CN106637111B - 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用 - Google Patents
一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用 Download PDFInfo
- Publication number
- CN106637111B CN106637111B CN201610920318.0A CN201610920318A CN106637111B CN 106637111 B CN106637111 B CN 106637111B CN 201610920318 A CN201610920318 A CN 201610920318A CN 106637111 B CN106637111 B CN 106637111B
- Authority
- CN
- China
- Prior art keywords
- foam
- boron
- doped diamond
- layer
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
- C23C14/025—Metallic sublayers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
- C23C14/205—Metallic material, boron or silicon on organic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
- C23C16/0281—Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/277—Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/278—Diamond only doping or introduction of a secondary phase in the diamond
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/343—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/54—Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
- C02F2001/46147—Diamond coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Hydrology & Water Resources (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Combustion & Propulsion (AREA)
- Plasma & Fusion (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Inert Electrodes (AREA)
Abstract
一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用,所述电极是在泡沫金属骨架表面设置一层金属铌,或在泡沫有机/无机物骨架表面设置改性层,再在改性层表面设置一层金属铌构成电极基体,再在电极基体表面设置硼掺杂金刚石层或硼掺杂金刚石层复合层构成。其制备方法,是将泡沫金属骨架表面镀覆金属铌层;或在泡沫有机/无机物骨架表面设置改性层,再在改性层表面设置金属铌层,得到电极基体;在电极基体表面沉积掺硼金刚石层或硼掺杂金刚石层复合层。其应用于电化学合成、电化学污水净化处理、电化学检测、电化学生物传感器领域。本发明结构合理、电催化活性高、电流效率高。
Description
技术领域
本发明公开了一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用。
背景技术
金刚石是一种具有独特物理化学性能的材料,不易与酸碱盐发生反应,并且具有良好的化学稳定性。近年来,研究学者将其应用于电化学降解有机污水等领域,发现金刚石电极电化学性质优异,具有很宽的电势窗口和极低的背景电流。通过硼掺杂可使金刚石变为半导体或具有金属性质的导体,从而为其在电极领域的应用奠定基础。与传统电极相比,掺硼金刚石电极(BDD)薄膜电极具有窗口宽、背景电流小、电化学稳定性好、机械性能好、耐腐蚀性强、导电性好等诸多优势,在电化学氧化处理污水领域有着很好的前景。
目前,研究人员对BDD电极的研究大多集中在平板基体的BDD电极上,如将金刚石薄膜沉积在Si、Nb、Ti、W等平板基体上。平板基体属于二维基体,真实电极面积与表观电极面积相近,若能将金刚石薄膜沉积在具有一定孔洞的三维基体上,与相同表观面积的平板基体相比,势必将提高金刚石薄膜的真实面积。
相比粉末冶金烧结态的多孔电极材料,泡沫电极材料具有较高的孔隙率,可高达99%,更大的比面积,且通过控制泡沫电极制备的原料和工艺,可以得到三维方向均匀一致、性能稳定的泡沫电极材料,并且通过控制泡沫基体尺寸很容易实现电极材料的尺寸、孔数、厚度等参数。同时,由于其发达的空间结构,使其在保持一定强度的情况下,极大地增加了电极材料的比表面积,提高了电极的活性。通过控制制备泡沫电极的工艺,可以达到控制电极材料的组成和结构的目的,最终实现高性能电极性能的各项要求。显然,这类材料具有大的电化学反应界面,在电化学电极材料方面具有较大的应用前景。
近几年来,纳米材料因其优异的性能越来越多的被用于传感器修饰电极的制作中。利用纳米材料修饰后的工作电极,由于表面积变大导致电流响应强度也随之增大。石墨烯纳米材料因合成简单、成本低、形貌可控、生物相容性和导电能性好等优点逐渐发展成为一类重要的电极修饰材料。碳纳米管比表面积大,结晶度好,导电性好,也是一种理想的电极修饰材料。
发明内容
本发明的目的在于克服现有技术之不足而提供一种结构合理、电催化活性高、电流效率高的铌基硼掺杂金刚石泡沫电极及其制备方法与应用。
本发明一种铌基硼掺杂金刚石泡沫电极,所述电极是由泡沫骨架表面设置一层金属铌,或在泡沫骨架表面设置一层改性层后,再在改性层表面设置一层金属铌构成的电极基体,再在电极基体表面设置硼掺杂金刚石层或硼掺杂金刚石层复合层构成。
本发明一种铌基硼掺杂金刚石泡沫电极,所述泡沫骨架选自海绵、泡沫金属或合金、泡沫有机物、泡沫非金属无机物中的一种。
本发明一种铌基硼掺杂金刚石泡沫电极,泡沫骨架基体孔径为0.01~10mm,开孔率20%~99%,孔洞均匀分布或随机分布;泡沫基体为二维平面片状结构或三维立体结构;金属铌沉积层厚度为5μm-3mm。
本发明一种铌基硼掺杂金刚石泡沫电极,所述泡沫金属或合金选自泡沫镍、泡沫铜、泡沫钛、泡沫钴、泡沫钨、泡沫钼、泡沫铬、泡沫铁镍、泡沫铝中的一种;所述泡沫非金属无机物选自泡沫A12O3、泡沫ZrO2、泡沫SiC、泡沫Si3N4、泡沫BN、泡沫B4C、泡沫AlN、泡沫WC、泡沫Cr7C3中的一种;所述泡沫有机物选自聚氨酯(PUR)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚乙烯(PE)、酚醛树脂(PF)等中的一种。
本发明一种铌基硼掺杂金刚石泡沫电极,改性层材料选自钛、镍、钨、钼、铬、钽、铂、银、硅中的一种或多种的复合。
本发明一种铌基硼掺杂金刚石泡沫电极,所述掺硼金刚石复合层选自石墨烯包覆掺硼金刚石、碳纳米管包覆掺硼金刚石、碳纳米管/石墨烯包覆掺硼金刚石中的一种。
本发明一种铌基硼掺杂金刚石泡沫电极的应用,是将由泡沫骨架表面设置一层金属铌,或在泡沫骨架表面设置一层改性层后,再在改性层表面设置一层金属铌构成的电极基体,再在电极基体表面设置硼掺杂金刚石层或硼掺杂金刚石层复合层构成电极应用于电化学合成、电化学污水净化处理、电化学检测、电化学生物传感器领域;
本发明一种铌基硼掺杂金刚石泡沫电极的应用,在进行污水处理时,利用具有空间网络互穿多孔结构的铌基硼掺杂金刚石泡沫电化学氧化与臭氧氧化、光催化降解、生物氧化技术耦合使用,衍生出更高效节能的处理方法。
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,包括下述步骤:
第一步,泡沫骨架表面金属铌层采用磁控溅射法、化学电沉积法中的一种方法制备;或采用化学镀、电镀、静电吸附法、电泳法中的一种方法在泡沫有机物骨架或泡沫无机物骨架表面设置改性层后,再在改性层表面设置金属铌层,得到电极基体;
第二步,通过化学气相沉积方法在电极基体表面均匀沉积掺硼金刚石层或硼掺杂金刚石层复合层。
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,第一步中,
磁控溅射法在泡沫骨架表面设置金属铌层工艺参数为:
采用直流磁控溅射系统,工作气体为99.99%高纯氩气,靶材为纯度为99.95%的金属铌靶,工作气压为0.6Pa,溅射功率为120-200W,靶材与样品距离为50-100mm,沉积速率为10-500nm/min,沉积时间为5min-1000min;或,
化学电沉积沉积金属铌层工艺参数为:
化学电沉积金属铌层是以泡沫骨架为阴极,质量百分含量达到99.9%的纯铌板为阳极,用砂纸打磨,机械抛光至光亮镜面,丙酮清洗1-10min,稀盐酸活化1-10min,去离子水冲洗,再用丙酮脱脂,风干;电解质由离子液体氯化胆碱与乙二醇按摩尔比1∶2配置,采用恒电流沉积,恒定电流密度为0.10~0.05mA/cm2,电沉积温度140~150℃,沉积时间为5-300min,铌镀层厚度为1-50μm;
对于泡沫金属骨架,先采用1vol.%HCl清洗去除表面金属氧化物,然后用丙酮清洗去除表面油污后,接入电沉积系统阴极;
对于泡沫有机物或泡沫无机物,采用化学镀、电镀、静电吸附法、电泳法中的一种方法在其表面沉积一层改性层后,接入电沉积系统阴极。
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,第二步中,
沉积硼掺杂金刚石层工艺参数为:
将第一步得到的电极基体置于化学气相沉积炉中,或对电极基体表面种植籽晶后再置于化学气相沉积炉中,含碳气体占炉内全部气体质量流量百分比为0.5-10.0%;生长温度为600-1000℃,生长气压103-104Pa,得到表面设置硼掺杂金刚石层的电极基体;硼源采用固体、液体、气体硼源中的一种,硼源为气体硼源时,含硼气体占炉内全部气体质量流量比为0.1-1%;
沉积石墨烯包覆硼掺杂金刚石复合层:
将已沉积硼掺杂金刚石层的电极基体置于化学气相沉积炉中,直接沉积石墨烯;沉积参数为:含碳气体占炉内全部气体质量流量百分比为5-80%;生长温度为400-1200℃,生长气压5-105Pa;等离子电流密度0-50mA/cm2;沉积区域中磁场强度为100高斯至30特斯拉;或
在掺硼金刚石表面采用电镀、化学镀、蒸镀、磁控溅射、化学气相沉积、物理气相沉积中的一种方法在掺硼金刚石表面沉积镍、铜、钴中的一种或复合改性层,再沉积石墨烯,得到表面为石墨烯包覆硼掺杂金刚石的泡沫骨架;
沉积碳纳米管包覆硼掺杂金刚石复合层:
将已沉积硼掺杂金刚石层的电极基体置于化学气相沉积炉中,直接沉积碳纳米管;沉积参数为:含碳气体占炉内全部气体质量流量百分比为5-50%;生长温度为400-1300℃,生长气压103-105Pa;等离子电流密度0-30mA/cm2;沉积区域中磁场强度为100高斯至30特斯拉;或
在掺硼金刚石表面采用电镀、化学镀、蒸镀、磁控溅射、化学气相沉积、物理气相沉积中的一种方法在沉积表面沉积镍、铜、钴中的一种或复合改性层,再沉积碳纳米管,得到表面为碳纳米管包覆硼掺杂金刚石的泡沫骨架;
沉积碳纳米管/石墨烯包覆掺硼掺杂金刚石复合层:
将已沉积硼掺杂金刚石层的电极基体置于化学气相沉积炉中,直接沉积碳纳米管、石墨烯复合体;碳纳米管林沉积参数为:含碳气体占炉内全部气体质量流量百分比为5-50%;生长温度为400-1300℃,生长气压103-105Pa;等离子电流密度0-30mA/cm2;沉积区域中磁场强度为100高斯至30特斯拉;石墨烯墙沉积参数为:含碳气体占炉内全部气体质量流量百分比为5-80%;生长温度为400-1200℃,生长气压5-105Pa;等离子电流密度0-50mA/cm2;沉积区域中磁场强度为100高斯至30特斯拉;或
采用电镀、化学镀、蒸镀、磁控溅射、化学气相沉积、物理气相沉积中的一种方法在掺硼金刚石表面沉积镍、铜、钴中的一种或复合改性层;再沉积碳纳米管、石墨烯,得到表面为碳纳米管/石墨烯包覆掺硼掺杂金刚石的泡沫骨架。
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,将已沉积硼掺杂金刚石层的电极基体清洗、烘干后置于化学气相沉积炉中,沉积石墨烯、碳纳米管、碳纳米管/石墨烯时,在泡沫基体上施加等离子辅助生长,同时在泡沫基体底部添加磁场,将等离子体约束在泡沫基体近表面,强化等离子对泡沫基体表面的轰击,使石墨烯或/和碳纳米管垂直于金刚石表面生长,形成碳纳米管林或石墨烯墙,得到表面均布石墨烯墙包覆金刚石、碳纳米管林包覆金刚石或碳纳米管林/石墨烯墙包覆金刚石的三维空间网络多孔电极。
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,对电极基体表面种植籽晶的方法是:
将电极基体置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,纳米晶和微米晶金刚石颗粒吸附在电极基体网孔表面;或
配置含有纳米或微米金刚石的水溶液或有机溶液,采用电泳沉积法使纳米晶和微米晶金刚石颗粒吸附在电极基体网孔表面。
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,硼掺杂金刚石层厚度或硼掺杂金刚石层复合层厚度为0.5μm~500μm,掺硼金刚石层中硼含量为100~3000ppm。
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,所述铌基硼掺杂金刚石泡沫电极兼具微米级掺硼金刚石及纳米级掺硼金刚石形貌,从泡沫骨架外层到内层呈现梯度形貌分布,具体为在泡沫骨架外层呈微米级掺硼金刚石形貌;泡沫骨架内层呈纳米级掺硼金刚石形貌;晶粒尺寸为1nm-300μm。
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,对铌基硼掺杂金刚石泡沫电极表面进行无相变刻蚀,进一步提高所述掺硼金刚石比表面积;所述无相变刻蚀采用活性H原子或高能激光进行,使金刚石表面均匀分布大量微孔;
本发明一种铌基硼掺杂金刚石泡沫电极的制备方法,针对应用于生物传感器的铌基硼掺杂金刚石泡沫电极,对其表面进行金属热催化刻蚀处理,热催化刻蚀处理金属选自镍、铜、金、银、钴、铼中的一种,热催化刻蚀处理金属厚度为1nm-900nm,热催化刻蚀温度700-1000℃,时间1-180分钟。
本发明提出利用掺硼金刚石、石墨烯和碳纳米管优异的电化学性能和泡沫电极材料较高的孔隙率和比表面积,来制备出电催化活性高、使用效率高的BDD电极。相对于传统的平板电极或烧结态的多孔电极来说,本发明网络互穿硼掺杂金刚石泡沫电极可以提供更大的比表面积,用较低的电流密度提供较大的电流强度,能够极大地改善传质过程,较大地提高电流效率;同时通过表面修饰石墨烯或/和碳纳米管可以进一步增加电极的比表面积,增强电极的导电性和电催化性能,进而提高电极的污水处理效率。
本发明既结合了金刚石薄膜和金属Nb在电化学方面应用的优势,又发挥了网络互穿结构在流体扩散与对流方面的优势,该电极可广泛应用于强氧化剂电化学合成、电化学污水处理、电化学检测、电化学生物传感器等领域。
本发明由于采用铌基硼掺杂金刚石泡沫电极由泡沫骨架/掺硼金刚石层组成或由泡沫骨架/改性层/掺硼金刚石层组成,所述掺硼金刚石层通过化学气相沉积方法均匀沉积在泡沫骨架表面,所述掺硼金刚石层选自掺硼金刚石、石墨烯包覆掺硼金刚石、碳纳米管包覆掺硼金刚石、碳纳米管/石墨烯包覆掺硼金刚石中的一种。所述泡沫骨架选自泡沫有机物、泡沫金属及合金、泡沫无机非金属材料中的一种。相对于传统的平板电极或烧结态的多孔电极来说,本发明的铌基硼掺杂金刚石泡沫电极为网络互穿通孔,孔洞均匀分布,孔洞尺寸在0.01~10mm大范围内任意可调,可以提供更大的比表面积,用较低的电流密度提供较大的电流强度;同时,可实现流体在网络互穿孔洞间任意流动,能够极大地改善传质过程,较大地提高电流效率;此外,通过表面修饰石墨烯或/和碳纳米管可以进一步增加电极的比表面积,增强电极的导电性和电催化性能,进而提高电极的污水处理效率。本电极既结合了硼掺杂金刚石和金属铌在电化学性能上的优势,又发挥了网络互穿结构在流体扩散与对流方面的优势,该电极可广泛应用于电化学污水净化处理、电化学生物传感器、强氧化剂电化学合成、电化学检测等领域。
本发明的优势:
(1)相对其他基体,金属铌是一种具有重要战略意义的功能材料,其熔点高、冷加工性能好、表面氧化膜介电常数大,同时,化学稳定性高,抗液态金属及酸碱腐蚀能力强,在电学和电化学方面具有很大的的优势,是硼掺杂金刚石电极最佳基体材料。
(2)相对于其他电极材料,硼掺杂金刚石电极具有很宽的电势窗口和极低的背景电流,基本可以满足各类有机物的电化学降解。另外硼掺杂金刚石电极具有窗口宽、背景电流小、电化学稳定性好、机械性能好、耐腐蚀性强、导电性好等诸多优势,在强氧化剂电化学合成、电化学污水处理、电化学检测、电化学生物传感器等领域有着很好的前景;
(3)相对于传统的平板电极或以粉末冶金烧结态多孔金属为基体表面制备的BDD电极来说,本发明硼掺杂金刚石泡沫电极为网络互穿通孔,孔洞均匀分布,孔洞尺寸在0.01~10mm大范围任意可调,可以提供更大的比表面积,用较低的电流密度提供较大的电流强度;同时,可实现流体在网络互穿通孔间任意流动,能够极大地改善传质过程,较大地提高电流效率;
(4)本发明同时通过表面修饰石墨烯或/和碳纳米管可以进一步增加电极的比表面积,增强电极的导电性和电催化性能,进而提高电极的污水处理效率。此外,此类电极也可用于生物传感器等领域;
(5)本发明提出的硼掺杂金刚石泡沫电极的应用,可利用该空间网络互穿多孔结构与臭氧、光催化等技术耦合使用,比如在掺硼金刚石表面复合光降解催化剂颗粒,可同时进行电化学降解和光催化降解,节省空间的同时可高效节能的处理有机污水。
因此,关于空间网络互穿多孔结构硼掺杂金刚石电极的研究是非常有意义的,也可以预测在不久的将来该电极将会发挥极其重要的应用价值。
综上所述,本发明结构合理、电催化活性高、电流效率高;本电极既结合了硼掺杂金刚石和金属铌在电化学性能上的优势,又发挥了网络互穿结构在流体扩散与对流方面的优势,该电极可广泛应用于电化学污水净化处理、电化学生物传感器、强氧化剂电化学合成、电化学检测等领域。
附图说明
附图1为本发明处理有机污水所用装置结构示意图。
图中:1---稳压直流电源,2---不锈钢电极,3---泡沫基体掺硼金刚石电极,4---电解槽,5---蠕动泵,6---烧杯。
具体实施方式
实施例1:
海绵+磁控溅射Nb+烧掉海绵获得泡沫Nb+超声种植籽晶+静电吸附+BDD
(1)使用磁控溅射在海绵泡沫基体表面沉积金属铌泡沫骨架。海绵基体孔径为0.1mm,开孔率50%,孔洞均匀分布或随机分布,海绵基体为三维立体结构。沉积完成后高温烧掉海绵,得到泡沫铌。
(2)将步骤(1)所得泡沫铌衬底(尺寸为3cm×2cm×0.3cm)置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(3)将步骤(2)所得泡沫铌衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度850℃,热丝温度2200℃,沉积压强3KPa,沉积时间6小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为10μm,往芯部依次递减,芯部晶粒大小约为300nm。
(4)将步骤(3)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性橙X-GN。处理有机污水所用装置参见说明书附图(1)。
(5)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为0.1mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率达到99%,基本降解完全。
实施例2:
海绵+磁控溅射Nb+超声种植籽晶+静电吸附+BDD
(1)使用磁控溅射在海绵泡沫基体表面沉积金属铌泡沫骨架。海绵基体孔径为0.1mm,开孔率50%,孔洞均匀分布或随机分布,海绵基体为三维立体结构。
(2)将步骤(1)所得泡沫铌衬底(尺寸为3cm×2cm×0.3cm)置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(3)将步骤(2)所得泡沫铌衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度850℃,热丝温度2200℃,沉积压强3KPa,沉积时间6小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为10μm,往芯部依次递减,芯部晶粒大小约为300nm。
(4)将步骤(3)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性橙X-GN。处理有机污水所用装置参见说明书附图(1)。
(5)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为0.1mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率达到97%,基本降解完全。
实施例3:
海绵+磁控溅射Ti+磁控溅射Nb+超声种植籽晶+静电吸附+BDD
(1)使用磁控溅射在海绵泡沫基体表面沉积金属钛泡沫骨架,再在钛表面原位磁控溅射金属铌。海绵基体孔径为0.1mm,开孔率80%,孔洞均匀分布或随机分布,海绵基体为三维立体结构。
(2)将步骤(1)所得泡沫金属衬底(尺寸为3cm×2cm×0.3cm)置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(3)将步骤(2)所得泡沫金属衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底8mm,基体温度800℃,热丝温度2200℃,沉积压强3KPa,沉积时间12小时,B2H6/CH4/H2体积流量比0.4:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为20μm,往芯部依次递减,芯部晶粒大小约为400nm。
(4)将步骤(3)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性蓝KN-R。处理有机污水所用装置参见说明书附图(1)。
(5)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为0.1mol/L,溶液PH为中性,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率达到93%,降解效果良好。
实施例4:
海绵+磁控溅射Ni+磁控溅射Nb+超声种植籽晶+BDD
(1)使用磁控溅射在海绵泡沫基体表面沉积金属镍泡沫骨架,再在镍表面原位磁控溅射金属铌。海绵基体孔径为0.05mm,开孔率50%,孔洞均匀分布或随机分布,海绵基体为二维平面片状结构。
(2)将步骤(1)所得泡沫金属衬底(尺寸为3cm×2cm×0.3cm)置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(3)将步骤(2)所得泡沫金属衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度800℃,热丝温度2200℃,沉积压强3.5KPa,沉积时间6小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为10μm,往芯部依次递减,芯部晶粒大小约为100nm。
(4)将步骤(3)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性蓝KN-R。处理有机污水所用装置参见说明书附图(1)。
(5)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为1mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率达到90%。
实施例5:
泡沫镍+磁控溅射Nb+超声种植籽晶+静电吸附+BDD
(1)使用磁控溅射在泡沫镍表面沉积金属铌泡沫骨架。骨架的孔隙率为80%,孔径为0.05mm。
(2)将步骤(1)所得泡沫金属泡沫(尺寸为3cm×2cm×0.3cm)置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(3)将步骤(2)所得泡沫金属衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度850℃,热丝温度2200℃,沉积压强3KPa,沉积时间12小时,B2H6/CH4/H2体积流量比0.4:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为20μm,往芯部依次递减,芯部晶粒大小约为200nm。
(4)将步骤(3)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性蓝KN-R。处理有机污水所用装置参见说明书附图(1)。
(5)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为0.1mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率达到99%,降解效果良好。
实施例6:
泡沫铜+磁控溅射Ti+磁控溅射Nb+超声种植籽晶+BDD
(1)使用磁控溅射在泡沫铜表面沉积一层金属钛,再原位磁控溅射一层金属铌。骨架的孔隙率为50%,孔径为0.1mm。
(2)将步骤(1)所得金属泡沫(尺寸为3cm×2cm×0.3cm)置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(3)将步骤(2)所得泡沫金属衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度850℃,热丝温度2200℃,沉积压强3KPa,沉积时间6小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为10μm,往芯部依次递减,芯部晶粒大小约为100nm。
(4)将步骤(3)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,槽内为垃圾渗滤液的浓缩液。处理有机污水所用装置参见说明书附图(1)。
(5)降解过程中电流密度为150mA/cm2,支持电解质为硫酸钠,浓度为0.1mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解三小时,垃圾渗滤液的的COD降解率达到95%。
实施例7:
泡沫铜+磁控溅射Nb+超声种植籽晶+BDD
(1)使用磁控溅射在泡沫铜表面沉积一层金属铌,得到金属铌泡沫骨架。骨架的孔隙率为90%,孔径为0.05mm。
(2)将步骤(1)所得金属泡沫(尺寸为3cm×2cm×0.3cm)置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(3)将步骤(2)所得泡沫金属衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度800℃,热丝温度2200℃,沉积压强3KPa,沉积时间6小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为10μm,往芯部依次递减,芯部晶粒大小约为100nm。
(4)将步骤(3)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,槽内为垃圾渗滤液的浓缩液。处理有机污水所用装置参见说明书附图(1)。
(5)降解过程中电流密度为150mA/cm2,支持电解质为硫酸钠,浓度为0.1mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解三小时,垃圾渗滤液的的COD降解率达到87%。
实施例8:
泡沫铜+磁控溅射Ti+超声种植籽晶+BDD
(1)使用磁控溅射在泡沫铜表面沉积一层金属钛,得到金属钛泡沫骨架。骨架的孔隙率为90%,孔径为0.05mm。
(2)将步骤(1)所得金属泡沫(尺寸为3cm×2cm×0.3cm)置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(3)将步骤(2)所得泡沫金属衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度800℃,热丝温度2200℃,沉积压强3KPa,沉积时间12小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为20μm,往芯部依次递减,芯部晶粒大小约为200nm。
(4)将步骤(3)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性橙X-GN。处理有机污水所用装置参见说明书附图(1)。
(5)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为0.05mol/L,使用硫酸调节溶液PH为11,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率达到85%.
实施例9:
泡沫铜+超声种植籽晶+BDD
(1)使用泡沫铜作为金属骨架,骨架的孔隙率为90%,孔径为0.05mm。将该金属泡沫置于于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(2)将步骤(1)所得泡沫金属衬底(尺寸为3cm×2cm×0.3cm)上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度850℃,热丝温度2200℃,沉积压强3KPa,沉积时间6小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为15μm,往芯部依次递减,芯部晶粒大小约为100nm。
(3)将步骤(2)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性橙X-GN。处理有机污水所用装置参见说明书附图(1)。
(4)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为0.05mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率达到80%。
实施例10:
烧结多孔Ti+超声种植籽晶+静电吸附+BDD
(1)使用烧结多孔钛作为金属骨架,骨架的孔隙率为40%。将该金属骨架置于于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(2)将步骤(1)所得泡沫金属衬底(尺寸为3cm×2cm×0.3cm)上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度800℃,热丝温度2200℃,沉积压强3KPa,沉积时间6小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为10μm,往芯部依次递减,芯部晶粒大小约为100nm。
(3)将步骤(2)制备好的掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性蓝KN-R。处理有机污水所用装置参见说明书附图(1)。
(4)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为0.05mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率为82%。
实施例11:
平面金属铌板+超声种植籽晶+BDD
(1)使用平面金属铌板作为电极基体(尺寸为3cm×2cm×0.3cm)。将平面金属铌板用丙酮清洗去油并用乙醇超声清洗后,置于于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,使其表面吸附有纳米晶和微米晶金刚石颗粒。
(2)在步骤(1)所得平面金属铌板衬底上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度850℃,热丝温度2200℃,沉积压强3KPa,沉积时间6小时,B2H6/CH4/H2体积流量比0.2:1:99;得平面铌板掺硼金刚石电极。电极表层晶粒大小约为10μm。
(3)将步骤(2)制备好的平面掺硼金刚石电极进行封装,使用不锈钢电极作为负极,连接好电源后容量为1L的电解槽内,染料为浓度100mg/L的活性橙X-GN。处理有机污水所用装置参见说明书附图(1)。
(4)降解过程中电流密度为100mA/cm2,支持电解质为硫酸钠,浓度为0.05mol/L,使用硫酸调节溶液PH为3,蠕动泵转速设为6L/h。降解两小时,染料的色度移除率达到75%。
实施例12:
(1)使用泡沫铌作为金属骨架,骨架的孔隙率为90%,孔径为0.05mm。将该金属泡沫置于于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,得到网孔表面吸附有纳米晶和微米晶金刚石颗粒的泡沫骨架衬。
(2)将步骤(1)所得泡沫铌衬底(尺寸为3cm×2cm×0.3cm)上采用热丝化学气相沉积金刚石膜,沉积工艺参数:热丝距离衬底6mm,基体温度850℃,热丝温度2200℃,沉积压强3KPa,沉积时间10小时,B2H6/CH4/H2体积流量比0.2:1:99;得三维空间网络多孔掺硼金刚石电极。电极表层晶粒大小约为20μm,往芯部依次递减,芯部晶粒大小约为400nm。
(3)利用纯BDD电极电化学检测葡萄糖,时间电流法测试结果表明纯BDD电极检测灵敏度极低(约为10μAmM-1cm-2),检测限为0.5μM。
(4)利用泡沫铜复合BDD电极电化学检测葡萄糖,时间电流测试结果表面泡沫铜复合BDD电极灵敏度高达1642.20μAmM-1cm-2,且检测限为0.1μM,电极可检测葡萄糖浓度范围为10μM-25.5mM,且该复合电极的稳定性高,在长达一个月的连续测试中,电流响应值仍有初始电极的90.6%。
Claims (13)
1.一种铌基硼掺杂金刚石泡沫电极,所述电极是由泡沫金属骨架表面设置一层金属铌,或在泡沫骨架表面设置一层改性层后,再在改性层表面设置一层金属铌构成的电极基体,再在电极基体表面设置硼掺杂金刚石层或硼掺杂金刚石层复合层构成;
其制备方法,包括下述步骤:
第一步,泡沫金属骨架表面金属铌层采用化学电沉积法制备;或采用化学镀、电镀、静电吸附法、电泳法中的一种方法在泡沫有机物骨架或泡沫无机物骨架表面设置改性层后,再在改性层表面设置金属铌层,得到电极基体;
化学电沉积沉积金属铌层工艺参数为:
化学电沉积金属铌层是以泡沫骨架为阴极,质量百分含量达到99.9%的纯铌板为阳极,用砂纸打磨,机械抛光至光亮镜面,丙酮清洗1-10min,稀盐酸活化1-10min,去离子水冲洗,再用丙酮脱脂,风干;电解质由离子液体氯化胆碱与乙二醇按摩尔比1∶2配置,采用恒电流沉积,恒定电流密度为0.10~0.05 mA/cm2,电沉积温度140~150 ℃,沉积时间为5-300min,铌镀层厚度为1 -50μm;
对于泡沫金属骨架,先采用1 vol.% HCl清洗去除表面金属氧化物,然后用丙酮清洗去除表面油污后,接入电沉积系统阴极;
对于泡沫有机物骨架或泡沫无机物骨架,采用化学镀、电镀、静电吸附法、电泳法中的一种方法在其表面沉积一层改性层后,接入电沉积系统阴极;
第二步,通过化学气相沉积方法在电极基体表面均匀沉积掺硼金刚石层或硼掺杂金刚石层复合层。
2.根据权利要求1所述的一种铌基硼掺杂金刚石泡沫电极,其特征在于:所述泡沫骨架选自海绵、泡沫金属或合金、泡沫有机物、泡沫非金属无机物中的一种。
3.根据权利要求2所述的一种铌基硼掺杂金刚石泡沫电极,其特征在于:泡沫骨架基体孔径为0.01~10mm,开孔率20%~99%,孔洞均匀分布或随机分布;泡沫骨架基体为二维平面片状结构或三维立体结构;金属铌沉积层厚度为5μm-3mm。
4.根据权利要求3所述的一种铌基硼掺杂金刚石泡沫电极,其特征在于:所述泡沫金属或合金选自泡沫镍、泡沫铜、泡沫钛、泡沫钴、泡沫钨、泡沫钼、泡沫铬、泡沫铁镍、泡沫铝中的一种;所述泡沫非金属无机物选自泡沫A12O3、泡沫ZrO2、泡沫SiC、泡沫Si3N4、泡沫BN、泡沫B4C、泡沫AlN、泡沫WC、泡沫Cr7C3中的一种;所述泡沫有机物选自聚氨酯( PUR)、聚苯乙烯(PS )、聚氯乙烯( PVC)、聚乙烯( PE)、酚醛树脂( PF) 等中的一种。
5.根据权利要求1所述的一种铌基硼掺杂金刚石泡沫电极,其特征在于:改性层材料选自钛、镍、钨、钼、铬、钽、铂、银、硅中的一种或多种的复合。
6.根据权利要求1-5任意一项所述的铌基硼掺杂金刚石泡沫电极,其特征在于:所述掺硼金刚石复合层选自石墨烯包覆掺硼金刚石、碳纳米管包覆掺硼金刚石、碳纳米管/石墨烯包覆掺硼金刚石中的一种。
7.根据权利要求1所述的一种铌基硼掺杂金刚石泡沫电极的制备方法,其特征在于:第二步中,
沉积硼掺杂金刚石层工艺参数为:
将第一步得到的电极基体置于化学气相沉积炉中,或对电极基体表面种植籽晶后再置于化学气相沉积炉中,含碳气体占炉内全部气体质量流量百分比为0.5-10.0%;生长温度为600-1000℃,生长气压103-104Pa,得到表面设置硼掺杂金刚石层的电极基体;硼源采用固体、液体、气体硼源中的一种;
沉积石墨烯包覆硼掺杂金刚石复合层:
将已沉积硼掺杂金刚石层的电极基体置于化学气相沉积炉中,直接沉积石墨烯;沉积参数为:含碳气体占炉内全部气体质量流量百分比为5-80%;生长温度为400-1200℃,生长气压5-105Pa;等离子电流密度0-50mA/cm2;沉积区域中磁场强度为1× 102高斯至3× 105高斯;或
在掺硼金刚石表面采用电镀、化学镀、化学气相沉积、物理气相沉积中的一种方法在掺硼金刚石表面沉积镍、铜、钴中的一种或复合改性层,再沉积石墨烯,得到表面为石墨烯包覆硼掺杂金刚石的泡沫骨架;
沉积碳纳米管包覆硼掺杂金刚石复合层:
将已沉积硼掺杂金刚石层的电极基体置于化学气相沉积炉中,直接沉积碳纳米管;沉积参数为:含碳气体占炉内全部气体质量流量百分比为5-50%;生长温度为400-1300℃,生长气压103-105Pa;等离子电流密度0-30mA/cm2;沉积区域中磁场强度为1× 102高斯至3×105高斯;或
在掺硼金刚石表面采用电镀、化学镀、化学气相沉积、物理气相沉积中的一种方法在沉积表面沉积镍、铜、钴中的一种或复合改性层,再沉积碳纳米管,得到表面为碳纳米管包覆硼掺杂金刚石的泡沫骨架;
沉积碳纳米管/石墨烯包覆掺硼掺杂金刚石复合层:
将已沉积硼掺杂金刚石层的电极基体置于化学气相沉积炉中,直接沉积碳纳米管、石墨烯复合体;碳纳米管林沉积参数为:含碳气体占炉内全部气体质量流量百分比为5-50%;生长温度为400-1300℃,生长气压103-105Pa;等离子电流密度0-30mA/cm2;沉积区域中磁场强度为1× 102高斯至3× 105高斯;石墨烯墙沉积参数为:含碳气体占炉内全部气体质量流量百分比为5-80%;生长温度为400-1200℃,生长气压5-105Pa;等离子电流密度0-50mA/cm2;沉积区域中磁场强度为1× 102高斯至3× 105高斯;或
采用电镀、化学镀、化学气相沉积、物理气相沉积中的一种方法在掺硼金刚石表面沉积镍、铜、钴中的一种或复合改性层;再沉积碳纳米管、石墨烯,得到表面为碳纳米管/石墨烯包覆掺硼掺杂金刚石的泡沫骨架。
8.根据权利要求7所述的一种铌基硼掺杂金刚石泡沫电极的制备方法,其特征在于:将已沉积硼掺杂金刚石层的电极基体清洗、烘干后置于化学气相沉积炉中,沉积石墨烯、碳纳米管、碳纳米管/石墨烯时,在泡沫基体上施加等离子辅助生长,同时在泡沫基体底部添加磁场,将等离子体约束在泡沫基体近表面,强化等离子对泡沫基体表面的轰击,使石墨烯或/和碳纳米管垂直于金刚石表面生长,形成碳纳米管林或石墨烯墙,得到表面均布石墨烯墙包覆金刚石、碳纳米管林包覆金刚石或碳纳米管林/石墨烯墙包覆金刚石的三维空间网络多孔电极。
9.根据权利要求7所述的一种铌基硼掺杂金刚石泡沫电极的制备方法,其特征在于:对电极基体表面种植籽晶的方法是:
将电极基体置于纳米晶和微米晶金刚石混合颗粒的悬浊液中,于超声波中震荡、分散均匀,纳米晶和微米晶金刚石颗粒吸附在电极基体网孔表面;或
配置含有纳米或微米金刚石的水溶液或有机溶液,采用电泳沉积法使纳米晶和微米晶金刚石颗粒吸附在电极基体网孔表面。
10.根据权利要求7所述的一种铌基硼掺杂金刚石泡沫电极的制备方法,其特征在于:硼掺杂金刚石层厚度或硼掺杂金刚石层复合层厚度为0.5μm~500μm,掺硼金刚石层中硼含量为100~3000ppm。
11.根据权利要求7所述的一种铌基硼掺杂金刚石泡沫电极的制备方法,其特征在于:所述铌基硼掺杂金刚石泡沫电极兼具微米级掺硼金刚石及纳米级掺硼金刚石形貌,从泡沫骨架外层到内层呈现梯度形貌分布,具体为在泡沫骨架外层呈微米级掺硼金刚石形貌;泡沫骨架内层呈纳米级掺硼金刚石形貌;晶粒尺寸为1nm-300μm。
12.根据权利要求11所述的一种铌基硼掺杂金刚石泡沫电极的制备方法,其特征在于:对铌基硼掺杂金刚石泡沫电极表面进行无相变刻蚀,进一步提高所述掺硼金刚石比表面积;所述无相变刻蚀采用活性H原子或高能激光进行,使金刚石表面均匀分布大量微孔。
13.根据权利要求11所述的一种铌基硼掺杂金刚石泡沫电极的制备方法,其特征在于:针对应用于生物传感器的铌基硼掺杂金刚石泡沫电极,对其表面进行金属热催化刻蚀处理,热催化刻蚀处理金属选自镍、铜、金、银、钴、铼中的一种,热催化刻蚀处理金属厚度为1nm-900nm,热催化刻蚀温度700-1000℃,时间1-180分钟。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610920318.0A CN106637111B (zh) | 2016-10-21 | 2016-10-21 | 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用 |
PCT/CN2017/074397 WO2017161993A1 (zh) | 2016-03-21 | 2017-02-22 | 一种泡沫骨架增强复合材料及制备方法与应用 |
US16/342,976 US11603594B2 (en) | 2016-10-21 | 2017-02-22 | Boron doped diamond electrode and preparation method and applications thereof |
PCT/CN2017/074374 WO2018072367A1 (zh) | 2016-10-21 | 2017-02-22 | 一种硼掺杂金刚石电极及其制备方法与应用 |
US16/086,608 US10995192B2 (en) | 2016-03-21 | 2017-02-22 | Composite material reinforced by foamed skeleton and preparation method and uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610920318.0A CN106637111B (zh) | 2016-10-21 | 2016-10-21 | 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106637111A CN106637111A (zh) | 2017-05-10 |
CN106637111B true CN106637111B (zh) | 2019-02-01 |
Family
ID=58856040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610920318.0A Active CN106637111B (zh) | 2016-03-21 | 2016-10-21 | 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106637111B (zh) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI662162B (zh) * | 2016-11-15 | 2019-06-11 | 財團法人工業技術研究院 | 一種電鍍方法及其系統 |
CN109019563B (zh) * | 2017-06-09 | 2021-02-26 | 清华大学 | 多孔金属复合结构 |
CN108315711B (zh) * | 2018-02-26 | 2020-02-07 | 南京航空航天大学 | 一种提高掺硼金刚石电极膜基结合性能的纳秒激光基体预处理方法 |
CN109030596A (zh) * | 2018-05-31 | 2018-12-18 | 武汉工程大学 | 一种柱状硼掺杂金刚石电极传感器的制备方法及其应用 |
CN109444202A (zh) * | 2018-09-13 | 2019-03-08 | 江苏大学 | 一种利用激光制备石墨烯的实验检测装置与方法 |
CN109518159B (zh) * | 2018-11-21 | 2020-12-04 | 中国科学院大学 | 一种过渡族金属元素与氮共掺杂生长金刚石的方法 |
CN109518305A (zh) * | 2018-11-26 | 2019-03-26 | 华侨大学 | 一种金刚石与碳纳米管纤维复合材料的制备方法 |
CN109402710A (zh) * | 2018-12-21 | 2019-03-01 | 郑州元素工具技术有限公司 | 一种裸金刚石线的生产方法 |
CN110156120B (zh) * | 2019-06-26 | 2023-04-25 | 中南大学 | 污水处理装置及处理方法 |
CN110560050A (zh) * | 2019-08-22 | 2019-12-13 | 浙江工业大学 | 硼掺杂银纳米海绵状电化学合成氨催化剂及其制备方法 |
CN110773109A (zh) * | 2019-11-01 | 2020-02-11 | 成都理工大学 | 一种含氧氮化硼纳米花的制备方法 |
CN111005010B (zh) * | 2019-12-18 | 2021-05-25 | 昆明理工大学 | 一种纳米金刚石金属化薄膜的制备方法、产品及应用 |
CN111115762B (zh) * | 2019-12-25 | 2022-06-03 | 河南省功能金刚石研究院有限公司 | 一种泡沫镍电极及其制备方法 |
CN111591953B (zh) * | 2020-05-07 | 2022-08-05 | 南京航空航天大学 | 针状微电极及其制备方法 |
CN111593316B (zh) * | 2020-05-11 | 2022-06-21 | 南京岱蒙特科技有限公司 | 一种高比表面积超亲水的梯度硼掺杂金刚石电极及其制备方法和应用 |
CN111471978B (zh) * | 2020-05-11 | 2023-02-21 | 中南大学 | 一种高体量金刚石增强金属基复合材料及其制备方法和应用 |
CN111485223B (zh) * | 2020-05-11 | 2022-05-24 | 南京岱蒙特科技有限公司 | 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用 |
CN111825271B (zh) * | 2020-05-11 | 2023-05-02 | 南京岱蒙特科技有限公司 | 一种太阳能电-生物节能水处理系统和处理水的方法 |
CN111778506B (zh) * | 2020-05-11 | 2023-10-03 | 中南大学 | 一种梯度硼掺杂金刚石增强金属基复合材料及其制备方法和应用 |
CN111675417B (zh) * | 2020-05-11 | 2022-10-18 | 江苏净钻环保科技有限公司 | 一种磁性吸附辅助光电催化氧化水处理系统和处理水的方法 |
CN111646633B (zh) * | 2020-05-11 | 2022-11-04 | 南京岱蒙特科技有限公司 | 一种高效节能三维电极有机水处理系统及其处理水的方法 |
CN111962118B (zh) * | 2020-07-09 | 2023-02-17 | 中南大学 | 一种高性能的电镀金刚石工具及其制备方法和应用 |
CN112607831B (zh) * | 2020-12-17 | 2022-12-23 | 江苏羟源环能科技有限公司 | 一种活性元素均匀掺杂型薄膜电极及其制备方法 |
CN112897646B (zh) * | 2021-01-19 | 2022-07-01 | 山东欣远新材料科技有限公司 | 一种掺硼金刚石薄膜电极泡沫金属基体的制备方法 |
CN112981365B (zh) * | 2021-04-20 | 2021-08-20 | 北京科技大学 | 一种网笼多层结构硼掺杂金刚石电极的制备方法 |
CN113881929B (zh) * | 2021-09-15 | 2024-04-02 | 湖南新锋先进材料科技有限公司 | 一种双面结构的金刚石-石墨烯薄膜及其制备方法和应用 |
CN113897675B (zh) * | 2021-09-15 | 2023-04-11 | 湖南新锋先进材料科技有限公司 | 一种掺杂金刚石颗粒及其制备方法与应用 |
CN114101660B (zh) * | 2021-09-22 | 2024-03-22 | 湖南新锋先进材料科技有限公司 | 一种核壳结构的金刚石颗粒及其制备方法和应用 |
CN115404459B (zh) * | 2022-09-07 | 2023-11-21 | 湖南新锋科技有限公司 | 一种分布式掺硼金刚石/金属基复合材料及其制备方法和应用 |
CN117286364B (zh) * | 2023-11-24 | 2024-04-12 | 中铝科学技术研究院有限公司 | 一种三维网络结构石墨烯增强金属基复合材料及制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6180014B1 (en) * | 1999-12-10 | 2001-01-30 | Amir Salama | Device and method for treating water with ozone generated by water electrolysis |
CN2918400Y (zh) * | 2006-07-14 | 2007-07-04 | 吴金炉 | 一种电净水消毒器 |
CN102242374A (zh) * | 2011-06-30 | 2011-11-16 | 南京航空航天大学 | 钛基掺硼金刚石涂层电极的制备方法 |
CN105779804A (zh) * | 2016-03-21 | 2016-07-20 | 中南大学 | 一种泡沫骨架结构增强金属基复合材料及制备方法 |
-
2016
- 2016-10-21 CN CN201610920318.0A patent/CN106637111B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6180014B1 (en) * | 1999-12-10 | 2001-01-30 | Amir Salama | Device and method for treating water with ozone generated by water electrolysis |
CN2918400Y (zh) * | 2006-07-14 | 2007-07-04 | 吴金炉 | 一种电净水消毒器 |
CN102242374A (zh) * | 2011-06-30 | 2011-11-16 | 南京航空航天大学 | 钛基掺硼金刚石涂层电极的制备方法 |
CN105779804A (zh) * | 2016-03-21 | 2016-07-20 | 中南大学 | 一种泡沫骨架结构增强金属基复合材料及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106637111A (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106637111B (zh) | 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用 | |
US11603594B2 (en) | Boron doped diamond electrode and preparation method and applications thereof | |
CN106435518B (zh) | 一种高比表面积硼掺杂金刚石电极及其制备方法和应用 | |
Chang et al. | Conductivity modulation of 3D‐printed shellular electrodes through embedding nanocrystalline intermetallics into amorphous matrix for ultrahigh‐current oxygen evolution | |
Chen et al. | A fast electrodeposition method for fabrication of lanthanum superhydrophobic surface with hierarchical micro-nanostructures | |
CN105671515B (zh) | 一价金纳米粒子/三维石墨烯/泡沫镍复合结构的简易制备方法 | |
Flis-Kabulska et al. | Electrodeposits of nickel with reduced graphene oxide (Ni/rGO) and their enhanced electroactivity towards hydrogen evolution in water electrolysis | |
CN106563176A (zh) | 一种基于原子层沉积的氧化锌/碳纳米管纳米抗菌涂层的制备方法 | |
CN110407299A (zh) | 一种多孔硼氮镍共掺杂金刚石电极及其制备方法和应用 | |
Mohamed et al. | Facile and eco-friendly method for fabrication of superhydrophobic surface on copper metal | |
Cao et al. | Inherent superhydrophobicity of Sn/SnOx films prepared by surface self-passivation of electrodeposited porous dendritic Sn | |
Shen et al. | Broad spectrum anti-fouling, photocatalytic antibacterial and superamphiphobic coating fabricated by composite electrodeposition process | |
CN109537030B (zh) | 一种碳纳米颗粒溶液的制备方法及其在镍涂层中的应用 | |
Liu et al. | Efficient preparation of multifunctional superhydrophobic surfaces on Zr-based bulk metallic glass by electrochemical machining | |
Mahajan et al. | Carbon nanotube–nanocrystal heterostructures fabricated by electrophoretic deposition | |
JP4395506B2 (ja) | 電気分解を用いた銀ナノ粉末の製造方法 | |
Zhong et al. | Preparation of core-shell structured cobalt coated tungsten carbide composite powders by intermittent electrodeposition | |
Rashkov et al. | NiW/TiOx composite layers as cathode material for hydrogen evolution reaction | |
CN107119301A (zh) | Al/CuO纳米管铝热剂及其制备方法 | |
Sharifalhoseini et al. | Access to nanocrystalline, uniform, and fine-grained Ni-P coating with improved anticorrosive action through the growth of ZnO nanostructures before the plating process | |
Badrnezhad et al. | Study of the corrosion resistance properties of Ni–P and Ni–P–C nanocomposite coatings in 3.5 wt% NaCl solution | |
Behrouznejad et al. | High-performance/low-temperature-processed dye solar cell counter electrodes based on chromium substrates with cube-like morphology | |
Chung et al. | Templated fabrication of three-dimensional ordered macroporous Cu2O/Ni structure for glucose sensing | |
Tavallaie et al. | Enhanced oxygen evolution reaction of electrodeposited Functionally-Graded Ni-Cu-Fe coating | |
Flis-Kabulska et al. | Anodically treated Ni/reduced graphene oxide electrodeposits as effective low-cost electrocatalysts for hydrogen evolution in alkaline water electrolysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190815 Address after: 211500 Hengli Park, 339 Xiongzhou South Road, Longchi Street, Liuhe District, Nanjing City, Jiangsu Province, 222 buildings, 2 units, 302 rooms Patentee after: Nanjing Daimount Technology Co., Ltd. Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932 Patentee before: Central South University |
|
TR01 | Transfer of patent right |