WO2020125482A1 - 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置 - Google Patents

掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置 Download PDF

Info

Publication number
WO2020125482A1
WO2020125482A1 PCT/CN2019/124206 CN2019124206W WO2020125482A1 WO 2020125482 A1 WO2020125482 A1 WO 2020125482A1 CN 2019124206 W CN2019124206 W CN 2019124206W WO 2020125482 A1 WO2020125482 A1 WO 2020125482A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
diamond
doped diamond
water treatment
substrate
Prior art date
Application number
PCT/CN2019/124206
Other languages
English (en)
French (fr)
Inventor
唐永炳
王陶
黄磊
李星星
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020125482A1 publication Critical patent/WO2020125482A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4606Treatment of water, waste water, or sewage by electrochemical methods for producing oligodynamic substances to disinfect the water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the invention relates to the technical field of diamond thin films, in particular, to a boron-doped diamond thin film and a preparation method thereof, an oil-water separation element, a water treatment electrode, a preparation method thereof and a water treatment device.
  • drinking water mainly depends on local water sources and fetches water locally.
  • the water sources that can be used as wild drinking water are mainly mountain springs, streams, lakes, and natural rainfall.
  • these water sources often contain a large number of pathogens, organic waste and other harmful substances that must be purified before drinking. Otherwise, it will cause a variety of diseases It affects the performance of the entire army's combat capabilities. Therefore, the issue of water supply in the field has become a worldwide problem.
  • the individual drinking water equipment should have the following conditions: good water purification effect, can provide safe drinking water; small size, easy to carry, simple operation; strong impact resistance, good corrosion resistance, non-toxic side effects; water treatment capacity Strong, that is, filtering and drinking, the required pressure is small; the filtering parts are not easy to be blocked, which is convenient for cleaning and replacement.
  • the small portable water purifiers available on the Chinese market that can survive in the wild have the following defects: the water purification device and the water storage device are separately installed, and the equipment is complicated; the net kettle is too large and the mass is large, so it is not easy to carry around; As the core filter element, the filter element is large, it is not easy to replace, and the water purification effect is not good. It can not completely remove the impurities and contaminants in the water, posing a threat to human health.
  • metals, ceramics and polymer separation membranes have attracted much attention as important materials for purifying water. Super-hydrophobic and super-lipophilic properties can be induced by surface etching or modification with polymer materials.
  • One of the objects of the present invention is to provide a boron-doped diamond film, and a water treatment device prepared by using the boron-doped diamond film can solve at least one of the problems mentioned above.
  • the second object of the present invention is to provide an oil-water separation element including the above-mentioned boron-doped diamond film. Since the above-mentioned boron-doped diamond film has super-hydrophobicity, rapid separation of oil and water is realized.
  • the third object of the present invention is to provide a water treatment electrode containing the above-mentioned boron-doped diamond thin film. After being energized, the water treatment electrode can function as an anode to sterilize and degrade organic matter in water.
  • the fourth object of the present invention is to provide a water treatment device including the above-mentioned water treatment electrode.
  • the water treatment device has the characteristics of good water purification effect, good corrosion resistance, small volume, and convenient carrying and cleaning.
  • a boron-doped diamond film including:
  • a boron-doped diamond nano-layer is formed on the surface of the boron-doped diamond micro-layer with nano particles on the surface;
  • the boron-doped diamond microlayer and the boron-doped diamond nanolayer form a lotus leaf-like multi-level sub-nano structure.
  • a method for preparing boron-doped diamond thin film includes the following steps:
  • a substrate first prepare a boron-doped diamond microlayer on the substrate, and then prepare a boron-doped diamond nanolayer on the surface of the boron-doped diamond microlayer, then obtain the boron-doped diamond thin film on the substrate.
  • An oil-water separation element includes a mesh substrate and a boron-doped diamond film formed on the surface of the mesh substrate.
  • a water treatment electrode includes an electrode substrate and a boron-doped diamond film formed on the surface of the electrode substrate.
  • a method for preparing a water treatment electrode provides an electrode substrate after pretreatment, and prepares the boron-doped diamond film on the surface of the electrode substrate to obtain the water treatment electrode.
  • a water treatment device includes a water holding cavity and a water processing electrode placed in the water holding cavity.
  • the present invention has the following beneficial effects:
  • the invention provides a boron-doped diamond film with a lotus leaf bionic multi-level micro-nano structure, that is, a boron-doped diamond film with micrometer and nano-grain composites, and the morphology of the micro-nano structure is similar to the surface morphology of the lotus leaf
  • There are one micron-sized protrusions corresponding to the microparticles on the surface of the boron-doped diamond microlayer of the present invention
  • the micron-sized protrusions have a nanopapillary structure (corresponding to the nanoparticles on the surface of the boron-doped diamond nanolayer of the present invention)
  • boron-doped diamond has stable chemical properties, strong anti-wear impact resistance and corrosion resistance, and long life; at the same time, because the boron-doped diamond film is energized It can be used as an anode to produce
  • the oil-water separation element provided by the invention is to realize the separation of oil and water by using the super-hydrophobicity and super-oleophilic property of the boron-doped diamond film by disposing the above-mentioned boron-doped diamond film on the surface of the substrate of the mesh structure.
  • the oil-water separation element has the advantages of good corrosion resistance and good oil-water separation effect.
  • the water treatment electrode provided by the invention is provided with the above-mentioned boron-doped diamond film on the surface of the electrode substrate to generate strong oxidizing substances in the water under the condition of electricity, so as to achieve the function of sterilization and pollution reduction, and then reach the standard of drinking water.
  • the water treatment electrode has the advantages of small size, corrosion resistance, no side effects, and good water purification effect.
  • the water treatment device provided by the present invention includes the above-mentioned water treatment electrode. Since the boron-doped diamond film on the surface of the water treatment electrode has super-hydrophobicity and sterilization characteristics, the water treatment device prepared by using the water treatment electrode has good water purification effect , Can provide safe drinking water; small size, easy to carry, simple operation; strong impact resistance, good corrosion resistance, no toxic and side effects; strong water treatment capacity, that is, filtering and drinking, the required pressure is small; filtering parts are not easy The advantages of clogging, easy cleaning and replacement.
  • the water treatment device has all the conditions of field drinking water equipment, and can fully meet the requirements of field water diversion. Therefore, it provides a reliable solution to the problem of field water supply guarantee.
  • FIG. 1 is a schematic structural diagram of a water treatment electrode according to Embodiment 1 of the present invention.
  • Example 2 is a comparison diagram of the situation of dead bacteria in water in the early and late stages of water treatment using the water treatment electrode provided in Example 1;
  • Icons 10-electrode substrate; 20-boron-doped diamond microlayer; 21-micron particles; 30-boron-doped diamond nanometers; 31-nanoparticles.
  • the present invention provides a boron-doped diamond film, including:
  • a boron-doped diamond nano-layer is formed on the surface of the boron-doped diamond micro-layer with nano particles on the surface;
  • the boron-doped diamond microlayer and the boron-doped diamond nanolayer form a lotus leaf-like multi-level sub-nano structure.
  • the boron-doped diamond film with bionic multi-level micro-nano structure of lotus leaf provided by the invention, that is, the boron-doped diamond film with micron and nano-grain composite, the micro-nano structure has a morphology similar to the surface morphology of the lotus leaf.
  • micron-sized protrusions corresponding to the microparticles on the surface of the boron-doped diamond microlayer of the present invention
  • the surface of the micron-sized protrusions has a nanopapillary structure (corresponding to the nanoparticles on the surface of the boron-doped diamond nanolayer of the present invention)
  • Super-hydrophobic effect can realize self-cleaning, oil-water separation and other functions, and boron-doped diamond has stable chemical properties, strong anti-wear impact resistance and corrosion resistance, and long life; at the same time, because the boron-doped diamond film can be energized
  • strong oxidizing substances such as ⁇ OH, O 3 , H 2 O 2, etc. are generated in the water to oxidize organic matter to form CO 2 and H 2 O and some small molecule intermediate products, thereby effectively sterilizing and reducing the content of organic waste the goal of.
  • the lotus leaf multi-level micro-nano structure refers to a micro-feature morphology of the solid surface, which needs to be observed under an electron microscope.
  • the micro-scale surface fluctuations are superimposed on the nano-scale fluctuations.
  • the hierarchical structure is a layered structure, that is, an island-like structure with a size in the order of micrometers is the first level, and the continuous nano-sized grains on each island are the second level.
  • the lotus leaf-like multi-level micro-nano structure refers to that the micro-feature morphology of the surface of the boron-doped diamond film of the present invention is similar to the micro-feature morphology of the lotus leaf surface, and has a micro-nano papillary structure rough surface similar to lotus leaf.
  • the size of the microparticles is 1-10 ⁇ m, preferably 2-7 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 7 ⁇ m or 10 ⁇ m.
  • the thickness of the boron-doped diamond nanolayer is 10-800 nm, preferably 20-200 nm, such as 10 nm, 20 nm, 50 nm, 80 nm, 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m or 800nm.
  • the boron-doped diamond film can have a bionic lotus-like multi-level micro-nano structure, and the surface morphology of the boron-doped diamond film is similar to that of lotus leaf The surface morphology, and resembles the lipid substance on the surface of the lotus leaf, forming a bionic super-hydrophobic surface, improving hydrophobicity and self-cleaning ability.
  • the present invention provides a method for preparing a boron-doped diamond film, including the following steps:
  • a substrate first prepare a boron-doped diamond microlayer on the substrate, and then prepare a boron-doped diamond nanolayer on the surface of the boron-doped diamond microlayer, then obtain the boron-doped diamond thin film on the substrate.
  • the boron-doped diamond thin film obtained by the preparation method has all the advantages of the boron-doped diamond thin film described above, and will not be repeated here.
  • the method for preparing the boron-doped diamond film includes the following steps:
  • S1 Provide a substrate, first carry out low-density seeding on the substrate, and then use chemical vapor deposition to grow a boron-doped diamond microlayer;
  • the density of low-density seeding is 10 4 -10 8 pieces/cm 2 , preferably (2-3) ⁇ 10 6 pieces/cm 2 ;
  • the density of high-density seeding is 10 9 -10 12 pieces/cm 2 , preferably (1-7) ⁇ 10 11 pieces/cm 2 .
  • the above preparation method first grow larger particles of diamond on the substrate to prepare a micron-level convex structure, and then on this basis, then deposit a boron-doped diamond nano-layer, so that the outermost surface of the film is nano-structured, thereby achieving doping Micro-nano structure of boron diamond film.
  • the distance between the boron-doped diamond particles is controlled by adjusting the nucleation density to achieve the preparation of the micro layer and the nano layer.
  • boron-doped diamonds Before chemical vapor deposition growth of boron-doped diamonds, diamond seeds need to be implanted, and then epitaxial growth is performed on the implanted seeds. Using the selective adsorption of diamond seeds on the substrate, a micro-nano structure with super-hydrophobicity is constructed.
  • the surface of boron-doped diamond similar to the lotus leaf micro-nano structure is prepared through two implants and two depositions on the substrate, that is, one implant-one deposition-second implant-second deposition, and one implant is
  • the purpose of low-density seeding is to grow a micron layer
  • the secondary seeding is a high-density seeding, and the purpose is to grow a nanolayer.
  • the height here is a relative concept.
  • the low-density seed crystal means that the diamond seed crystal is monodispersed on the substrate, thereby obtaining the seed crystal with a large gap distance.
  • the high-density seed crystal refers to the diamond seeds in a relatively continuous arrangement on the substrate, the size of the particles and the gap between the particles are basically at the nanometer level, and they are grown by doping and deposition to form a boron-doped diamond nanolayer.
  • the above chemical vapor deposition method includes but is not limited to hot wire or microwave plasma enhanced chemical vapor deposition method, preferably hot wire chemical vapor deposition method.
  • the method of performing low-density seeding includes: immersing the substrate in the diamond suspension I for seeding, and adjusting the zeta potential of the diamond suspension I to make the diamond
  • the nano-diamond particles in suspension I have the same electrical properties as the substrate surface to achieve low-density seeding.
  • the nano-diamond particles in the diamond suspension I are the same as the surface of the substrate, and the principle of electrical repulsion is used to reduce the adsorption density of the diamond on the substrate, and thus on the substrate Low-density diamond seeds are obtained.
  • the diamond suspension I in the step S1), includes nano-diamond powder, anionic surfactant and water.
  • the mass of the nano-diamond powder accounts for The ratio is 0.003-0.3%
  • the molar concentration of the anionic surfactant is 10 -6 -10 -3 mol/L
  • the pH of the diamond suspension I is 5-7.
  • the nano-diamond particles in the diamond suspension I and the surface of the substrate can be made electrically the same, thereby effectively reducing the adsorption amount of the diamond particles on the substrate and obtaining a low value on the surface of the substrate Density diamond seeds.
  • the mass ratio of the nano-diamond powder can be, for example, 0.003%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.1%, 0.2%, or 0.3%, and the anionic surface
  • the molar concentration of the active agent in the diamond suspension I can be, for example, 10 -6 mol/L, 10 -5 mol/L, 10 -4 mol/L or 10 -3 mol/L.
  • the pH of the diamond suspension I is, for example It can be pH5, pH6 or pH7.
  • the anionic surfactant is preferably oxalic acid or citric acid.
  • the low-density seeding method may be as follows: the substrate is placed in the diamond suspension I and sonicated for 20 to 60 minutes, and then taken out and dried.
  • the preferred drying method is blow drying with nitrogen.
  • Ultrasonic seeding method has low cost, and can evenly disperse diamond particles during the seeding process, to achieve uniform adsorption of diamond seeds, and the operation is simple, suitable for industrial production.
  • step S1 it is preferable to complete the growth of the boron-doped diamond microlayer by hot wire chemical vapor deposition.
  • Hot wire chemical vapor deposition can achieve large area deposition, low cost, and can effectively control the uniformity of the layer.
  • the hot wire chemical vapor deposition process includes: introducing methane, hydrogen, and borane as reaction gases, the reaction gas flow rate is 500-1000 sccm, and the methane and borane gas flow rate accounts for 1-3% of total flow, filament power 5000-9000W, filament sample distance 7-15mm, deposition pressure 1000-5000Pa, deposition time 1-3h.
  • a boron-doped diamond layer can be epitaxially grown on the diamond seed, and at the same time, the size of the grown boron-doped diamond particles can be controlled at the micron level.
  • the method of performing high-density seed implantation includes: immersing the substrate in the diamond suspension II for seed implantation, and adjusting the zeta potential of the diamond suspension II to make the diamond
  • the nano-diamond particles in suspension II are opposite to the surface of the substrate to achieve high-density seeding.
  • the nano-diamond particles in the diamond suspension II are electrically opposite to the surface of the substrate, and the principle of electrical attraction is used to increase the adsorption density of the diamond on the substrate, thereby on the substrate High-density diamond seeds are obtained.
  • the diamond suspension II includes nano-diamond powder, cationic surfactant and water.
  • the mass ratio of the nano-diamond powder is 0.003-0.3%.
  • the molar concentration of the cationic surfactant is 10 -6 -10 -3 mol/L, and the pH of the diamond suspension II is 2-4.
  • the cationic surfactant is preferably lysine or methacryloyloxyethyltrimethylammonium chloride.
  • the nano-diamond particles in the diamond suspension II can be electrically opposite to the surface of the substrate, thereby effectively increasing the amount of diamond particles adsorbed on the substrate and obtaining a high surface Density diamond seeds.
  • the mass ratio of the nano-diamond powder may be, for example, 0.003%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.1%, 0.2%, or 0.3%.
  • the molar concentration of the active agent in the diamond suspension II can be, for example, 10 -6 mol/L, 10 -5 mol/L, 10 -4 mol/L or 10 -3 mol/L.
  • the pH of the diamond suspension II is, for example It can be pH2, pH3 or pH4.
  • the high-density seeding method may be as follows: the substrate is put into the diamond suspension II and sonicated for 20 to 60 minutes, and then taken out and dried.
  • the preferred drying method is blow drying with nitrogen.
  • the method of ultrasonic crystal seeding is low in cost, and the diamond particles can be uniformly dispersed during the crystal seeding process to achieve uniform adsorption of diamond seed crystals, and the operation is simple and suitable for industrial production.
  • step S2 it is preferable to complete the growth of the boron-doped diamond nano-layer by hot-wire chemical vapor deposition.
  • Hot wire chemical vapor deposition can achieve large area deposition, low cost, and can effectively control the uniformity of the layer.
  • methane, hydrogen and borane are introduced as the reaction gas
  • the reaction gas flow rate is 500-1000 sccm
  • the methane and borane gas flow rate accounts for 3.5-5% of the total flow rate
  • the filament power is 5000- 9000W, wire-like distance 7-15mm, deposition pressure 1000-3000Pa, deposition time 1-3h.
  • a boron-doped diamond layer can be epitaxially grown on the diamond seed, and at the same time, the size of the grown boron-doped diamond particles can be controlled at the nanometer level.
  • hot wire chemical vapor deposition is used for two-step deposition, that is, firstly, it is preferred to adjust the nano-diamond size and zeta potential of the diamond suspension I to make the electrical properties of the nano-diamond particles and the substrate surface consistent.
  • the density of diamond seeds adsorbed on the substrate is low (10 4 -10 8 cm -2 ).
  • the particle size on the surface is about 1-10 ⁇ m; then the diamond suspension II is used for ultrasound
  • the preparation method provided by the above embodiment of the present invention does not require RIE etching. Before preparing the boron-doped diamond film, it is only necessary to control the crystal seeds with different densities by changing the properties of the diamond suspension to prepare multi-level sub-nano Structure of boron-doped diamond film.
  • the process is extremely simple and the cost is low, which is suitable for large-scale industrial production and can be used in three-dimensional Or a micro-nano structured boron-doped diamond film with good binding force is deposited on the two-dimensional substrate.
  • the present invention provides an oil-water separation element, which includes a mesh substrate and a boron-doped diamond film formed on the surface of the mesh substrate.
  • the oil-water separation element provided by the invention is to realize the separation of oil and water by using the super-hydrophobicity and super-oleophilic property of the boron-doped diamond film by disposing the above-mentioned boron-doped diamond film on the surface of the substrate of the mesh structure.
  • the oil-water separation element has the advantages of good corrosion resistance and good oil-water separation effect.
  • the mesh substrate are metal meshes or fabric meshes, preferably metal meshes; metal meshes include but are not limited to copper meshes, titanium meshes or stainless steel meshes.
  • the structure of the mesh base is a planar mesh structure or a cylindrical mesh structure, or a square mesh structure, as long as there are holes for oil and water separation on the substrate.
  • the present invention provides a water treatment electrode including an electrode substrate and a boron-doped diamond film formed on the surface of the electrode substrate.
  • the water treatment electrode provided by the invention is provided with the above-mentioned boron-doped diamond film on the surface of the electrode substrate to generate strong oxidizing substances in the water under the condition of electricity, so as to achieve the function of sterilization and pollution reduction, and then reach the standard of drinking water.
  • the water treatment electrode has the advantages of small volume, corrosion resistance, no side effects, and good water purification effect.
  • the specific shape of the electrode substrate is not limited.
  • the electrode substrate may be a plate structure, a mesh structure, a columnar structure, a spherical structure or other irregularly shaped structures. It may be any of silicon, copper alloy, titanium alloy, stainless steel, glass, or ceramic.
  • the resulting water treatment electrode can also be used as an oil-water separation element.
  • the other parts are covered with a boron-doped diamond film to prevent leakage of electricity when the water is treated.
  • the present invention provides a method for preparing a water treatment electrode, providing an electrode substrate after pretreatment, and preparing the boron-doped diamond film on the surface of the electrode substrate to obtain the water treatment electrode.
  • the water treatment electrode is obtained after preparing the boron-doped diamond film on the surface of the electrode substrate by using the preparation method of the boron-doped diamond film.
  • the water treatment electrode obtained by the preparation method has all the advantages of the water treatment electrode described above, and will not be repeated here.
  • the pretreatment includes cleaning, corrosion or sandblasting, and re-cleaning.
  • the cleaning and re-cleaning methods independently include first ultrasonic cleaning with water 2-3 times, 5-10min each time, and then ultrasonic cleaning with alcohol 1-2 times, 5-10min each time.
  • the corrosion treatment method includes: ultrasonic cleaning in an alkali solution and/or acid solution for 1-2 min; preferably the alkali solution is 0.5-1 mol/L NaOH or KOH solution; preferably the acid solution is 1- 4mol/L HCl, H 2 SO 4 or HNO 3 solution.
  • a typical water treatment electrode preparation method includes the following steps:
  • step (e) Place the electrode substrate obtained in step (d) in diamond suspension II for seeding treatment to obtain high-density diamond seed soaking;
  • step (a) the sandblasting treatment time is 1-3min;
  • step (b) in the cleaning, firstly deionized water ultrasonic cleaning twice, 3-7min each time, and then ultrasonic cleaning with alcohol 3-7min;
  • step (c) in the diamond suspension I, the mass fraction of the nano-diamond powder is 0.003%-0.3%, the concentration of oxalic acid or citric acid is 10 -6 -10 -3 mol/L, the solvent is deionized water, and the pH is 5 -7;
  • the seeding method is to put the sample into the diamond suspension I and sonicate for 30 minutes, take it out, and blow dry with nitrogen;
  • step (e) in the diamond suspension II, the mass fraction of the nano-diamond powder is 0.003%-0.3%, and the concentration of lysine or methacryloyloxyethyltrimethylammonium chloride is 10 -6 mol/L -10 -3 mol/L, the solvent is deionized water, the pH is 2-4.
  • the present invention provides a water treatment device including a water holding cavity and a water treatment electrode placed in the water holding cavity.
  • the water treatment device provided by the present invention includes the above-mentioned water treatment electrode. Since the boron-doped diamond film on the surface of the water treatment electrode has super-hydrophobicity and sterilization characteristics, the water treatment device prepared by using the water treatment electrode has good water purification effect , Can provide safe drinking water; small size, easy to carry, simple operation; strong impact resistance, good corrosion resistance, no toxic and side effects; strong water treatment capacity, that is, filtering and drinking, the required pressure is small; filtering parts are not easy The advantages of clogging, easy cleaning and replacement.
  • the water treatment device has all the conditions of field drinking water equipment, and can fully meet the requirements of field water diversion. Therefore, it provides a reliable solution to the problem of field water supply guarantee.
  • the two water treatment electrodes are respectively connected to an external power source.
  • the water treatment electrode used as the anode can generate strong oxidizing substances, and the other water treatment electrode can be used as the cathode or as the backup anode.
  • an additional cathode is required.
  • the water treatment device is a kettle
  • a power supply is provided in the casing of the kettle
  • the water treatment electrode is attached to the inner part of the kettle
  • the water treatment electrode is connected to the power supply.
  • the power supply of the kettle is a built-in power supply, so there is no need to provide a separate power supply, which is convenient for outdoor use.
  • a connection socket for the water treatment electrode can be made on the kettle body to facilitate connection to an external power supply.
  • this embodiment is a water treatment electrode including a stainless steel metal mesh as an electrode substrate 10, a boron-doped diamond micro-layer 20 formed on the surface of the electrode substrate 10, and a surface of the boron-doped diamond micro-layer 20 provided with The raised microparticles 21 and the boron-doped diamond nanolayer 30 formed on the surface of the boron-doped diamond microlayer 20.
  • the boron-doped diamond nanolayer 30 has raised nanoparticles 31 on the surface, the boron-doped diamond microlayer 20 and the boron-doped diamond The nano-layer 30 forms a lotus leaf-like multi-level sub-nano structure.
  • the preparation method of the water treatment electrode includes the following steps:
  • step S4 Using hot filament chemical vapor deposition to deposit and grow a micron layer of boron-doped diamond on the seed crystal obtained in step S3), the growth process is: methane 16sccm, hydrogen 800sccm, borane 24sccm, power 7000W, wire sample distance 10mm, time 2.5 hours , Pressure 4000Pa;
  • step S5) Ultrasonic high-density implantation of the intermediate sample obtained in step S4) in diamond suspension II, the implantation time is 30 min, the formula of diamond suspension II is: diamond powder mass fraction 0.005%, methacryloyloxyethyl The concentration of trimethylammonium chloride is 5 ⁇ 10 -6 mol/L, and the rest is deionized water with a pH of 3; after the seeding is completed, it is taken out and blown dry with nitrogen;
  • step S6 Depositing and growing boron-doped diamond nano-layers on the seed crystals obtained in step S5) by hot-wire chemical vapor deposition, the growth process is: methane 32sccm, hydrogen 800sccm, borane 48sccm, power 6800W, time 15min, pressure 1500Pa, the end of the deposition After the water treatment electrode.
  • This embodiment is a water treatment electrode.
  • a copper alloy metal mesh is used as an electrode substrate, and the others are the same as Embodiment 1.
  • the preparation method of the water treatment electrode includes the following steps:
  • step S4 Using hot filament chemical vapor deposition to deposit and grow a micron layer of boron-doped diamond on the seed crystal obtained in step S3), the growth process is: methane 16sccm, hydrogen 800sccm, borane 24sccm, power 7000W, wire sample distance 10mm, time 2.5 hours , Pressure 4000Pa;
  • step S5) Ultrasonic high-density implantation of the intermediate sample obtained in step S4) in diamond suspension II, the implantation time is 30 min, the formula of diamond suspension II is: diamond powder mass fraction 0.005%, methacryloyloxyethyl The concentration of trimethylammonium chloride is 5 ⁇ 10 -6 mol/L, and the rest is deionized water with a pH of 3; after the seeding is completed, it is taken out and blown dry with nitrogen;
  • step S6 Depositing and growing a boron-doped diamond nano-layer on the seed crystal obtained in step S5) by hot-wire chemical vapor deposition, the growth process is: methane 36sccm, hydrogen 800sccm, borane 48sccm, power 6800W, time 7min, pressure 1500Pa, deposition is completed After the water treatment electrode.
  • This embodiment is a water treatment electrode.
  • a titanium alloy metal mesh is used as an electrode substrate, and the others are the same as Embodiment 1.
  • the preparation method of the water treatment electrode includes the following steps:
  • step S4 Using hot filament chemical vapor deposition to deposit and grow a micron layer of boron-doped diamond on the seed crystal obtained in step S3), the growth process is: methane 16sccm, hydrogen 800sccm, borane 24sccm, power 7000W, wire sample distance 10mm, time 1 hour , Pressure 1500Pa;
  • step S5) Ultrasonic high-density implantation of the intermediate sample obtained in step S4) in diamond suspension II, the implantation time is 30 min, the formula of diamond suspension II is: diamond powder mass fraction 0.005%, methacryloyloxyethyl The concentration of trimethylammonium chloride is 5 ⁇ 10 -6 mol/L, and the rest is deionized water with a pH of 3; after the seeding is completed, it is taken out and blown dry with nitrogen;
  • step S6 Depositing and growing boron-doped diamond nano-layers on the seed crystals obtained in step S5) by hot-wire chemical vapor deposition, the growth process is: methane 32sccm, hydrogen 800sccm, borane 48sccm, power 6500W, time 10min, pressure 1500Pa, deposition ends After the water treatment electrode.
  • This embodiment is a water treatment electrode.
  • a silicon wafer is used as an electrode substrate, and the others are the same as Embodiment 1.
  • the preparation method of the water treatment electrode includes the following steps:
  • step S4 Using hot filament chemical vapor deposition to deposit and grow a micron layer of boron-doped diamond on the seed crystal obtained in step S3), the growth process is: methane 16sccm, hydrogen 800sccm, borane 24sccm, power 6800W, wire sample distance 7mm, time 2.5 hours , Pressure 4000Pa;
  • step S5) Ultrasonic high-density implantation of the intermediate sample obtained in step S4) in diamond suspension II, the implantation time is 30 min, the formula of diamond suspension II is: diamond powder mass fraction 0.005%, methacryloyloxyethyl The concentration of trimethylammonium chloride is 5 ⁇ 10 -6 mol/L, and the rest is deionized water with a pH of 3; after the seeding is completed, it is taken out and blown dry with nitrogen;
  • step S6 Depositing and growing boron-doped diamond nano-layers on the seed crystals obtained in step S5) by hot-wire chemical vapor deposition, the growth process is: methane 32sccm, hydrogen 800sccm, borane 48sccm, power 6800W, time 5min, pressure 1500Pa, the end of the deposition After the water treatment electrode.
  • This embodiment is a water treatment electrode.
  • the electrode substrate in this embodiment is a quartz glass plate, and the other is the same as Embodiment 1.
  • a method for preparing a water treatment electrode includes the following steps:
  • step S4 Using hot filament chemical vapor deposition to deposit and grow a micron layer of boron-doped diamond on the seed crystal obtained in step S3), the growth process is: methane 16sccm, hydrogen 800sccm, boron 24sccm, power 7000W, wire sample distance 7mm, time 1.5 hours , Pressure 3500Pa;
  • step S5) Ultrasonic high-density implantation of the intermediate sample obtained in step S4) in diamond suspension II, the implantation time is 30 min, the formula of diamond suspension II is: diamond powder mass fraction 0.005%, methacryloyloxyethyl The concentration of trimethylammonium chloride is 5 ⁇ 10 -6 mol/L, and the rest is deionized water with a pH of 3; after the seeding is completed, it is taken out and blown dry with nitrogen;
  • step S6 Depositing and growing boron-doped diamond nano-layers on the seed crystals obtained in step S5) by hot-wire chemical vapor deposition, the growth process is: methane 32sccm, hydrogen 800sccm, borane 48sccm, power 6800W, time 5min, pressure 1500Pa, the end of the deposition After the water treatment electrode.
  • This comparative example is a water treatment electrode, which includes a stainless steel metal mesh as an electrode substrate and a boron-doped diamond film formed on the surface of the stainless steel metal mesh.
  • the preparation method of the water treatment electrode includes the following steps:
  • step S3 Using hot filament chemical vapor deposition to deposit and grow a micron layer of boron-doped diamond on the seed crystal obtained in step S3), the growth process is: methane 16sccm, hydrogen 800sccm, borane 24sccm, power 7000W, wire sample distance 10mm, time 6 hours , The pressure is 4000Pa, and the water treatment electrode is obtained after the deposition.
  • the water treatment electrode pair provided in Example 1 was used for the sterilization test.
  • the test process is as follows: the water treatment electrode in Example 1 is placed in a bacterial culture solution containing fluorescent calibration, the live bacteria is green, and the dead bacteria is red. After every certain power-on time, the water treatment electrode is taken out to observe the water treatment electrode The adsorption capacity and survival rate of bacteria on the surface.
  • Figure 2 (a) is the amount of dead bacteria adsorbed after the first removal of the water treatment electrode from the bacterial culture solution;
  • Figure 2 (b) is the death observed after the last removal of the water treatment electrode from the bacterial culture solution The amount of bacteria adsorbed.
  • the boron-doped diamond film provided by the present invention has strong practicability, unique preparation method, and high innovation, and can directly control the adsorption density of the diamond seed crystal through the seeding process, and then achieve the boron-doped diamond film in combination with the deposition process Preparation of micro-nano structure; this film has high hardness, resistance to acids, alkalis and oxidizing substances, resistance to microbial erosion, long service life, no secondary pollution;
  • the oil-water separation element containing boron-doped diamond film realizes the super-hydrophobic characteristics of the lotus leaf bionic surface, which is used to filter and purify sewage;
  • the lotus leaf bionic multi-stage sub-doped boron-doped diamond film combines the functions of filtration and electrocatalytic water purification.
  • the water treatment device containing the boron-doped diamond film is compact in structure, easy to operate, simple to maintain, and low in operating cost.
  • the foundation of the wild water supply system is laid;
  • the method used in the present invention is simple, has good practical effect and low cost, and is suitable for industrial mass production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置,涉及金刚石薄膜技术领域。掺硼金刚石薄膜,包括:掺硼金刚石微米层,表面有凸起的微米颗粒,和,掺硼金刚石纳米层,形成于所述掺硼金刚石微米层表面,表面有纳米颗粒;所述掺硼金刚石微米层与所述掺硼金刚石纳米层形成类荷叶多级次微纳结构。掺硼金刚石薄膜具有类荷叶多级次微纳结构,形成仿生超疏水表面,兼顾了过滤和电催化净化水的功能,为发展新一代野外生存供水系统奠定了基础。

Description

掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置 技术领域
本发明涉及金刚石薄膜技术领域,具体而言,涉及一种掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置。
背景技术
在战场或灾害救援时,由于受交通运输等因素的制约,部队的饮水供给及饮水卫生常难以保证,当后方供应不足时,饮水主要依赖当地水源,就地取水。能作为野外饮用水的水源主要有山泉、溪流、湖泊和自然降雨等,然而这些水源中往往含有大量病菌、有机废物等对人体有害物质,必须经净化处理后才能饮用,否则会引发多种疾病,影响着整个部队作战能力的发挥,因此,野战供水保障问题成为世界性难题。
由于部队在野外作战、演习以及抢险救灾等任务的多样性,对野外饮水设备除了要满足国家饮用水卫生要求外还有更高的要求。单兵野外饮水设备应具备的条件有:净水效果好,能够提供安全的饮用水;体积小、携带方便、操作简单;材料抗冲击性强、抗腐蚀性好,无毒副作用;水处理能力强,即滤即饮,所需压力小;过滤部件不易堵塞,方便清洗、更换。
目前,我国市场上已有的可供野外生存的小型便携式净水器有以下缺陷:净水装置和储水装置分开设置,设备复杂;净水壶体积过大,质量较大,不便于随身携带;作为最核心过滤部件的滤芯较大,不便于更换,且净水效果不佳,不能完全去除水中的杂质污染物,对人体健康构成威胁等。近年来,金属、陶 瓷和高分子分离膜作为净化水的重要材料备受关注,可通过表面刻蚀或者利用高分子材料进行改性诱导超疏水超亲油性质。这些方法虽然在一定程度上可以提高净化水的效率和净水器的使用寿命,但是在恶劣环境中污水成分复杂,化学需氧量高,常常具有强酸性或强碱性,导致一般的分离膜存在抗腐蚀性差、热稳定性差、易污染、不易清洗和无法重复使用等致命的缺点,限制了其在污水处理中的应用。
有鉴于此,特提出本发明。
发明内容
本发明的目的之一在于提供一种掺硼金刚石薄膜,利用该掺硼金刚石薄膜制备的水处理装置至少能够解决上述所提及问题中的一个。
本发明的目的之二在于提供一种包含上述掺硼金刚石薄膜的油水分离元件,由于上述掺硼金刚石薄膜具有超疏水性,因此,实现油水的快速分离。
本发明的目的之三在于提供一种包含上述掺硼金刚石薄膜的水处理电极,该水处理电极通电后作为阳极能够起到杀菌和降解水中有机物的作用。
本发明的目的之四在于提供一种包含上述水处理电极的水处理装置,该水处理装置具有净水效果好,抗腐蚀性好,体积小,方便携带清洗的特点。
为了实现本发明的上述目的,特采用以下技术方案:
一种掺硼金刚石薄膜,包括:
掺硼金刚石微米层,表面有凸起的微米颗粒,和,
掺硼金刚石纳米层,形成于所述掺硼金刚石微米层表面,表面有纳米颗粒;
所述掺硼金刚石微米层与所述掺硼金刚石纳米层形成类荷叶多级次微纳结构。
一种掺硼金刚石薄膜的制备方法,包括以下步骤:
提供基体,先在所述基体上制备掺硼金刚石微米层,再在所述掺硼金刚石微米层表面制备掺硼金刚石纳米层后,在所述基体上得到所述掺硼金刚石薄膜。
一种油水分离元件,包括网状基体和形成于所述网状基体表面的掺硼金刚石薄膜。
一种水处理电极,包括电极基体和形成于所述电极基体表面的掺硼金刚石薄膜。
一种水处理电极的制备方法,提供经预处理后的电极基体,在所述电极基体表面制备所述掺硼金刚石薄膜,得到所述水处理电极。
一种水处理装置,包括盛水腔和放置于所述盛水腔内的水处理电极。
与已有技术相比,本发明具有如下有益效果:
本发明提供了一种荷叶仿生多级次微纳结构的掺硼金刚石薄膜,即具有微米和纳米晶粒复合的掺硼金刚石薄膜,该微纳结构的形貌类似于荷叶的表面形貌,有一个个微米尺寸凸起(对应本发明的掺硼金刚石微米层表面的微米颗粒),微米尺寸凸起的表面有纳米乳突结构(对应本发明的掺硼金刚石纳米层表面的纳米颗粒),达到超疏水的效果,可以实现自清洁、油水分离等功能,且掺硼金刚石化学性质稳定,抗磨损冲击能力和抗耐腐蚀性强,寿命长;同时,由于掺硼金刚石薄膜在通电的情况下可以作为阳极,在水中产生强氧化性物质如·OH、O 3、H 2O 2等将有机物氧化生成CO 2和H 2O以及一些小分子的中间产物,从而起到有效杀菌、降低有机废物含量的目的。
本发明提供的油水分离元件,是通过在网状结构的基体表面设置上述掺硼金刚石薄膜,利用掺硼金刚石薄膜的超疏水性和超亲油性实现油水的分离。该油水分离元件具有抗腐蚀和油水分离效果好的优点。
本发明提供的水处理电极,是通过在电极基体表面设置上述掺硼金刚石薄膜,在通电情况下在水中产生强氧化物质,从而达到杀菌降污的作用,进而达到饮用水的标准。该水处理电极,具有体积小,抗腐蚀,无副作用,净水效果 好的优点。
本发明提供的水处理装置,包括上述水处理电极,由于水处理电极表面的掺硼金刚石薄膜具有超疏水性和杀菌特性,因此,利用该水处理电极制备得到的水处理装置具有净水效果好,能够提供安全的饮用水;体积小、携带方便、操作简单;材料抗冲击性强、抗腐蚀性好,无毒副作用;水处理能力强,即滤即饮,所需压力小;过滤部件不易堵塞,方便清洗、更换的优点。该水处理装置具备野外饮水设备的全部条件,完全能够满足野外引水的要求,因此,为野战供水保障问题提供了一个可靠的解决方案。
附图说明
图1为本发明实施例1的水处理电极的结构示意图;
图2为本发明利用实施例1提供的水处理电极进行水处理前期后期,水中死亡细菌的情况对照图;其中
(a)为处理前期水中的细菌死亡数,(b)为处理后期水中的细胞死亡数。
图标:10-电极基体;20-掺硼金刚石微米层;21-微米颗粒;30-掺硼金刚石纳米;31-纳米颗粒。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
一方面,本发明提供了一种掺硼金刚石薄膜,包括:
掺硼金刚石微米层,表面有凸起的微米颗粒,和,
掺硼金刚石纳米层,形成于所述掺硼金刚石微米层表面,表面有纳米颗粒;
所述掺硼金刚石微米层与所述掺硼金刚石纳米层形成类荷叶多级次微纳结构。
本发明提供的荷叶仿生多级次微纳结构的掺硼金刚石薄膜,即具有微米和纳米晶粒复合的掺硼金刚石薄膜,该微纳结构的形貌类似于荷叶的表面形貌,有一个个微米尺寸凸起(对应本发明的掺硼金刚石微米层表面的微米颗粒),微米尺寸凸起的表面有纳米乳突结构(对应本发明的掺硼金刚石纳米层表面的纳米颗粒),达到超疏水的效果,可以实现自清洁、油水分离等功能,且掺硼金刚石化学性质稳定,抗磨损冲击能力和抗耐腐蚀性强,寿命长;同时,由于掺硼金刚石薄膜在通电的情况下可以作为阳极,在水中产生强氧化性物质如·OH、O 3、H 2O 2等将有机物氧化生成CO 2和H 2O以及一些小分子的中间产物,从而起到有效杀菌、降低有机废物含量的目的。
其中,荷叶多级次微纳结构是指固体表面的一种微观特征形貌,需要在电子显微镜下才能观察得到,微米尺度的表面起伏上叠加纳米尺度的起伏,所构成的多尺度(多级次,hierarchical)结构是一种分层状结构,即以微米量级尺寸的岛状结构为第一级,在每一个岛上分部连续的纳米尺寸晶粒为第二级。类荷叶多级次微纳结构指本发明掺硼金刚石薄膜表面的微观特征形貌与荷叶表面的微观特征形貌类似,具有与荷叶类似的微纳乳突(papilla)结构粗糙表面。
在本发明的一些实施方式中,微米颗粒的尺寸为1-10μm,优选为2-7μm,例如1μm、2μm、5μm、7μm或10μm。
在本发明的一些实施方式中,掺硼金刚石纳米层的厚度为10-800nm,优选为20-200nm,例如10nm、20nm、50nm、80nm、100m、200m、300m、400m、500m、600m、700m或800nm。
通过优化掺硼金刚石微米层和掺硼金刚石纳米层的各项尺寸,可以使得到的掺硼金刚石薄膜更具有仿生类荷叶多级次微纳结构,掺硼金刚石薄膜表面形貌类似于荷叶的表面形貌,并且仿似荷叶表面的脂类物质,形成仿生超疏水表面,提高疏水性和自清洁能力。
第二方面,本发明提供了一种掺硼金刚石薄膜的制备方法,包括以下步骤:
提供基体,先在所述基体上制备掺硼金刚石微米层,再在所述掺硼金刚石微米层表面制备掺硼金刚石纳米层后,在所述基体上得到所述掺硼金刚石薄膜。
利用该制备方法得到的掺硼金刚石薄膜具备上述掺硼金刚石薄膜的全部优点,在此不再赘述。
在本发明的一些实施方式中,掺硼金刚石薄膜的制备方法包括以下步骤:
S1)提供基体,先在基体上进行低密度植晶,然后利用化学气相沉积法生长掺硼金刚石微米层;
S2)在掺硼金刚石微米层表面进行高密度植晶,然后利用化学气相沉法生长掺硼金刚石纳米层;
其中,进行低密度植晶的植晶密度为10 4-10 8个/cm 2,优选(2-3)×10 6个/cm 2;进行高密度植晶的植晶密度为10 9-10 12个/cm 2,优选为(1-7)×10 11个/cm 2
上述制备方法中,首先在基体上生长较大颗粒的金刚石,制备出微米级凸起结构,然后在此基础上,再沉积掺硼金刚石纳米层,使薄膜最外表面为纳米结构,从而实现掺硼金刚石薄膜的微纳结构。该过程中,分别通过调控形核密度来控制掺硼金刚石颗粒之间的距离,实现微米层与纳米层的制备。
化学气相沉积生长掺硼金刚石前需要植入金刚石晶种,然后在植入的晶种上进行外延生长。利用金刚石晶种在基体上的选择性吸附,构筑具有超疏水的微纳结构。本发明经过两次植晶、两次沉积在基体上制备出类似荷叶的微纳结构的掺硼金刚石表面,即一次植晶-一次沉积-二次植晶-二次沉积,一次植晶为低密度植晶,目的在于生长微米层,二次植晶为高密度植晶,目的在于生长纳米层。
需要说明的是,这里的高低是一个相对概念。其中,低密度植晶是指金刚石晶种在基体上呈单分散状态,从而得到间隙距离较大的晶种。而高密度植晶是指金刚石晶种在基体上呈相对的连续排布状态,其颗粒的尺寸以及颗粒之间 的间隙基本处于纳米级,通过掺杂沉积生长从而形成掺硼金刚石纳米层。
同时,上述化学气相沉积法包括但不限于热丝或微波等离子体增强化学气相沉积法,优选热丝化学气相沉积法。
在本发明的一些实施方式中,所述步骤S1)中,进行低密度植晶的方法包括:将基体浸于金刚石悬浮液Ⅰ中进行植晶,通过调控金刚石悬浮液Ⅰ的zeta电位,使金刚石悬浮液Ⅰ中的纳米金刚石颗粒与基体表面电性相同实现低密度植晶。
该过程中,通过调控金刚石悬浮液Ⅰ的zeta电位,使金刚石悬浮液Ⅰ中的纳米金刚石颗粒与基体表面电性相同,利用电性相斥原理降低金刚石在基体上的吸附密度,从而在基体上得到低密度的金刚石晶种。
在本发明的一些实施方式中,所述步骤S1)中,所述金刚石悬浮液Ⅰ包括纳米金刚石粉、阴离子表面活性剂和水,所述金刚石悬浮液Ⅰ中,所述纳米金刚石粉的质量占比为0.003-0.3%,所述阴离子表面活性剂的摩尔浓度为10 -6-10 -3mol/L,所述金刚石悬浮液Ⅰ的pH为5-7。
通过限定金刚石悬浮液Ⅰ的各个原料以及各个原料的浓度,可以使金刚石悬浮液Ⅰ中的纳米金刚石颗粒与基体表面电性相同,从而有效降低金刚石颗粒在基体上的吸附量,在基体表面得到低密度金刚石晶种。
其中,金刚石悬浮液Ⅰ中,纳米金刚石粉的质量占比例如可以为0.003%、0.005%、0.006%、0.007%、0.008%、0.009%、0.01%、0.1%、0.2%或0.3%,阴离子表面活性剂在金刚石悬浮液Ⅰ中的摩尔浓度为例如可以为10 -6mol/L、10 -5mol/L、10 -4mol/L或10 -3mol/L,金刚石悬浮液Ⅰ的pH例如可以为pH5、pH6或pH7。阴离子表面活性剂优选为草酸或柠檬酸。
另外,在本发明的一些优选实施方式中,所述低密度植晶的方式可以为:将基体放入金刚石悬浮液Ⅰ中超声20-60min后取出干燥,优选干燥方式为用氮气吹干。
超声植晶方法成本低,且植晶过程中可以使金刚石颗粒均匀分散,实现金 刚石晶种的均匀吸附,且该操作简单,适合工业化生产。
在本发明的一些实施方式中,所述步骤S1)中,优选利用热丝化学气相沉积法完成掺硼金刚石微米层的生长。热丝化学气相沉积法可以实现大面积沉积,成本低,且可有效控制层的均匀性。
在本发明一些可选的实施方式中,所述热丝化学气相沉积的工艺方法包括:通入甲烷、氢气和硼烷作为反应气体,反应气体流量为500-1000sccm,甲烷和硼烷气体流量占总流量的1-3%,灯丝功率5000-9000W,丝样距离7-15mm,沉积压强1000-5000Pa,沉积时间1-3h。
利用上述热丝沉积工艺,可以在金刚石晶种上外延生长掺硼金刚石层,同时可以将生长的掺硼金刚石颗粒的尺寸控制在微米级。
在本发明的一些实施方式中,所述步骤S2)中,进行高密度植晶的方法包括:将基体浸于金刚石悬浮液Ⅱ中进行植晶,通过调控金刚石悬浮液Ⅱ的zeta电位,使金刚石悬浮液Ⅱ中的纳米金刚石颗粒与基体表面电性相反实现高密度植晶。
该过程中,通过调控金刚石悬浮液Ⅱ的zeta电位,使金刚石悬浮液Ⅱ中的纳米金刚石颗粒与基体表面电性相反,利用电性相吸原理提高金刚石在基体上的吸附密度,从而在基体上得到高密度的金刚石晶种。
在本发明的一些实施方式中,所述金刚石悬浮液Ⅱ包括纳米金刚石粉、阳离子表面活性剂和水,所述金刚石悬浮液Ⅱ中,所述纳米金刚石粉的质量占比为0.003-0.3%,所述阳离子表面活性剂的摩尔浓度为10 -6-10 -3mol/L,所述金刚石悬浮液Ⅱ的pH为2-4。阳离子表面活性剂优选为赖氨酸或甲基丙烯酰氧乙基三甲基氯化铵。
通过限定金刚石悬浮液Ⅱ的各个原料以及各个原料的浓度,可以使金刚石悬浮液Ⅱ中的纳米金刚石颗粒与基体表面电性相反,从而有效提高金刚石颗粒在基体上的吸附量,在基体表面得到高密度金刚石晶种。
其中,金刚石悬浮液Ⅱ中,纳米金刚石粉的质量占比例如可以为0.003%、 0.005%、0.006%、0.007%、0.008%、0.009%、0.01%、0.1%、0.2%或0.3%,阳离子表面活性剂在金刚石悬浮液Ⅱ中的摩尔浓度为例如可以为10 -6mol/L、10 -5mol/L、10 -4mol/L或10 -3mol/L,金刚石悬浮液Ⅱ的pH例如可以为pH2、pH3或pH4。
另外,在本发明的一些优选实施方式中,所述高密度植晶的方式可以为:将基体放入金刚石悬浮液Ⅱ中超声20-60min后取出干燥,优选干燥方式为用氮气吹干。
超声植晶方法成本低,且植晶过程中可以使金刚石颗粒均匀分散,实现金刚石晶种的均匀吸附,且该操作简单,适合工业化生产。
在本发明的一些实施方式中,所述步骤S2)中,优选利用热丝化学气相沉积法完成掺硼金刚石纳米层的生长。热丝化学气相沉积法可以实现大面积沉积,成本低,且可有效控制层的均匀性。
在本发明一些可选的实施方式中,通入甲烷、氢气和硼烷作为反应气体,反应气体流量为500-1000sccm,甲烷和硼烷气体流量占总流量的3.5-5%,灯丝功率5000-9000W,丝样距离7-15mm,沉积压强1000-3000Pa,沉积时间1-3h。
利用上述热丝沉积工艺,可以在金刚石晶种上外延生长掺硼金刚石层,同时可以将生长的掺硼金刚石颗粒的尺寸控制在纳米级。
在本发明的上述实施方式中,采用热丝化学气相沉积法进行两步法沉积,即首先优选通过调控金刚石悬浮液Ⅰ的纳米金刚石尺寸和zeta电位,使纳米金刚石颗粒与基体表面电性一致,吸附在基体上的金刚石晶种密度较低(10 4-10 8cm -2),沉积掺硼金刚石微米层时,其表面的颗粒大小在1-10μm左右;然后采用金刚石悬浮液Ⅱ再进行超声植晶,优选使纳米金刚石颗粒与基体表面电性相反,使吸附在样品表面的金刚石晶种密度较高(>10 8cm -2),然后再沉积掺硼金刚石纳米层,其厚度处于纳米级水平(<500nm)。通过调节微米颗粒的密度可有效控制水接触角处于80-170°范围内,润湿性能可控。
本发明上述实施方式提供的制备方法,无需RIE刻蚀,在制备掺硼金刚 石薄膜前,只需通过改变金刚石悬浊液的性质来控制得到不同密度的晶种从而制备出具有多级次微纳结构的掺硼金刚石薄膜。
上述实施方式的制备方法中,由于只改变了作为植晶溶液的金刚石悬浮液的性能从而得到具有超疏水性能的掺硼金刚石薄膜,工艺极其简单、成本低,适合大面积工业化生产,能在三维或二维基体上沉积出结合力良好的微纳结构的掺硼金刚石薄膜。
第三方面,本发明提供了一种油水分离元件,包括网状基体和形成于所述网状基体表面的掺硼金刚石薄膜。
本发明提供的油水分离元件,是通过在网状结构的基体表面设置上述掺硼金刚石薄膜,利用掺硼金刚石薄膜的超疏水性和超亲油性实现油水的分离。该油水分离元件具有抗腐蚀和油水分离效果好的优点。
网状基体典型但非限制性的例如为金属网或织物网,优选为金属网;金属网包括但不限于铜网、钛网或不锈钢网等。同时,网状基体的结构为平面网状结构或圆筒状的网状结构,还可以为方形的筛网结构,只要基体上有油水分离的孔洞即可。
第三方面,本发明提供了一种水处理电极,包括电极基体和形成于所述电极基体表面的掺硼金刚石薄膜。
本发明提供的水处理电极,是通过在电极基体表面设置上述掺硼金刚石薄膜,在通电情况下在水中产生强氧化物质,从而达到杀菌降污的作用,进而达到饮用水的标准。该水处理电极,具有体积小,抗腐蚀,无副作用,净水效果好的优点。
本发明中并未对电极基体的具体形状做出限定,电极基体可以为板状结构,也可以为网状结构,还可以为柱形结构、球形结构或其他不规则的形状结构,其材质例如可以为硅、铜合金、钛合金、不锈钢、玻璃或陶瓷中的任一种。当电极基体为网状结构时,得到的水处理电极还可以用作油水分离元件。
该水处理电极在使用时,除连接电源处的电极基体与外界通过绝缘包覆层 进行包覆外,其他部位均覆盖有掺硼金刚石薄膜,以防止在处理水时发生漏电。
第四方面,本发明提供了一种水处理电极的制备方法,提供经预处理后的电极基体,在所述电极基体表面制备所述掺硼金刚石薄膜,得到所述水处理电极。
利用上述掺硼金刚石薄膜的制备方法在电极基体表面制备掺硼金刚石薄膜后得到水处理电极。利用该制备方法得到的水处理电极具有上述水处理电极的全部优点,在此不再赘述。
在本发明的一些实施方式中,预处理包括清洗、腐蚀或喷砂处理、以及再清洗。
其中,清洗和再清洗方法均独立地包括先用水超声清洗2-3次,每次5-10min,再用酒精超声清洗1-2次,每次5-10min。
例如,在一些实施方式中,腐蚀处理的方法包括:在碱溶液和/或酸溶液中超声清洗1-2min;优选碱溶液为0.5-1mol/L的NaOH或KOH溶液;优选酸溶液为1-4mol/L的HCl、H 2SO 4或HNO 3溶液。
对电极基体进行腐蚀处理或喷砂处理,去除赃污杂质,活化基体表面,增加表面粗糙度,提高电极基体表面的各项性能的一致性。
作为一种优选的实施方式,一种典型的水处理电极的制备方法包括以下步骤:
(a)对电极基体表面进行喷砂处理;
(b)对喷砂处理后的电极基体进行清洗;
(c)将清洗后的电极基体置于金刚石悬浮液Ⅰ进行金刚石的植晶处理,得到低密度金刚石晶种;
(d)利用热丝化学气相沉积法在低密度金刚石晶种上沉积掺硼金刚石微米层;
(e)将步骤(d)所得电极基体置于金刚石悬浮液Ⅱ进行植晶处理,得到 高密度金刚石浸种;
(f)利用热丝化学气相沉积法在高密度金刚石晶种上沉积掺硼金刚石纳米层;
其中:步骤(a)中,喷砂处理时间为1-3min;
步骤(b)中,清洗中,先去离子水超声清洗2次,每次3-7min,再用酒精超声清洗3-7min;
步骤(c)中,金刚石悬浮液Ⅰ中,纳米金刚石粉的质量分数0.003%-0.3%,草酸或柠檬酸浓度为10 -6-10 -3mol/L,溶剂为去离子水,pH为5-7;植晶方式为将试样放入金刚石悬浮液Ⅰ中超声30分钟,取出,用氮气吹干;
步骤(e)中,金刚石悬浮液Ⅱ中,纳米金刚石粉的质量分数0.003%-0.3%,赖氨酸或甲基丙烯酰氧乙基三甲基氯化铵的浓度为10 -6mol/L-10 -3mol/L,溶剂为去离子水,pH为2-4。
第五方面,本发明提供了一种水处理装置,包括盛水腔和放置于所述盛水腔内的水处理电极。
本发明提供的水处理装置,包括上述水处理电极,由于水处理电极表面的掺硼金刚石薄膜具有超疏水性和杀菌特性,因此,利用该水处理电极制备得到的水处理装置具有净水效果好,能够提供安全的饮用水;体积小、携带方便、操作简单;材料抗冲击性强、抗腐蚀性好,无毒副作用;水处理能力强,即滤即饮,所需压力小;过滤部件不易堵塞,方便清洗、更换的优点。该水处理装置具备野外饮水设备的全部条件,完全能够满足野外引水的要求,因此,为野战供水保障问题提供了一个可靠的解决方案。
在本发明的一些实施方式中,所述水处理电极为两个,两个所述水处理电极分别连接外部电源。在水处理装置中,作为阳极使用的水处理电极才可以产生强氧化物质,而另外一个水处理电极可以作为阴极使用,也可以作为备用阳极使用。当作为备用阳极使用时,还需再额外设置一个阴极。
在本发明的一些实施方式中,所述水处理装置为水壶,所述水壶的壳体内设有电源,所述水处理电极贴覆于水壶的内侧部上,所述水处理电极连接于所述电源。
利用该水壶对水进行净化处理时,只需打开电源,对水处理电极通电,即可产生杀菌和降解有机物的功效。该水壶的电源为内置电源,因此可以不用再单独提供电源,方便野外使用。当水壶为非内置电源时,可以在壶体上做出水处理电极的连接插口,方便连接外部电源。
下面将通过具体的实施例和对比例进一步说明本发明,但是,应当理解为,这些实施例仅是用于更详细地说明之用,而不应理解为用于以任何形式限制本发明。本发明涉及的各原料均可通过商购获取。
实施例1
如图1所示,本实施例是一种水处理电极,包括作为电极基体10的不锈钢金属网,形成于电极基体10表面的掺硼金刚石微米层20,掺硼金刚石微米层20的表面设有凸起的微米颗粒21,以及形成于掺硼金刚石微米层20表面的掺硼金刚石纳米层30,掺硼金刚石纳米层30表面有凸起的纳米颗粒31,掺硼金刚石微米层20与掺硼金刚石纳米层30形成类荷叶多级次微纳结构。
该水处理电极的制备方法,包括以下步骤:
S1)对不锈钢金属网表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为30min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.005%,草酸浓度为5×10 -6mol/L,其余为去离子水,pH为6;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离10mm,时间2.5小时,压强4000Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10 -6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷32sccm,氢气800sccm,硼烷48sccm,功率6800W,时间15min,压强1500Pa,沉积结束后得到水处理电极。
实施例2
本实施例是一种水处理电极,与实施例1不同之处在于,本实施例中作为电极基体的为铜合金金属网,其他与实施例1相同。
该水处理电极的制备方法,包括以下步骤:
S1)对铜合金金属网表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为30min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.005%,草酸浓度为5×10 -6mol/L,其余为去离子水,pH为6;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离10mm,时间2.5小时,压强4000Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10 -6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷36sccm,氢气800sccm,硼烷48sccm,功率6800W,时间7min,压强1500Pa,沉积结束后得到水处理电极。
实施例3
本实施例是一种水处理电极,与实施例1不同之处在于,本实施例中作为电极基体的为钛合金金属网,其他与实施例1相同。
该水处理电极的制备方法,包括以下步骤:
S1)对钛合金金属网表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为30min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.005%,草酸浓度为5×10 -6mol/L,其余为去离子水,pH为6;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离10mm,时间1小时,压强1500Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10 -6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷32sccm,氢气800sccm,硼烷48sccm,功率6500W,时间10min,压强1500Pa,沉积结束后得到水处理电极。
实施例4
本实施例是一种水处理电极,与实施例1不同之处在于,本实施例中作为电极基体的为硅片,其他与实施例1相同。
该水处理电极的制备方法,包括以下步骤:
S1)对硅片表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为1min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为25min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.01%,草酸浓度为8×10 -6mol/L,其余为去离子水,pH为5.5;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚 石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率6800W,丝样距离7mm,时间2.5小时,压强4000Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10 -6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷32sccm,氢气800sccm,硼烷48sccm,功率6800W,时间5min,压强1500Pa,沉积结束后得到水处理电极。
实施例5
本实施例是一种水处理电极,与实施例1不同之处在于,本实施例中作为电极基体的为石英玻璃板,其他与实施例1相同。
一种水处理电极的制备方法,包括以下步骤:
S1)对石英玻璃板表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为30min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.005%,草酸浓度为5×10 -6mol/L,其余为去离子水,pH为6;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚 石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离7mm,时间1.5小时,压强3500Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10 -6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷32sccm,氢气800sccm,硼烷48sccm,功率6800W,时间5min,压强1500Pa,沉积结束后得到水处理电极。
对比例1
本对比例是一种水处理电极,包括作为电极基体的不锈钢金属网和形成与不锈钢金属网表面的掺硼金刚石薄膜。
该水处理电极的制备方法,包括以下步骤:
S1)对不锈钢金属网表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离10mm,时间6小时,压强4000Pa,沉积结束后得到水处理电极。
试验例
用接触角测量仪分别测量实施例和对比例得到的水处理电极,测量基体表面对3微升的水的接触角,结果如表1所示。
表1
序号 水接触角/°
实施例1 152
实施例2 155
实施例3 157
实施例4 155
实施例5 150
对比例1 75
从表1的结果可以看出,本发明提供的水处理电极的疏水性要远远高于对比例1中的水处理电极的疏水性。
利用实施例1提供的水处理电极对进行杀菌试验。测试过程如下:将实施例1中的水处理电极置于含有荧光标定的细菌培养液中,活细菌为绿色,死细菌为红色,每隔一定的通电时间后取出水处理电极,观察水处理电极表面的细菌的吸附量及存活率。图2中(a)为第一次从细菌培养液中取出水处理电极后观察的死亡的细菌吸附量;图2中(b)为最后一次从细菌培养液中取出水处理电极后观察的死亡的细菌吸附量。从图2中细菌的吸附量的变化可知,刚开始,培养液中的细菌较多,吸附于水处理电极表面的死亡的细菌量也较多;随着时间的延长,溶液中的细菌基本都被杀死,如图2中的(b)所示,吸附量也越来越少,直至完全除尽细菌。
由此可知,利用本发明提供的水处理电极对水进行处理后,细菌会大量死 亡,从而达到杀菌的目的。
通过以上分析和试验,说明:
1)本发明提供的掺硼金刚石薄膜实用性强,制备方法独特,具有较高的创新性,直接通过植晶工艺就可实现金刚石晶种吸附密度的控制,再结合沉积工艺就达到掺硼金刚石微纳结构的制备;此薄膜硬度高,耐酸碱及氧化性物质,耐微生物侵蚀,使用寿命长,无二次污染;
2)包含掺硼金刚石薄膜的油水分离元件,实现荷叶仿生表面的超疏水特性,用于过滤净化污水;
3)荷叶仿生多级次掺硼金刚石薄膜兼顾了过滤和电催化净化水的功能,包含该掺硼金刚石薄膜的水处理装置结构紧凑,操作方便,维护简单,运行成本低,为发展新一代野外生存供水系统奠定了基础;
4)本发明所用之方法简单,实用效果佳,成本低,适合工业化批量生产。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (20)

  1. 一种掺硼金刚石薄膜,其特征在于,包括:
    掺硼金刚石微米层,表面有凸起的微米颗粒,和,
    掺硼金刚石纳米层,形成于所述掺硼金刚石微米层表面,表面有纳米颗粒;
    所述掺硼金刚石微米层与所述掺硼金刚石纳米层形成类荷叶多级次微纳结构。
  2. 根据权利要求1所述的掺硼金刚石薄膜,其特征在于,所述微米颗粒的尺寸为1-10μm;所述掺硼金刚石纳米层的厚度为10-800nm。
  3. 根据权利要求2所述的掺硼金刚石薄膜,其特征在于,所述微米颗粒的尺寸为2-7μm;所述掺硼金刚石纳米层的厚度为20-200nm。
  4. 一种权利要求1至3任意一项所述的掺硼金刚石薄膜的制备方法,其特征在于,包括以下步骤:
    提供基体,先在所述基体上制备掺硼金刚石微米层,再在所述掺硼金刚石微米层表面制备掺硼金刚石纳米层后,在所述基体上得到所述掺硼金刚石薄膜。
  5. 根据权利要求4所述的制备方法,其特征在于,包括以下步骤:
    a)提供基体,先在基体上进行低密度植晶,然后利用化学气相沉积法生长掺硼金刚石微米层;
    b)在掺硼金刚石微米层表面进行高密度植晶,然后利用化学气相沉法生长掺硼金刚石纳米层;
    其中,进行低密度植晶的植晶密度为10 4-10 8个/cm 2;进行高密度植晶的植晶密度为10 9-10 12个/cm 2
  6. 根据权利要求5所述的制备方法,其特征在于,所述步骤a)中,进行低密度植晶的方法包括:将基体浸于金刚石悬浮液Ⅰ中进行植晶,通过调控金刚石悬浮液Ⅰ的zeta电位,使金刚石悬浮液Ⅰ中的纳米金刚石颗粒与基体表面电性相同实现低密度植晶;
    所述金刚石悬浮液Ⅰ包括纳米金刚石粉、阴离子表面活性剂和水;所述金 刚石悬浮液Ⅰ中,所述纳米金刚石粉的质量占比为0.003-0.3%,所述阴离子表面活性剂的摩尔浓度为10 -6-10 -3mol/L,所述金刚石悬浮液Ⅰ的pH为5-7。
  7. 根据权利要求6所述的制备方法,其特征在于,所述阴离子表面活性剂为草酸或柠檬酸。
  8. 根据权利要求7所述的制备方法,其特征在于,所述低密度植晶的方式为:将基体放入金刚石悬浮液Ⅰ中超声20-60min后取出干燥,优选干燥方式为用氮气吹干。
  9. 根据权利要求8所述的制备方法,其特征在于,所述步骤a)中,利用热丝化学气相沉积法完成掺硼金刚石微米层的生长;其中,所述热丝化学气相沉积的工艺方法包括:通入甲烷、氢气和硼烷作为反应气体,反应气体流量为500-1000sccm,甲烷和硼烷气体流量占总流量的1-3%,灯丝功率5000-9000W,丝样距离7-15mm,沉积压强1000-5000Pa,沉积时间1-3h。
  10. 根据权利要求5所述的制备方法,其特征在于,所述步骤b)中,进行高密度植晶的方法包括:将基体浸于金刚石悬浮液Ⅱ中进行植晶,通过调控金刚石悬浮液Ⅱ的zeta电位,使金刚石悬浮液Ⅱ中的纳米金刚石颗粒与基体表面电性相反实现高密度植晶;
    所述金刚石悬浮液Ⅱ包括纳米金刚石粉、阳离子表面活性剂和水,所述金刚石悬浮液Ⅱ中,所述纳米金刚石粉的质量占比为0.003-0.3%,所述阳离子表面活性剂的摩尔浓度为10 -6-10 -3mol/L,所述金刚石悬浮液Ⅱ的pH为2-4。
  11. 根据权利要求10所述的制备方法,其特征在于,所述阳离子表面活性剂为赖氨酸或甲基丙烯酰氧乙基三甲基氯化铵。
  12. 根据权利要求11所述的制备方法,其特征在于,所述高密度植晶的方式为:将基体放入金刚石悬浮液Ⅱ中超声20-60min后取出干燥,优选干燥方式为用氮气吹干。
  13. 根据权利要求12所述的制备方法,其特征在于,所述步骤b)中,利用热丝化学气相沉积法完成掺硼金刚石纳米层的生长;其中,所述热丝化学气相沉积的工艺方法包括:通入甲烷、氢气和硼烷作为反应气体,反应气体流量为 500-1000sccm,甲烷和硼烷气体流量占总流量的3.5-5%,灯丝功率5000-9000W,丝样距离7-15mm,沉积压强1000-3000Pa,沉积时间1-3h。
  14. 一种油水分离元件,其特征在于,包括网状基体和形成于所述网状基体表面的权利要求1至3任意一项所述的掺硼金刚石薄膜。
  15. 一种水处理电极,其特征在于,包括电极基体和形成于所述电极基体表面的权利要求1至3任意一项所述的掺硼金刚石薄膜。
  16. 根据权利要求15所述的水处理电极,其特征在于,所述电极基体为板状结构或网状结构;所述电极基体的材质包括硅、铜合金、钛合金、不锈钢、玻璃或陶瓷中的一种。
  17. 一种权利要求15或16所述的水处理电极的制备方法,其特征在于,提供经预处理后的电极基体,在所述电极基体表面制备所述掺硼金刚石薄膜,得到所述水处理电极。
  18. 根据权利要求17所述的水处理电极的制备方法,其特征在于,所述预处理包括清洗、腐蚀或喷砂处理、以及再清洗。
  19. 一种水处理装置,其特征在于,包括盛水腔和放置于所述盛水腔内的权利要求15或16所述的水处理电极。
  20. 根据权利要求19所述的水处理装置,其特征在于,所述水处理电极为两个,两个所述水处理电极分别连接外部电源;所述水处理装置为水壶,所述水壶的壳体内设有电源,所述水处理电极贴覆于水壶的内侧部上,所述水处理电极连接于所述电源。
PCT/CN2019/124206 2018-12-18 2019-12-10 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置 WO2020125482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811551757.4A CN111334779B (zh) 2018-12-18 2018-12-18 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置
CN201811551757.4 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020125482A1 true WO2020125482A1 (zh) 2020-06-25

Family

ID=71102001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124206 WO2020125482A1 (zh) 2018-12-18 2019-12-10 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置

Country Status (2)

Country Link
CN (1) CN111334779B (zh)
WO (1) WO2020125482A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555907A (zh) * 2023-04-28 2023-08-08 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101660B (zh) * 2021-09-22 2024-03-22 湖南新锋先进材料科技有限公司 一种核壳结构的金刚石颗粒及其制备方法和应用
CN114273653A (zh) * 2021-12-24 2022-04-05 长沙新材料产业研究院有限公司 一种用于增材制造的复合粉末及其制备方法
CN114302604B (zh) * 2022-01-18 2024-03-15 Oppo广东移动通信有限公司 盖板、其制备方法及电子设备
CN114717533B (zh) * 2022-02-25 2023-03-10 中国地质大学(北京) 一种利用仿生结构制备传感器电极保护薄膜的方法和应用
CN115105160B (zh) * 2022-06-22 2023-11-24 上海百心安生物技术股份有限公司 一种具有疏水结构的脉冲球囊扩张导管
CN115266850B (zh) * 2022-07-26 2024-04-12 长春工业大学 一种用于检测头孢喹诺的适配体传感器的制备方法
CN115611375A (zh) * 2022-09-30 2023-01-17 深圳先进技术研究院 具有掺硼金刚石阳极的净化水杯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147644A1 (en) * 2001-08-30 2006-07-06 Tadamasa Fujimura Stable aqueous suspension liquid of finely divided diamond particles, metallic film containing diamond particles and method of producing the same
CN105316648A (zh) * 2015-11-13 2016-02-10 浙江工业大学 一种硼掺杂单颗粒层纳米金刚石薄膜及其制备方法
CN105543803A (zh) * 2015-12-16 2016-05-04 中国科学院深圳先进技术研究院 一种硬质合金衬底的金刚石/碳化硼复合涂层及制备方法
CN106191807A (zh) * 2016-08-03 2016-12-07 中国科学院深圳先进技术研究院 一种具有金刚石涂层的硬质合金件及其制备方法
CN106835064A (zh) * 2016-12-16 2017-06-13 中国科学院深圳先进技术研究院 一种具有金刚石/碳化硅复合涂层的工具及其制备方法
CN106884155A (zh) * 2017-03-03 2017-06-23 深圳先进技术研究院 热丝承载架及金刚石薄膜沉积设备
CN107964669A (zh) * 2017-12-26 2018-04-27 深圳先进技术研究院 一种硼氮共掺杂金刚石电极及其制备方法与应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534296B2 (en) * 2002-01-11 2009-05-19 Board Of Trustees Of Michigan State University Electrically conductive diamond electrodes
CN1271243C (zh) * 2004-03-19 2006-08-23 复旦大学 纳米微晶金刚石薄膜及其制备方法
JP2005306617A (ja) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd ダイヤモンド薄膜およびその製造方法
CN100593842C (zh) * 2008-07-01 2010-03-10 上海大学 一种纳米晶金刚石薄膜场效应晶体管的制备方法
CN101325153A (zh) * 2008-07-16 2008-12-17 上海大学 一种半导体基片热沉复合材料的制备方法
GB0816769D0 (en) * 2008-09-12 2008-10-22 Warwick Ventures Boron-doped diamond
US8974562B2 (en) * 2010-04-14 2015-03-10 Baker Hughes Incorporated Method of making a diamond particle suspension and method of making a polycrystalline diamond article therefrom
GB201015270D0 (en) * 2010-09-14 2010-10-27 Element Six Ltd Diamond electrodes for electrochemical devices
EP2453038A1 (en) * 2010-11-16 2012-05-16 The Swatch Group Research and Development Ltd. Method for coating micromechanical parts with dual diamond coating
KR101331566B1 (ko) * 2012-03-28 2013-11-21 한국과학기술연구원 나노결정다이아몬드 박막 및 그 제조방법
EP3067324B1 (en) * 2015-03-11 2019-09-18 Politechnika Gdanska Method for the preparation of electrodes of boron-doped nanocrystalline diamond
WO2018072367A1 (zh) * 2016-10-21 2018-04-26 中南大学 一种硼掺杂金刚石电极及其制备方法与应用
CN108193229A (zh) * 2017-12-20 2018-06-22 深圳先进技术研究院 一种多孔掺硼金刚石电极及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147644A1 (en) * 2001-08-30 2006-07-06 Tadamasa Fujimura Stable aqueous suspension liquid of finely divided diamond particles, metallic film containing diamond particles and method of producing the same
CN105316648A (zh) * 2015-11-13 2016-02-10 浙江工业大学 一种硼掺杂单颗粒层纳米金刚石薄膜及其制备方法
CN105543803A (zh) * 2015-12-16 2016-05-04 中国科学院深圳先进技术研究院 一种硬质合金衬底的金刚石/碳化硼复合涂层及制备方法
CN106191807A (zh) * 2016-08-03 2016-12-07 中国科学院深圳先进技术研究院 一种具有金刚石涂层的硬质合金件及其制备方法
CN106835064A (zh) * 2016-12-16 2017-06-13 中国科学院深圳先进技术研究院 一种具有金刚石/碳化硅复合涂层的工具及其制备方法
CN106884155A (zh) * 2017-03-03 2017-06-23 深圳先进技术研究院 热丝承载架及金刚石薄膜沉积设备
CN107964669A (zh) * 2017-12-26 2018-04-27 深圳先进技术研究院 一种硼氮共掺杂金刚石电极及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555907A (zh) * 2023-04-28 2023-08-08 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法
CN116555907B (zh) * 2023-04-28 2024-05-03 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法

Also Published As

Publication number Publication date
CN111334779A (zh) 2020-06-26
CN111334779B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2020125482A1 (zh) 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置
US11603594B2 (en) Boron doped diamond electrode and preparation method and applications thereof
CN106637111B (zh) 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用
Brillas et al. Synthetic diamond films: preparation, electrochemistry, characterization, and applications
Zhang et al. Select pathways to carbon nanotube film growth
US10988393B2 (en) Light activated water treatment system
US20230192514A1 (en) High-specific surface area and super-hydrophilic gradient boron-doped diamond electrode, method for preparing same and application thereof
CN111334777B (zh) 具有多级次微纳结构的金刚石薄膜及其制备方法和应用
CN101351594A (zh) 纳米结构材料的大尺度制造
CN106563176A (zh) 一种基于原子层沉积的氧化锌/碳纳米管纳米抗菌涂层的制备方法
TW201321551A (zh) 製造鈀-金合金氣體分離膜系統之方法
CN110885968B (zh) 金刚石涂层的制备方法及其制得的金刚石涂层、刀具
Zhu et al. A novel semi-dry method for rapidly synthesis ZnO nanorods on SiO2@ PTFE nanofiber membrane for efficient air cleaning
Tong et al. Fabrication of planarised conductively patterned diamond for bio-applications
Wang et al. Triple-layered thin film nanocomposite membrane toward enhanced forward osmosis performance
Auciello Science and technology of a transformational multifunctional ultrananocrystalline diamond (UNCDTM) coating
Lyu et al. Nanowires versus nanosheets–Effects of NiCo2O4 nanostructures on ceramic membrane permeability and fouling potential
CN108660431A (zh) 一种高致密金刚石薄膜的制备方法
CN109518160B (zh) 一种表面处理工艺
Yang et al. New application of stainless steel
Haung et al. Preparation, characterization, and properties of anticoagulation and antibacterial films of carbon-based nanowires fabricated on surfaces of Ti implants
CN100465353C (zh) 含二氧化硅纳米颗粒的类金刚石碳复合薄膜的制备方法
CN113355649A (zh) 一种基于纳米球模板无光刻制备周期性垂直定向多壁碳纳米管阵列的方法
Li et al. Four-birds-with-one-stone: A multifunctional Ti-based material for solar-driven water evaporation
WO2020124382A1 (zh) 具有多级次微纳结构的金刚石薄膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900502

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC