CN111334779B - 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置 - Google Patents

掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置 Download PDF

Info

Publication number
CN111334779B
CN111334779B CN201811551757.4A CN201811551757A CN111334779B CN 111334779 B CN111334779 B CN 111334779B CN 201811551757 A CN201811551757 A CN 201811551757A CN 111334779 B CN111334779 B CN 111334779B
Authority
CN
China
Prior art keywords
boron
diamond
doped diamond
water treatment
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811551757.4A
Other languages
English (en)
Other versions
CN111334779A (zh
Inventor
唐永炳
王陶
黄磊
李星星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201811551757.4A priority Critical patent/CN111334779B/zh
Priority to PCT/CN2019/124206 priority patent/WO2020125482A1/zh
Publication of CN111334779A publication Critical patent/CN111334779A/zh
Application granted granted Critical
Publication of CN111334779B publication Critical patent/CN111334779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4606Treatment of water, waste water, or sewage by electrochemical methods for producing oligodynamic substances to disinfect the water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置,涉及金刚石薄膜技术领域。掺硼金刚石薄膜,包括:掺硼金刚石微米层,表面有凸起的微米颗粒,和,掺硼金刚石纳米层,形成于所述掺硼金刚石微米层表面,表面有纳米颗粒;所述掺硼金刚石微米层与所述掺硼金刚石纳米层形成类荷叶多级次微纳结构。本发明的掺硼金刚石薄膜具有类荷叶多级次微纳结构,形成仿生超疏水表面,兼顾了过滤和电催化净化水的功能,为发展新一代野外生存供水系统奠定了基础。

Description

掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及 其制备方法与水处理装置
技术领域
本发明涉及金刚石薄膜技术领域,具体而言,涉及一种掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置。
背景技术
在战场或灾害救援时,由于受交通运输等因素的制约,部队的饮水供给及饮水卫生常难以保证,当后方供应不足时,饮水主要依赖当地水源,就地取水。能作为野外饮用水的水源主要有山泉、溪流、湖泊和自然降雨等,然而这些水源中往往含有大量病菌、有机废物等对人体有害物质,必须经净化处理后才能饮用,否则会引发多种疾病,影响着整个部队作战能力的发挥,因此,野战供水保障问题成为世界性难题。
由于部队在野外作战、演习以及抢险救灾等任务的多样性,对野外饮水设备除了要满足国家饮用水卫生要求外还有更高的要求。单兵野外饮水设备应具备的条件有:净水效果好,能够提供安全的饮用水;体积小、携带方便、操作简单;材料抗冲击性强、抗腐蚀性好,无毒副作用;水处理能力强,即滤即饮,所需压力小;过滤部件不易堵塞,方便清洗、更换。
目前,我国市场上已有的可供野外生存的小型便携式净水器有以下缺陷:净水装置和储水装置分开设置,设备复杂;净水壶体积过大,质量较大,不便于随身携带;作为最核心过滤部件的滤芯较大,不便于更换,且净水效果不佳,不能完全去除水中的杂质污染物,对人体健康构成威胁等。近年来,金属、陶瓷和高分子分离膜作为净化水的重要材料备受关注,可通过表面刻蚀或者利用高分子材料进行改性诱导超疏水超亲油性质。这些方法虽然在一定程度上可以提高净化水的效率和净水器的使用寿命,但是在恶劣环境中污水成分复杂,化学需氧量高,常常具有强酸性或强碱性,导致一般的分离膜存在抗腐蚀性差、热稳定性差、易污染、不易清洗和无法重复使用等致命的缺点,限制了其在污水处理中的应用。
有鉴于此,特提出本发明。
发明内容
本发明的目的之一在于提供一种掺硼金刚石薄膜,利用该掺硼金刚石薄膜制备的水处理装置至少能够解决上述所提及问题中的一个。
本发明的目的之二在于提供一种包含上述掺硼金刚石薄膜的油水分离元件,由于上述掺硼金刚石薄膜具有超疏水性,因此,实现油水的快速分离。
本发明的目的之三在于提供一种包含上述掺硼金刚石薄膜的水处理电极,该水处理电极通电后作为阳极能够起到杀菌和降解水中有机物的作用。
本发明的目的之四在于提供一种包含上述水处理电极的水处理装置,该水处理装置具有净水效果好,抗腐蚀性好,体积小,方便携带清洗的特点。
为了实现本发明的上述目的,特采用以下技术方案:
一种掺硼金刚石薄膜,包括:
掺硼金刚石微米层,表面有凸起的微米颗粒,和,
掺硼金刚石纳米层,形成于所述掺硼金刚石微米层表面,表面有纳米颗粒;
所述掺硼金刚石微米层与所述掺硼金刚石纳米层形成类荷叶多级次微纳结构。
一种掺硼金刚石薄膜的制备方法,包括以下步骤:
提供基体,先在所述基体上制备掺硼金刚石微米层,再在所述掺硼金刚石微米层表面制备掺硼金刚石纳米层后,在所述基体上得到所述掺硼金刚石薄膜。
一种油水分离元件,包括网状基体和形成于所述网状基体表面的掺硼金刚石薄膜。
一种水处理电极,包括电极基体和形成于所述电极基体表面的掺硼金刚石薄膜。
一种水处理电极的制备方法,提供经预处理后的电极基体,在所述电极基体表面制备所述掺硼金刚石薄膜,得到所述水处理电极。
一种水处理装置,包括盛水腔和放置于所述盛水腔内的水处理电极。
与已有技术相比,本发明具有如下有益效果:
本发明提供了一种荷叶仿生多级次微纳结构的掺硼金刚石薄膜,即具有微米和纳米晶粒复合的掺硼金刚石薄膜,该微纳结构的形貌类似于荷叶的表面形貌,有一个个微米尺寸凸起(对应本发明的掺硼金刚石微米层表面的微米颗粒),微米尺寸凸起的表面有纳米乳突结构(对应本发明的掺硼金刚石纳米层表面的纳米颗粒),达到超疏水的效果,可以实现自清洁、油水分离等功能,且掺硼金刚石化学性质稳定,抗磨损冲击能力和抗耐腐蚀性强,寿命长;同时,由于掺硼金刚石薄膜在通电的情况下可以作为阳极,在水中产生强氧化性物质如·OH、O3、H2O2等将有机物氧化生成CO2和H2O以及一些小分子的中间产物,从而起到有效杀菌、降低有机废物含量的目的。
本发明提供的油水分离元件,是通过在网状结构的基体表面设置上述掺硼金刚石薄膜,利用掺硼金刚石薄膜的超疏水性和超亲油性实现油水的分离。该油水分离元件具有抗腐蚀和油水分离效果好的优点。
本发明提供的水处理电极,是通过在电极基体表面设置上述掺硼金刚石薄膜,在通电情况下在水中产生强氧化物质,从而达到杀菌降污的作用,进而达到饮用水的标准。该水处理电极,具有体积小,抗腐蚀,无副作用,净水效果好的优点。
本发明提供的水处理装置,包括上述水处理电极,由于水处理电极表面的掺硼金刚石薄膜具有超疏水性和杀菌特性,因此,利用该水处理电极制备得到的水处理装置具有净水效果好,能够提供安全的饮用水;体积小、携带方便、操作简单;材料抗冲击性强、抗腐蚀性好,无毒副作用;水处理能力强,即滤即饮,所需压力小;过滤部件不易堵塞,方便清洗、更换的优点。该水处理装置具备野外饮水设备的全部条件,完全能够满足野外引水的要求,因此,为野战供水保障问题提供了一个可靠的解决方案。
附图说明
图1为本发明实施例1的水处理电极的结构示意图;
图2为本发明利用实施例1提供的水处理电极进行水处理前期后期,水中死亡细菌的情况对照图;其中
(a)为处理前期水中的细菌死亡数,(b)为处理后期水中的细胞死亡数。
图标:10-电极基体;20-掺硼金刚石微米层;21-微米颗粒;30-掺硼金刚石纳米;31-纳米颗粒。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
一方面,本发明提供了一种掺硼金刚石薄膜,包括:
掺硼金刚石微米层,表面有凸起的微米颗粒,和,
掺硼金刚石纳米层,形成于所述掺硼金刚石微米层表面,表面有纳米颗粒;
所述掺硼金刚石微米层与所述掺硼金刚石纳米层形成类荷叶多级次微纳结构。
本发明提供的荷叶仿生多级次微纳结构的掺硼金刚石薄膜,即具有微米和纳米晶粒复合的掺硼金刚石薄膜,该微纳结构的形貌类似于荷叶的表面形貌,有一个个微米尺寸凸起(对应本发明的掺硼金刚石微米层表面的微米颗粒),微米尺寸凸起的表面有纳米乳突结构(对应本发明的掺硼金刚石纳米层表面的纳米颗粒),达到超疏水的效果,可以实现自清洁、油水分离等功能,且掺硼金刚石化学性质稳定,抗磨损冲击能力和抗耐腐蚀性强,寿命长;同时,由于掺硼金刚石薄膜在通电的情况下可以作为阳极,在水中产生强氧化性物质如·OH、O3、H2O2等将有机物氧化生成CO2和H2O以及一些小分子的中间产物,从而起到有效杀菌、降低有机废物含量的目的。
其中,荷叶多级次微纳结构是指固体表面的一种微观特征形貌,需要在电子显微镜下才能观察得到,微米尺度的表面起伏上叠加纳米尺度的起伏,所构成的多尺度(多级次,hierarchical)结构是一种分层状结构,即以微米量级尺寸的岛状结构为第一级,在每一个岛上分部连续的纳米尺寸晶粒为第二级。类荷叶多级次微纳结构指本发明掺硼金刚石薄膜表面的微观特征形貌与荷叶表面的微观特征形貌类似,具有与荷叶类似的微纳乳突(papilla)结构粗糙表面。
在本发明的一些实施方式中,微米颗粒的尺寸为1-10μm,优选为2-7μm,例如1μm、2μm、5μm、7μm或10μm。
在本发明的一些实施方式中,掺硼金刚石纳米层的厚度为10-800nm,优选为20-200nm,例如10nm、20nm、50nm、80nm、100m、200m、300m、400m、500m、600m、700m或800nm。
通过优化掺硼金刚石微米层和掺硼金刚石纳米层的各项尺寸,可以使得到的掺硼金刚石薄膜更具有仿生类荷叶多级次微纳结构,掺硼金刚石薄膜表面形貌类似于荷叶的表面形貌,并且仿似荷叶表面的脂类物质,形成仿生超疏水表面,提高疏水性和自清洁能力。
第二方面,本发明提供了一种掺硼金刚石薄膜的制备方法,包括以下步骤:
提供基体,先在所述基体上制备掺硼金刚石微米层,再在所述掺硼金刚石微米层表面制备掺硼金刚石纳米层后,在所述基体上得到所述掺硼金刚石薄膜。
利用该制备方法得到的掺硼金刚石薄膜具备上述掺硼金刚石薄膜的全部优点,在此不再赘述。
在本发明的一些实施方式中,掺硼金刚石薄膜的制备方法包括以下步骤:
S1)提供基体,先在基体上进行低密度植晶,然后利用化学气相沉积法生长掺硼金刚石微米层;
S2)在掺硼金刚石微米层表面进行高密度植晶,然后利用化学气相沉法生长掺硼金刚石纳米层;
其中,进行低密度植晶的植晶密度为104-108个/cm2,优选(2-3)×106个/cm2;进行高密度植晶的植晶密度为109-1012个/cm2,优选为(1-7)×1011个/cm2
上述制备方法中,首先在基体上生长较大颗粒的金刚石,制备出微米级凸起结构,然后在此基础上,再沉积掺硼金刚石纳米层,使薄膜最外表面为纳米结构,从而实现掺硼金刚石薄膜的微纳结构。该过程中,分别通过调控形核密度来控制掺硼金刚石颗粒之间的距离,实现微米层与纳米层的制备。
化学气相沉积生长掺硼金刚石前需要植入金刚石晶种,然后在植入的晶种上进行外延生长。利用金刚石晶种在基体上的选择性吸附,构筑具有超疏水的微纳结构。本发明经过两次植晶、两次沉积在基体上制备出类似荷叶的微纳结构的掺硼金刚石表面,即一次植晶-一次沉积-二次植晶-二次沉积,一次植晶为低密度植晶,目的在于生长微米层,二次植晶为高密度植晶,目的在于生长纳米层。
需要说明的是,这里的高低是一个相对概念。其中,低密度植晶是指金刚石晶种在基体上呈单分散状态,从而得到间隙距离较大的晶种。而高密度植晶是指金刚石晶种在基体上呈相对的连续排布状态,其颗粒的尺寸以及颗粒之间的间隙基本处于纳米级,通过掺杂沉积生长从而形成掺硼金刚石纳米层。
同时,上述化学气相沉积法包括但不限于热丝或微波等离子体增强化学气相沉积法,优选热丝化学气相沉积法。
在本发明的一些实施方式中,所述步骤S1)中,进行低密度植晶的方法包括:将基体浸于金刚石悬浮液Ⅰ中进行植晶,通过调控金刚石悬浮液Ⅰ的zeta电位,使金刚石悬浮液Ⅰ中的纳米金刚石颗粒与基体表面电性相同实现低密度植晶。
该过程中,通过调控金刚石悬浮液Ⅰ的zeta电位,使金刚石悬浮液Ⅰ中的纳米金刚石颗粒与基体表面电性相同,利用电性相斥原理降低金刚石在基体上的吸附密度,从而在基体上得到低密度的金刚石晶种。
在本发明的一些实施方式中,所述步骤S1)中,所述金刚石悬浮液Ⅰ包括纳米金刚石粉、阴离子表面活性剂和水,所述金刚石悬浮液Ⅰ中,所述纳米金刚石粉的质量占比为0.003-0.3%,所述阴离子表面活性剂的摩尔浓度为10-6-10-3mol/L,所述金刚石悬浮液Ⅰ的pH为5-7。
通过限定金刚石悬浮液Ⅰ的各个原料以及各个原料的浓度,可以使金刚石悬浮液Ⅰ中的纳米金刚石颗粒与基体表面电性相同,从而有效降低金刚石颗粒在基体上的吸附量,在基体表面得到低密度金刚石晶种。
其中,金刚石悬浮液Ⅰ中,纳米金刚石粉的质量占比例如可以为0.003%、0.005%、0.006%、0.007%、0.008%、0.009%、0.01%、0.1%、0.2%或0.3%,阴离子表面活性剂在金刚石悬浮液Ⅰ中的摩尔浓度为例如可以为10-6mol/L、10-5mol/L、10-4mol/L或10-3mol/L,金刚石悬浮液Ⅰ的pH例如可以为pH5、pH6或pH7。阴离子表面活性剂优选为草酸或柠檬酸。
另外,在本发明的一些优选实施方式中,所述低密度植晶的方式可以为:将基体放入金刚石悬浮液Ⅰ中超声20-60min后取出干燥,优选干燥方式为用氮气吹干。
超声植晶方法成本低,且植晶过程中可以使金刚石颗粒均匀分散,实现金刚石晶种的均匀吸附,且该操作简单,适合工业化生产。
在本发明的一些实施方式中,所述步骤S1)中,优选利用热丝化学气相沉积法完成掺硼金刚石微米层的生长。热丝化学气相沉积法可以实现大面积沉积,成本低,且可有效控制层的均匀性。
在本发明一些可选的实施方式中,所述热丝化学气相沉积的工艺方法包括:通入甲烷、氢气和硼烷作为反应气体,反应气体流量为500-1000sccm,甲烷和硼烷气体流量占总流量的1-3%,灯丝功率5000-9000W,丝样距离7-15mm,沉积压强1000-5000Pa,沉积时间1-3h。
利用上述热丝沉积工艺,可以在金刚石晶种上外延生长掺硼金刚石层,同时可以将生长的掺硼金刚石颗粒的尺寸控制在微米级。
在本发明的一些实施方式中,所述步骤S2)中,进行高密度植晶的方法包括:将基体浸于金刚石悬浮液Ⅱ中进行植晶,通过调控金刚石悬浮液Ⅱ的zeta电位,使金刚石悬浮液Ⅱ中的纳米金刚石颗粒与基体表面电性相反实现高密度植晶。
该过程中,通过调控金刚石悬浮液Ⅱ的zeta电位,使金刚石悬浮液Ⅱ中的纳米金刚石颗粒与基体表面电性相反,利用电性相吸原理提高金刚石在基体上的吸附密度,从而在基体上得到高密度的金刚石晶种。
在本发明的一些实施方式中,所述金刚石悬浮液Ⅱ包括纳米金刚石粉、阳离子表面活性剂和水,所述金刚石悬浮液Ⅱ中,所述纳米金刚石粉的质量占比为0.003-0.3%,所述阳离子表面活性剂的摩尔浓度为10-6-10-3mol/L,所述金刚石悬浮液Ⅱ的pH为2-4。阳离子表面活性剂优选为赖氨酸或甲基丙烯酰氧乙基三甲基氯化铵。
通过限定金刚石悬浮液Ⅱ的各个原料以及各个原料的浓度,可以使金刚石悬浮液Ⅱ中的纳米金刚石颗粒与基体表面电性相反,从而有效提高金刚石颗粒在基体上的吸附量,在基体表面得到高密度金刚石晶种。
其中,金刚石悬浮液Ⅱ中,纳米金刚石粉的质量占比例如可以为0.003%、0.005%、0.006%、0.007%、0.008%、0.009%、0.01%、0.1%、0.2%或0.3%,阳离子表面活性剂在金刚石悬浮液Ⅱ中的摩尔浓度为例如可以为10-6mol/L、10-5mol/L、10-4mol/L或10-3mol/L,金刚石悬浮液Ⅱ的pH例如可以为pH2、pH3或pH4。
另外,在本发明的一些优选实施方式中,所述高密度植晶的方式可以为:将基体放入金刚石悬浮液Ⅱ中超声20-60min后取出干燥,优选干燥方式为用氮气吹干。
超声植晶方法成本低,且植晶过程中可以使金刚石颗粒均匀分散,实现金刚石晶种的均匀吸附,且该操作简单,适合工业化生产。
在本发明的一些实施方式中,所述步骤S2)中,优选利用热丝化学气相沉积法完成掺硼金刚石纳米层的生长。热丝化学气相沉积法可以实现大面积沉积,成本低,且可有效控制层的均匀性。
在本发明一些可选的实施方式中,通入甲烷、氢气和硼烷作为反应气体,反应气体流量为500-1000sccm,甲烷和硼烷气体流量占总流量的3.5-5%,灯丝功率5000-9000W,丝样距离7-15mm,沉积压强1000-3000Pa,沉积时间1-3h。
利用上述热丝沉积工艺,可以在金刚石晶种上外延生长掺硼金刚石层,同时可以将生长的掺硼金刚石颗粒的尺寸控制在纳米级。
在本发明的上述实施方式中,采用热丝化学气相沉积法进行两步法沉积,即首先优选通过调控金刚石悬浮液Ⅰ的纳米金刚石尺寸和zeta电位,使纳米金刚石颗粒与基体表面电性一致,吸附在基体上的金刚石晶种密度较低(104-108cm-2),沉积掺硼金刚石微米层时,其表面的颗粒大小在1-10μm左右;然后采用金刚石悬浮液Ⅱ再进行超声植晶,优选使纳米金刚石颗粒与基体表面电性相反,使吸附在样品表面的金刚石晶种密度较高(>108cm-2),然后再沉积掺硼金刚石纳米层,其厚度处于纳米级水平(<500nm)。通过调节微米颗粒的密度可有效控制水接触角处于80-170°范围内,润湿性能可控。
本发明上述实施方式提供的制备方法,无需RIE刻蚀,在制备掺硼金刚石薄膜前,只需通过改变金刚石悬浊液的性质来控制得到不同密度的晶种从而制备出具有多级次微纳结构的掺硼金刚石薄膜。
上述实施方式的制备方法中,由于只改变了作为植晶溶液的金刚石悬浮液的性能从而得到具有超疏水性能的掺硼金刚石薄膜,工艺极其简单、成本低,适合大面积工业化生产,能在三维或二维基体上沉积出结合力良好的微纳结构的掺硼金刚石薄膜。
第三方面,本发明提供了一种油水分离元件,包括网状基体和形成于所述网状基体表面的掺硼金刚石薄膜。
本发明提供的油水分离元件,是通过在网状结构的基体表面设置上述掺硼金刚石薄膜,利用掺硼金刚石薄膜的超疏水性和超亲油性实现油水的分离。该油水分离元件具有抗腐蚀和油水分离效果好的优点。
网状基体典型但非限制性的例如为金属网或织物网,优选为金属网;金属网包括但不限于铜网、钛网或不锈钢网等。同时,网状基体的结构为平面网状结构或圆筒状的网状结构,还可以为方形的筛网结构,只要基体上有油水分离的孔洞即可。
第三方面,本发明提供了一种水处理电极,包括电极基体和形成于所述电极基体表面的掺硼金刚石薄膜。
本发明提供的水处理电极,是通过在电极基体表面设置上述掺硼金刚石薄膜,在通电情况下在水中产生强氧化物质,从而达到杀菌降污的作用,进而达到饮用水的标准。该水处理电极,具有体积小,抗腐蚀,无副作用,净水效果好的优点。
本发明中并未对电极基体的具体形状做出限定,电极基体可以为板状结构,也可以为网状结构,还可以为柱形结构、球形结构或其他不规则的形状结构,其材质例如可以为硅、铜合金、钛合金、不锈钢、玻璃或陶瓷中的任一种。当电极基体为网状结构时,得到的水处理电极还可以用作油水分离元件。
该水处理电极在使用时,除连接电源处的电极基体与外界通过绝缘包覆层进行包覆外,其他部位均覆盖有掺硼金刚石薄膜,以防止在处理水时发生漏电。
第四方面,本发明提供了一种水处理电极的制备方法,提供经预处理后的电极基体,在所述电极基体表面制备所述掺硼金刚石薄膜,得到所述水处理电极。
利用上述掺硼金刚石薄膜的制备方法在电极基体表面制备掺硼金刚石薄膜后得到水处理电极。利用该制备方法得到的水处理电极具有上述水处理电极的全部优点,在此不再赘述。
在本发明的一些实施方式中,预处理包括清洗、腐蚀或喷砂处理、以及再清洗。
其中,清洗和再清洗方法均独立地包括先用水超声清洗2-3次,每次5-10min,再用酒精超声清洗1-2次,每次5-10min。
例如,在一些实施方式中,腐蚀处理的方法包括:在碱溶液和/或酸溶液中超声清洗1-2min;优选碱溶液为0.5-1mol/L的NaOH或KOH溶液;优选酸溶液为1-4mol/L的HCl、H2SO4或HNO3溶液。
对电极基体进行腐蚀处理或喷砂处理,去除赃污杂质,活化基体表面,增加表面粗糙度,提高电极基体表面的各项性能的一致性。
作为一种优选的实施方式,一种典型的水处理电极的制备方法包括以下步骤:
(a)对电极基体表面进行喷砂处理;
(b)对喷砂处理后的电极基体进行清洗;
(c)将清洗后的电极基体置于金刚石悬浮液Ⅰ进行金刚石的植晶处理,得到低密度金刚石晶种;
(d)利用热丝化学气相沉积法在低密度金刚石晶种上沉积掺硼金刚石微米层;
(e)将步骤(d)所得电极基体置于金刚石悬浮液Ⅱ进行植晶处理,得到高密度金刚石浸种;
(f)利用热丝化学气相沉积法在高密度金刚石晶种上沉积掺硼金刚石纳米层;
其中:步骤(a)中,喷砂处理时间为1-3min;
步骤(b)中,清洗中,先去离子水超声清洗2次,每次3-7min,再用酒精超声清洗3-7min;
步骤(c)中,金刚石悬浮液Ⅰ中,纳米金刚石粉的质量分数0.003%-0.3%,草酸或柠檬酸浓度为10-6-10-3mol/L,溶剂为去离子水,pH为5-7;植晶方式为将试样放入金刚石悬浮液Ⅰ中超声30分钟,取出,用氮气吹干;
步骤(e)中,金刚石悬浮液Ⅱ中,纳米金刚石粉的质量分数0.003%-0.3%,赖氨酸或甲基丙烯酰氧乙基三甲基氯化铵的浓度为10-6mol/L-10-3mol/L,溶剂为去离子水,pH为2-4。
第五方面,本发明提供了一种水处理装置,包括盛水腔和放置于所述盛水腔内的水处理电极。
本发明提供的水处理装置,包括上述水处理电极,由于水处理电极表面的掺硼金刚石薄膜具有超疏水性和杀菌特性,因此,利用该水处理电极制备得到的水处理装置具有净水效果好,能够提供安全的饮用水;体积小、携带方便、操作简单;材料抗冲击性强、抗腐蚀性好,无毒副作用;水处理能力强,即滤即饮,所需压力小;过滤部件不易堵塞,方便清洗、更换的优点。该水处理装置具备野外饮水设备的全部条件,完全能够满足野外引水的要求,因此,为野战供水保障问题提供了一个可靠的解决方案。
在本发明的一些实施方式中,所述水处理电极为两个,两个所述水处理电极分别连接外部电源。在水处理装置中,作为阳极使用的水处理电极才可以产生强氧化物质,而另外一个水处理电极可以作为阴极使用,也可以作为备用阳极使用。当作为备用阳极使用时,还需再额外设置一个阴极。
在本发明的一些实施方式中,所述水处理装置为水壶,所述水壶的壳体内设有电源,所述水处理电极贴覆于水壶的内侧部上,所述水处理电极连接于所述电源。
利用该水壶对水进行净化处理时,只需打开电源,对水处理电极通电,即可产生杀菌和降解有机物的功效。该水壶的电源为内置电源,因此可以不用再单独提供电源,方便野外使用。当水壶为非内置电源时,可以在壶体上做出水处理电极的连接插口,方便连接外部电源。
下面将通过具体的实施例和对比例进一步说明本发明,但是,应当理解为,这些实施例仅是用于更详细地说明之用,而不应理解为用于以任何形式限制本发明。本发明涉及的各原料均可通过商购获取。
实施例1
如图1所示,本实施例是一种水处理电极,包括作为电极基体10的不锈钢金属网,形成于电极基体10表面的掺硼金刚石微米层20,掺硼金刚石微米层20的表面设有凸起的微米颗粒21,以及形成于掺硼金刚石微米层20表面的掺硼金刚石纳米层30,掺硼金刚石纳米层30表面有凸起的纳米颗粒31,掺硼金刚石微米层20与掺硼金刚石纳米层30形成类荷叶多级次微纳结构。
该水处理电极的制备方法,包括以下步骤:
S1)对不锈钢金属网表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为30min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.005%,草酸浓度为5×10-6mol/L,其余为去离子水,pH为6;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离10mm,时间2.5小时,压强4000Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10-6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷32sccm,氢气800sccm,硼烷48sccm,功率6800W,时间15min,压强1500Pa,沉积结束后得到水处理电极。
实施例2
本实施例是一种水处理电极,与实施例1不同之处在于,本实施例中作为电极基体的为铜合金金属网,其他与实施例1相同。
该水处理电极的制备方法,包括以下步骤:
S1)对铜合金金属网表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为30min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.005%,草酸浓度为5×10-6mol/L,其余为去离子水,pH为6;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离10mm,时间2.5小时,压强4000Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10-6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷36sccm,氢气800sccm,硼烷48sccm,功率6800W,时间7min,压强1500Pa,沉积结束后得到水处理电极。
实施例3
本实施例是一种水处理电极,与实施例1不同之处在于,本实施例中作为电极基体的为钛合金金属网,其他与实施例1相同。
该水处理电极的制备方法,包括以下步骤:
S1)对钛合金金属网表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为30min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.005%,草酸浓度为5×10-6mol/L,其余为去离子水,pH为6;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离10mm,时间1小时,压强1500Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10-6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷32sccm,氢气800sccm,硼烷48sccm,功率6500W,时间10min,压强1500Pa,沉积结束后得到水处理电极。
实施例4
本实施例是一种水处理电极,与实施例1不同之处在于,本实施例中作为电极基体的为硅片,其他与实施例1相同。
该水处理电极的制备方法,包括以下步骤:
S1)对硅片表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为1min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为25min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.01%,草酸浓度为8×10-6mol/L,其余为去离子水,pH为5.5;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率6800W,丝样距离7mm,时间2.5小时,压强4000Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10-6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷32sccm,氢气800sccm,硼烷48sccm,功率6800W,时间5min,压强1500Pa,沉积结束后得到水处理电极。
实施例5
本实施例是一种水处理电极,与实施例1不同之处在于,本实施例中作为电极基体的为石英玻璃板,其他与实施例1相同。
一种水处理电极的制备方法,包括以下步骤:
S1)对石英玻璃板表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)将清洗干净的金属网试样在金刚石悬浮液Ⅰ中进行超声植晶处理,超声植晶时间为30min,金刚石悬浮液Ⅰ配方为:金刚石粉质量分数0.005%,草酸浓度为5×10-6mol/L,其余为去离子水,pH为6;植晶完成后取出,用氮气吹干;
S4)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离7mm,时间1.5小时,压强3500Pa;
S5)将步骤S4)所得中间试样在金刚石悬浮液Ⅱ中进行超声高密度植,植晶时间为30min,金刚石悬浮液Ⅱ的配方为:金刚石粉质量分数0.005%,甲基丙烯酰氧乙基三甲基氯化铵的浓度为5×10-6mol/L,其余为去离子水,pH为3;植晶完成后取出,用氮气吹干;
S6)利用热丝化学气相沉积在步骤S5)得到的晶种上沉积生长掺硼金刚石纳米层,生长工艺为:甲烷32sccm,氢气800sccm,硼烷48sccm,功率6800W,时间5min,压强1500Pa,沉积结束后得到水处理电极。
对比例1
本对比例是一种水处理电极,包括作为电极基体的不锈钢金属网和形成与不锈钢金属网表面的掺硼金刚石薄膜。
该水处理电极的制备方法,包括以下步骤:
S1)对不锈钢金属网表面进行喷砂处理,活化基体表面,微观上增加表面粗糙度,宏观上均匀表面,喷砂时间为2min;
S2)对喷砂处理后的金属网进行清洗,先去离子水超声清洗2次,每次5分钟,再用酒精超声清洗5分钟;
S3)利用热丝化学气相沉积在步骤S3)得到的晶种上沉积生长掺硼金刚石微米层,生长工艺为:甲烷16sccm,氢气800sccm,硼烷24sccm,功率7000W,丝样距离10mm,时间6小时,压强4000Pa,沉积结束后得到水处理电极。
试验例
用接触角测量仪分别测量实施例和对比例得到的水处理电极,测量基体表面对3微升的水的接触角,结果如表1所示。
表1
序号 水接触角/°
实施例1 152
实施例2 155
实施例3 157
实施例4 155
实施例5 150
对比例1 75
从表1的结果可以看出,本发明提供的水处理电极的疏水性要远远高于对比例1中的水处理电极的疏水性。
利用实施例1提供的水处理电极对进行杀菌试验。测试过程如下:将实施例1中的水处理电极置于含有荧光标定的细菌培养液中,活细菌为绿色,死细菌为红色,每隔一定的通电时间后取出水处理电极,观察水处理电极表面的细菌的吸附量及存活率。图2中(a)为第一次从细菌培养液中取出水处理电极后观察的死亡的细菌吸附量;图2中(b)为最后一次从细菌培养液中取出水处理电极后观察的死亡的细菌吸附量。从图2中细菌的吸附量的变化可知,刚开始,培养液中的细菌较多,吸附于水处理电极表面的死亡的细菌量也较多;随着时间的延长,溶液中的细菌基本都被杀死,如图2中的(b)所示,吸附量也越来越少,直至完全除尽细菌。
由此可知,利用本发明提供的水处理电极对水进行处理后,细菌会大量死亡,从而达到杀菌的目的。
通过以上分析和试验,说明:
1)本发明提供的掺硼金刚石薄膜实用性强,制备方法独特,具有较高的创新性,直接通过植晶工艺就可实现金刚石晶种吸附密度的控制,再结合沉积工艺就达到掺硼金刚石微纳结构的制备;此薄膜硬度高,耐酸碱及氧化性物质,耐微生物侵蚀,使用寿命长,无二次污染;
2)包含掺硼金刚石薄膜的油水分离元件,实现荷叶仿生表面的超疏水特性,用于过滤净化污水;
3)荷叶仿生多级次掺硼金刚石薄膜兼顾了过滤和电催化净化水的功能,包含该掺硼金刚石薄膜的水处理装置结构紧凑,操作方便,维护简单,运行成本低,为发展新一代野外生存供水系统奠定了基础;
4)本发明所用之方法简单,实用效果佳,成本低,适合工业化批量生产。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (14)

1.一种掺硼金刚石薄膜的制备方法,其特征在于,所述掺硼金刚石薄膜包括:
掺硼金刚石微米层,表面有凸起的微米颗粒,和
掺硼金刚石纳米层,形成于所述掺硼金刚石微米层表面,表面有纳米颗粒;
所述掺硼金刚石微米层与所述掺硼金刚石纳米层形成类荷叶多级次微纳结构;
所述的掺硼金刚石薄膜的制备方法,包括以下步骤:
a)提供基体,先在基体上进行低密度植晶,然后利用化学气相沉积法生长掺硼金刚石微米层;
b)在掺硼金刚石微米层表面进行高密度植晶,然后利用化学气相沉法生长掺硼金刚石纳米层;
其中,进行低密度植晶的植晶密度为104-108个/cm2,进行高密度植晶的植晶密度为109-1012个/cm2
进行低密度植晶的方法包括:将基体浸于金刚石悬浮液Ⅰ中进行植晶,通过调控金刚石悬浮液Ⅰ的Zeta电位,使金刚石悬浮液Ⅰ中的纳米金刚石颗粒与基体表面电性相同实现低密度植晶;
所述金刚石悬浮液Ⅰ包括纳米金刚石粉、阴离子表面活性剂和水,所述金刚石悬浮液Ⅰ中,所述纳米金刚石粉的质量占比为0.003-0.3%,所述阴离子表面活性剂的摩尔浓度为10-6-10-3mol/L,所述金刚石悬浮液Ⅰ的pH为5-7;
所述阴离子表面活性剂为草酸或柠檬酸;
利用热丝化学气相沉积法完成掺硼金刚石微米层的生长,所述热丝化学气相沉积的工艺方法包括:通入甲烷、氢气和硼烷作为反应气体,反应气体流量为500-1000sccm,甲烷和硼烷气体流量占总流量的1-3%,灯丝功率5000-9000W,丝样距离7-15mm,沉积压强1000-5000Pa,沉积时间1-3h;
进行高密度植晶的方法包括:将基体浸于金刚石悬浮液Ⅱ中进行植晶,通过调控金刚石悬浮液Ⅱ的Zeta电位,使金刚石悬浮液Ⅱ中的纳米金刚石颗粒与基体表面电性相反实现高密度植晶;
所述金刚石悬浮液Ⅱ包括纳米金刚石粉、阳离子表面活性剂和水,所述金刚石悬浮液Ⅱ中,所述纳米金刚石粉的质量占比为0.003-0.3%,所述阳离子表面活性剂的摩尔浓度为10-6-10-3mol/L,所述金刚石悬浮液Ⅱ的pH为2-4;
所述阳离子表面活性剂为赖氨酸或甲基丙烯酰氧乙基三甲基氯化铵;
利用热丝化学气相沉积法完成掺硼金刚石纳米层的生长,所述热丝化学气相沉积的工艺方法包括:通入甲烷、氢气和硼烷作为反应气体,反应气体流量为500-1000sccm,甲烷和硼烷气体流量占总流量的3.5-5%,灯丝功率5000-9000W,丝样距离7-15mm,沉积压强1000-3000Pa,沉积时间1-3h。
2.根据权利要求1所述的掺硼金刚石薄膜的制备方法,其特征在于,所述微米颗粒的尺寸为1-10μm;
掺硼金刚石纳米层的厚度为10-800nm。
3.根据权利要求1所述的掺硼金刚石薄膜的制备方法,其特征在于,所述微米颗粒的尺寸为2-7μm;
掺硼金刚石纳米层的厚度为20-200nm。
4.根据权利要求1所述的掺硼金刚石薄膜的制备方法,其特征在于,
进行低密度植晶的植晶密度为(2-3)×106个/cm2;进行高密度植晶的植晶密度为(1-7)×1011个/cm2
5.根据权利要求1所述的掺硼金刚石薄膜的制备方法,其特征在于,所述低密度植晶的方式为:将基体放入金刚石悬浮液Ⅰ中超声20-60min后取出干燥;
所述高密度植晶的方式为:将基体放入金刚石悬浮液Ⅱ中超声20-60min后取出干燥。
6.根据权利要求5所述的掺硼金刚石薄膜的制备方法,其特征在于,干燥方式为氮气干燥。
7.一种油水分离元件,其特征在于,包括网状基体和形成于所述网状基体表面的权利要求1~6任一所述的制备方法制备得到的掺硼金刚石薄膜。
8.一种水处理电极,其特征在于,包括电极基体和形成于所述电极基体表面的权利要求1~6任一所述的制备方法制备得到的所述的掺硼金刚石薄膜。
9.根据权利要求8所述的水处理电极,其特征在于,所述电极基体为板状结构或网状结构。
10.根据权利要求8所述的水处理电极,其特征在于,所述电极基体的材质包括硅、铜合金、钛合金、不锈钢、玻璃或陶瓷中的一种。
11.一种权利要求8~10任一所述的水处理电极的制备方法,其特征在于,提供经预处理后的电极基体,在所述电极基体表面制备所述掺硼金刚石薄膜,得到所述水处理电极;
预处理包括清洗、腐蚀或喷砂处理、以及再清洗。
12.一种水处理装置,其特征在于,包括盛水腔和放置于所述盛水腔内的权利要求8~10任一所述的水处理电极。
13.根据权利要求12所述的水处理装置,其特征在于,所述水处理电极为两个,两个所述水处理电极分别连接外部电源。
14.根据权利要求12所述的水处理装置,其特征在于,所述水处理装置为水壶,所述水壶的壳体内设有电源,所述水处理电极贴覆于水壶的内侧部上,所述水处理电极连接于所述电源。
CN201811551757.4A 2018-12-18 2018-12-18 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置 Active CN111334779B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811551757.4A CN111334779B (zh) 2018-12-18 2018-12-18 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置
PCT/CN2019/124206 WO2020125482A1 (zh) 2018-12-18 2019-12-10 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811551757.4A CN111334779B (zh) 2018-12-18 2018-12-18 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置

Publications (2)

Publication Number Publication Date
CN111334779A CN111334779A (zh) 2020-06-26
CN111334779B true CN111334779B (zh) 2023-08-15

Family

ID=71102001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811551757.4A Active CN111334779B (zh) 2018-12-18 2018-12-18 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置

Country Status (2)

Country Link
CN (1) CN111334779B (zh)
WO (1) WO2020125482A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101660B (zh) * 2021-09-22 2024-03-22 湖南新锋先进材料科技有限公司 一种核壳结构的金刚石颗粒及其制备方法和应用
CN114273653A (zh) * 2021-12-24 2022-04-05 长沙新材料产业研究院有限公司 一种用于增材制造的复合粉末及其制备方法
CN114302604B (zh) * 2022-01-18 2024-03-15 Oppo广东移动通信有限公司 盖板、其制备方法及电子设备
CN114717533B (zh) * 2022-02-25 2023-03-10 中国地质大学(北京) 一种利用仿生结构制备传感器电极保护薄膜的方法和应用
CN115105160B (zh) * 2022-06-22 2023-11-24 上海百心安生物技术股份有限公司 一种具有疏水结构的脉冲球囊扩张导管
CN115266850B (zh) * 2022-07-26 2024-04-12 长春工业大学 一种用于检测头孢喹诺的适配体传感器的制备方法
CN115611375A (zh) * 2022-09-30 2023-01-17 深圳先进技术研究院 具有掺硼金刚石阳极的净化水杯
CN116555907B (zh) * 2023-04-28 2024-05-03 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563479A (zh) * 2004-03-19 2005-01-12 复旦大学 纳米微晶金刚石薄膜及其制备方法
JP2005306617A (ja) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd ダイヤモンド薄膜およびその製造方法
CN101303979A (zh) * 2008-07-01 2008-11-12 上海大学 一种纳米晶金刚石薄膜场效应晶体管的制备方法
CN101325153A (zh) * 2008-07-16 2008-12-17 上海大学 一种半导体基片热沉复合材料的制备方法
GB2483769A (en) * 2010-09-14 2012-03-21 Element Six Ltd Diamond electrodes for electrochemical devices
CN102906018A (zh) * 2010-04-14 2013-01-30 贝克休斯公司 制备金刚石颗粒悬浮体的方法及由其制备多晶金刚石制品的方法
CN103249864A (zh) * 2010-11-16 2013-08-14 斯沃奇集团研究及开发有限公司 用双金刚石涂层涂布微机械零件的方法
EP3067324A1 (en) * 2015-03-11 2016-09-14 Politechnika Gdanska Method for the preparation of electrodes of boron-doped nanocrystalline diamond, an electrode prepared by this method and a use thereof
WO2018072367A1 (zh) * 2016-10-21 2018-04-26 中南大学 一种硼掺杂金刚石电极及其制备方法与应用
CN108193229A (zh) * 2017-12-20 2018-06-22 深圳先进技术研究院 一种多孔掺硼金刚石电极及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245310B2 (ja) * 2001-08-30 2009-03-25 忠正 藤村 分散安定性に優れたダイヤモンド懸濁水性液、このダイヤモンドを含む金属膜及びその製造物
US7534296B2 (en) * 2002-01-11 2009-05-19 Board Of Trustees Of Michigan State University Electrically conductive diamond electrodes
GB0816769D0 (en) * 2008-09-12 2008-10-22 Warwick Ventures Boron-doped diamond
KR101331566B1 (ko) * 2012-03-28 2013-11-21 한국과학기술연구원 나노결정다이아몬드 박막 및 그 제조방법
CN105316648B (zh) * 2015-11-13 2018-02-13 浙江工业大学 一种硼掺杂单颗粒层纳米金刚石薄膜及其制备方法
CN105543803B (zh) * 2015-12-16 2018-08-31 中国科学院深圳先进技术研究院 一种硬质合金衬底的金刚石/碳化硼复合涂层及制备方法
CN106191807B (zh) * 2016-08-03 2018-12-21 中国科学院深圳先进技术研究院 一种具有金刚石涂层的硬质合金件及其制备方法
CN106835064B (zh) * 2016-12-16 2019-06-25 中国科学院深圳先进技术研究院 一种具有金刚石/碳化硅复合涂层的工具及其制备方法
CN106884155B (zh) * 2017-03-03 2019-11-05 深圳先进技术研究院 热丝承载架及金刚石薄膜沉积设备
CN107964669B (zh) * 2017-12-26 2024-03-19 深圳先进技术研究院 一种硼氮共掺杂金刚石电极及其制备方法与应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563479A (zh) * 2004-03-19 2005-01-12 复旦大学 纳米微晶金刚石薄膜及其制备方法
JP2005306617A (ja) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd ダイヤモンド薄膜およびその製造方法
CN101303979A (zh) * 2008-07-01 2008-11-12 上海大学 一种纳米晶金刚石薄膜场效应晶体管的制备方法
CN101325153A (zh) * 2008-07-16 2008-12-17 上海大学 一种半导体基片热沉复合材料的制备方法
CN102906018A (zh) * 2010-04-14 2013-01-30 贝克休斯公司 制备金刚石颗粒悬浮体的方法及由其制备多晶金刚石制品的方法
GB2483769A (en) * 2010-09-14 2012-03-21 Element Six Ltd Diamond electrodes for electrochemical devices
CN103249864A (zh) * 2010-11-16 2013-08-14 斯沃奇集团研究及开发有限公司 用双金刚石涂层涂布微机械零件的方法
EP3067324A1 (en) * 2015-03-11 2016-09-14 Politechnika Gdanska Method for the preparation of electrodes of boron-doped nanocrystalline diamond, an electrode prepared by this method and a use thereof
WO2018072367A1 (zh) * 2016-10-21 2018-04-26 中南大学 一种硼掺杂金刚石电极及其制备方法与应用
CN108193229A (zh) * 2017-12-20 2018-06-22 深圳先进技术研究院 一种多孔掺硼金刚石电极及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中国材料研究学会组织编写.《第三代半导体材料》.中国铁道出版社,2017,第272页. *

Also Published As

Publication number Publication date
WO2020125482A1 (zh) 2020-06-25
CN111334779A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN111334779B (zh) 掺硼金刚石薄膜及其制备方法、油水分离元件、水处理电极及其制备方法与水处理装置
Weber-Shirk et al. Physical-chemical mechanisms in slow sand filters
US8394494B2 (en) Antimicrobial substrates and uses thereof
CN101351594A (zh) 纳米结构材料的大尺度制造
CN111334777B (zh) 具有多级次微纳结构的金刚石薄膜及其制备方法和应用
Wang et al. Nano CuAl2O4 spinel mineral as a novel antibacterial agent for PVDF membrane modification with minimized copper leachability
CN112426888B (zh) 一种联合抑制膜生物污染改性超滤膜及其制备方法和应用
Wang et al. Triple-layered thin film nanocomposite membrane toward enhanced forward osmosis performance
CN106563176A (zh) 一种基于原子层沉积的氧化锌/碳纳米管纳米抗菌涂层的制备方法
CN103997890B (zh) 含银的抗微生物材料及其用途
Tong et al. Fabrication of planarised conductively patterned diamond for bio-applications
San Keskin et al. Anti microbial corrosion properties of electrospun cellulose acetate nanofibers containing biogenic silver nanoparticles for copper coatings
Lyu et al. Nanowires versus nanosheets–Effects of NiCo2O4 nanostructures on ceramic membrane permeability and fouling potential
CN108660431A (zh) 一种高致密金刚石薄膜的制备方法
US9815029B2 (en) Method for preparing antibacterial and dust-removal membrane
CN111068525A (zh) 一种表面具有二氧化钛纳米棒阵列的复合膜、及其制备方法和应用
JP3650696B2 (ja) 抗菌性繊維類の製造方法及び抗菌性フィルタ材の製造方法
Sobhanipour et al. Removal of Nitrate from Water Using TiO2/PVDF Membrane Photobioreactor
JP6044341B2 (ja) 流体の汚染除去製品およびその製造方法
CN110684959B (zh) 金刚石梯度涂层及其制备方法和应用
CN110499493B (zh) 一种制备可抑制杀菌活性的Ta2O5@Ag双相微纳结构的方法
Jabna et al. Nanosilver As Antimicrobial Agent in Treatment of Water/Waste Water
Cao et al. Phosphorus removal from wastewater by fly ash ceramsite in constructed wetland
Abouelkheir et al. Biofabrication of gold/activated carbon/polyvinyl alcohol (Au/Ac/PVA) polymer sheet and its application in seawater desalination
CN2799523Y (zh) 自来水处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant