CN109518159B - 一种过渡族金属元素与氮共掺杂生长金刚石的方法 - Google Patents

一种过渡族金属元素与氮共掺杂生长金刚石的方法 Download PDF

Info

Publication number
CN109518159B
CN109518159B CN201811393635.7A CN201811393635A CN109518159B CN 109518159 B CN109518159 B CN 109518159B CN 201811393635 A CN201811393635 A CN 201811393635A CN 109518159 B CN109518159 B CN 109518159B
Authority
CN
China
Prior art keywords
plasma
frequency
radio frequency
nitrogen
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811393635.7A
Other languages
English (en)
Other versions
CN109518159A (zh
Inventor
陈广超
李佳君
刘浩
李震睿
徐锴
陈正佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Original Assignee
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences filed Critical University of Chinese Academy of Sciences
Priority to CN201811393635.7A priority Critical patent/CN109518159B/zh
Publication of CN109518159A publication Critical patent/CN109518159A/zh
Application granted granted Critical
Publication of CN109518159B publication Critical patent/CN109518159B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Abstract

一种过渡族金属元素与氮共掺杂生长金刚石的方法,属于金刚石化学气相沉积技术领域。利用双频射频等离子体化学气相沉积设备进行制备,高频射频源频率范围为10MHz~30MHz,低频射频源频率范围为1MHz~8MHz,高频射频源与低频射频源的频率比为3.39。在气体供给中加入氨气或氮气,将过渡金属粉末或线材置于石墨坩埚中,反应气体为氩气,氢气,甲烷和氨气或氮气,在沉积过程中,通入氨气或氮气,并利用运动机构将坩埚移动到等离子体束流附近,过渡族金属元素原子挥发进入等离子体中,并与其中的氮元素混合,运送到衬底,实现共掺杂金刚石的生长。

Description

一种过渡族金属元素与氮共掺杂生长金刚石的方法
技术领域
本发明属于金刚石化学气相沉积技术领域,特别是提供了一种过渡族金属元素与氮共掺杂生长金刚石的方法,利用双频射频等离子体射流和运动机构进行过渡族金属与氮共掺杂的沉积方法,可应用于共掺杂金刚石的生长。
背景技术
科技发展对材料性能的要求越来越高,尤其是量子通讯和半导体领域,传统的硅基半导体材料已经不能满足。金刚石以其优异的性能在电子器件领域具有很大的应用潜力(Gracio J J等,Journal of Physics D Applied Physics,37(2010),374017)。为实现金刚石的电子器件方面的应用,掺杂技术是面临的首要问题。通过掺杂,金刚石可以实现不同的性能。目前研究比较多的是通过硼掺杂获得p型半导体,以此为基础制备金刚石电子器件,如肖特基二极管,金刚石场效应二极管等(Umezawa H等,Diamond and RelatedMaterials,2-3(2010),208-12.Pham T T等,Applied Physics Letters,17(2017),173503)。金刚石掺杂的另一个前景在于其色心应用。通过掺杂适当的杂质元素,可以获得不同特征波长金刚石色心结构,作为单光子源,在凝聚态物理、量子计算、量子通讯、量子传感等领域有着广泛而巨大的应用价值(Tallaire A等,Applied Physics Letters,14(2017),143101,Casola F等,Nature Reviews Materials,1(2018),17088)。目前金刚石掺杂的主要手段有两种,一种是离子注入,能够定点获得掺杂效果,但是该方法的高能粒子束对样品的损伤比较大。另一种方法为生长过程中的掺杂,通过在化学气相沉积过程中适当的加入目标元素,可以实现金刚石均匀可控的掺杂生长。目前的该方法的研究主要集中在氮、硅、硼、磷等非金属元素上,这些元素容易获得气态源,有利于掺杂的进行。现阶段,NV色心因发光稳定,相干时间长,获得相对方便等原因的研究最多,发展最迅速。(Taylor J M等,Nature Physics,4(2008,810)但是NV色心声子伴带强且宽,只有有4%的荧光效率贡献给零声子线,所以仍不是最理想的单光子源(Tamarat P等,Physical review letters,8(2006),083002)。研究人员在高温高压金刚石和天然金刚石中,发现了更多的发光中心,如CrV,NiSi,NE8等,极大的丰富了金刚石的单色光范围,为金刚石色心的应用提供了更多的可能(Aharonovich I等,Advanced Optical Materials,10(2015),911-928,)。
但是,过渡族金属难以获得理想的气态源,其与氮元素组合产生的色心也很难用离子注入的方法获得。而目前化学气相沉积方法进行制备的研究比较少,基本上是利用微波法沉积金刚石过程中金属放置在衬底上的热扩散进行,过程不可控(Wolfer M等,Physica Status Solidi,9(2010),2012-2015.)。为拓展掺杂金刚石的种类与应用,急需新的制备方法来实现过渡族金属与氮元素共掺杂金刚石的制备。
发明内容
本发明的目的在于提供一种过渡族金属元素与氮共掺杂生长金刚石的方法,利用双频射频等离子体化学气相沉积设备进行。在气体供给中加入氨气或氮气,将过渡金属粉末或线材置于石墨坩埚中,在沉积过程中,利用运动机构将坩埚移动到等离子体束流中,被等离子体加热,过渡族元素的原子挥发进入等离子体与其中的氮元素混合,随流场运送到衬底,实现共掺杂金刚石的生长。本发明为金刚石的共掺杂提供一条新的途径。
本发明是在双频射频等离子体化学气相沉积设备中进行的。高频射频源频率范围为10MHz~30MHz,低频射频源频率范围为1MHz~8MHz,高频射频源与低频射频源的频率比为3.39。反应气体为氩气,氢气,甲烷和氨气(或氮气),流量分别为2~5slm,1~3slm,10~600sccm,0.1~10sccm。气体经过等离子体发生器被激发成等离子体射流,吹入真空腔室。石墨坩埚位于等离子体射流的路径上,利用绝缘支架固定,通过步进电机实现上下移动。石墨坩埚直径10mm,厚度为20mm,深度为5mm。等离子体喷口距离石墨坩埚1~2cm,距离衬底3~5cm。将适量过渡族金属如镍、钼、铬等的粉末或者线材放置于石墨坩埚中,质量为0.01~1g,需要掺杂时,向等离子体中通入氨气或氮气,并通过步进电机将坩埚上升到等离子体射流附近,通过等离子体的加热和流场特性,过渡族金属元素原子挥发进入等离子体,并与其中的氮元素混合,到达衬底,实现金刚石的共掺杂生长。衬底使用单晶硅片或者单晶金刚石片。沉积腔背底真空为0.01~10Pa,沉积压强在5000~10000Pa之间,衬底温度为600~1200℃。
本发明的优点和积极效果
本发明提供了一种利用双频射频等离子体射流进行过渡族金属和氮元素共掺杂金刚石制备的新方法。通过运动机构可控的向等离子体中供给过渡族金属元素,利用双频射频等离子体射流的加热效应和流场特性进行元素输运,并与其中的氮元素混合,实现了过渡族金属钼,铬,镍等与氮元素的共掺杂生长金刚石。
附图说明
图1为设备结构示意图。1为高频射频线圈,2为双频射频冷壁等离子体发生器,3为低频射频线圈,4为等离子体射流,5为石墨坩埚,6为衬底及样品台,7为真空腔体,8为真空泵组,9为绝缘支架,10为步进电机,11为密封圈。
图2为样品A,样品B和样品C的XRD测试结果,结果表明三个样品均有金刚石的(111)(220)和(311)特征峰,均为多晶金刚石。
图3为样品A的能量色散谱仪(EDS)测试结果,结果表明样品中含有氮元素和钼元素。
图4为样品B的能量色散谱仪(EDS)测试结果,结果表明样品中含有氮元素和铬元素。
图5为样品C的能谱色散谱仪(EDS)测试结果,结果表明样品中含有氮元素和镍元素。
图6为样品A的扫描电子显微镜结果。
图7为样品B的扫描电子显微镜结果。
图8为样品C的扫描电子显微镜结果。
具体实施方式
实例1:
单晶抛光硅片尺寸为10mm×10mm×0.5mm,表面为(111)面。利用金刚石粉末进行研磨处理,粉末粒径为25μm,研磨时间为10分钟。然后用无水乙醇和去离子水超声清洗,吹干后放置在双频射频等离子体沉积设备样品台上。将0.07g钼粉放置在石墨坩埚中。抽真空至10Pa以下,通入工作气体,打开射频源,激发等离子体。高频射频源频率为13.56MHz,功率为1.2kW,低频射频源频率为4MHz,功率为9kW。氩气流量为3.6slm,H2流量为1.3slm,沉积压强为8000Pa,沉积温度为800℃。首先将甲烷流量加至60sccm沉积1h,然后将甲烷流量降至18sccm沉积3h。随后打开氨气质量流量计,流量设置为0.5sccm,并启动步进电机,将石墨坩埚升至等离子体束流附近,坩埚被加热呈橘黄色。继续沉积1h,得到样品A。
实例2:
单晶抛光硅片尺寸为10mm×10mm×0.5mm,表面为(111)面。利用金刚石粉末进行研磨处理,粉末粒径为25μm,研磨时间为10分钟。然后用无水乙醇和去离子水超声清洗,吹干后放置在双频射频等离子体沉积设备样品台上。将0.11g铬粉放置在石墨坩埚中。抽真空至10Pa以下,通入工作气体,打开射频源,激发等离子体。高频射频源频率为13.56MHz,功率为1.2kW,低频射频源频率为4MHz,功率为9kW。氩气流量为3.6slm,H2流量为1.2slm,沉积压强为8500Pa,沉积温度为860℃。首先将甲烷流量加至60sccm沉积1h,然后将甲烷流量降至18sccm沉积2h。随后打开氨气质量流量计,流量设置为0.1sccm,并启动步进电机,将石墨坩埚升至等离子体束流附近,坩埚被加热呈橘黄色。继续沉积1h,得到样品B。
实例3:
单晶抛光硅片尺寸为10mm×10mm×0.5mm,表面为(111)面。利用金刚石粉末进行研磨处理,粉末粒径为25μm,研磨时间为10分钟。然后用无水乙醇和去离子水超声清洗,吹干后放置在双频射频等离子体沉积设备样品台上。将0.21g镍丝放置在石墨坩埚中。抽真空至10Pa以下,通入工作气体,打开射频源,激发等离子体。高频射频源频率为13.56MHz,功率为1.2kW,低频射频源频率为4MHz,功率为9kW。氩气流量为3.6slm,H2流量为1.2slm,高频功率为1.2kW,低频功率为9kW,沉积压强为7600Pa,沉积温度为840℃。首先将甲烷流量加至60sccm沉积1h,然后将甲烷流量降至18sccm沉积3h。随后打开氮气质量流量计,流量设置为0.1sccm,并启动步进电机,将石墨坩埚升至等离子体束流附近,坩埚被加热呈橘黄色。继续沉积1h,得到样品C。

Claims (1)

1.一种过渡族金属元素与氮共掺杂生长金刚石的方法,在双频射频等离子体化学气相沉积设备中进行,其特征在于,工艺步骤及控制的技术参数为:
高频射频源频率范围为10MHz~30MHz,低频射频源频率范围为1MHz~8MHz,高频射频源与低频射频源的频率比为3.39:1;反应气体为氩气,氢气,甲烷和氨气或氮气,流量分别为2~5slm,1~3slm,10~600sccm,0.1~10sccm;
气体经过等离子体发生器被激发成等离子体射流,吹入真空腔室;石墨坩埚位于等离子体射流的路径上,利用绝缘支架固定,通过步进电机实现上下移动;
石墨坩埚直径10mm,厚度为20mm,深度为5mm;
等离子体喷口距离石墨坩埚1~2cm,距离衬底3~5cm;
将质量为0.01~1g过渡族金属的粉末或者线材放置于石墨坩埚中,所述过渡族金属为镍、钼或铬;需要掺杂时,向等离子体中通入氨气或氮气,并通过步进电机将坩埚上升到等离子体射流附近,通过等离子体的加热和流场特性,过渡族金属元素原子挥发进入等离子体,并与其中的氮元素混合,到达衬底,实现金刚石的共掺杂生长;
衬底使用单晶硅片或者单晶金刚石片;沉积腔背底真空为0.01~10Pa,沉积压强在5000~10000Pa之间,衬底温度为600~1200℃。
CN201811393635.7A 2018-11-21 2018-11-21 一种过渡族金属元素与氮共掺杂生长金刚石的方法 Expired - Fee Related CN109518159B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811393635.7A CN109518159B (zh) 2018-11-21 2018-11-21 一种过渡族金属元素与氮共掺杂生长金刚石的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811393635.7A CN109518159B (zh) 2018-11-21 2018-11-21 一种过渡族金属元素与氮共掺杂生长金刚石的方法

Publications (2)

Publication Number Publication Date
CN109518159A CN109518159A (zh) 2019-03-26
CN109518159B true CN109518159B (zh) 2020-12-04

Family

ID=65778478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811393635.7A Expired - Fee Related CN109518159B (zh) 2018-11-21 2018-11-21 一种过渡族金属元素与氮共掺杂生长金刚石的方法

Country Status (1)

Country Link
CN (1) CN109518159B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835741B (zh) * 2019-10-28 2020-09-18 北京科技大学 一种通过离子注入制备金刚石氮镍复合色心的方法
CN111705305B (zh) * 2020-07-20 2022-05-20 内蒙古科技大学 一种纳米金刚石过渡金属色心的植晶掺杂制备方法
CN111921552A (zh) * 2020-07-29 2020-11-13 浙江理工大学 一种过渡金属氮掺杂磷化物催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1720648A (zh) * 2002-12-06 2006-01-11 切夫里昂美国公司 含金刚石状体的材料的光学应用
CN104694907A (zh) * 2015-03-04 2015-06-10 中国科学院大学 一种制备镍-氮掺杂金刚石的射频放电气相沉积方法
CN105779965A (zh) * 2016-01-21 2016-07-20 北京师范大学 一种利用粒子束调控技术制备多孔掺杂类金刚石薄膜的方法
CN105839071A (zh) * 2016-04-19 2016-08-10 中国科学院大学 双频电感耦合射频等离子体喷射沉积金刚石的方法
CN106637111A (zh) * 2016-10-21 2017-05-10 中南大学 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1720648A (zh) * 2002-12-06 2006-01-11 切夫里昂美国公司 含金刚石状体的材料的光学应用
CN104694907A (zh) * 2015-03-04 2015-06-10 中国科学院大学 一种制备镍-氮掺杂金刚石的射频放电气相沉积方法
CN105779965A (zh) * 2016-01-21 2016-07-20 北京师范大学 一种利用粒子束调控技术制备多孔掺杂类金刚石薄膜的方法
CN105839071A (zh) * 2016-04-19 2016-08-10 中国科学院大学 双频电感耦合射频等离子体喷射沉积金刚石的方法
CN106637111A (zh) * 2016-10-21 2017-05-10 中南大学 一种铌基硼掺杂金刚石泡沫电极及其制备方法与应用

Also Published As

Publication number Publication date
CN109518159A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
CN109518159B (zh) 一种过渡族金属元素与氮共掺杂生长金刚石的方法
CN108315816B (zh) 单晶金刚石生长方法和装置
CN102874775B (zh) 一种氮化钪立方晶体的制备方法
CN108611679B (zh) 一种绿色无催化剂法制备氮化镓纳米线的方法
CN105839072A (zh) 一种化学气相沉积制备二硫化铼薄膜的方法
CN111118471A (zh) 一种高质量多晶金刚石膜制备方法
CN1328410C (zh) 氧化锌生长用低压金属有机化学汽相沉积设备及其工艺
Li et al. Synthesis and photoluminescence properties of hierarchical zinc germanate nanostructures
JP2016113303A (ja) マイクロ波プラズマcvd法によるダイヤモンド薄膜の合成方法
CN101805894B (zh) 一种低温下制备氢化纳米晶态碳化硅薄膜的方法
CN100432287C (zh) 强磁场下金刚石薄膜的制备方法
CN104532207B (zh) 一种氮氧化硅膜材料及其制备方法和用途
Cao et al. High rate deposition of nanocrystalline silicon by thermal plasma enhanced CVD
RU2521142C2 (ru) Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке
CN103938183B (zh) 一种制备高质量ZnO材料的方法
Sedov et al. Photoluminescence of Si-vacancy color centers in diamond films grown in microwave plasma in methane-hydrogen-silane mixtures
CN109881248B (zh) 氮硫共掺杂n型半导体金刚石材料及其制备方法
CN108914086B (zh) 铁掺杂金刚石稀磁半导体及其制备方法
US10214454B2 (en) Structure of micropowder
CN111676450A (zh) 基于离子束溅射沉积的六方氮化硼厚膜及制备方法和应用
CN113105245A (zh) 碳化硅纳米颗粒及其制备方法和应用
Nakamura et al. High quality chemical vapor deposition diamond growth on iron and stainless steel substrates
CN102399092B (zh) 掺氮纳米金刚石薄膜的制备方法
CN104985177A (zh) 一种表面钝化的纳米锗颗粒的制备方法
CN102605345A (zh) 一种硅基纳米金刚石薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201204

Termination date: 20211121

CF01 Termination of patent right due to non-payment of annual fee