以是直接相连,也可以是间接相连。拖地模块可以在升降电机作用下上下移动调整位置,也可以在摆动电机左右下左右或者前后摆动来调整位置。
本实施例中,拖地模块14可拆卸地安装在机身11上。
结合图9,拖地模块14通过磁吸合作用安装在固定板20上,具体地,拖地模块14上设置有磁性元件如磁铁,磁条等,与设置在固定板20上的磁性元件18吸合,也可以通过在拖地模块14上设置销孔,与设置在固定板20上相应的销柱配合,从而将拖地模块14安装在固定板20上。机身11朝下设置有凸起装置(图中未示出),如顶柱或者凸球等,该凸起装置与拖地模块14产生相对运动而与拖地模块14接触,从而使拖地模块14与机身11分离。其中凸起装置的数量为2个,其在拖地板的投影落在拖地板的两端,当然凸起装置的数量也可以为1个或者多个。
在其中一个实施例中,拖地模块14还包括相对于工作表面的第三位置。如图11所示,为本发明的清洁机器人的拖地模块处于第三位置时的示意图。具体地,拖地模块14可拆卸地安装在机身11上,拖地模块抬升机构还用于带动拖地模块14从相对工作表面的第二位置抬升至拆卸拖地模块14的第三位置。在拖地模块14抬升至第三位置时,该凸起装置与拖地模块14接触,提供拖地模块14以向下的作用力,从而使拖地模块14与机身11分离(如图12所示);在另一实施例中,可以在相对工作表面的第三位置拆卸拖地模块14,当然也在不在第三位置,如在第二位置拆卸拖地模块14,此时凸起装置包括升降机构,且在升降机构的作用下向着拖地模块14运动,与拖地模块14接触,提供拖地模块14以向下的作用力,从而使拖地模块14与机身11分离。
在另一实施例中,拖地模块14可以通过其他方式可拆卸的安装在机身11上,例如通过在机身11上设置有电磁铁,在拖地模块14上设置磁铁,控制装 置30控制通过电磁铁的电流大小或方向,从而控制拖地模块14与机身11的吸合分离,如当控制装置30控制通过电磁铁的电流方向为正方向时,拖地模块14与机身11吸合,当需要拖地模块14与机身11分离时,控制装置30控制通过电磁铁的电流方向为反方向即可;也可通过控制通过电磁铁的电流的有无来控制拖地模块14与机身11的吸合分离,当有电流通过电磁铁时,拖地模块14与机身11吸合,当无电流通过电磁铁时,拖地模块14与机身11分离。在另一实施例中,如图55至57所示,电磁铁59设置在机身11上,拖地模块14上设置有磁铁60与固定板20上磁性元件18吸合,其中磁铁的个数可以是2个,4个或者6个,当然也可以是其他数值,在此不做限制。拖地模块14正常工作时,电磁铁59上无电流通过,拖地模块14与地面紧贴(如图55所示);当需要拆卸拖地装置14时,拖地模块抬升机构带动拖地模块14抬升至拆卸位置(如图56所示),同时控制装置30控制通过电磁铁59的电流大小产生排斥力,克服拖地模块14与固定板20的吸力,从而使得拖地模块14与固定板20的分离,即与机身11分离,拖地模块14脱落(如图57所示)。与上述实施例相比,该实施例的好处是,拖地模块14工作时,无需一直给电磁铁通电。只需在拖地模块14抬升拆卸位置时,再给电磁铁通电,从而使拖地模块脱落,因此节约能源同时避免在电磁铁一直通电带来干扰。在再一实施例中,如图58至60所示,采用推拉式电磁铁61及与其铁芯配接的推杆62,拖地模块14正常工作时,推拉式电磁铁61上无电流通过,拖地模块14与地面紧贴(如图58所示);当需要拆卸拖地装置14时,拖地模块抬升机构带动拖地模块14抬升至拆卸位置(如图56所示),同时控制装置30控制启动推拉式电磁铁61,推杆瞬间伸出,与拖地模块14接触,给其以向下的作用力(如图57所示),克服拖地模块14与固定板20的吸力,从而使得拖地模块14与固定板20的分离,拖地模块14脱落(如图58所示)。该实施例的好处时,拖地模块14工作时,无需一直给推拉式电磁铁通电。只需在拖地模块14抬升拆卸位置时,再给推拉式电磁铁通电,推杆伸出,从而使拖地模块脱落。通过推杆直接作用于拖地模块将其脱离机身,无需给推拉式电磁铁通较大的电流,因此节约能源且更加可靠。
在另一实施例中,拖地模块14还可以通过其他方式可拆卸的安装在机身11上,如图48以及图54所示另一实施例的拖地模块抬升机构结构示意图中,拖布升降机构还可以包括:第二凸轮机构52,与第一凸轮机构51类似,该第二凸轮机构52也分别安装在传动轴47的两端,独立于第一凸轮机构51存在。该第二凸轮机构52与第一凸轮机构51同步运动,并且该第二凸轮机构52与第 一凸轮机构51不可重合,第二凸轮机构52在旋转过程中能直接接触到拖地模块14。升降电机15驱动第二凸轮机构52旋转,在第二凸轮机构52接触到拖地模块14时,此时拖地模块处于第二位置,第二凸轮机构52能向拖地模块14施加向下的作用力,从而如图54中所示的拖地模块中拖布掉落结构示意图中,拖地模块14与机身分离。该第二凸轮机构52可以是一个完整的圆,也可以是半圆、30度的圆等其他情况,以该凸轮的非圆心为中心点转动。可以理解的是,也可以采用杆机构(图未示)等来代替第二凸轮机构,本申请对此不作限定。
为了能够对拖地模块的位置进行精准检测,以实现更好地控制拖地模块相对于工作表面的位置,进而更好地实现拖地、抬升越障、更换拖布的功能。
在本发明的其中一个实施例中,清洁机器人1,还包括拖地模块位置检测装置,其设置在所述机身上,拖地模块抬升机构上设置有位置标记,拖地模块位置检测装置用于检测位置标记,并输出检测信号值;控制装置30根据检测信号值与预设值的对比,判断拖地模块14相对于工作表面的位置。具体地,拖地模块位置检测装置包括磁检测传感器,如霍尔传感器等,位置标记为磁性元件,如磁珠或者磁钢等,拖地组件14处于不同位置时,磁检测传感器检测到的磁场强度不同,输出的信号值不同,控制装置30将该信号值与预设值对比,从而判断拖地模块14是否在所需的工作位置;当然,也可以在清洁机器人机身对应于拖地模块的不同位置处设置不同的位置标记,如不同的红外识别符,拖地模块抬升装置上设置拖地模块位置检测装置,如红外传感器,通过该红外传感器识别红外识别符,输出检测信号给控制装置30,进而判断拖地模块14是否在所需的工作位置,
在另一实施例中,控制装置30根据升降电机15的电流值,与预设电流值进行对比,来判断升降电机15是否堵转,并结合设置在机身上的拖地模块位置检测装置,检测到的位于拖地模块抬升机构上的位置标记所输出的信号值与预设值的对比,判断拖地模块14的当前位置。采用此方法,可以进一步提高拖地模块位置检测精度。具体地,如图70到图73所示,清洁机器人1还包括限位装置63,限位装置63包括第一斜面64和第二斜面65,当拖地模块14处于第一位置时,第二凸轮机构52的第一部分边缘与第一斜面64相抵接;当拖地模块14处于脱落位置时,第二凸轮机构52的第二部分边缘与第二斜面65相抵接。如图70所示,清洁机器人1还包括拖地模块位置检测装置67,其设置在机身上,包括磁检测传感器,如霍尔传感器等,升降架上设置有位置标记66,该位置 标记66为磁性元件,如磁珠或者磁钢等,升降电机15转动过程中带动第一凸轮机构51和第二凸轮机构52旋转,磁检测传感器检测到的磁场强度不同,输出的信号值不同。升降电机15沿第一方向转动过程中带动第一凸轮机构51和第二凸轮机构52做顺时针旋转时,当第二凸轮机构52的第二部分边缘与第二斜面65相抵接时,升降电机15的电流发生变化,电流值增大,控制装置3将该电流值与预设电流值对比,当该电流值大于或者等于预设电流值时,则判断升降电机15发生堵转,同时控制装置30通过将此时霍尔传感器检测到信号值与第一预设值对比,当该信号值达到第一预设值,则判断拖地模块14位于分离位置,如图73所示;此时升降电机15沿着第二方向转动过程中带动第一凸轮机构51和第二凸轮机构52做逆时针旋转时,当第二凸轮机构52的第一部分边缘与第一斜面64相抵接,如图71所示,同样升降电机15的电流发生变化,电流值增大,控制装置3将该电流值与预设电流值对比,当该电流值大于或者等于预设电流值时,则判断升降电机15发生堵转,同时控制装置30通过将此时霍尔传感器检测到信号值与第二预设值对比,当该信号值达到第二预设值,则判断拖地组件14位于第一位置,如图71所示。升降电机15继续沿第一方向转动过程中带动第一凸轮机构51和第二凸轮机构52做顺时针旋转时,控制装置30将此时霍尔传感器检测到信号值与第一预设值对比,当该信号值达到第一预设值,且同时控制装置3通过检测升降电机的电流值,当该电流值小于预设电流值时,则判断升降电机15未发生堵转,则判断拖地模块14位于第二位置,如图72所示;其中第一方向和第二方向相反。在第三实施例中,也可以利用检测升降电机15的转速,通过该转速与预设值的对比,并结合上述利用机身上的拖地模块位置检测装置,检测到的位于拖地模块抬升机构上的位置标记所输出的信号值与预设值的对比,判断拖地模块14的当前位置,来判断拖地模块的当前位置;在第四实施中,也可以通过检测拖地模块是否安装在机身上,并结合上述升降电机堵转检测方式或者结合上述利用机身上的拖地模块位置检测装置,检测到的位于拖地模块抬升机构上的位置标记所输出的信号值与预设值的对比,来判断拖地模块的当前位置,关于拖地模块是否安装在机身上的检测,具体地,升降架19上设置有磁传感器,如霍尔传感器,拖地模块的拖地板上设置有磁性元件,如磁铁,通过磁传感器检测磁性元件,输出信号的有无,判断拖地模块是否安装在升降架19上。当然,也可以通过将上述几种方式的组合,来实现拖地模块的位置检测,原理同上,在此不再赘述。
为了防止拖地模块14在工作过程中,遇到电线等障碍物,而被剥离于清 洁机器人1,而给用户带来不好的使用体验。在本发明的实施例中,如图71和图74所示,清洁机器人1还包括止挡装置68,该止挡装置68固定安装在拖地模块升降机构的底板前端外侧,当清洁机器人1遇到电线时,该电线先接触到止挡装置68,并在止挡装置68的作用下,沿止挡装置68的底部穿过,从而避免施加力于拖地模块14,而使拖地模块14与拖布模块抬升装置分离。
拖地模块14包括拖地板和拖布(图中未示出),拖布可拆卸的安装在拖地板上。一实施例中,拖地板上间隔设置橡胶螺纹条,拖布通过橡胶螺纹条固定于拖地板上;另一实施例中,拖地板上设置粘贴条,拖布直接粘贴在拖地板上;当然可以理解地是,拖布也可以通过卡扣等机械方式安装在拖地板上。根据工作场景的需要,拖布可以是干拖布,也可以是湿拖布;可以是可重复使用的拖布,也可以是一次性湿纸巾。为了增加拖地模块与工作面之间的压力,以能与工作面有更好的接触,从而增强清洁效果,一实施例中,可以在升降架内部设置有四个竖槽,在竖槽内部设置压力弹簧17,其在拖地模块14工作时,压力弹簧17在清洁装置的重力的作用下,给拖地模块14以向下的挤压力。
在清洁机器人1的拖地模块14抬升时,需要支撑件配合来提供不同于驱动轮的支撑点。相应的本实施中,抬升装置还包括支撑轮13,在拖地模块从相对于工作表面的第一位置抬升至第二位置时,为拖地模块14提供不同于驱动轮12的支撑点。
下面对本实施例中的支撑件的设计展开详细的介绍。在本实施中,支撑件可活动地连接于机身11,在拖地模块14位于第二位置时,支撑件与机身11顶部的距离大于拖地模块14位于第一位置时,支撑件与机身11顶部的距离。在拖地模块14正常工作时,不与工作表面接触;在拖地模块14抬升时,才与工作表面紧贴,提供不同于驱动轮12的支撑点。
如图13至图14所示,为本发明的一个实施例的支撑件可活动地连接于机身的示意图。如图13所示,当拖地模块14与工作表面接触,处于正常工作状态,此时支撑轮13处于收起状态。具体地,清洁机器人1的抬升装置包括支撑件调节机构29,该支撑件调节机构29在拖地模块14下落时带动支撑轮13收起。如图14所示,当拖地模块14需要抬升时,控制装置30控制拖地模块14抬升,此时支撑轮13处于下落状态。具体地,清洁机器人1的抬升装置包括支撑件调节机构29,该支撑件调节机构29在拖地模块14在拖地模块14抬升时带动支撑轮13下落,支撑轮13与工作表面接触,为清洁机器人1提供了不同于驱动轮12的相对于工作表面的支撑点。其中支撑件调节机构29包括升降机构(图中未 示出),该升降机构包括升降电机和传动机构,升降电机驱动传动机构带动支撑轮13上下移动。当然可以理解地是,在另一实施中,如图15至图16所示支撑件调节机构29包括摆动机构(图中未示出),该摆动机构包括摆动电机,摆动电机驱动传动机构带动支撑轮13在拖地模块14处于正常工作状态时运动至收起位置(如图15所示);驱动传动机构带动支撑轮13在拖地模块14处于抬起时运动至下落位置(如图16所示)。
在本申请的一个实施例中,支撑件调节机构与拖地模块抬升机构相互联动。具体的,支撑件调节机构可以采用以下的方式实现联动:齿轮齿条啮合装置或连杆装置。
如图49至图50所示,为本发明的另外一个实施例的支撑件可活动地连接于机身的示意图,该示意图为采用齿轮齿条啮合装置的联动方式,具体的,可以包括:与拖地模块抬升机构相联动的第一齿条53、与第一齿条53啮合的固定齿轮54以及与固定齿轮54啮合的第二齿条55,第二齿条55与支撑轮13联动。机身上分别设置有两个滑槽,第一齿条53以及第二齿条55分别在滑槽中上下移动。如图50所示,拖地模块抬升机构抬升时带动第一齿条53上升,第一齿条53上升时带动固定齿轮54转动,固定齿轮54转动时带动第二齿条54下落,第二齿条下落时带动支撑轮13下落,反之,如图49所示,拖地模块抬升机构下降时带动支撑轮13收起。
如图51所示,为本发明的另外一个实施例的支撑件可活动地连接于机身的示意图,该示意图为采用连杆装置的联动方式,具体的,可以包括:与传动轴47固定连接的第五连杆机构48,第五连杆机构48的一端与第六连杆机构49联动,第五连杆机构48的另一端与支撑轮13联动,与支撑轮13对应的机身上相应的设置有滑槽,传动轴带动第五连杆机构48旋转,第五连杆机构48带动拖地模块抬升时带动支撑轮13下落,在拖地模块下落时带动支撑轮13收起。
如图52至53所示,为本发明的另外一个实施例的支撑件可活动地连接于机身的示意图,该示意图为另一种采用连杆装置的联动方式,可以包括:第七连杆机构56、第八连杆机构57。第八连杆机构57的一端与支撑轮13联动,第八连杆机构的另一端通过销柱与第七连杆机构56的一端联动,第七连杆机构56的另一端与固定板20接触,第八连杆机构57对应的机身处设置有滑槽,第八连杆机构57能在该滑槽中上下移动。当升降电机带动拖地模块上升时,第七连杆机构58通过销柱的传动作用带动第八连杆机构57下降,支撑轮13下降。即,当拖地模块处于抬升状态时,支撑轮起支撑作用;当固定板下降时,连杆 机构带动支撑轮上升。在申请的另一个实施例中,该销柱上可选择的套设有一弹性件,优选的,可以为复位弹簧,该复位弹簧与销柱共轴线。复位弹簧的一端与机身接触,另一端与第七连杆机构58接触,从而当该弹簧复位时,第七连杆机构58能有效的跟随拖地模块向下运动,从而可以有效的控制支撑轮13上升。对于本实施例而言,也可以利用销柱等连接件来代替复位弹簧的连接复位作用,通过在第七连杆机构56的另一端设置一与固定板20连接的销柱,来实现拖地模块与第七连杆机构56的联动。当然,在此种状态下,销柱上可以安装有复位弹簧也可以不安装复位弹簧。
在另一实施例中,支撑轮13可活动地连接于机身11。在拖地模块14未被抬升时,与工作表面接触,但处于浮动状态,在拖地模块14被抬升时,与工作表面紧贴,起支撑作用。如图17所示,为本发明的其中一个实施例的支撑件可活动地连接于机身的示意图。支撑件在清洁机器人1正常工作时,处于浮动状态,且当拖地模块14在抬升机构的作用下抬升时,起到支撑机身11的作用。具体地,抬升装置包括弹性件31,在本实施例中弹性件31为压力弹簧,压力弹簧连接支撑轮13和机身。在清洁机器人正常工作时,支撑轮13在压力弹簧的作用下处于浮动状态,当拖地模块14在拖地模块抬升机构的驱动下抬升时,压力弹簧在机身重力的作用下向下压缩,提供支撑轮13以向下的作用力,即该支撑件在拖地模块14抬升时,起到支撑机身11的作用。
在另一实施例中,支撑轮13可活动地连接于机身11,仅在拖地模块14抬升时,与工作表面接触,提供支撑点。同时在支撑轮13提供不同于驱动轮12的支撑点的同时,清洁机器人1的机身11前端也被抬起。
如图18至图20所示,为本发明的另外一个实施例的支撑件可活动地连接于机身的示意图。清洁机器人1的抬升装置包括支撑件调节机构29,其中支撑件调节机构29连接支撑轮13和机身11;控制装置30控制支撑件调节机构29带动支撑轮13处于伸出位置,从而使拖地模块14从相对于工作表面的第一位置抬升至第二位置;控制装置30控制支撑件调节机构29带动支撑轮13处于收起位置,从而使拖地模块14从相对于工作表面的第二位置下落至第一位置。
如图18所示,当拖地模块14与工作表面接触,处于正常工作状态,此时支撑轮13处于收起状态。具体地,支撑件调节机构29连接支撑轮13和机身11;控制装置30控制支撑件调节机构29带动支撑轮13处于收起位置。如图19所示,当拖地模块14需要抬升时,控制装置30仅控制支撑件调节机构29带动支撑轮13处于伸出位置,从而使拖地模块14从相对于工作表面的第一位置抬升至第 二位置,此时机身11前端被抬起,拖地模块14相对于机身11的位置并未发现变化。可以理解地是,也可以在支撑件调节机构29带动支撑轮13处于伸出位置时,同时控制拖布抬升装置使拖地模块14相对于机身11运动。如图20所示,当拖地模块14需要抬升时,控制装置30控制拖地模块抬升机构使得拖地模块14抬升,同时支撑件调节机构29在拖地模块14抬升时带动支撑轮13下落,支撑轮13与工作表面接触,为清洁机器人1提供了不同于驱动轮12的相对于工作表面的支撑点,此时机身11前端被抬起,拖地模块14相对于机身11的位置发生变化。支撑件调节机构包括摆动机构,由该摆动机构驱动支撑轮13收起或者下落,也可以包括升降机构,由该升降机构驱动支撑轮13收起或者下落。
在另一实施例中,支撑轮13固定连接于机身11,与机身11顶部的距离固定不变。可以始终与工作表面接触,也可以仅在拖地模块抬升时,与工作表面接触,提供不同于驱动轮12的支撑点。在一实施例中,清洁机器人1包括从动轮,具体地,从动轮通过连接件安装在机身上,具体安装方式为常规手段,此处不再详细展开,从动轮可作为支撑轮。
本发明的另一实施例中,如图7和图8所示,清洁机器人1的抬升机构包括活动支撑机构26,活动支撑机构26连接支撑轮13和机身11;本实施例中,活动支撑机构26包括摆动机构(图中未示出),摆动机构驱动支撑轮13下落或收起,从而使拖地模块14被抬升或者落下;在其他实施例中,活动支撑机构26包括升降机构,升降机构驱动支撑轮13下落或收起,从而使拖地模块14被抬升或者落下。具体地,控制装置30控制活动支撑机构26带动支撑轮13处于伸出位置,从而使拖地模块14从相对于工作表面的第一位置抬升至第二位置(如图8所示);控制装置30控制活动支撑机构26带动支撑轮13处于收起位置,从而使拖地模块14从相对于工作表面的第二位置下落至第一位置(如图7所示)。
在本申请的一个实施例中,当清洁机器人的支撑件13下落或收起时,能够保证位于清洁机器人上的雷达传感器和/或光学传感器的高度保持大致不变。清洁机器人在某些工作情况下,需要始终保持机身的平衡。例如,当清洁机器人上安装有雷达传感器和/或光学传感器和/或者视觉传感器,如:红外传感器或激光测距传感器LDS,或者光流传感器等用于导航和/或障碍物检测的装置。在正常工作的过程中,当清洁机器人上安装有这些装置时,需要始终保持机身的平衡,若机身不平衡,会影响这些装置的检测结果,从而影响清洁机器人的正常工作。通过保持清洁机器人上的雷达传感器和/或光学传感器的高度保持大致不变,能够保证清洁机器人检测结果的精确度。
在本发明的另一个实施例中,如图21所示,清洁装置还包括液体箱33,拖地模块14设置在固定板20上,液体箱33设置在拖地模块抬升装置和控制装置30之间。控制装置30控制液体箱33在清洁机器人1正常工作时,给拖地模块14供给液体,在清洁机器人1的拖地模块14抬升时,停止给拖地模块14供液体。控制装置30控制清洁装置50和行走装置40完成清洁模式,其中清洁模式为拖地模式;在拖地模块14不工作时,控制装置30控制拖地模块14从相对于工作表面的第一位置抬升至第二位置,控制装置30控制液体箱33停止给拖地模块14供液体。这样的好处是可防止在清洁机器人1的拖地模块不工作时,弄湿地板或弄湿地毯,另外可以在清洁机器人1长时间卡死状态下,防止一直往地板滴液体损坏地板。在其中一个实施例中,液体箱盛放的液体为水;在另一实施例中,液体箱中盛放的液体为水和清洁剂的混合体。
本发明的实施例中,清洁机器人1还包括检测装置10,控制装置30根据检测装置10的检测结果控制抬升机构调节拖地模块14高度。具体地,检测装置10包括环境检测传感器和/或自身状态检测传感器,清洁机器人1的环境检测传感器可用于检测清洁机器人1工作环境中的特定场景,如检测工作环境中的障碍物,工作环境中的地面状态,清洁机器人1是否到达基站等。清洁机器人1的自身状态检测传感器可用于检测清洁机器人1拖布是否需要更换,清洁机器人1的电池电量,清洁机器人1是否被困住或卡住,清洁机器人1的倾斜程度等清洁机器人困住或卡住清洁机器人。这样的好处是,检测装置10可实时监测清洁机器人工作时的所遇到的周围的环境状态及其自身的状态,并将检测结果实时反馈给控制装置30,控制装置30根据检测装置10的检测结果及时控制抬升机构从而调节拖地模块14高度,避免了无法越过遇到障碍物和弄脏地毯,也避免了清洁机器人工作时被卡死而无法移动的现象,同时还避免了因拖地模块的未及时抬升而对工作环境造成的污染,另外可根据拖地模块的污渍程度或者破损程度,控制清洁机器人启动拖布更换程序,及时抬升拖地模块,并启动回归基站,并在基站完成拖布回收更换。
在其中一个实施中,清洁机器人1的检测装置10包括环境检测传感器,用于检测地面状态,当检测装置10检测到地面状态为地毯时,控制装置30控制抬升机构使拖地模块14处于第二位置;当检测装置10检测到地面状态为地板时,控制装置30控制抬升机构使拖地模块14处于第一位置。
具体地,当检测装置10检测到清洁机器人1的工作表面由地板变成了地毯状态时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构驱动拖地 模块14从相对于工作表面的第一位置34抬升至第二位置36,这样避免了地毯对拖地模块14构成的阻碍,同时也避免了将拖地模块14上的污渍弄到地毯上;检测装置10再次检测到地板状态时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构驱动拖地模块14从相对于工作表面的第二位置36下落至第一位置34。可以理解地是,也可以通过控制装置30控制活动支撑机构来驱动拖地模块的抬升,活动支撑机构连接支撑件和机身;控制装置30控制活动支撑机构带动支撑件处于伸出位置,从而使拖地模块14从相对于工作表面的第一位置抬升至第二位置;此时,机身前端被整体抬起,可以达到同样的效果。
上述过程中支撑件对工作表面的作用力是变化的,在清洁机器人1正常工作拖地模块14与工作表面接触时支撑件对工作表面的作用力,小于清洁机器人1的拖地模块14抬升时支撑件对工作表面的作用力。
如图22至图25所示,为清洁机器人1控制拖地模块升降过程的一种实施例。检测到清洁机器人1在地板上工作时,抬升机构未启动,拖地模块14与地板紧贴,支撑件悬空与地板不接触(如图22所示)。
清洁机器人1行走过程中,当环境检测传感器检测到清洁机器人1的工作表面由地板变成了地毯状态时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构的升降电机正转,升降电机驱动传动机构带动拖地模块14向上移动,从而使拖地模块14从相对于工作表面的第一位置34抬升至第二位置36,同时支撑轮13在支撑件调节机构的作用下下落与工作表面接触(如图23所示)。清洁机器人1在地毯35上工作时,拖地模块14一直处于抬升状态(如图24所示)。当清洁机器人1通过地毯35,环境检测传感器再次检测到清洁机器人1的工作表面由地毯状态变成了地板状态时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构的升降电机反转,升降电机驱动传动机构带动拖地模块14向下移动,恢复到接触地板的状态,同时支撑轮13在支撑件调节机构的作用下抬升(如图25所示)。上述过程不仅使清洁机器人1容易通过地毯35,而且可以避免拖布上的污渍弄脏地毯35。
需要说明的是,环境检测传感器为视觉传感器,控制装置30根据视觉传感器获取的地面图像变化判断工作表面状态;在另一种实施例中,环境检测传感器为雷达传感器,控制装置30根据雷达传感器检测到的地面材料类型判断工作表面状态。在另一种实施例中,环境检测传感器为电流传感器,根据 电流传感器检测的电流变化判断工作表面状态,例如电流传感器检测清洁机器人1遇到地毯35时的电流变化判断工作表面状态。另外,拖地模块抬升机构还可以采用其他结构方式,如摆动机构,也能够达到同等的功能效果。
在其中一个实施中,清洁机器人1的检测装置10用于检测地面状态,当检测装置10检测到地面状态为台阶时,控制装置30控制抬升机构使拖地模块14处于第二位置,支撑件调节机构在拖地模块14抬升时带动支撑件下落,清洁机器人1继续前进;若检测装置10检测到地面状态为地毯时,清洁机器人1后退,再次检测到地板时,控制装置30控制抬升机构使拖地模块14处于第一位置,支撑件调节机构在拖地模块下落时带动支撑件收起;若检测装置10检测到地面状态为地板时,控制装置30控制抬升机构使拖地模块14处于第一位置,支撑件调节机构在拖地模块下落时带动支撑件收起,清洁机器人1继续前进。
如图61至图65所示,为清洁机器人1检测地面状态并控制拖地模块升降过程的另一种实施例。检测到清洁机器人1在地板上工作时,抬升机构未启动,拖地模块14与地板紧贴,支撑件悬空与地板不接触(如图61所示)。
清洁机器人1行走过程中,当环境检测传感器检测到清洁机器人1的工作表面由平面变成台阶时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构的升降电机正转,升降电机驱动传动机构带动拖地模块14向上移动,从而使拖地模块14从相对于工作表面的第一位置34抬升至第二位置36,同时支撑轮13在支撑件调节机构的作用下下落与工作表面接触(如图62所示)。清洁机器人1继续前进,若环境检测传感器检测到工作表面为地毯状态时,清洁机器人1后退离开地毯,直至再次检测到地面状态为地板时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构的升降电机反转,升降电机驱动传动机构带动拖地模块14向下移动,恢复到接触地板的状态,同时支撑轮13在支撑件调节机构的作用下收起(如图63至图64所示);若环境检测传感器检测到工作表面为地板状态时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构的升降电机反转,升降电机驱动传动机构带动拖地模块14向下移动,恢复到接触地板的状态,同时支撑轮13在支撑件调节机构的作用下收起,清洁机器人继续前进(如图65所示)。上述过程中,清洁机器人1检测到地毯则后退至退出地毯35,与上一实施例通过地毯35相比,可以更加有效地避免拖布上的污渍弄脏地毯35,尤其在 地毯35较厚或地毯毛较长时,弄脏甚至弄坏地毯。
环境检测传感器为台阶检测传感器和地面状态检测传感器,其中台阶检测传感器和地面检测传感器可以为同一传感器,也可以为不同传感器。在一实施例中,台阶检测传感器为TOF传感器,地面状态检测传感器为超声波传感器。关于传感器的位置和个数不做限制,比如安装在机身11的前端或者底板。在一具体的实施里中,超声波传感器为两个,设置在清洁机器人1的机身11的底部,其中一个为超声波发射传感器,一个为超声波接收传感器,TOF传感器安装在超声波传感器之间。通过TOF传感器扫描测距来检测台阶或通过TOF传感器扫描成像,根据获取的图像信息来检测台阶;根据超声波传感器接收到的信号强度检测地毯,也可以根据超声波传感器的收发时间计算距离来检测地毯。
在再一实施例中,也可以通过自身检测传感器和环境检测传感器配合,来检测地面状态并根据检测结果控制拖地模块的升降。其中自身状态检测传感器,用于检测自身的倾斜程度,具体地自身状态检测传感器为倾斜传感器,如六轴传感器,环境检测传感器为超声波传感器。控制装置30根据倾斜传感器的检测结果与预设值的大小,判断清洁机器人1的姿态向上倾斜或者向下倾斜。当控制装置30判断所述清洁机器人1的姿态向上倾斜时,则控制装置30控制抬升机构使拖地模块14抬升至第二位置,同时支撑轮13在支撑件调节机构的作用下下落与工作表面接触(如图66所示)。清洁机器人1继续前进,若超声波传感器检测到工作表面为地毯状态时,清洁机器人1后退离开地毯,。当控制装置30判断所述清洁机器人1的姿态向下倾斜,且超声波传感器再次检测到地面状态为地板时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构的升降电机反转,升降电机驱动传动机构带动拖地模块14向下移动,恢复到接触地板的状态,同时支撑轮13在支撑件调节机构的作用下收起(如图67至图68所示);若超声波传感器检测到工作表面为地板状态时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构的升降电机反转,升降电机驱动传动机构带动拖地模块14向下移动,恢复到接触地板的状态,同时支撑轮13在支撑件调节机构的作用下收起,清洁机器人继续前进(如图67和69所示)。
在其中一个实施例中,环境检测传感器可检测工作表面的材料,例如为地毯或者地板,进一步地,还可以检测为地板的类型,如木质或瓷砖等,控 制装置30根据环境检测传感器检测到的地板类型,控制液体箱33注入拖地模块14的液体量。当环境检测传感器检测到地板材料为木质材料时,可适当减小拖地模块的液体量的供应,以防止液体量过多可能对木质地板造成的损坏。在一实施例中,环境检测传感器为视觉传感器,控制装置30根据视觉传感器获取的地面图像判断工作表面为地板时的材料;在另一实施例中,环境检测传感器为雷达传感器,控制装置30根据雷达传感器检测结果判断工作表面为地板的类型。
在其中一个实施例中,清洁机器人1的环境检测传感器为障碍物检测传感器,当检测装置10检测到障碍物时,控制装置30控制抬升机构使拖地模块14处于第二位置;当控制装置30控制清洁机器人越过障碍物后,控制装置30控制抬升机构使拖地模块14处于第一位置。
具体地,当清洁机器人1的障碍物检测传感器检测到障碍物时,发出信号至控制装置30,控制装置30控制拖地模块抬升机构驱动拖地模块14从相对于工作表面的第一位置34抬升至第二位置36;当控制装置30控制清洁机器人越过障碍物,控制装置30控制拖地模块抬升机构驱动拖地模块14从相对于工作表面的第二位置36下落至第一位置34。
如图26至图28所示,为本发明的其中一个实施例的清洁机器人1遇到障碍物时控制拖地模块14升降过程;清洁机器人1在地板上工作,此时,抬升机构未启动,拖地模块14与地板紧贴,支撑件悬空与地板不接触(如图26所示)。清洁机器人1行走过程中,利用障碍物检测传感器检测到前方的障碍物37。此时发送信号给清洁机器人1的控制装置30,控制装置30控制拖地模块抬升机构的升降电机正转,升降电机驱动传动机构带动拖地模块14向上移动,从而使拖地模块14从相对于工作表面的第一位置34抬升至第二位置36(如图27所示),同时支撑轮13在支撑件调节机构的作用下下落与工作表面接触,清洁机器人1继续向前移动越过障碍物37,越过障碍物37后,控制装置30控制拖地模块抬升机构的升降电机反转,升降电机驱动传动机构带动拖地模块14向下移动,从而使拖地模块14重新回到与地面紧贴的第一位置34(如图28所示),同时支撑轮13在支撑件调节机构的作用下抬升。上述过程不仅使清洁机器人1易通过障碍物37,而且可以避免拖布上的污渍留在障碍物上。
如图29至图30所示,为本发明的另外一个实施例的清洁机器人1遇到障碍 物时控制拖地模块14升降过程;
具体地,当障碍物检测传感器检测到清洁机器人1前方有障碍物时,发出信号至控制装置30,控制装置30控制活动支撑机构26驱动支撑轮13伸出机身11,这样在活动支撑机构26作用下,清洁机器人前端被抬升,将拖地模块14也抬升,方便清洁机器人1越过障碍物。当清洁机器人1越过障碍物后,发出信号至控制装置30,控制装置30控制活动支撑机构26驱动支撑轮13收起,此时拖地模块14下降,恢复到接触工作表面状态。
如图29至图30所示,障碍物检测传感器38安装在清洁机器人机身11上,具体位置不做限定,例如安装在清洁机器人的前壁或底座上,传感器数量包括至少一个以上。清洁机器人1在地板上工作,此时,抬升机构未启动,拖地模块14与地板紧贴(如图29所示)。清洁机器人1行走过程中,利用障碍物检测传感器38检测到前方的障碍物37时。此时发送信号给清洁机器人1的控制装置30,控制装置30控制活动支撑机构26的摆动机构驱动支撑轮13下落与工作表面接触,即处于伸出位置,从而使拖地模块11从相对于工作表面的第一位置34抬升至第二位置36(如图30所示),清洁机器人1继续向前移动越过障碍物37,越过障碍物37后,控制装置30控制活动支撑机构26的摆动电机驱动支撑轮13抬升,即处于收起位置,从而使拖地模块11重新恢复到第一位置34,即与工作表面接触正常工作的位置(如图31所示)。上述过程不仅使清洁机器人1易通过障碍物37,而且可以避免拖布上的脏物留障碍物上。可以理解地是,活动支撑机构26还可以采用其他结构方式,如升降机构,也能够达到同等的功能效果。
需要说明的是,在其中一种实施例中,上述障碍物检测传感器包括视觉传感器,根据控制装置30根据视觉传感器获取的图像来判断障碍物的类型,在另一种实施例中,障碍物检测传感器包括红外或者激光检测传感器,控制装置30根据红外或者激光检测传感器检测结果来判断障碍物类型,如是否为台阶。在另外一种实施例中,障碍物检测传感器包括超声波传感器,根据超声波传感器的收发时间判断清洁机器人离障碍物的距离,在一个具体的实施例中,在清洁机器人1前端对称设置两个超声波传感器,其中一个超声波传感器发射超声波时,另外一个超声波传感器不发送,且两个超声波传感器均接收;两个超声波传感器检测区域部分重叠,且重叠部分将二者的盲区至少部分覆盖,便于减小盲区,更好的检测障碍物。
在其中一个实施例中,当检测装置10检测到清洁机器人1到达基站2时,控制装置30控制抬升机构使拖地模块14抬升至第二位置。当然,也可以在清洁机器人1到达基站2之前,控制装置30就控制抬升机构使拖地模块14抬升至第二位置。具体地,检测装置10包括环境检测传感器,抬升机构包括拖地模块抬升机构,当环境检测传感器检测到清洁机器人1到达基站2时,控制装置30控制拖地模块抬升机构驱动拖地模块14从相对于工作表面的第一位置抬升至第二位置。拖地模块14可拆卸地安装在机身11上,环境检测传感器检测到清洁机器人1到达卸载拖布的位置201时,控制装置30控制拖地模块抬升机构带动拖地模块14从相对工作表面的第二位置抬升至拆卸拖地模块的第三位置。此时,拖地模块14与机身11上的顶柱接触,并在顶柱的作用力下,在第三位置与机身11分离。当环境检测传感器检测到清洁机器人到达装载拖布的位置202时,控制装置30控制拖地模块抬升机构带动拖地模块14运动至第一位置或第四位置。其中第四位置高于或等于所述第一位置,且低于所述第二位置。拖地模块14通过磁吸合作用吸合在机身11上,具体地,拖地模块上设置有磁铁,机身11上设置有磁性元件。在另一实施例中,环境检测传感器检测到清洁机器人1到达卸载拖布的位置201时,控制装置30控制拖地模块14从相对工作表面的第二位置与机身11分离。具体地,拖地模块抬升机构的升降电机15驱动第二凸轮机构52旋转,使得拖地模块14与第二凸轮机构52接触,并在第二凸轮机构52的作用下,与机身11分离。
环境检测传感器为测距传感器或定位传感器。其中测距传感器为红外传感器或者激光传感器或者超声波传感器,定位传感器为磁检测传感器,例如霍尔效应传感器或者干簧管效应传感器。通过测距传感器或者定位传感器,来确定清洁机器人的位置,进而完成拖地模块14的更换。
在其中一个实施例中,清洁机器人1的检测装置10包括自身状态检测传感器用于检测拖布的污渍程度或破损程度,当拖布的污渍程度或破损程度达到预设值时,启动拖布更换程序,在该拖布更换程序下,控制装置30控制抬升机构使拖地模块14处于第二位置。在拖布更换程序下,控制装置30控制清洁机器人1启动回归基站程序。具体地,抬升机构包括拖地模块抬升机构,在拖布更换程序下,控制装置30控制拖地模块抬升机构使拖地模块14处于第二位置;可以理解地是,抬升机构包括活动支撑机构,活动支撑机构连接支撑件和机身,控制装置控制活动支撑机构带动支撑件处于伸出位置,也可以使拖地模块从相对于工作表面的第一位置抬升至第二位置。
在其中一个实施例中,自身状态检测传感器为电容式传感器;在另外一个实施例中,自身状态检测传感器为电阻式传感器;在另外一个实施例中,自身状态检测传感器为视觉传感器。当清洁机器人1的拖布的污渍程度达到预设值时,说明该拖布已经比较脏了,需要更换新的抹布,此时控制抬升机构使拖地模块14抬升至第二位置,一方面可以防止用已经脏的拖布继续拖布会越拖越脏,甚至把已经打扫干净的地板弄脏,带来很差的用户体验,达不到自主清洁的效果;另一方面将拖地模块抬升至第二位置,拖布处于这个位置时,也可以防止遇到障碍物无法通过,也可防止遇到地毯时无法通过地毯,甚至弄脏地毯等情况。
其中一个实施例中,清洁机器人1的检测装置10包括自身状态检测传感器用于检测清洁机器人的清洁时间或者清洁面积,当清洁机器人的清洁时间或者清洁面积达到预设值时,启动拖布更换程序,在该拖布更换程序下,控制装置30控制抬升机构使拖地模块14处于第二位置。在拖布更换程序下,控制装置30控制清洁机器人1启动回归基站程序。具体地,抬升机构包括拖地模块抬升机构,在拖布更换程序下,控制装置30控制拖地模块抬升机构使拖地模块14处于第二位置;同样,抬升机构包括活动支撑机构,活动支撑机构连接支撑件和机身,控制装置控制活动支撑机构带动支撑件处于伸出位置,也可以使拖地模块从相对于工作表面的第一位置抬升至第二位置。此外,自身状态检测传感器还用于检测清洁机器人的清洁频率,并且根据清洁频率增大或者减少该预设值,从而更加精确地控制何时更换拖布。当然可以理解地是,也可以根据用户实际的清洁频率,调整更换拖地模块的时间,例如,清洁机器人存储有清洁频率以及与清洁频率对应的更换拖地模块的时间,用户可以手动输入自己的清洁频率,清洁机器人选择对应的更换拖地模块的时间。当然,用户也可以通过APP等装置,远程设置清洁频率。在另一实施例中,也可以直接根据清洁机器人的清洁频率来启动更换拖布程序。具体地,自身状态检测传感器用于检测清洁机器人的清洁频率,当清洁频率达到预设值时,启动拖地模块更换程序,在拖地模块更换程序下,控制装置控制抬升机构使拖地模块处于第二位置。
其中一个实施例中,自身状态检测传感器为计时器,在另外一个实施例中,自身状态检测传感器为计数器,在另外一个实施例中,自身状态检测传感器为里程计。根据计时器的输出值计算清洁机器人清洁时间或者根据里程计的输出值,估计清洁机器人的工作面积,通过计数器记录用户每周或者每月使用清洁机器人的次数,如开机次数,或者通过清洁机器人每周或每月的清洁时间或清 洁面积,来计算清洁机器人的清洁频率。在另一实施中,自身状态检测传感器为信号接收器,用于接收从用户终端发送的清洁机器人的清洁频率或者清洁时间或者清洁面积。该信号接收器可以有线或者无线接收器,当其为无线接收器,如蓝牙装置等,接收由用户终端发送的时间计划表,该时间计划表包括每周胡或者每月的工作天数,和/或每天工作时长等,该信号接收器接收到时间计划表后,得到清洁机器人的工作频率。
在其中一个实施例中,清洁机器人1的检测装置10包括自身状态检测传感器,用于检测自身的倾斜程度,具体地自身状态检测传感器为倾斜传感器,控制装置30根据倾斜传感器的检测结果与预设值的大小,判断清洁机器人1的姿态向上倾斜或者向下倾斜,当控制装置30判断所述清洁机器人1的姿态向上倾斜时,则控制装置30控制抬升机构使拖地模块14抬升至第二位置;当控制装置判断清洁机器人1的姿态向下倾斜时,则控制装置30控制抬升机构使拖地模块14下降至第一位置。
具体地,如图32至图35所示,为本发明的另外一个实施例的清洁机器人1遇到障碍物时控制拖地模块14升降过程。控制装置30根据倾斜传感器的检测结果与预设值的大小,判断清洁机器人1的姿态向上倾斜或者向下倾斜,当检测结果到达预设值,且为正时,则控制装置30判断清洁机器人1的姿态向上倾斜;若检测结果到达预设值,且为负时,则控制装置30判断清洁机器人1的姿态向下倾斜。清洁机器人1在正常工作时,拖地模块14与地板紧贴(如图32所示);当其将要跨越障碍物37时,其机身前端被抬升,倾斜传感器检测到清洁机器人1发生倾斜,控制装置30根据倾斜传感器的检测结果,判断清洁机器人1的姿态向上倾斜,此时控制装置30控制拖地模块抬升机构使拖地模块14抬升至第二位置(如图33所示);当清洁机器人1驶离障碍物37时,其机身尾部被抬升,倾斜传感器检测到清洁机器人1发生倾斜,控制装置30根据倾斜传感器的检测结果,判断清洁机器人1的姿态向下倾斜,则控制装置控制拖地模块抬升机构使拖地模块14下降至第一位置(如图34和图35所示);当清洁机器人1越过障碍物后,继续开展拖地工作。
倾斜传感器可以为陀螺仪,也可以为六轴传感器。通过倾斜传感器检测清洁机器人1的倾斜度,从而判断清洁机器人的姿态方向,进而控制拖地模块14的升降,成本低廉,无需复杂算法,简单可靠。
在其中一个实施例中,控制装置30用于检测电池装置60的电池电量,如可以通过检测电池装置60的电压或者电流。当电池装置60的电压低于预设值 V1时,则控制装置30判断清洁机器人1的电池馈电,启动回归基站进行充电。此时控制装置30控制清洁机器人1启动回归基站,同时控制装置30控制抬升机构使拖地模块14处于第二位置。具体地,控制装置30控制拖地模块抬升机构从而使拖地模块14从相对于工作表面的第一位置抬升至第二位置,可以理解地是,控制装置14也可以控制活动支撑机构26带动支撑轮13处于伸出位置,从而使拖地模块14从相对于工作表面的第一位置抬升至第二位置。
这样做的好处是,在清洁机器人1馈电时,大多数情况是因为长时间工作,电量损耗过快,此时拖布28较脏,如不及时抬升拖布28,则清洁机器人1在回归的路程中,就会把已经清扫干净的地面,再次弄脏,另外也可以防止清洁机器人回归充电的过程中遇到障碍物,无法通过障碍物,或者被困住或卡住,无法脱困,而导致清洁机器人电池装置过放,损坏电池。
在其中一个实施例中,当检测装置10包括自身状态检测传感器,用于检测到清洁机器人1被困住或卡住时,控制装置30控制抬升机构使拖地模块14处于第二位置。具体地,抬升装置包括拖地模块抬升机构,当检测装置10检测到清洁机器人1被困住或卡住时,控制装置30控制拖地模块抬升机构使拖地模块14从相对于工作表面的第一位置抬升至第二位置。可以理解地是,也可以通过控制装置30控制活动支撑机构来驱动拖地模块的抬升,活动支撑机构连接支撑件和机身;控制装置30控制活动支撑机构带动支撑件处于伸出位置,从而使拖地模块14从相对于工作表面的第一位置抬升至第二位置;此时,机身前段被整体抬起,可以达到同样的效果。
在其中一个实施例中,自身状态检测传感器为碰撞传感器,当检测到的碰撞频率大于预设值时所述控制装置30判断清洁机器人1被困。在另外一个实施例中,自身状态检测传感器为速度传感器或者加速度传感器,具体地检测装置10包括轮速传感器,如光电编码器或者霍尔传感器等,当检测到的轮速持续不在预设值范围内时,则控制装置30判断清洁机器人1被困。在另外一个实施例中,自身状态检测传感器为定位传感器,如视觉传感器或者激光测距传感器,用于获取清洁机器人的当前位置,当该当前位置在预设时间内保持不变时,控制装置30判断清洁机器人被困住或者卡住。清洁机器人1在工作的过程中,难免会遇到电线等物体,当清洁机器人1被此类带电物体困住或卡住后,如不及时抬升拖地模块14,一方面清洁机器人1不易脱困,另一方面若是湿润的拖布21长期放置该类物体上,可能会浸湿电线,带来危险等。另外在工作过程中,若遇到狭窄通道,清洁机器人被困住或卡住,不及时抬起拖地模块则会长期与 地板接触,尤其为木质地板时,易损伤地板;若清洁机器人遇到水潭等,其行走轮打滑,而无法前进的情况,将拖地模块及时抬起,支撑轮提供前端支撑,从而使得清洁机器人更容易脱困;若遇到凸起物,使得清洁清洁人处于困住或卡住时,及时抬升拖地模块,也可以使其及时脱困。
上述过程,清洁机器人完全自主地完成拖布的抬升更换,无需人为干预,智能化程度高,减轻人的负担,高效卫生。
如图36所示,为本发明的清洁机器人控制方法的流程图;本实施例提供一种清洁机器人控制方法,用于控制本发明实施例1中所述的清洁机器人。清洁机器人1包括机身11;行走装置40,支撑机身11并带动清洁机器人1移动;清洁装置50,用于安装在机身11上,对工作表面执行清洁工作;控制装置30,控制行走装置40带动清洁机器人1移动;动力装置,为行走装置40提供动力;具体包括以下步骤:
S100:启动清洁机器人进入工作状态,控制清洁装置处于相对于工作表面的第一位置;
S200:判断清洁装置需要抬升时,控制清洁装置从相对于工作表面的第一位置抬升至第二位置,同时提供不同于所述行走装置的相对于工作表面的支撑点。
在其中一个实施例中,本发明的清洁机器人的清洁装置50包括拖地模块。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当检测到障碍物时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置,清洁机器人越过障碍物后,控制拖地模块恢复至第一位置。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当检测到拖地模块的污渍程度或破损程度达到预设值时,启动拖地模块更换程序,在拖地模块更换程序下,判断拖地模块需要抬升,控制拖地模块抬升至第二位置。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当检测到清洁机器人的清洁频率达到预设值时,启动拖地模块更换程序,在拖地模块更换程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当检测到清洁机器人的清洁时间或清洁机器人的清洁面积达到预设值时, 启动拖地模块更换程序,在拖地模块更换程序下,判断拖地模块需要抬升,控制拖地模块抬升至第二位置。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当检测到地毯时,判断拖地模块需要抬升,控制拖地模块抬升至第二位置;当检测到地板时,控制拖地模块恢复至第一位置。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当检测到的电池电量低于预设值时,启动回归基站程序,在回归基站程序下,判断拖地模块需要抬升,控制拖地模块抬升至第二位置。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当检测到清洁机器人被困住或卡住时,判断拖地模块需要抬升,控制拖地模块抬升至第二位置。
在其中一个实施例中,当检测到的碰撞频率大于预设值时,则判断清洁机器人被困。
在其中一个实施例中,当检测到的轮速或者加速度持续不在预设值范围内时,则判断清洁机器人被困。
在其中一个实施例中,当清洁机器人当前位置在预设时间内保持不变时,则判断所述清洁机器人被困住或者卡住。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当判断清洁机器人的姿态向上倾斜时,判断拖地模块需要抬升,控制拖地模块抬升至第二位置;当判断清洁机器人的姿态向下倾斜时,则控制拖地模块下降至第一位置。
在其中一个实施例中,本发明实施例的步骤S200具体包括:
当检测到清洁机器人到达基站时,判断拖地模块需要抬升,控制拖地模块抬升至第二位置。
在其中一个实施例中,当检测到清洁机器人到达卸载拖地模块的位置时,控制拖地模块从相对工作表面的第二位置抬升至拆卸拖地模块的第三位置或者控制所述拖地模块在相对工作表面的第二位置与所述机身分离。
在其中一个实施例中,机身上设置有电磁铁,与拖地模块上的磁铁配合,当检测到清洁机器人到达卸载拖地模块的位置时,通过控制所述电磁铁的电流大小或方向,从而控制所述拖地模块在第二位置与所述机身分离。
在其中一个实施例中,当检测到清洁机器人到达装载拖地模块的位置时,控制拖地模块运动至第一位置或第四位置。在装载拖布的过程中,在其中一个 实施中,通过磁作用吸合拖地模块,因此只要控制拖地模块与机身的距离在磁力范围内,能吸合上新的拖地模块即可。
在其中一个实施例中,第四位置高于或等于所述第一位置,且低于第二位置。
在其中一个实施例中,拖地模块设置于所述机身前端。
在其中一个实施例中,支撑点位于所述拖地模块和所述行走装置之间。
在其中一个实施例中,支撑点位于所述拖地模块之前。
根据本发明实施例,清洁机器人1的控制装置30根据检测装置的检测结果控制拖地模块的抬升和下降,从而使得清洁机器人能够越过障碍物,增强清洁机器人的通过性,且不污染障碍物;避免了清洁机器人出现卡死,且便于在其卡住时及时脱困;使清洁机器人能够很好地通过地毯等,且避免弄脏地毯;同时实现了清洁机器人自动回归基站更换回收新旧拖布,更加智能化,减轻人的负担,避免了因拖地模块未及时抬升造成的二次污染及交叉污染等,用户体验更优。
如图37至图39所示,为本发明的其中一个实施例的清洁机器人自动更换拖布过程示意图。其中基站2为上述所述基站,清洁机器人1包括机身11;行走装置40,支撑机身11并带动清洁机器人1移动;清洁装置50,用于安装在机身11上,清洁装置50包括拖地模块14;控制装置30,控制行走装置40带动清洁机器人1移动;动力装置,为行走装置40提供动力;清洁机器人1还包括抬升装置,抬升装置包括抬升机构和支撑件,其中控制装置能够控制抬升机构使拖地模块14从相对于工作表面的第一位置抬升至第二位置;支撑件,用于在拖地模块14抬升时,提供不同于行走装置40的相对于工作表面的支撑点。
清洁机器人1的抬升机构包括拖地模块抬升机构,拖地模块14可拆卸的安装在机身11上,具体地拖地模块14通过磁吸合作用设置在机身11上。当检测装置10检测需要更换拖地模块时,如拖布的污渍程度或破损程度达到预设值时,则控制装置30控制清洁机器人1启动拖地模块更换程序,在拖地模块更换程序下,回归基站2,并控制拖地模块抬升机构使拖地模块14从相对于工作表面的第一位置抬升至第二位置,同时支撑件包含支撑轮13,支撑轮13在拖地模块14抬升时提供不同于驱动轮12的相对于工作表面的支撑点。具体地,抬升装置包括支撑调节机构,支撑调节机构在拖地模块14抬升时带动支撑轮下落,从而提供支撑点(如图37所示)。其中检测装置10包括电容式传感器或者电阻式传感器,控制装置30根据检测装置10输出的拖布的电容或者电阻值与 预设值的对比,判断拖布是否需要更换。
基站2上设置有红外发射传感器,清洁机器人1上的检测装置10包括红外接收传感器。清洁机器人1启动回归时,开启红外接收传感器,用于接收基站2的红外发射传感器的信号,检测装置10检测接收到的信号的强度,控制装置30根据检测装置10的检测信号强度,判断清洁机器人1是否已到达基站2。当清洁机器人1测到的信号的强度大于预设强度值时,说明清洁机器人1已经充分靠近基站2,此时红外发射传感器停止发射信号,同时清洁机器人1停止检测信号;如果信号的强度不大于预设强度值,则清洁机器人1继续靠近基站2,直到清洁机器人1检测到的信号强度大于预设强度值为止。
可以理解地是,清洁机器人1的检测装置10也可以包含其他测距传感器,如超声波传感器,其中超声波传感器的个数为两个,分别间隔设置在清洁机器人1的前端。当然,检测装置10也可以包含定位传感器,用于确定基站2的位置,并引导清洁机器人1向基站2的位置移动。
在其中一个实施例中定位传感器为霍尔效应传感器,基站2上预安装有与该定位传感器相对应的定位块,该定位块可以为磁铁或者磁钢,当在清洁机器人2在到达基站2后继续朝着基站底板上移动时,检测装置10用于检测定位传感器输出的检测信号的值是否达到预设值,控制装置30根据检测装置10的输出结果判断清洁机器人1在基站底板207的位置。此处输出的检测信号的值可以是定位传感器检测定位块输出的检测信号强度的大小,比如反映为电流、电压值等。也可以是定位装置检测限位元件输出的检测信号经信号处理后,比如模数转换后,得到的数字量的值。当然,定位传感器还可以包括干簧管效应传感器。
若定位传感器输出的检测信号的值达到第一预设值,则定位出基站2的第一停靠位置201,控制装置30控制清洁机器人2停止移动。当清洁机器人1到达基站2的第一停靠位置201即到达基站2卸载拖布位置,此时控制装置30控制拖地模块抬升机构控制拖地模块14从相对于工作表面的第二位置抬升至拆卸拖布的第三位置(如图38所示)。此时设置在机身11上的顶柱与拖地模块14接触,并且提供拖地模块14以向下的作用力,克服拖地模块14与机身11的吸力,从而使拖地模块14与机身11分离。可以理解地是,控制装置30控制拖地模块14分离的方式还可以采用其他形式,不一定要控制拖地模块抬升机构控制拖地模块14从相对于工作表面的第二位置抬升至拆卸拖布的第三位置,也可以通过控制装置30控制拖地模块14在相对工作表面的第二位置与机身11分离,如机 身11上设置有电磁铁,与拖地模块14上的磁铁配合,控制装置30控制通过电磁铁的电流断开或改变电流方向,从而控制拖地模块14在相对于工作表面的第二位置与机身11的分离,也可以利用拖地模块抬升机构的升降电机15驱动第二凸轮机构52旋转,使得拖地模块14与第二凸轮机构52接触,并在第二凸轮机构52的作用下,与机身11分离。
基站2的新拖布槽203在拖地模块更换装置的作用下,将新拖地模块放置在基站2的第二停靠位置202,即基站装载拖布位置。拖地模块14与机身分离后,清洁机器人1朝着基站继续移动,若定位传感器输出的检测信号的值达到第二预设值,则定位出基站2的第二停靠位置202,控制装置30控制清洁机器人1停止移动,并且控制清洁机器人1的拖地模块抬升机构使其下落至与新拖地模块吸合的位置,如第一位置(如图39所示)。当新拖地模块装载后,清洁机器人1驶离基站2,当其离开基站2后,旧拖布在拖地模块更换装置的作用下被回收至旧拖布槽204。
上述过程中,清洁机器人1可以自动回归基站2进行拖地模块14的更换,更加智能化。新拖布槽中放置了一定数量的新拖地模块,因此在较长的一段时间内也不需不需人工参与,减少人的负担,拖地模块的拖布可以采用一次性湿纸巾,回收后的拖地模块也不用人工清理,干净卫生。
如图40至图43所示,为本发明的另外一个实施例的清洁机器人自动更换拖布过程示意图;该拖布更换过程与图35至图37所示的拖布更换过程不同之处在于,当清洁机器人1到达基站2的第一停靠位置201即到达基站2卸载拖布位置,且在该停靠位置完成拖地模块14与机身11分离后,清洁机器人1不是继续朝着基站2移动,而是向后退出基站2(如图42所示)。当清洁机器人1退到基站2外后,卸载在第一停靠位置201的旧拖地模块在旧拖布回收装置的作用下被回收到旧拖布槽中。此时,清洁机器人1继续朝着基站2移动直至到达基站2的第二停靠位置202,重复上述过程直至完成新拖布的更换,并驶离基站2。
上述自动更换拖布过程带来的好处是,在清洁机器人安装新拖布的之前,处于基站第一停靠位置的旧拖布已被回收,可防止驱动轮或者支撑轮从旧拖布上走过时,弄脏轮子,进而进入工作区域工作时,弄脏工作区域,因此清洁效果更佳。
在其他实施例中,清洁机器人1既可以在基站2更换拖布,同时也可以 在基站2进行充电。此时清洁机器人1包括第一充电接口,基站2包括第二充电接口,当清洁机器人1与基站2完成对接时,第一充电接口与第二充电接口对齐。作为一种可选的实施方式,本实施例的第一充电接口包括无线充电接收端,第二充电接口包括无线充电发射端,当清洁机器人1完成对接时,无线充电接收端与无线充电发射端对齐。作为另一种可选的实施方式,本实施例的第一充电接口包括第一导电端子,第二充电接口包括第二导电端子,当清洁机器人1完成对接时,第一导电端子与第二导电端子对齐,其中第一导电端子包括充电接头,第二导电端子包括充电极片;或者第一导电端子包括充电接头,第二导电端子包括充电棒等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (92)

  1. 一种清洁机器人包括:机身;
    行走装置,支撑所述机身并带动所述清洁机器人在工作表面移动;
    清洁装置,用于安装在所述机身上,对工作表面执行清洁工作;
    控制装置,控制所述行走装置带动所述清洁机器人移动;
    动力装置,为行走装置提供动力;其特征在于,
    所述清洁机器人还包括抬升装置,所述抬升装置包括抬升机构和支撑件,其中所述控制装置能够控制所述抬升机构使所述清洁装置从相对于工作表面的第一位置抬升至第二位置;所述支撑件,用于在所述清洁装置抬升时,提供不同于所述行走装置的相对于工作表面的支撑点。
  2. 根据权利要求1所述的清洁机器人,其特征在于,所述支撑件包括支撑轮。
  3. 根据权利要求1所述的清洁机器人,其特征在于,所述清洁装置包括拖地模块。
  4. 根据权利要求1所述的清洁机器人,其特征在于,所述清洁机器人为家用和/或者室内服务机器人。
  5. 根据权利要求3所述的清洁机器人,其特征在于,所述拖地模块包括拖地板,所述拖地板用于可拆卸地安装擦拭件。
  6. 根据权利要求3所述的清洁机器人,其特征在于,还包括液体箱,所述控制装置控制所述液体箱在清洁机器人工作时给所述拖地模块供液体,在所述拖地模块被抬升时,停止给所述拖地模块供液体。
  7. 根据权利要求3所述的清洁机器人,其特征在于,所述拖地模块设置于所述机身底部前端。
  8. 根据权利要求3所述的清洁机器人,其特征在于,所述支撑点位于所述拖地模块和所述行走装置之间。
  9. 根据权利要求3所述的清洁机器人,其特征在于,所述支撑点位于所述拖地模块之前。
  10. 根据权利要求3所述的清洁机器人,其特征在于,所述拖地模块位于第二位置时所述支撑件对工作表面的作用力,大于所述拖地模块位于第一位置时所述支撑件对工作表面的作用力。
  11. 根据权利要求3所述的清洁机器人,其特征在于,所述抬升机构包括拖地模块抬升机构,能够带动所述拖地模块从相对于工作表面的第一位置抬升至第二位置。
  12. 根据权利要求11所述的清洁机器人,其特征在于,所述拖地模块抬升机构包括升降机构,所述升降机构包括升降电机和传动机构,所述升降电机驱动所述传动机构带动所述拖地模块上下移动。
  13. 根据权利要求12所述的清洁机器人,其特征在于,所述传动机构包括:由四级连杆组成的第一联动机构,所述第一联动机构包括:一端与所述升降电机固定连接的第一连杆机构、一端与所述第一连杆机构的另一端联动的第二连杆机构、一端与所述机身可转动的相连另一端与所述第二连杆机构的另一端联动的第三连杆机构、一端与所述第三连杆机构的另一端联动另一端与拖地模块联动的第四连杆机构,所述升降电机驱动所述第一联动机构带动所述拖地模块上下移动。
  14. 根据权利要求12所述的清洁机器人,其特征在于,所述传动机构包括:由两级连杆组成的第二联动机构,所述第二联动机构包括:与所述升降电机固定连接的第五连杆机构,所述第五连杆机构一端与第六连杆机构的一端联动,所述第六连杆机构的另一端与所述拖地模块联动,所述升降电机驱动所述第二联动机构带动所述拖地模块上下移动。
  15. 根据权利要求12所述的清洁机器人,其特征在于,所述传动机构包括:第一凸轮机构,所述第一凸轮机构的边缘部分的与所述拖地模块相连,所述升降电机驱动所述第一凸轮机构转动,所述第一凸轮机构带动所述拖地模块上下移动。
  16. 根据权利要求15所述的清洁机器人,其特征在于,所述传动机构还包括:升降架,所述第一凸轮机构安装在所述升降架内,所述拖地模块安装在所述升降架上,所述升降电机驱动所述第一凸轮机构旋转,所述第一凸轮机构带动所述升降架上下移动,所述升降架带动所述拖地模块上下移动。
  17. 根据权利要求12所述的清洁机器人,其特征在于,所述传动机构包括齿轮螺杆啮合装置或者带传动装置。
  18. 根据权利要求12所述的清洁机器人,其特征在于,所述拖地模块可拆卸地安装在所述机身上。
  19. 根据权利要求18所述的清洁机器人,其特征在于,所述传动机构还包括:第二凸轮机构或杆机构,所述升降电机驱动所述第二凸轮机构或所述杆机构旋转,在所述第二凸轮机构或所述杆机构接触到所述拖地模块时,能向所述拖地模块施加向下的作用力,从而使所述拖地模块与所述机身分离。
  20. 根据权利要求19所述的清洁机器人,其特征在于,所述机身上还包括限 位装置,所述限位装置包括第一斜面和第二斜面,当所述拖地模块处于第一位置时,所述第二凸轮机构的第一部分边缘与所述第一斜面相抵接;当所述拖地模块处于分离位置时,所述第二凸轮机构的第二部分边缘与所述第二斜面相抵接。
  21. 根据权利要求19所述的清洁机器人,其特征在于,所述传动机构包括:第一凸轮机构,所述第一凸轮机构的边缘部分的与所述拖地模块相连,所述升降电机驱动所述第一凸轮机构转动,所述第一凸轮机构带动所述拖地模块上下移动,所述第一凸轮机构与所述第二凸轮机构或所述杆机构同步运动。
  22. 根据权利要求18所述的清洁机器人,其特征在于,所述机身朝下设置有凸起装置,所述凸起装置与所述拖地模块产生相对运动而与所述拖地模块接触,从而使拖地模块与所述机身分离。
  23. 根据权利要求22所述的清洁机器人,其特征在于,所述拖地模块抬升机构还用于带动所述拖地模块从相对工作表面的第二位置抬升至拆卸所述拖地模块的第三位置。
  24. 根据权利要求18所述的清洁机器人,其特征在于,所述机身上设置有推拉式电磁铁以及与所述推拉式电磁铁铁芯配接的推杆,所述控制装置通过给所述推拉式电磁铁通电,控制所述推杆作用于所述拖地模块,从而使所述拖地模块与所述机身分离。
  25. 根据权利要求18所述的清洁机器人,其特征在于,所述机身上设置有电磁铁,与所述拖地模块上的磁铁配合,所述控制装置通过控制经过所述电磁铁的电流大小或方向,从而控制所述拖地模块与所述机身的吸合分离。
  26. 根据权利要求11所述的清洁机器人,其特征在于,还包括拖地模块位置检测装置,所述拖地模块位置检测装置设置在所述机身上,所述拖地模块抬升机构上设置有位置标记,所述位置检测装置用于检测所述位置标记,并输出检测信号;所述控制装置通过将所述检测信号与预设值对比,来判断所述拖地模块相对于所述工作表面的位置。
  27. 根据权利要求26所述的清洁机器人,其特征在于,所述拖地模块位置检测装置包括磁检测传感器,所述位置标记为磁性元件。
  28. 根据权利要求27所述的清洁机器人,其特征在于,所述磁检测传感器为霍尔传感器,所述磁性元件为磁铁或者磁钢。
  29. 根据权利要求11所述的清洁机器人,其特征在于,所述拖地模块抬升机构包括摆动机构,所述摆动机构带动所述清洁装置摆动以使所述拖地模块从相对 于工作表面的第一位置抬升至第二位置。
  30. 根据权利要求11所述的清洁机器人,其特征在于,所述支撑件可活动地连接于所述机身,在所述拖地模块位于第二位置时,所述支撑件与所述机身顶部的距离大于所述拖地模块位于第一位置时,所述支撑件与所述机身顶部的距离。
  31. 根据权利要求30所述的清洁机器人,其特征在于,所述抬升装置包括支撑件调节机构,所述支撑件调节机构在所述拖地模块抬升时带动所述支撑件下落,在所述拖地模块下落时带动所述支撑件收起。
  32. 根据权利要求31所述的清洁机器人,其特征在于,所述支撑件调节机构与所述拖地模块抬升机构联动。
  33. 根据权利要求32所述的清洁机器人,其特征在于,所述支撑件调节机构包括:齿轮齿条啮合装置或连杆装置。
  34. 根据权利要求30所述的清洁机器人,其特征在于,所述抬升装置包括弹性件,所述弹性件连接所述支撑件和所述机身。
  35. 根据权利要求3所述的清洁机器人,其特征在于,所述抬升机构包括活动支撑机构,所述活动支撑机构连接所述支撑件和所述机身;所述控制装置控制所述活动支撑机构带动所述支撑件运动至伸出位置,从而使所述拖地模块从相对于工作表面的第一位置抬升至第二位置;控制装置控制所述活动支撑机构带动所述支撑件运动至收起位置,从而使所述拖地模块从相对于工作表面的第二位置下落至第一位置。
  36. 根据权利要求35所述的清洁机器人,其特征在于,所述活动支撑机构包括摆动机构或升降机构,所述摆动机构或升降机构驱动所述支撑件下落或收起,从而使所述拖地模块被抬升或者下落。
  37. 根据权利要求31至36中任一项所述的清洁机器人,其特征在于,所述清洁机器人还包括雷达传感器和/或光学传感器,所述支撑件下落或收起时所述雷达传感器和/或光学传感器的高度大致不变。
  38. 根据权利要求3所述的清洁机器人,其特征在于,还包括检测装置,所述控制装置根据所述检测装置的检测结果控制所述抬升机构调节所述拖地模块相对于工作表面的位置。
  39. 根据权利要求38所述的清洁机器人,其特征在于,所述检测装置包括环境检测传感器和/或自身状态检测传感器。
  40. 根据权利要求39所述的清洁机器人,其特征在于,所述环境检测传感器为 障碍物检测传感器,当所述环境检测传感器检测到障碍物时,所述控制装置控制所述抬升机构使所述拖地模块处于第二位置;当所述清洁机器人越过障碍物后,所述控制装置控制所述抬升机构使所述拖地模块处于第一位置。
  41. 根据权利要求40所述的清洁机器人,其特征在于,所述障碍物检测传感器包括视觉传感器或者红外传感器或者激光传感器或者超声波传感器。
  42. 根据权利要求39所述的清洁机器人,其特征在于,所述环境检测传感器用于检测地面状态,当所述环境检测传感器为检测到地面状态为地毯时,所述控制装置控制所述抬升机构使所述拖地模块处于第二位置;当所述环境检测传感器为检测到地面状态为地板时,所述控制装置控制所述抬升机构使所述拖地模块处于第一位置。
  43. 根据权利要求42所述的清洁机器人,其特征在于,所述环境检测传感器为视觉传感器或者雷达传感器,所述控制装置根据视觉传感器获取的地面图像判断地面状态或者根据雷达传感器检测到的地面材料类型判断地面状态。
  44. 根据权利要求39所述的清洁机器人,其特征在于,所述环境检测传感器检测到所述清洁机器人到达基站时,所述控制装置控制所述抬升机构使所述拖地模块抬升至第二位置。
  45. 根据权利要求39所述的清洁机器人,其特征在于,所述拖地模块可拆卸地安装在所述机身上,所述环境检测传感器检测到清洁机器人到达卸载擦拭件的位置时,所述控制装置控制所述抬升机构带动所述拖地模块从相对工作表面的第二位置抬升至拆卸所述拖地模块的第三位置或者所述控制装置控制所述拖地模块在相对工作表面的第二位置与所述机身分离。
  46. 根据权利要求45所述的清洁机器人,其特征在于,所述环境检测传感器检测到清洁机器人到达装载擦拭件的位置时,所述控制装置控制所述抬升机构带动所述拖地模块运动至第一位置或第四位置。
  47. 根据权利要求46所述的清洁机器人,其特征在于,所述第四位置高于或等于所述第一位置,且低于所述第二位置。
  48. 根据权利要求44-46中任一项所述的清洁机器人,其特征在于,所述环境检测传感器为测距传感器或定位传感器。
  49. 根据权利要求48所述的清洁机器人,其特征在于,所述测距传感器为红外传感器或者激光传感器或者超声波传感器。
  50. 根据权利要求48所述的清洁机器人,其特征在于,所述定位传感器为磁检测传感器。
  51. 根据权利要求50所述的清洁机器人,其特征在于,所述磁检测传感器为霍尔效应传感器或者干簧管效应传感器。
  52. 根据权利要求39所述的清洁机器人,其特征在于,所述自身状态检测传感器用于检测拖地模块的污渍程度或破损程度,当拖地模块的污渍程度或破损程度达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,控制装置控制所述抬升机构使所述拖地模块处于第二位置。
  53. 根据权利要求52所述的清洁机器人,其特征在于,所述自身状态检测传感器为电容式传感器或电阻式传感器或者视觉传感器。
  54. 根据权利要求39所述的清洁机器人,其特征在于,所述自身状态检测传感器用于检测清洁机器人的清洁时间或者清洁面积,当所述清洁时间或者清洁面积达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,控制装置控制所述抬升机构使所述拖地模块处于第二位置。
  55. 根据权利要求54所述的清洁机器人,其特征在于,所述自身状态检测传感器还用于检测清洁机器人的清洁频率,根据所述清洁频率增大或者减少所述预设值。
  56. 根据权利要求39所述的清洁机器人,其特征在于,所述自身状态检测传感器用于检测清洁机器人的清洁频率,当所述清洁频率达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,控制装置控制所述抬升机构使所述拖地模块处于第二位置。
  57. 根据权利要求54-56所述的清洁机器人,其特征在于,所述自身状态检测传感器为计时器或者计数器或者里程计。
  58. 根据权利要求54-56所述的清洁机器人,其特征在于,所述自身状态检测传感器为信号接收器,用于接收从用户终端发送的所述清洁机器人的清洁频率或者清洁时间或者清洁面积。
  59. 根据权利要求52或者54或者56所述的清洁机器人,其特征在于,在所述拖地模块更换程序下,所述控制装置控制所述清洁机器人回归基站。
  60. 根据权利要求3所述的清洁机器人,其特征在于,所述控制装置用于检测电池电量,当电池电量低于预设值时,所述控制装置控制所述清洁机器人启动回归基站,同时所述控制装置控制所述抬升机构使所述拖地模块处于第二位置。
  61. 根据权利要求39所述的清洁机器人,其特征在于,当所述自身状态检测传感器检测到清洁机器人被困住或卡住时,所述控制装置控制所述抬升机构使所 述拖地模块处于第二位置。
  62. 根据权利要求61所述的清洁机器人,其特征在于,所述自身状态检测传感器为碰撞传感器,当检测到的碰撞频率大于预设值时,则所述控制装置判断所述清洁机器人被困住或卡住。
  63. 根据权利要求61所述的清洁机器人,其特征在于,所述自身状态检测传感器为速度传感器或者加速度传感器,当检测到的速度或者加速度持续不在预设值范围内时,则所述控制装置判断所述清洁机器人被困住或卡住。
  64. 根据权利要求63所述的清洁机器人,其特征在于,所述速度传感器为轮速传感器。
  65. 根据权利要求61所述的清洁机器人,其特征在于,所述自身状态检测传感器为定位传感器,用于获取所述清洁机器人的当前位置,当所述当前位置在预设时间内保持不变时,所述控制装置判断所述清洁机器人被困住或者卡住。
  66. 根据权利要求65所述的清洁机器人,其特征在于,所述定位传感器为激光测距传感器或者视觉传感器。
  67. 根据权利要求39所述的清洁机器人,其特征在于,所述自身状态检测传感器为倾斜传感器,所述控制装置根据倾斜传感器的检测结果与预设值的大小,判断所述清洁机器人的姿态向上倾斜或者向下倾斜,当所述控制装置判断所述清洁机器人的姿态向上倾斜时,则所述控制装置控制所述抬升机构使所述拖地模块抬升至第二位置;当所述控制装置判断所述清洁机器人的姿态向下倾斜时,则所述控制装置控制所述抬升机构使所述拖地模块下降至第一位置。
  68. 一种清洁机器人的控制方法,其中清洁机器人包括:机身;行走装置,支撑所述机身并带动所述清洁机器人移动;清洁装置,用于安装在所述机身上,对工作表面执行清洁工作;控制装置,控制所述行走装置带动所述清洁机器人移动;动力装置,为行走装置提供动力;其特征在于,包括步骤:
    启动清洁机器人进入工作状态,控制清洁装置处于相对于工作表面的第一位置;
    判断清洁装置是否需要抬升,若是,控制清洁装置从相对于工作表面的第一位置抬升至第二位置,同时提供不同于所述行走装置的相对于工作表面的支撑点。
  69. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,所述清洁装置包括拖地模块。
  70. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到障 碍物时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置,清洁机器人越过障碍物后,控制所述拖地模块恢复至第一位置。
  71. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到拖地模块的污渍程度或破损程度达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
  72. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到清洁机器人的清洁时间或者清洁面积达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
  73. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到清洁机器人的清洁频率达到预设值时,启动拖地模块更换程序,在所述拖地模块更换程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
  74. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到地毯时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置;当检测到地板时,控制所述拖地模块恢复至第一位置。
  75. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到的电池电量低于预设值时,启动回归基站程序,在回归基站程序下,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
  76. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到清洁机器人被困住或卡住时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
  77. 根据权利要求76所述的清洁机器人的控制方法,其特征在于,当检测到的碰撞频率大于预设值时,则判断所述清洁机器人被困住或者卡住。
  78. 根据权利要求76所述的清洁机器人的控制方法,其特征在于,当检测到的速度或者加速度持续不在预设值范围内时,则判断所述清洁机器人被困住或者卡住。
  79. 根据权利要求76所述的清洁机器人的控制方法,其特征在于,当检测到所述清洁机器人当前位置在预设时间内保持不变时,则判断所述清洁机器人被困住或者卡住。
  80. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当判断所述清洁机器人的姿态向上倾斜时,判断拖地模块需要抬升,控制所述拖地模块抬 升至第二位置;当判断所述清洁机器人的姿态向下倾斜时,则控制所述拖地模块下降至第一位置。
  81. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到清洁机器人到达基站时,判断拖地模块需要抬升,控制所述拖地模块抬升至第二位置。
  82. 根据权利要求68所述的清洁机器人的控制方法,其特征在于,当检测到清洁机器人到达卸载拖地模块的位置时,控制所述拖地模块从相对工作表面的第二位置抬升至拆卸所述拖地模块的第三位置或者控制所述拖地模块在相对工作表面的第二位置与所述机身分离。
  83. 根据权利要求82所述的清洁机器人的控制方法,其特征在于,所述机身上设置有电磁铁,与所述拖地模块上的磁铁配合,当检测到清洁机器人到达卸载拖地模块的位置时,通过控制所述电磁铁的电流大小或方向,从而控制所述拖地模块在第二位置与所述机身分离。
  84. 根据权利要求82或83所述的清洁机器人的控制方法,其特征在于,当检测到清洁机器人到达装载拖地模块的位置时,控制所述拖地模块运动至第一位置或第四位置。
  85. 根据权利要求84所述的清洁机器人的控制方法,其特征在于,所述第四位置高于或等于所述第一位置,且低于所述第二位置。
  86. 根据权利要求69所述的清洁机器人的控制方法,其特征在于,所述拖地模块设置于所述机身前端。
  87. 根据权利要求69所述的清洁机器人的控制方法,其特征在于,所述支撑点位于所述拖地模块和所述行走装置之间。
  88. 根据权利要求69所述的清洁机器人的控制方法,其特征在于,所述支撑点位于所述拖地模块之前。
  89. 一种地面处理系统,包括基站和清洁机器人,其中清洁机器人包括机身;行走装置,支撑所述机身并带动所述清洁机器人移动;控制装置,控制所述行走装置带动所述清洁机器人移动;动力装置,为行走装置提供动力;所述地面处理系统还包括拖地模块,能够安装在机身上,执行拖地工作;其特征在于,
    所述清洁机器人还包括抬升装置和检测装置,所述抬升装置包括抬升机构和支撑件,其中所述控制装置能够控制所述抬升机构使所述拖地模块从相对于工作表面的第一位置抬升至第二位置;所述支撑件,用于在所述拖地模块抬升时,提供不同于所述行走装置的相对于工作表面的支撑点;检测装置,用于检 测拖地模块是否需要更换;
    所述基站设置有拖布槽,用于盛放所述拖地模块,及拖地模块更换装置;
    所述检测装置检测到所述拖地模块需要更换时,控制装置控制所述清洁机器人启动拖地模块更换程序,在所述拖地模块更换程序下,回归所述基站及在所述基站更换拖地模块;在所述拖地模块更换程序下,控制装置控制所述抬升机构使所述拖地模块抬升至至少第二位置。
  90. 根据权利要求89所述的地面处理系统,其特征在于,所述抬升机构包括拖地模块抬升机构,所述检测装置检测到拖地模块的污渍程度或破损程度达到预设值时,控制装置控制所述清洁机器人启动拖地模块更换程序,在所述拖地模块更换程序下,回归所述基站,并控制所述拖地模块抬升机构使所述拖地模块从相对于工作表面的第一位置抬升至第二位置。
  91. 根据权利要求89所述的地面处理系统,其特征在于,所述拖地模块可拆卸地安装在所述机身上,当所述清洁机器人到达基站卸载拖地模块位置后,所述控制装置控制所述拖地模块抬升机构使所述拖地模块从相对于工作表面的第二位置抬升至拆卸拖地模块的第三位置或者所述控制装置控制所述拖地模块在相对工作表面的第二位置与所述机身分离。
  92. 根据权利要求91所述的地面处理系统,其特征在于,所述控制装置控制清洁机器人继续移动,当到达基站装载拖地模块位置后,所述控制装置控制所述抬升机构使所述拖地模块处于第一位置或者第四位置,所述第四位置高于或等于所述第一位置,且低于所述第二位置。
PCT/CN2019/124253 2018-12-21 2019-12-10 清洁机器人及其控制方法和地面处理系统 WO2020125489A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811572174.X 2018-12-21
CN201811572174 2018-12-21
CN201910250331 2019-03-29
CN201910250331.3 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020125489A1 true WO2020125489A1 (zh) 2020-06-25

Family

ID=71101066

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/124253 WO2020125489A1 (zh) 2018-12-21 2019-12-10 清洁机器人及其控制方法和地面处理系统
PCT/CN2019/127059 WO2020125760A1 (zh) 2018-12-21 2019-12-20 清洁机器人及其控制方法和地面处理系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127059 WO2020125760A1 (zh) 2018-12-21 2019-12-20 清洁机器人及其控制方法和地面处理系统

Country Status (6)

Country Link
US (1) US20220079406A1 (zh)
EP (1) EP3900604B1 (zh)
JP (1) JP2022514931A (zh)
KR (1) KR102614979B1 (zh)
CN (4) CN111601534A (zh)
WO (2) WO2020125489A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114711665A (zh) * 2022-03-04 2022-07-08 深圳市杉川机器人有限公司 智能扫地清洁装置
CN114983267A (zh) * 2022-05-10 2022-09-02 安克创新科技股份有限公司 清洁机器人控制方法、装置、系统及清洁机器人
FR3122561A1 (fr) * 2021-05-10 2022-11-11 Seb S.A. Robot de nettoyage autonome équipé d’un dispositif de nettoyage humide
WO2022256160A1 (en) * 2021-06-02 2022-12-08 Irobot Corporation Pad changing system for robotic vacuum cleaners

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125489A1 (zh) * 2018-12-21 2020-06-25 苏州宝时得电动工具有限公司 清洁机器人及其控制方法和地面处理系统
CN110353583A (zh) * 2019-08-21 2019-10-22 追创科技(苏州)有限公司 扫地机器人及扫地机器人的自动控制方法
CN111000505B (zh) * 2019-10-22 2020-11-03 追创科技(苏州)有限公司 一种用于扫地机的控制方法及控制器
WO2021077956A1 (zh) * 2019-10-23 2021-04-29 苏州宝时得电动工具有限公司 拖布回收装置
CN111728540B (zh) * 2020-07-06 2021-08-17 广州晒帝智能科技有限公司 一种蒸汽擦地机
CN113907653B (zh) * 2020-07-07 2022-11-15 宁波方太厨具有限公司 一种拖地清洁机器人及其工作控制方法
CN111887777B (zh) * 2020-07-29 2023-03-07 深圳市普森斯科技有限公司 清扫控制方法、装置、电子设备及存储介质
CN111802968B (zh) * 2020-08-02 2022-02-08 珠海一微半导体股份有限公司 判断机器人被困状态的检测及脱困方法
CN114052572A (zh) * 2020-08-06 2022-02-18 苏州宝时得电动工具有限公司 清洁机器人及其清洁件更换方法、计算机存储介质
CN112034847B (zh) * 2020-08-13 2021-04-13 广州仿真机器人有限公司 具有双行走模式的分体式仿真机器人的避障方法和装置
CN114098543B (zh) * 2020-08-26 2024-01-09 宝时得科技(中国)有限公司 拖地机器人及其控制方法、控制装置和存储介质
CN112068563A (zh) * 2020-09-07 2020-12-11 上海擎朗智能科技有限公司 故障提示方法、装置、机器人、系统和介质
CN114246509B (zh) * 2020-09-23 2023-05-09 苏州宝时得电动工具有限公司 清洁机器人的基站及清洁机器人系统
US20220104677A1 (en) * 2020-10-07 2022-04-07 Irobot Corporation Two in one mobile cleaning robot
CN114431781A (zh) * 2020-11-04 2022-05-06 苏州宝时得电动工具有限公司 自移动清洁设备及其控制方法、自动清洁系统
CN114431783B (zh) * 2020-11-04 2024-02-20 苏州宝时得电动工具有限公司 清洁机器人及其控制方法
CN114431779A (zh) * 2020-11-04 2022-05-06 苏州宝时得电动工具有限公司 拖地机的拖布更换方法和装置
CN213993439U (zh) * 2020-11-17 2021-08-20 深圳市杉川机器人有限公司 可拆卸浮动滚刷结构
CN115135215A (zh) * 2020-12-04 2022-09-30 苏州宝时得电动工具有限公司 清洁机器人、清洁系统及清洁方法
CN114711673B (zh) * 2020-12-22 2023-07-07 广东美的白色家电技术创新中心有限公司 清洁机器人及清洁系统
US11612295B2 (en) * 2021-01-04 2023-03-28 Beijing Roborock Technology Co., Ltd. Autonomous cleaning device
CN112971633B (zh) * 2021-02-06 2023-07-04 曲阜信多达智能科技有限公司 清洁机系统的烘干控制方法
CN113679291A (zh) * 2021-02-10 2021-11-23 北京石头世纪科技股份有限公司 一种可升降自动清洁设备
CN113100567B (zh) * 2021-04-14 2022-08-02 张扬 一种无线充电桌及充电方法
CN113171034B (zh) * 2021-04-19 2023-06-06 深圳银星智能集团股份有限公司 清洁基站、清洁系统以及清洁系统的清洁方法
WO2022237587A1 (zh) * 2021-05-08 2022-11-17 深圳甲壳虫智能有限公司 清扫设备控制方法及清扫设备
JP2024516314A (ja) * 2021-05-08 2024-04-12 深▲せん▼甲▲かく▼虫智能有限公司 清掃装置の制御方法及び清掃装置
CN113558538B (zh) * 2021-05-28 2022-05-24 南京林业大学 一种基于物联网的用于智能家居的智能除尘设备
CN115474870B (zh) * 2021-06-15 2024-04-09 曲阜信多达智能科技有限公司 一种清洁机器人系统的控制方法
CN113397434B (zh) * 2021-07-02 2022-06-24 河南职业技术学院 一种扫拖一体化机器人
CN113633233A (zh) * 2021-07-13 2021-11-12 广东美的白色家电技术创新中心有限公司 清洁巾输送装置、基站和清洁装置
CN114073455B (zh) * 2021-07-15 2023-08-22 浙江绍兴苏泊尔生活电器有限公司 供电控制方法、清洁基站和清洁系统
CN115702763A (zh) * 2021-08-10 2023-02-17 美智纵横科技有限责任公司 一种升降装置及清洁设备
CN114587189B (zh) * 2021-08-17 2024-04-05 北京石头创新科技有限公司 清洁机器人及其控制方法、装置、电子设备、存储介质
CN113854903A (zh) * 2021-09-28 2021-12-31 追觅创新科技(苏州)有限公司 清洁设备的控制方法及装置
CN114027734A (zh) * 2021-10-30 2022-02-11 深圳市银星智能科技股份有限公司 一种清洁机器人
WO2023078315A1 (zh) * 2021-11-02 2023-05-11 苏州宝时得电动工具有限公司 机器人清洁系统及其控制方法
WO2023088397A1 (zh) * 2021-11-18 2023-05-25 高蔚智能机器人(深圳)有限公司 运输机
CN116262017A (zh) * 2021-12-13 2023-06-16 苏州宝时得电动工具有限公司 自移动机器人系统及其检测基站内异常的方法
US20230190062A1 (en) * 2021-12-17 2023-06-22 Bissell Inc. Docking station for an autonomous floor cleaner
CN114343496B (zh) * 2021-12-31 2023-06-20 深圳市杉川机器人有限公司 自动更换系统及自动更换方法
CN114343498B (zh) * 2021-12-31 2023-06-20 深圳市杉川机器人有限公司 清洁单元集成装置、基站及清洁系统
CN114440067A (zh) * 2021-12-31 2022-05-06 重庆特斯联智慧科技股份有限公司 雷达装置及其物流机器人
CN114343480B (zh) * 2021-12-31 2023-04-18 深圳市杉川机器人有限公司 清洁系统及其控制方法
CN114343497B (zh) * 2021-12-31 2023-03-07 深圳市杉川机器人有限公司 自动清洁系统及清洁单元更换方法
JP1740400S (ja) * 2022-01-05 2023-03-29 掃除機器用水タンク付き集塵箱
DE102022200330B4 (de) 2022-01-13 2023-07-20 BSH Hausgeräte GmbH Verfahren zum Steuern eines sich autonom fortbewegenden Bodenreinigungsgeräts, Computerprogrammprodukt sowie Bodenreinigungsgerät zur Durchführung des Verfahrens
CN114424914B (zh) * 2022-01-25 2022-10-28 昆山鑫泰利智能科技股份有限公司 一种洗地机的清洁方法
CN114451819B (zh) * 2022-03-02 2023-09-26 佛山市银星智能制造有限公司 清洁机器人及其越障方法
CN114451820B (zh) * 2022-03-03 2023-03-10 广东立霖智能科技有限公司 一种扫地机器人滚刷抬升机构
CN114652227B (zh) * 2022-03-21 2023-06-16 东莞市品佳智能科技有限公司 智能清洁机器人控制方法、系统、装置、电子设备及介质
WO2023185222A1 (zh) * 2022-03-31 2023-10-05 苏州宝时得电动工具有限公司 清洁机器人和清洁机器人的控制方法
WO2023198211A1 (zh) * 2022-04-14 2023-10-19 苏州宝时得电动工具有限公司 清洁机器人及其控制方法
CN114617502B (zh) * 2022-04-18 2023-09-01 微思机器人(深圳)有限公司 一种抹布抬升装置、扫地机器人及控制方法
WO2023204383A1 (ko) * 2022-04-18 2023-10-26 삼성전자주식회사 청소 로봇 및 그 제어 방법
CN115245291A (zh) * 2022-04-19 2022-10-28 北京众清科技有限公司 自清洁-烘干方法、可拆式托盘、基座、表面清洗系统
CN114886345B (zh) * 2022-04-20 2023-12-15 青岛海尔空调器有限总公司 用于扫地机器人控制的方法、装置、系统及存储介质
CN114886352A (zh) * 2022-05-13 2022-08-12 杭州萤石软件有限公司 清洁机器人系统的控制方法及装置
CN117084590A (zh) * 2022-05-13 2023-11-21 追觅创新科技(苏州)有限公司 清洁设备的控制方法、系统及装置
CN116867413A (zh) * 2022-05-20 2023-10-10 深圳市好奇心探索科技有限公司 清洁装置及其控制方法、控制器、计算机可读存储介质
WO2023221132A1 (zh) * 2022-05-20 2023-11-23 深圳市好奇心探索科技有限公司 清洁装置及其控制方法、控制器、计算机可读存储介质
CN115054158A (zh) * 2022-06-07 2022-09-16 安克创新科技股份有限公司 基站及清洁系统
CN114916873B (zh) * 2022-06-13 2023-12-29 广东栗子科技有限公司 一种螺杆升降清洁模组及扫地机
CN114947625B (zh) * 2022-07-05 2024-03-26 深圳乐动机器人股份有限公司 一种清洁机器人补充电量的方法及相关装置
KR20240013401A (ko) * 2022-07-22 2024-01-30 삼성전자주식회사 로봇 청소기 및 이의 제어 방법
WO2024025091A1 (ko) * 2022-07-28 2024-02-01 삼성전자 주식회사 로봇 청소기 및 이의 제어 방법
CN115462715B (zh) * 2022-07-29 2023-12-15 深圳银星智能集团股份有限公司 清洁系统
KR20240019577A (ko) * 2022-08-04 2024-02-14 삼성전자주식회사 로봇 청소기, 도킹 스테이션 및 이를 포함한 청소 시스템
KR20240019600A (ko) * 2022-08-04 2024-02-14 삼성전자주식회사 로봇 청소기, 도킹 스테이션 및 이를 포함한 청소 시스템

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011813A1 (en) * 2000-05-02 2002-01-31 Harvey Koselka Autonomous floor mopping apparatus
CN202739920U (zh) * 2012-07-19 2013-02-20 烟台炅旼电器有限公司 带有抹布的无线扫地一体机
CN106031608A (zh) * 2015-03-19 2016-10-19 广州市白云清洁用品有限公司 一种手推式洗地车
CN106889955A (zh) * 2015-12-19 2017-06-27 天津蓝莓信息技术有限责任公司 一种自动更换清洁机器人抹布的装置及方法
CN107242837A (zh) * 2017-08-23 2017-10-13 赵雅琴 自动扫地机器人
CN107684400A (zh) * 2017-09-13 2018-02-13 广东乐生智能科技有限公司 一种具有升降式拖地装置的智能扫地机
CN207755219U (zh) * 2017-06-23 2018-08-24 杭州九阳小家电有限公司 一种清洁机器人系统
CN109758050A (zh) * 2017-11-10 2019-05-17 德国福维克控股公司 用于面的清洁的湿式清洁装置
CN110338714A (zh) * 2019-08-08 2019-10-18 深圳市杉川机器人有限公司 一种清洁机器人底盘结构以及清洁机器人

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045310B3 (de) * 2005-09-16 2007-03-22 Alfred Kärcher Gmbh & Co. Kg Fahrbare Bodenreinigungsmaschine
ITMI20070836A1 (it) * 2007-04-20 2008-10-21 Santoemma S R L Macchina lavamoquette operabile in modalita' pull-back perfezionata
BRPI0910450A2 (pt) * 2008-04-24 2016-07-19 Evolution Robotics Inc limpador robótico
KR101080004B1 (ko) * 2011-04-08 2011-11-04 주식회사 모뉴엘 걸레장착구조를 갖는 로봇청소기
US8898844B1 (en) * 2011-07-08 2014-12-02 Irobot Corporation Mopping assembly for a mobile robot
AU2014223616C1 (en) * 2013-02-27 2016-11-24 Tennant Company Cleaning head assemblies having touch-free attachment and alignment technology
JP6396475B2 (ja) * 2013-12-23 2018-09-26 エルジー エレクトロニクス インコーポレイティド ロボット掃除機
KR102376150B1 (ko) * 2015-03-05 2022-03-21 삼성전자주식회사 청소 로봇 및 그 제어 방법
JP6633474B2 (ja) * 2015-08-17 2020-01-22 アイロボット・コーポレーション 着脱可能パッドを用いた自律床清掃
EP3338151A4 (en) * 2015-08-18 2019-04-17 Nilfisk A/S MOBILE ROBOTIC VACUUM CLEANER
CN205433581U (zh) * 2015-12-19 2016-08-10 天津蓝莓信息技术有限责任公司 一种自动更换清洁机器人抹布的装置及具有该装置的清洁机器人
CN205697562U (zh) * 2016-04-07 2016-11-23 合肥联宝信息技术有限公司 一种扫地机器人系统
JP6883352B2 (ja) * 2016-12-16 2021-06-09 云鯨智能科技(東莞)有限公司Yunjing Intelligence Technology (Dongguan) Co.,Ltd. ベースステーションおよび清掃ロボットシステム
DE102016124684A1 (de) * 2016-12-16 2018-06-21 Vorwerk & Co. Interholding Gmbh Serviceeinrichtung für ein Haushaltsgerät
CN106859512A (zh) * 2017-02-22 2017-06-20 深圳市软晶科技有限公司 一种自动更换拖布的清洁机器人系统
GB2601460B (en) * 2017-12-22 2023-02-01 Bissell Inc Robotic cleaner with sweeper and rotating dusting pads
CN108403017A (zh) * 2018-05-10 2018-08-17 深圳市宇辰智能科技有限公司 一种智能清洁机器人系统
CN108514385A (zh) * 2018-06-05 2018-09-11 刘超 一种家用清扫机器人的清扫结构
WO2020125489A1 (zh) * 2018-12-21 2020-06-25 苏州宝时得电动工具有限公司 清洁机器人及其控制方法和地面处理系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011813A1 (en) * 2000-05-02 2002-01-31 Harvey Koselka Autonomous floor mopping apparatus
CN202739920U (zh) * 2012-07-19 2013-02-20 烟台炅旼电器有限公司 带有抹布的无线扫地一体机
CN106031608A (zh) * 2015-03-19 2016-10-19 广州市白云清洁用品有限公司 一种手推式洗地车
CN106889955A (zh) * 2015-12-19 2017-06-27 天津蓝莓信息技术有限责任公司 一种自动更换清洁机器人抹布的装置及方法
CN207755219U (zh) * 2017-06-23 2018-08-24 杭州九阳小家电有限公司 一种清洁机器人系统
CN107242837A (zh) * 2017-08-23 2017-10-13 赵雅琴 自动扫地机器人
CN107684400A (zh) * 2017-09-13 2018-02-13 广东乐生智能科技有限公司 一种具有升降式拖地装置的智能扫地机
CN109758050A (zh) * 2017-11-10 2019-05-17 德国福维克控股公司 用于面的清洁的湿式清洁装置
CN110338714A (zh) * 2019-08-08 2019-10-18 深圳市杉川机器人有限公司 一种清洁机器人底盘结构以及清洁机器人

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3122561A1 (fr) * 2021-05-10 2022-11-11 Seb S.A. Robot de nettoyage autonome équipé d’un dispositif de nettoyage humide
EP4088639A1 (fr) * 2021-05-10 2022-11-16 Seb S.A. Robot de nettoyage autonome équipé d'un dispositif de nettoyage humide
WO2022256160A1 (en) * 2021-06-02 2022-12-08 Irobot Corporation Pad changing system for robotic vacuum cleaners
CN114711665A (zh) * 2022-03-04 2022-07-08 深圳市杉川机器人有限公司 智能扫地清洁装置
CN114983267A (zh) * 2022-05-10 2022-09-02 安克创新科技股份有限公司 清洁机器人控制方法、装置、系统及清洁机器人

Also Published As

Publication number Publication date
CN216495119U (zh) 2022-05-13
CN111601534A (zh) 2020-08-28
KR102614979B1 (ko) 2023-12-15
CN213405910U (zh) 2021-06-11
EP3900604A4 (en) 2022-11-09
EP3900604A1 (en) 2021-10-27
EP3900604B1 (en) 2024-02-21
WO2020125760A1 (zh) 2020-06-25
CN111345746A (zh) 2020-06-30
US20220079406A1 (en) 2022-03-17
KR20210105907A (ko) 2021-08-27
JP2022514931A (ja) 2022-02-16
CN111345746B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020125489A1 (zh) 清洁机器人及其控制方法和地面处理系统
KR102611848B1 (ko) 로봇청소기 및 제어방법
US20210228050A1 (en) Cleaning robot, control method for same, and cleaning robot system
WO2020125492A1 (zh) 一种清洁机器人、清洁方法及自动充电系统
CN111345742B (zh) 一种清洁机器人及控制方法
TWI820385B (zh) 一種送水機構及自動清潔設備
KR20060024202A (ko) 로봇 청소기
WO2022117107A1 (zh) 清洁机器人、清洁系统及清洁方法
EP4292492A1 (en) Automatic cleaning device
CN212698739U (zh) 清洁机器人
CN114431783B (zh) 清洁机器人及其控制方法
WO2021077954A1 (zh) 清洁机器人
CN117881328A (zh) 清洁机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899173

Country of ref document: EP

Kind code of ref document: A1