WO2020121770A1 - 光コネクタ、光ケーブルおよび電子機器 - Google Patents

光コネクタ、光ケーブルおよび電子機器 Download PDF

Info

Publication number
WO2020121770A1
WO2020121770A1 PCT/JP2019/045593 JP2019045593W WO2020121770A1 WO 2020121770 A1 WO2020121770 A1 WO 2020121770A1 JP 2019045593 W JP2019045593 W JP 2019045593W WO 2020121770 A1 WO2020121770 A1 WO 2020121770A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
optical path
connector
lens
Prior art date
Application number
PCT/JP2019/045593
Other languages
English (en)
French (fr)
Inventor
寛 森田
一彰 鳥羽
山本 真也
雄介 尾山
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201980080336.4A priority Critical patent/CN113260890B/zh
Priority to US17/309,549 priority patent/US11506850B2/en
Priority to JP2020559906A priority patent/JP7428140B2/ja
Publication of WO2020121770A1 publication Critical patent/WO2020121770A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4284Electrical aspects of optical modules with disconnectable electrical connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4239Adhesive bonding; Encapsulation with polymer material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the present technology relates to optical connectors, optical cables and electronic devices. More specifically, the present invention relates to an optical connector or the like that can alleviate the power loss of light with respect to axis deviation.
  • optical coupling connector is a system in which the optical axis is aligned with the end of each optical fiber and a lens is attached to each of the optical fibers to transmit an optical signal as parallel light between the opposing lenses.
  • optical coupling connector since the optical fibers are optically coupled in a non-contact state, adverse effects on transmission quality due to dust entering between the optical fibers are suppressed, and frequent and careful cleaning is not required.
  • an optical coupling type optical connector for example, when the core diameter of the optical fiber is very small as in single mode, a deviation between the lens optical axis and the optical fiber optical path on the transmitting side, so-called axial deviation, is a large optical signal on the receiving side. There was a problem that it led to a power loss.
  • the purpose of this technology is to satisfactorily reduce the coupling loss of the optical power on the receiving side against the axis deviation on the transmitting side.
  • the concept of this technology is It has an optical path adjusting unit that adjusts the optical path so that the diameter of the incident light is reduced while maintaining the incident angle, and a lens that collects the light whose optical path has been adjusted by the optical path adjusting unit and makes it incident on the light receiver. It is an optical connector equipped with a connector body.
  • a connector main body having an optical path adjusting unit and a lens is provided.
  • the optical path adjusting unit the optical path is adjusted with respect to the incident light so that the diameter becomes small while maintaining the incident angle.
  • the lens the light whose optical path has been adjusted by the optical path adjusting unit is condensed and made incident on the light receiving body.
  • the light incident on the optical path adjusting unit may be collimated light.
  • the optical path of the incident light is adjusted by the optical path adjusting unit so that the diameter is reduced while maintaining the incident angle, and the light whose path has been adjusted is collected by the lens and received. It is incident on the body. Therefore, it is possible to reduce the focal length of the lens and reduce the coupling loss of the optical power on the receiving side with respect to the axis deviation on the transmitting side, while making the incident angle of light on the light receiving body satisfy NA. Become.
  • the optical path adjusting unit may have a through hole in the central portion.
  • the optical path adjusting unit since the light in the central portion is originally contained within the diameter of the light obtained by adjusting the optical path in the optical path adjusting unit, it is not necessary to adjust the optical path.
  • the optical path adjusting unit By thus configuring the optical path adjusting unit to have a through hole in its central portion, it is possible to prevent the optical path adjustment for the light in the central portion and reduce the amount of light that is lost due to the optical path adjustment. It will be possible.
  • the optical path adjusting unit may include an optical path changing unit. Since the optical path adjusting unit includes the optical path changing unit as described above, the optical path can be efficiently adjusted, and the amount of lost light can be reduced.
  • the connector main body may be configured to include a first optical unit having an optical path adjusting unit and a second optical unit having a lens. Since the connector body is made up of the first and second optical parts in this way, the optical path adjusting part and the lens can be easily manufactured.
  • the light receiving body may be an optical fiber
  • the connector body may have an insertion hole for inserting the optical fiber. Since the connector body has the insertion hole into which the optical fiber as the light receiving body is inserted, the optical axis of the optical fiber and the lens can be easily aligned.
  • the connector body has an optical path changing portion for changing the optical path at the bottom of the insertion hole, and the light condensed by the lens is changed in the optical path by the optical path changing portion and is incident on the optical fiber. May be done.
  • the insertion hole may be an insertion hole for inserting the ferrule in which the optical fiber is inserted and fixed. This makes it easy to keep the distance between the optical fiber and the optical path changing unit constant in the optical axis direction.
  • the light receiver may be a light receiving element that converts an optical signal into an electric signal.
  • the light-receiving element as the light-receiving element in this manner, an optical fiber is not required when the transmitted light is incident on the light-receiving element, and the cost can be reduced.
  • the light receiving element may be connected to the connector body, and the light condensed by the lens may enter the light receiving element without changing the optical path.
  • the connector body has an optical path changing portion for changing the optical path, the light receiving element is fixed to the substrate, and the light condensed by the lens is changed in the optical path by the optical path changing portion and is incident on the light receiving element. You may do so. In this way, the light condensed by the lens is changed in the optical path by the optical path changing unit and is incident on the light receiving element fixed to the substrate, so that the mounting becomes easy and the degree of freedom in design can be increased.
  • the connector main body may be made of a light-transmissive material and integrally have the optical path adjusting unit and the lens. In this case, the positional accuracy of the optical path adjusting unit and the lens with respect to the connector body can be improved.
  • the connector body may have a plurality of combinations of the optical path adjusting unit and the lens.
  • the connector main body is configured to have a plurality of combinations of the optical path adjusting unit and the lens, so that the number of channels can be easily increased.
  • the connector body may have a concave light incident portion, and the optical path adjusting portion may be located at the bottom portion of the light incident portion.
  • the optical path adjusting portion By thus positioning the optical path adjusting portion at the bottom of the light incident portion, it is possible to prevent the surface of the optical path adjusting portion from accidentally hitting the mating connector or the like and being damaged.
  • the connector body may be integrally provided on the front surface side with a convex or concave position restriction portion for aligning with the connector of the connection partner. This facilitates optical axis alignment when connecting to the mating connector.
  • a light receiver may be further provided. With such a configuration including the light receiving body, it is possible to save the labor for mounting the light receiving body.
  • optical cable having an optical connector as a plug
  • the optical connector is It has an optical path adjusting unit that adjusts the optical path so that the diameter of the incident light is reduced while maintaining the incident angle, and a lens that collects the light whose optical path has been adjusted by the optical path adjusting unit and makes it incident on the light receiver.
  • An optical cable with a connector body is an optical path adjusting unit that adjusts the optical path so that the diameter of the incident light is reduced while maintaining the incident angle, and a lens that collects the light whose optical path has been adjusted by the optical path adjusting unit and makes it incident on the light receiver.
  • an electronic device having an optical connector as a receptacle
  • the optical connector is It has an optical path adjusting unit that adjusts the optical path so that the diameter of the incident light is reduced while maintaining the incident angle, and a lens that collects the light whose optical path has been adjusted by the optical path adjusting unit and makes it incident on the light receiver. It is in an electronic device equipped with a connector body.
  • FIG. 5 is a diagram for explaining a generation of a coupling loss of optical power due to an optical axis shift and a method of reducing the coupling loss in an optical coupling connector using collimated light. It is a figure for demonstrating the method of controlling the incident angle of the incident light to an optical fiber using two lenses. It is a figure for demonstrating the problem in the method of using two lenses. It is a figure for demonstrating the method of shortening the distance between a lens and an optical fiber, satisfying NA of an optical fiber.
  • FIG. 6 is a diagram for explaining a generation of a coupling loss of optical power due to an optical axis shift and a method of reducing the coupling loss in an optical coupling connector using converged light (light bent in a focusing direction).
  • FIG. 1 shows an outline of an optical coupling type optical connector (hereinafter referred to as “optical coupling connector”).
  • This optical coupling connector is composed of a transmitting side optical connector 10 and a receiving side optical connector 20.
  • the transmitting side optical connector 10 has a connector body 12 having a lens 11.
  • the receiving side optical connector 20 has a connector body 22 having a lens 21.
  • the optical fiber 15 is attached to the connector body 12 so that the emitting end thereof is located at the focal position on the optical axis of the lens 11.
  • the optical fiber 25 is attached to the connector body 22 so that the incident end thereof is located at the focal position on the optical axis of the lens 21.
  • the light emitted from the optical fiber 15 on the transmission side is incident on the lens 11 via the connector body 12, and the light shaped into collimated light is emitted from the lens 11.
  • the light thus shaped into the collimated light is incident on the lens 21 and is condensed, and is incident on the incident end of the optical fiber 25 on the receiving side via the connector body 22.
  • the light (optical signal) is transmitted from the optical fiber 15 on the transmitting side to the optical fiber 25 on the receiving side.
  • the optical coupling connector as shown in FIG. 1 when the core diameter of the optical fiber is as small as about 8 ⁇ m ⁇ such as single mode, the deviation of the optical fiber optical path from the lens optical axis on the transmission side (optical axis deviation) is It has a great effect on the coupling loss of optical power at. Therefore, in the case of this optical coupling connector, high accuracy of parts is required in order to suppress the axis shift on the transmitting side, which results in an increase in cost.
  • the focal length of the lens 21 on the receiving side is shortened so that the focusing point from this lens 21, that is, the optical fiber 25 on the receiving side. It is conceivable to shorten the distance to the incident end of.
  • FIG. 2A shows a state where the distance from the lens 21 to the condensing point Q is not shortened on the receiving side.
  • the position of the light source P on the transmitting side deviates by A to P′
  • the position of the condensing point Q on the receiving side shifts by Y to Q′.
  • FIG. 2B shows a state in which the curvature of the lens 21 is increased to shorten the focal length and the distance from the lens 21 to the condensing point Q is shortened on the receiving side.
  • the position of the light source P on the transmission side deviates by A to P′
  • the position of the condensing point Q on the reception side deviates by Y′ to Q′, but Y′ becomes smaller than Y.
  • Formula (1) below generally represents the relationship between the light source P and the condensing point Q.
  • A is the positional displacement amount of the light source P
  • B is the distance from the light source P to the lens 11
  • X is the distance from the lens 12 to the condensing point Q
  • Y is the positional displacement amount of the condensing point Q.
  • the positional deviation of the condensing point on the receiving side with respect to the positional deviation of the light source on the transmitting side can be reduced.
  • the collimator aperture is constant, the angle of incidence on the optical fiber 25 is widened. At this time, the light entering at the incident angle of NA or more of the optical fiber 25 cannot be transmitted into the optical fiber 25 and becomes a loss. Therefore, even if the distance between the lens 21 on the receiving side and the optical fiber 25 is made too short, the coupling loss of the optical power increases.
  • FIG. 4B a method of controlling the incident angle of the light incident on the optical fiber 25 by using two lenses, that is, the first lens 21A and the second lens 21B can be considered.
  • the first lens 21A collects the collimated light at an angle equal to or larger than the NA of the optical fiber 25, and the second lens 21B converts the incident angle into an angle satisfying the NA of the optical fiber 25, and then the optical fiber 25 is obtained.
  • This is a method of shortening the distance from the first lens 21A to the optical fiber 25 by making the light incident.
  • FIG. 4A shows the same receiving side as the receiving side of FIG. 3A.
  • FIG. 5A is the same as FIG. 4B.
  • FIG. 5B is an enlarged view of FIG. Focusing on the second lens 21B, the distance X on the emission side is longer than the distance B on the incidence side, because the second lens 21B is installed for the purpose of narrowing the emission angle of the incident light.
  • the position variation amount Y of the condensing point becomes larger than the position variation amount A on the light source side, as shown in the above mathematical expression (1). Therefore, even if the distance from the first lens 21A to the optical fiber 25 can be shortened, the position variation amount of the condensing point remains large. The effect of using two lenses is small.
  • the diameter of the collimated light incident from the transmission side optical connector is reduced.
  • the diameter of the collimated light has a certain size, but in that case, the distance between the lens 21 and the optical fiber 25 becomes long in order to satisfy NA, and the light collection point due to the optical axis shift. It becomes difficult to reduce the amount of deviation.
  • FIG. 7 shows a principle configuration of the receiving side optical connector 300R in the present technology.
  • the optical path adjusting unit 26 is arranged on the front side of the lens 21.
  • the optical path adjusting unit 26 adjusts the optical path so that the diameter of the incident light is reduced while maintaining the incident angle. In this case, the light on the outer peripheral side of the incident light is translated to the inner peripheral side by the optical path adjusting unit 26, and as a result, the diameter is reduced.
  • FIG. 8 shows the optical path adjusting unit 26 in an enlarged manner.
  • the incident surface has a step shape in which the first surface 26a and the second surface 26b are alternately arranged in the radial direction.
  • the first surface 26a is parallel to the emission surface 26c. Therefore, the light incident on the first surface 26a has the path shown in the figure, is translated in the inner peripheral side, and is emitted.
  • the diameter of the input collimated light is A, but the optical path is adjusted by the optical path adjusting unit 26 so that the diameter of the collimated light incident on the lens 21 becomes B ( ⁇ A) and is transmitted through the lens 21. It is possible to narrow the angle of incidence of the light after the incidence on the optical fiber 25. Therefore, the distance between the lens 21 and the optical fiber 25 can be shortened by increasing the curvature of the lens 21 while satisfying the NA, and the shift of the light-collecting point on the receiving side relative to the shift of the optical axis on the transmitting side can be reduced. , It is possible to satisfactorily reduce the coupling loss of optical power.
  • the diameter is narrowed at the stage of collimated light, and as a result, the distance between the lens and the optical fiber can be shortened without using two lenses as shown in FIG. Since the diameter of the collimated light generated can also be kept large, the structure is resistant to dust.
  • FIG. 9 shows a configuration example of the electronic device 100 and the optical cables 200A and 200B as the embodiment.
  • the electronic device 100 includes an optical communication unit 101.
  • the optical communication unit 101 includes a light emitting unit 102, an optical transmission line 103, a transmission side optical connector 300T as a receptacle, a reception side optical connector 300R as a receptacle, an optical transmission line 104, and a light receiving unit 105.
  • Each of the optical transmission path 103 and the optical transmission path 104 can be realized by an optical fiber.
  • the light emitting unit 102 includes a laser element such as a VCSEL (Vertical Cavity Surface Emitting LASER) or a light emitting element such as an LED (light emitting diode).
  • the light emitting unit 102 converts an electric signal (transmission signal) generated by a transmission circuit (not shown) of the electronic device 100 into an optical signal.
  • the optical signal emitted by the light emitting unit 102 is sent to the transmission side optical connector 300T via the optical transmission path 103.
  • the light emitting section 102, the optical transmission path 103, and the transmission side optical connector 300T constitute an optical transmitter.
  • the optical signal received by the receiving side optical connector 300R is sent to the light receiving unit 105 via the optical transmission path 104.
  • the light receiving section 105 includes a light receiving element such as a photodiode.
  • the light receiving unit 105 converts an optical signal sent from the receiving side optical connector 300R into an electric signal (reception signal) and supplies the electric signal to a reception circuit (not shown) of the electronic device 100.
  • the receiving side optical connector 300R, the optical transmission line 104, and the light receiving unit 105 constitute an optical receiver.
  • the optical cable 200A includes a receiving side optical connector 300R as a plug and a cable body 201A.
  • the optical cable 200A transmits the optical signal from the electronic device 100 to another electronic device.
  • the cable body 201A can be realized by an optical fiber.
  • the one end of the optical cable 200A is connected to the transmission side optical connector 300T of the electronic device 100 by the reception side optical connector 300R, and the other end is connected to another electronic device (not shown).
  • the transmission side optical connector 300T and the reception side optical connector 300R connected to each other form an optical coupling connector.
  • the optical cable 200B includes a transmission side optical connector 300T as a plug and a cable body 201B.
  • the optical cable 200B transmits an optical signal from another electronic device to the electronic device 100.
  • the cable body 201B can be realized by an optical fiber.
  • the one end of the optical cable 200B is connected to the receiving side optical connector 300R of the electronic device 100 by the transmitting side optical connector 300T, and the other end is connected to another electronic device (not shown).
  • the transmission side optical connector 300T and the reception side optical connector 300R connected to each other form an optical coupling connector.
  • the electronic device 100 is, for example, a mobile electronic device such as a mobile phone, a smartphone, a PHS, a PDA, a tablet PC, a laptop computer, a video camera, an IC recorder, a portable media player, an electronic notebook, an electronic dictionary, a calculator, and a portable game machine.
  • Equipment and other electronic equipment such as desktop computers, display devices, television receivers, radio receivers, video recorders, printers, car navigation systems, game consoles, routers, hubs, optical line termination units (ONUs), etc. it can.
  • the electronic device 100 constitutes a part or all of an electric product such as a refrigerator, a washing machine, a clock, an intercom, an air conditioner, a humidifier, an air purifier, a lighting device, a cooking appliance, or a vehicle as described below. You can
  • FIG. 10 is a perspective view showing an example of a transmission side optical connector 300T and a reception side optical connector 300R which form an optical coupling connector.
  • FIG. 11 is also a perspective view showing an example of the transmission side optical connector 300T and the reception side optical connector 300R, but is a view seen from the opposite direction to FIG.
  • the illustrated example corresponds to parallel transmission of optical signals of a plurality of channels.
  • the one corresponding to the parallel transmission of the optical signals of a plurality of channels is shown, the detailed description is omitted, but the one corresponding to the transmission of the optical signal of one channel can be similarly configured.
  • the transmission side optical connector 300T includes a connector body 311 having a substantially rectangular parallelepiped appearance.
  • a plurality of optical fibers 330 corresponding to the respective channels are connected in a state of being aligned in the horizontal direction.
  • the tip end side of each optical fiber 330 is inserted and fixed in the optical fiber insertion hole 320.
  • the optical fiber 330 constitutes a light emitter.
  • an adhesive injection hole 314 having a rectangular opening is formed on the upper surface side of the connector body 311. An adhesive for fixing the optical fiber 330 to the connector body 311 is inserted from the adhesive injection hole 314.
  • a concave light emitting portion (light transmitting space) 315 having a rectangular opening is formed on the front surface side of the connector body 311, and a bottom portion of the light emitting portion 315 corresponds to each channel.
  • a plurality of lenses (convex lenses) 316 are arranged side by side in the horizontal direction. This prevents the surface of the lens 316 from accidentally hitting the mating connector or the like and being damaged.
  • a convex or concave position regulating portion 317 for aligning with the receiving side optical connector 300R which is a convex shape in the illustrated example, is integrally formed.
  • the position restricting portion 317 is not limited to the one integrally formed with the connector body 311, and a pin may be used or another method may be used.
  • the optical connector 300R on the receiving side is provided with a connector body 351 having a substantially rectangular parallelepiped appearance.
  • the connector body 351 is configured by connecting the first optical section 352 and the second optical section 353. Since the connector body 351 is composed of the first and second optical parts 352 and 353 in this way, although not shown in FIGS. 10 and 11, it is easy to manufacture the lens of the connector body 351. It can be carried out.
  • a concave light incident portion (light transmission space) 354 having a rectangular opening is formed on the front surface side of the first optical portion 352, and the bottom portion of the light incident portion 354 corresponds to each channel. Then, the plurality of optical path adjusting portions 355 are formed in a state of being aligned in the horizontal direction. This prevents the surface of the optical path adjusting unit 355 from accidentally hitting the mating connector or the like and being damaged.
  • a position regulation section 356 having a convex shape or a concave shape, which is a concave shape in the illustrated example, for alignment with the transmission side optical connector 300T. ..
  • the position regulating portion 356 is not limited to the one formed integrally with the first optical portion 352, and a pin may be used or another method may be used. ..
  • each optical fiber 370 has its tip end inserted and fixed in the optical fiber insertion hole 357.
  • the optical fiber 370 constitutes a light receiver.
  • an adhesive injection hole 358 having a rectangular opening is formed on the upper surface side of the second optical portion 353. An adhesive for fixing the optical fiber 370 to the second optical portion 353 is inserted from the adhesive injection hole 358.
  • FIGS. 12 and 13 are perspective views showing a state in which the first optical section 352 and the second optical section 353 forming the connector body 351 are separated. 7 and 8 are views seen from opposite directions.
  • a concave space 359 having a rectangular opening is formed on the front surface side of the second optical unit 353, and a plurality of lenses 360 corresponding to each channel are horizontally provided at the bottom of the space 359. Are formed side by side.
  • a circular opening 361 is formed on the back side of the first optical unit 352 so that the light passing through the optical path adjusting unit 355 of each channel is emitted.
  • FIG. 14 is a sectional view showing an example of the transmission side optical connector 300T.
  • the position restricting portion 317 (see FIGS. 10 and 11) is omitted.
  • the transmission side optical connector 300T will be further described with reference to FIG.
  • the transmission side optical connector 300T includes a connector body 311.
  • the connector body 311 is made of, for example, a light-transmitting material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a configuration of a ferrule with a lens.
  • a concave light emitting portion (light transmission space) 315 is formed on the front surface side of the connector body 311.
  • a plurality of lenses (convex lenses) 316 corresponding to the respective channels are integrally formed in the connector body 311 so as to be located at the bottom of the light emitting portion 315 in a state of being aligned in the horizontal direction. .. Thereby, the positional accuracy of the lens 316 with respect to the connector body 311 can be improved.
  • the connector main body 311 is provided with a plurality of optical fiber insertion holes 320 extending from the back side to the front side in line with the lens 316 of each channel in a horizontal direction.
  • the optical fiber 330 has a double structure of a core 331 at the central portion that serves as an optical path and a clad 332 that covers the core.
  • the optical fiber insertion hole 320 of each channel is formed so that the optical axis of the lens 316 corresponding to the core 331 of the optical fiber 330 inserted therein matches.
  • the optical fiber insertion hole 320 of each channel is formed so that its bottom position, that is, the contact position of its tip (incident end) when the optical fiber 330 is inserted matches the focal position of the lens 316. ing.
  • an adhesive injection hole 314 extending downward from the upper surface side is formed in the connector main body 311, so as to communicate with the vicinity of the bottom position of the plurality of optical fiber insertion holes 320 arranged in the horizontal direction. .. After the optical fiber 330 is inserted into the optical fiber insertion hole 320, the adhesive 321 is injected around the optical fiber 330 from the adhesive injection hole 314, so that the optical fiber 330 is fixed to the connector body 311.
  • the lens 316 has a function of shaping incident light into collimated light. As a result, the light emitted from the emission end of the optical fiber 330 with a predetermined NA is incident on the lens 316, shaped into collimated light, and emitted.
  • FIG. 15 is a sectional view showing an example of the receiving side optical connector 300R.
  • the position restricting portion 356 (see FIG. 11) is omitted.
  • the receiving side optical connector 300R will be further described with reference to FIG.
  • the receiving-side optical connector 300R includes a connector body 351 configured by connecting a first optical section 352 and a second optical section 353.
  • the first optical unit 352 is made of a light transmissive material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength.
  • a concave light incident portion (light transmission space) 354 is formed on the front surface side of the first optical portion 352. Then, a plurality of optical path adjusting portions 355 corresponding to each channel are integrally formed in the first optical portion 352 so as to be located at the bottom portion of the light incident portion 354 in a state where they are aligned in the horizontal direction. ing. This makes it possible to adjust the position of the optical path adjusting unit 355 with respect to the first optical unit 352 at the same time in a plurality of channels. Further, the first optical unit 352 has a circular opening 361 on the back side thereof, through which the light passing through the optical path adjusting unit 355 of each channel is emitted.
  • the optical path adjusting unit 355 corresponds to the optical path adjusting unit 26 in FIG. 7 described above.
  • the optical path adjusting unit 355 adjusts the optical path of incident light (collimated light) so that the diameter becomes small while maintaining the incident angle. In this case, the light on the outer peripheral side of the incident light is translated to the inner peripheral side by the optical path adjusting unit 355, and as a result, the diameter is reduced.
  • the illustrated optical path adjusting unit 355 is configured to have a through hole 363 in the central portion.
  • the optical path adjusting portion 355 since the light in the central portion is originally within the diameter of the light obtained by adjusting the optical path by the optical path adjusting unit 355, it is not necessary to adjust the optical path.
  • the optical path adjusting portion 355 By thus configuring the optical path adjusting portion 355 to have the through hole 363 in the central portion thereof, it is possible to prevent the optical path adjustment for the light in the central portion and reduce the amount of light that is bounced and lost in the optical path adjustment. ..
  • the second optical unit 353 is made of a light transmissive material such as synthetic resin or glass, or a material such as silicon that transmits a specific wavelength, and has a ferrule structure with a lens. By configuring the ferrule with a lens in this manner, the optical axes of the optical fiber 370 and the lens 360 can be easily aligned. In addition, since the second optical unit 353 is configured as a ferrule with a lens in this way, even in the case of multiple channels, multichannel communication can be easily realized simply by inserting the optical fiber 370 into the ferrule.
  • the second optical section 353 is connected to the first optical section 352 to form the connector body 351. If the thermal expansion coefficients are made uniform, the optical path shift due to the distortion in the two optical parts when the heat is changed is suppressed, so the material of the second optical part 353 is the same as the material of the first optical part 352. It is preferable that there is one, but another material may be used.
  • a concave space 359 having a rectangular opening is formed on the front side of the second optical portion 353, and a plurality of lenses 360 corresponding to the respective channels are provided at the bottom portion of the space 359. They are integrally formed in a state of being aligned in the horizontal direction. As a result, the positional accuracy of the lens 360 with respect to the core 371 of the optical fiber 370 installed in the second optical unit 353 can be simultaneously increased in a plurality of channels.
  • the second optical unit 353 is provided with a plurality of optical fiber insertion holes 357 extending forward from the back surface side in line with the lens 360 of each channel in a horizontal direction.
  • the optical fiber 370 has a double structure of a core 371 in the central portion that serves as an optical path and a clad 372 that covers the periphery thereof.
  • the optical fiber insertion hole 357 of each channel is formed so that the core 371 of the optical fiber 370 inserted therein and the optical axis of the lens 360 corresponding to the core 371 coincide with each other. Further, the optical fiber insertion hole 357 of each channel is formed so that its bottom position, that is, the contact position of its tip (emission end) when the optical fiber 370 is inserted matches the focal position of the lens 360. ing.
  • an adhesive injection hole 358 extending downward from the upper surface side is formed so as to communicate with the vicinity of the bottom position of the plurality of optical fiber insertion holes 357 arranged in the horizontal direction.
  • the adhesive 362 is injected around the optical fiber 370 from the adhesive injection hole 358, so that the optical fiber 370 is fixed to the second optical unit 353.
  • the adhesive 362 is a light transmissive agent and is injected between the tip of the optical fiber 370 and the bottom position of the optical fiber insertion hole 357, whereby reflection can be reduced.
  • the connector main body 351 is configured by connecting the first optical unit 352 and the second optical unit 353.
  • this connection method a method in which a concave portion is newly provided on one side and a convex portion is newly provided on the other side such as a boss, and fitting is performed, or a method of aligning the optical axis positions of the lenses with an image processing system or the like and adhering and fixing the lenses is adopted. obtain.
  • the optical path adjusting unit 355 has a function of adjusting the optical path so that the diameter of the incident light becomes smaller while maintaining the incident angle.
  • the lens 360 has a function of condensing the light whose optical path is adjusted by the optical path adjusting unit 355.
  • the incident collimated light is input to the optical path adjusting unit 355, and the optical path is adjusted so that the diameter is reduced while maintaining the incident angle.
  • the light whose optical path has been adjusted is incident on the lens 360 and is condensed, and the condensed light is incident on the incident end of the optical fiber 370 which is the light receiving body at a predetermined NA.
  • FIG. 16 shows a cross-sectional view of a transmission side optical connector 300T and a reception side optical connector 300R that form an optical coupling connector.
  • the illustrated example shows a state in which the transmission side optical connector 300T and the reception side optical connector 300R are connected.
  • the light transmitted through the optical fiber 330 is emitted from the emission end of the optical fiber 330 with a predetermined NA.
  • the emitted light is incident on the lens 316, shaped into collimated light, and emitted toward the receiving side optical connector 300R.
  • the light (collimated light) emitted from the transmitting side optical connector 300T is incident on the optical path adjusting unit 355, and the optical path is adjusted so that the diameter is reduced while maintaining the incident angle.
  • the light whose optical path has been adjusted enters the lens 360 and is condensed. Then, the condensed light is incident on the incident end of the optical fiber 370 and is sent through the optical fiber 370.
  • the receiving-side optical connector 300R adjusts the optical path of incident light by the optical path adjusting unit 355 so as to reduce the diameter while maintaining the incident angle.
  • the adjusted light is condensed by the lens 360 and is incident on the optical fiber 370 which is a light receiving body. Therefore, while making the incident angle of light on the optical fiber 370 satisfy NA, the focal length of the lens 360 can be shortened to mitigate the coupling loss of the optical power on the receiving side with respect to the axis deviation on the transmitting side. It will be possible.
  • the focal length of the lens 360 by shortening the focal length of the lens 360, the distance from the lens 360 to the focusing point can be shortened, and the shift of the focusing point on the receiving side relative to the axis shift on the transmitting side can be suppressed.
  • the mode field diameter (MFD) of the optical fiber is set to 8 ⁇ m, and an optical system in which the NA of the optical fiber is 0.15 is used.
  • FIG. 17A shows an example in which the collimate diameter is as large as 180 ⁇ m and the focal length of the lens is as long as 0.9 mm.
  • FIG. 17B shows an example in which the collimator diameter is reduced to 90 ⁇ m and the focal length of the lens is reduced to 0.48 mm.
  • the graph in FIG. 18 shows the simulation result of the coupling efficiency of the light input to the optical fiber on the receiving side.
  • the horizontal axis represents the axis shift amount, which indicates the shift amount when the light source shifts in the direction perpendicular to the optical axis, and the vertical axis indicates the light coupling efficiency on the receiving side.
  • the solid line (a) shows the relationship between the amount of axial deviation and the coupling efficiency in the example of FIG.
  • the solid line (b) shows the relationship between the amount of axial deviation and the coupling efficiency in the example of FIG. 17(b).
  • the MFD of the optical fiber is 8 ⁇ m, for example, when the axis deviation is 5 ⁇ m, about 7.5% of the power loss occurs from the solid line (a) in the example of FIG. 17(a). However, in the case of the example of FIG. 17B, the power loss is about 10% from the solid line (b), and the power loss is greatly reduced.
  • the optical path adjusting unit 355 can perform the optical path adjustment so that the diameter becomes small while maintaining the incident angle with respect to the incident light.
  • the optical path adjusting unit 355 includes a mirror 365. Since the optical path adjusting unit 355 includes the mirror 365, the optical path can be efficiently adjusted, and the amount of light that causes loss can be reduced.
  • FIG. 23 is a sectional view showing a receiving side optical connector 300R-1 as another configuration example 1. 23, parts corresponding to those in FIG. 15 are designated by the same reference numerals, and detailed description thereof will be appropriately omitted.
  • the light receiving body fixed to the second optical section 353 is not the optical fiber 370 but the light receiving element 380 such as a PD (Photodiode).
  • a plurality of light receiving elements 380 are fixed on the back surface side of the second optical unit 353 so as to be aligned in the horizontal direction in accordance with the lens 360 of each channel. Then, in this case, the light receiving element 380 of each channel is fixed such that the incident portion thereof coincides with the optical axis of the corresponding lens 360. Further, in this case, the thickness and the like of the second optical unit 353 in the optical axis direction are set so that the incident portion of the light receiving element 380 of each channel matches the focal position of the corresponding lens 360.
  • the incident collimated light is input to the optical path adjusting unit 355, and the optical path is adjusted so that the diameter is reduced while maintaining the incident angle. Then, the light whose optical path has been adjusted is incident on the lens 360 and is condensed, and the condensed light is incident on the incident portion (light receiving portion) of the light receiving element 380 which is a light receiving body.
  • FIG. 24 is a sectional view showing a receiving-side optical connector 300R-2 as another configuration example 2. 24, parts corresponding to those in FIGS. 15 and 23 are designated by the same reference numerals, and detailed description thereof will be appropriately omitted.
  • the substrate 381 on which the light receiving element 380 is mounted is fixed to the lower surface side of the connector body 351. In this case, a plurality of light receiving elements 380 are mounted on the substrate 381 in a state of being aligned in the horizontal direction in accordance with the lens 360 of each channel.
  • the second optical portion 353 has a light receiving element placement hole 366 extending upward from the lower surface side. Then, in order to change the optical path of the light condensed by the lens 360 of each channel to the direction of the corresponding light receiving element 380, the bottom portion of the light receiving element arranging hole 366 is an inclined surface, and a mirror is formed on this inclined surface. 382 is arranged. Regarding the mirror 382, not only the separately generated mirrors may be fixed to the inclined surface, but also the inclined surface may be formed by vapor deposition or the like.
  • the position of the substrate 381 is adjusted and fixed so that the incident portion of the light receiving element 380 of each channel matches the optical axis of the corresponding lens 360. Further, in this case, the formation position of the lens 360 and the formation position/length of the light receiving element arranging hole 366 are set so that the incident portion of the light receiving element 380 of each channel matches the focal position of the corresponding lens 360. Has been done.
  • the incident collimated light is input to the optical path adjusting unit 355, and the optical path is adjusted so that the diameter is reduced while maintaining the incident angle. Then, the light whose optical path has been adjusted is incident on the lens 360 and is condensed, and the condensed light is incident on the incident portion (light receiving portion) of the light receiving element 380 after the optical path is changed by the mirror 382. ..
  • FIG. 25 is a sectional view showing a receiving-side optical connector 300R-3 as another configuration example 3.
  • portions corresponding to those in FIGS. 15 and 24 are designated by the same reference numerals, and detailed description thereof will be appropriately omitted.
  • the transmission side optical connector 300R-3 a plurality of optical fiber insertion holes 367 extending upward from the lower surface side are formed in the second optical unit 353 in a state of being aligned in the horizontal direction in accordance with the lens 360 of each channel. Has been done.
  • each optical fiber insertion hole 367 is an inclined surface, and the mirror 382 is arranged on this inclined surface. ing.
  • Each optical fiber insertion hole 367 is formed so that the core 371 of the optical fiber 370 inserted therein and the optical axis of the lens 360 corresponding to the core 371 coincide with each other.
  • An optical fiber 370 of a corresponding channel is inserted into each optical fiber insertion hole 367, and is fixed by, for example, injecting an adhesive agent (not shown) around the optical fiber 370.
  • the optical fiber 370 is inserted so that its tip (incident end) is aligned with the focal position of the corresponding lens 360, and thus its tip (incident end) is located at a certain distance from the mirror 382. The position is set.
  • the incident collimated light is input to the optical path adjusting unit 355, and the optical path is adjusted so that the diameter is reduced while maintaining the incident angle. Then, the light whose optical path has been adjusted is incident on the lens 360 and is condensed, and after the optical path of the condensed light is changed by the mirror 382, it is incident on the incident end of the optical fiber 370 with a predetermined NA.
  • the second optical unit 353 is configured as a ferrule with a lens, the optical axes of the optical fiber 370 and the lens 360 can be easily aligned. Further, in the case of this configuration example, since the optical path of the light to the optical fiber 370 is changed by the mirror 382, the mounting is facilitated and the degree of design freedom can be increased.
  • FIG. 26 is a sectional view showing a receiving side optical connector 300R-4 as another configuration example 4. 26, parts corresponding to those in FIGS. 15 and 25 are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.
  • the diameter of the optical fiber insertion hole 367 formed in the second optical portion 353 is increased.
  • the ferrule 368 to which the optical fiber 370 is fixed by abutting in advance is inserted into the optical fiber insertion hole 367, and is fixed by, for example, an adhesive agent not shown. With such a configuration, it becomes easy to keep the tip position of the optical fiber 370 at a constant distance from the mirror 382.
  • the connector main body 351 included in the reception side optical connector 300R includes the first optical section 352 having the optical path adjusting section 355 and the second optical section 353 having the lens 360 has been described. It is also conceivable to configure the connector body 351 with one optical section having the optical path adjusting section 355 and the lens 360. For example, it is conceivable to manufacture by applying a 3D printer or a technique similar thereto.
  • FIG. 27 shows an optical coupling connector that uses convergent light (light bent in the light collecting direction) instead of collimated light. 27, parts corresponding to those in FIG. 3 are designated by the same reference numerals.
  • the present technology may have the following configurations.
  • An optical path adjusting unit that adjusts the optical path so that the diameter of the incident light is reduced while maintaining the incident angle, and the light whose optical path is adjusted by the optical path adjusting unit is condensed and incident on a light receiving body.
  • An optical connector that has a connector body with a lens.
  • the optical path adjusting unit includes an optical path changing unit.
  • the light receiver is an optical fiber
  • the said connector main body is an optical connector in any one of said (1) to (4) which has an insertion hole which inserts the said optical fiber.
  • the connector body has an optical path changing portion for changing an optical path at a bottom portion of the insertion hole, and the light condensed by the lens is changed in the optical path by the optical path changing portion and enters the optical fiber.
  • the optical connector according to (6), wherein the insertion hole is an insertion hole for inserting a ferrule in which the optical fiber is inserted and fixed.
  • the optical connector according to any one of (1) to (4), wherein the light receiver is a light receiving element that converts an optical signal into an electric signal.
  • the light receiving element is connected to the connector body, The optical connector according to (8), wherein the light condensed by the lens is incident on the light receiving element without changing the optical path.
  • the connector body has an optical path changing portion for changing the optical path, The light receiving element is fixed to the substrate, The optical connector according to (8), wherein the light condensed by the lens has its optical path changed by the optical path changing unit and is incident on the light receiving element.
  • the connector body is made of a light transmissive material, The optical connector according to any one of (1) to (11), which integrally includes the optical path adjusting unit and the lens.
  • the connector body has a concave light incident portion, The optical connector according to any one of (1) to (13), wherein the optical path adjusting unit is located at a bottom portion of the light incident unit.
  • the connector body has integrally a convex or concave position regulating portion for aligning with a connector of a connection partner on the front surface side, according to any one of (1) to (14) above.
  • An optical cable having an optical connector as a plug The optical connector is It has an optical path adjusting unit that adjusts the optical path so that the diameter of the incident light is reduced while maintaining the incident angle, and a lens that collects the light whose optical path has been adjusted by the optical path adjusting unit and makes it incident on the light receiver.
  • An optical cable with a connector body An electronic device having an optical connector as a receptacle, The optical connector is It has an optical path adjusting unit that adjusts the optical path so that the diameter of the incident light is reduced while maintaining the incident angle, and a lens that collects the light whose optical path has been adjusted by the optical path adjusting unit and makes it incident on the light receiver.
  • Optical communication unit 102... Light emitting unit 103, 104... Optical transmission line 105... Light receiving unit 200A, 200B... Optical cable 201A, 201B... Cable body 300T ⁇ Transmitting side optical connector 300R, 300R-1 to 300R-4 ⁇ Receiving side optical connector 311 ⁇ Connector body 314 ⁇ Adhesive injection hole 315 ⁇ Light emitting part 316 ⁇ Lens 317 ⁇ Position control part 320 ⁇ Optical fiber insertion hole 321 ⁇ Adhesive 330 ⁇ Optical fiber 331 ⁇ Core 332 ⁇ Clad 351 ⁇ Connector body 352 ⁇ First optics Part 353... Second optical part 354...
  • Light incident part 355 Optical path adjusting part 356... Position regulating part 357... Optical fiber insertion hole 358... Adhesive insertion hole 359... -Space 360... Lens 361... Opening 362... Adhesive 363... Through hole 365... Mirror 366... Light receiving element arrangement hole 367... Optical fiber insertion hole 368... Ferrule 370... Optical fiber 371... Core 372... Clad 380... Light receiving element 381... Substrate 382... Mirror

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

送信側での軸ずれに対する受信側での光パワーの結合ロスを良好に緩和する。 光路調整部とレンズを持つコネクタ本体を備える。光路調整部は、入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする。レンズは、光路調整された光を集光して受光体に入射する。例えば、光路調整部に入射される光はコリメート光である。また、例えば、光路調整部は中心部分に貫通孔を有する。受光体への光の入射角がNAを満たすようにしつつ、レンズの焦点距離を短くでき、送信側での軸ずれに対する受信側での光パワーの結合ロスを緩和し得る。

Description

光コネクタ、光ケーブルおよび電子機器
 本技術は、光コネクタ、光ケーブルおよび電子機器に関する。詳しくは、軸ずれに対する光のパワーロスを緩和可能な光コネクタ等に関する。
 従来、光結合方式による光コネクタ、いわゆる光結合コネクタが提案されている(例えば、特許文献1参照)。光結合コネクタは、各光ファイバの先に光軸を合わせてそれぞれレンズを装着し、光信号を対向するレンズ間で平行光として伝送する方式である。この光結合コネクタでは、光ファイバ同士が非接触の状態で光結合されるため、光ファイバ間に侵入したゴミ等による伝送品質への悪影響も抑えられ、頻繁なかつ丁寧なクリーニングは不要になる。
国際公開第2017/056889号
 光結合方式の光コネクタにおいては、例えば、光ファイバのコア径がシングルモードのように非常に小さい場合、送信側におけるレンズ光軸と光ファイバ光路のずれ、いわゆる軸ずれが受信側での大きな光パワーの結合ロスに繋がるという問題があった。
 本技術の目的は、送信側での軸ずれに対する受信側での光パワーの結合ロスを良好に緩和することにある。
 本技術の概念は、
 入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
 光コネクタにある。
 本技術においては、光路調整部とレンズを持つコネクタ本体を備えるものである。ここで、光路調整部では、入射された光に対して入射角を維持しながら径が小さくなるように光路調整がされる。また、レンズでは、光路調整部で光路調整された光が集光されて受光体に入射される。例えば、光路調整部に入射される光はコリメート光である、ようにされてもよい。
 このように本技術においては、入射された光に対して光路調整部で入射角を維持しながら径が小さくなるように光路調整をし、この光路調整された光をレンズで集光して受光体に入射するものである。そのため、受光体への光の入射角がNAを満たすようにしつつ、レンズの焦点距離を短くして、送信側での軸ずれに対する受信側での光パワーの結合ロスを緩和することが可能となる。
 なお、本技術において、例えば、光路調整部は中心部分に貫通孔を有する、ようにされてもよい。この場合、中心部分の光は、もともと、光路調整部で光路を調整して得られる光の径内に収まっているので、光路調整を行う必要はない。このように光路調整部をその中心部分に貫通孔を有する構成とすることで、中心部分の光に対する光路調整を防止して、光路調整で弾かれてロスとなる光の量を低減することが可能となる。
 また、本技術において、例えば、光路調整部は、光路変更部を含む、ようにされてもよい。このように光路調整部が光路変更部を含むことで、効率よく光路調整を行うことができ、ロスとなる光の量を低減することが可能となる。
 また、本技術において、例えば、コネクタ本体は、光路調整部を持つ第1の光学部と、レンズを持つ第2の光学部とからなる、ようにされてもよい。このようにコネクタ本体が第1、第2の光学部からなるようにされることで、光路調整部やレンズの製造などを容易に行うことができる。
 また、本技術において、例えば、受光体は光ファイバであり、コネクタ本体は、光ファイバを挿入する挿入孔を有する、ようにされてもよい。このようにコネクタ本体が受光体としての光ファイバを挿入する挿入孔を有するようにされることで、光ファイバとレンズとの光軸合わせを容易に行うことができる。
 この場合、例えば、コネクタ本体は、挿入孔の底部分に光路を変更するための光路変更部を持ち、レンズで集光された光は光路変更部で光路変更されて光ファイバに入射される、ようにされてもよい。このように光路変更部が設けられることで、設計自由度を上げることができる。そして、この場合、挿入孔は、光ファイバが挿入固定されたフェルールを挿入するための挿入孔である、ようにされてもよい。これにより、光ファイバと光路変更部の間の光軸方向の距離を一定に保つことが容易となる。
 また、本技術において、例えば、受光体は、光信号を電気信号に変換する受光素子である、ようにされてもよい。このように受光体が受光素子とされることで、伝送されてくる光を受光素子に入射する際に、光ファイバが不要となり、コストの低減が可能となる。
 この場合、例えば、受光素子はコネクタ本体に接続されており、レンズで集光された光は光路変更されずに受光素子に入射される、ようにされてもよい。また、例えば、コネクタ本体は光路を変更するための光路変更部を持ち、受光素子は基板に固定されており、レンズで集光された光は光路変更部で光路変更されて受光素子に入射される、ようにされてもよい。このようにレンズで集光された光を光路変更部で光路変更して基板に固定された受光素子に入射する構成とされることで、実装が容易となり、設計自由度を上げることができる。
 また、本技術において、例えば、コネクタ本体は光透過性材料からなり、光路調整部およびレンズを一体的に持つ、ようにされてもよい。この場合、コネクタ本体に対する光路調整部およびレンズの位置精度を高めることが可能となる。
 また、本技術において、例えば、コネクタ本体は、光路調整部およびレンズの組み合わせを複数持つ、ようにされてもよい。このようにコネクタ本体が光路調整部およびレンズの組み合わせを複数持つような構成とされることで、多チャネル化が容易に可能となる。
 また、本技術において、例えば、コネクタ本体は凹状の光入射部を持ち、光路調整部は光入射部の底部分に位置する、ようにされてもよい。このように光路調整部が光入射部の底部分に位置するようにされることで、光路調整部の表面が相手側のコネクタ等に不用意に当たって傷つくことを防止できる。
 また、本技術において、例えば、コネクタ本体は、前面側に、接続相手側のコネクタとの位置合わせをするための凸状あるいは凹状の位置規制部を一体的に持つ、ようにされてもよい。これにより、相手側のコネクタとの接続時の光軸合わせが容易となる。
 また、本技術において、例えば、受光体をさらに備える、ようにされてもよい。このように受光体を備える構成とされることで、受光体を装着する手間を省くことが可能となる。
 また、本技術の他の概念は、
 プラグとしての光コネクタを有する光ケーブルであって、
 上記光コネクタは、
 入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
 光ケーブルにある。
 また、本技術の他の概念は、
 レセプタクルとしての光コネクタを有する電子機器であって、
 上記光コネクタは、
 入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
 電子機器にある。
光結合コネクタの概要を示す図である。 送信側での光軸ずれに対する受信側での光パワーの結合ロスを減らす方法を説明するための図である。 コリメート光を用いた光結合コネクタにおける、光軸ずれによる光パワーの結合ロスの発生とその低減方法を説明するための図である。 2つのレンズを用いて光ファイバへの入射光の入射角を制御する方法を説明するための図である。 2つのレンズを用いる方法における問題を説明するための図である。 光ファイバのNAを満たしつつレンズと光ファイバ間の距離を短くする方法を説明するための図である。 本技術における受信側光コネクタの原理構成を示す図である。 光路調整部の機能を説明するための図である。 実施の形態としての電子機器および光ケーブルの構成例を示す図である。 光結合コネクタを構成する送信側光コネクタおよび受信側光コネクタの一例を示す斜視図である。 光結合コネクタを構成する送信側光コネクタおよび受信側光コネクタの一例を示す斜視図である。 コネクタ本体を構成する第1の光学部と第2の光学部を分離した状態を示す斜視図である。 コネクタ本体を構成する第1の光学部と第2の光学部を分離した状態を示す斜視図である。 送信側光コネクタの一例を示す断面図である。 受信側光コネクタの一例を示す断面図である。 送信側光コネクタおよび受信側光コネクタを接続した状態の一例を示す断面図である。 光の結合効率のシミュレーションのための受信側光コネクタの構成の一例を示す図である。 光の結合効率のシミュレーション結果の一例を示すグラフである。 光路調整部の変形例(ミラー含まず)を示す図である。 光路調整部の変形例(ミラー含まず)を示す図である。 光路調整部の変形例(ミラー含む)を示す図である。 光路調整部の変形例(ミラー含む)を示す図である。 他の構成例1としての受信側光コネクタを示す断面図である。 他の構成例2としての受信側光コネクタを示す断面図である。 他の構成例3としての受信側光コネクタを示す断面図である。 他の構成例4としての受信側光コネクタを示す断面図である。 収束光(集光方向に曲げられた光)を用いた光結合コネクタにおける、光軸ずれによる光パワーの結合ロスの発生とその低減方法を説明するための図である。
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
 <1.実施の形態>
 [本技術の基本説明]
 まず、本技術に関する技術についての説明をする。図1は、光結合方式の光コネクタ(以下、「光結合コネクタ」という)の概要を示している。この光結合コネクタは、送信側光コネクタ10と受信側光コネクタ20で構成されている。
 送信側光コネクタ10は、レンズ11を持つコネクタ本体12を有している。受信側光コネクタ20は、レンズ21を持つコネクタ本体22を有している。送信側光コネクタ10と受信側光コネクタ20の接続時には、図示のように、レンズ11とレンズ21が対向し、かつ、それぞれの光軸が一致した状態とされる。
 送信側において、光ファイバ15は、その出射端がレンズ11の光軸上の焦点位置に位置するように、コネクタ本体12に取り付けられる。また、受信側において、光ファイバ25は、その入射端がレンズ21の光軸上の焦点位置に位置するように、コネクタ本体22に取り付けられる。
 送信側の光ファイバ15から出射された光はコネクタ本体12を介してレンズ11に入射され、レンズ11からはコリメート光に成形された光が出射される。このようにコリメート光に成形された光はレンズ21に入射されて集光され、コネクタ本体22を介して受信側の光ファイバ25の入射端に入射される。これにより、送信側の光ファイバ15から受信側の光ファイバ25への光(光信号)の伝送が行われる。
 図1に示すような光結合コネクタにおいて、光ファイバのコア径がシングルモードといった8μmφ程度と非常に小さい場合、送信側でのレンズ光軸に対する光ファイバ光路のずれ(光軸ずれ)が、受信側での光パワーの結合ロスに大きく効いてくる。そのため、この光結合コネクタの場合、送信側での軸ずれを抑えるために、高い部品の精度が必要となり、コストアップとなる。
 送信側での光軸ずれに対する受信側での光パワーの結合ロスを減らす方法として、受信側のレンズ21の焦点距離を短くして、このレンズ21から集光ポイント、つまり受信側の光ファイバ25の入射端までの距離を短くすることが考えられる。
 送信側の光源Pから受信側の集光ポイントQに光を伝送するとして説明する。図2(a)は、受信側において、レンズ21から集光ポイントQまでの距離を短くしていない状態を示している。この場合、送信側の光源Pの位置がP´までAだけずれたとき、受信側の集光ポイントQの位置はQ´までYだけずれる。
 図2(b)は、受信側において、レンズ21の曲率を大きくして焦点距離を短くし、レンズ21から集光ポイントQまでの距離を短くした状態を示している。この場合、送信側の光源Pの位置がP´までAだけずれたとき、受信側の集光ポイントQの位置はQ´までY´だけずれるが、Y´はYより小さくなる。
 以下の数式(1)は、光源Pと集光ポイントQの関係を一般的に表している。ここで、Aは光源Pの位置ずれ量、Bは光源Pからレンズ11までの距離、Xはレンズ12から集光ポイントQまでの距離、Yは集光ポイントQの位置ずれ量、である。この数式(1)から、Aが一定の場合、Xを短くすることでYを減らせることが分かる。例えば、XがX´と短くなると、YはY´と短くなる。
    Y/A=X/B   ・・・(1)
 図2(a),(b)で説明した理論を、コリメート光を用いた光結合コネクタで考えてみる。図3(a)のように、送信側の光ファイバ15から出射される光を光源とした場合、その光源の位置がずれると、受信側の集光ポイントも大きくずれる(破線参照)。これは、レンズ11でコリメートされるはずの光が崩れて光軸に対して平行光とならず、受信側では斜めにレンズ21に入力されて集光ポイントがずれるためである。
 しかし、図3(b)に示すように、受信側のレンズ21と光ファイバ25との間の距離が短い場合、光源の位置がずれても、図3(a)の場合に比べて、集光ポイントのずれ量は少なくなる(破線参照)。このとき、受信側のレンズ21の曲率は図3(b)の方が図3(a)の場合に比べて大きくなり、受信側のレンズ21から光ファイバ25の入射端に入射される光の入射角は、図3(b)の方が図3(a)の場合に比べて急峻になる。
 図3(b)に示すように受信側のレンズ21と光ファイバ25との間の距離を短くすれば、送信側の光源の位置ずれに対する受信側の集光ポイントの位置ずれを小さくできるが、コリメート口径が一定であれば、光ファイバ25への入射角が広がることになる。このとき、光ファイバ25のNA以上の入射角で入ってきた光は光ファイバ25内へ伝送できずにロスとなる。従って、受信側のレンズ21と光ファイバ25との間の距離を短くしすぎても、光パワーの結合ロスが増加してしまう。
 そこで、図4(b)に示すように、第1のレンズ21Aおよび第2のレンズ21Bの2つのレンズを用いることで、光ファイバ25へ入射する光の入射角を制御する方法が考えられる。これは、第1のレンズ21Aでコリメート光を光ファイバ25のNA以上の角度で集光し、第2のレンズ21Bで光ファイバ25のNAを満たす角度に入射角を変換して光ファイバ25に入射することで、第1のレンズ21Aから光ファイバ25までの距離を短くする方法である。なお、図4(a)は、図3(a)の受信側と同様の受信側を示している。
 しかし、図4(b)に示すように2つのレンズを用いる方法には問題がある。図5(a)は、図4(b)と同じ図である。図5(b)は、図5(a)を拡大して示した図である。第2のレンズ21Bに着目すると、入射される光の入射角よりも出射角を狭める目的で設置しているため、入射側の距離Bよりも出射側の距離Xの方が長くなる。
 その結果、上述の数式(1)の通り、光源側の位置変動量Aに対して集光ポイントの位置変動量Yが大きくなる。よって、第1のレンズ21Aから光ファイバ25までの距離を短くできたとしても、集光ポイントの位置変動量は大きいままとなり。2つのレンズを用いたことによる効果は薄い。
 光ファイバのNAを満たしつつレンズと光ファイバ間の距離を短くする方法として、図6(a)から図6(b)に示すように、送信側光コネクタから入射されるコリメート光の径を小さくする方法が考えられる。この場合、コリメート光の中に埃や塵等のダストが混入した場合、コリメート光の径が小さいとダストの影響が大きくなって通信品質を保ちにくくなるが、コリメート光の径が大きいほど、ダストが混入しても通信パワーを保ちやすくなる。よって、光通信ではコリメート光の径がある程度の大きさを持つ方が望ましいが、その場合NAを満たすためにレンズ21と光ファイバ25との間の距離は長くなり、光軸ずれによる集光ポイントのずれ量を小さくすることは困難になる。
 図7は、本技術における受信側光コネクタ300Rの原理構成を示している。この受信側光コネクタ300Rにおいては、レンズ21の前面側に、光路調整部26が配置される。この光路調整部26は、入射された光に対して入射角を維持しながら径が小さくなるように光路調整をするものである。この場合、入射された光の外周側の光は、光路調整部26により内周側に平行移動され、その結果として径が小さくされる。
 図8は、光路調整部26を拡大して示している。この場合、入射面は第1の面26aと第2の面26bとが径方向に交互に配置されて階段状となっている。第1の面26aは、出射面26cと平行となっている。そのため、第1の面26aに入射された光は、図示の経路を持って、内周側に平行移動されて出射される。
 図7に示すように、入力コリメート光の径はAであるが、光路調整部26により光路調整がされて、レンズ21に入射するコリメート光の径はB(<A)となり、レンズ21を透過した後の光の光ファイバ25への入射角を狭めることができる。そのため、NAを満たしたまま、レンズ21の曲率を上げることでレンズ21と光ファイバ25との間の距離を短くでき、送信側の光軸ずれに対する受信側の集光ポイントのずれを小さくして、光パワーの結合ロスを良好に緩和できる。
 この場合、コリメート光の段階で径を狭めるものであり、その結果、図4(b)に示すように2つのレンズを使わずにレンズと光ファイバの間の距離を短くでき、かつコネクタに入力されるコリメート光の径も大きく保つことができるため、ダストにも強い構成となる。
 [電子機器および光ケーブルの構成例]
 図9は、実施の形態としての電子機器100および光ケーブル200A,200Bの構成例を示している。電子機器100は、光通信部101を備えている。光通信部101は、発光部102、光伝送路103、レセプタクルとしての送信側光コネクタ300T、レセプタクルとしての受信側光コネクタ300R、光伝送路104および受光部105を備えている。光伝送路103および光伝送路104は、それぞれ、光ファイバによって実現することができる。
 発光部102は、VCSEL(Vertical Cavity Surface Emitting LASER)等のレーザー素子、またはLED(light emitting diode)等の発光素子を備えている。発光部102は、電子機器100の図示しない送信回路で発生される電気信号(送信信号)を光信号に変換する。発光部102で発光された光信号は、光伝送路103を介して、送信側光コネクタ300Tに送られる。ここで、発光部102、光伝送路103および送信側光コネクタ300Tにより、光送信器が構成されている。
 受信側光コネクタ300Rで受信された光信号は、光伝送路104を介して、受光部105に送られる。受光部105は、フォトダイオード等の受光素子を備えている。受光部105は、受信側光コネクタ300Rから送られてくる光信号を電気信号(受信信号)に変換し、電子機器100の図示しない受信回路に供給する。ここで、受信側光コネクタ300R、光伝送路104および受光部105により、光受信器が構成されている。
 光ケーブル200Aは、プラグとしての受信側光コネクタ300Rおよびケーブル本体201Aを備えている。光ケーブル200Aは、電子機器100からの光信号を他の電子機器に伝送する。ケーブル本体201Aは光ファイバによって実現することができる。
 光ケーブル200Aの一端は受信側光コネクタ300Rにより電子機器100の送信側光コネクタ300Tに接続され、その他端は図示しないが他の電子機器に接続されている。この場合、互いに接続される送信側光コネクタ300Tおよび受信側光コネクタ300Rにより、光結合コネクタが構成されている。
 光ケーブル200Bは、プラグとしての送信側光コネクタ300Tおよびケーブル本体201Bを備えている。光ケーブル200Bは、他の電子機器からの光信号を電子機器100に伝送する。ケーブル本体201Bは光ファイバによって実現することができる。
 光ケーブル200Bの一端は送信側光コネクタ300Tにより電子機器100の受信側光コネクタ300Rに接続され、その他端は図示しないが他の電子機器に接続されている。この場合、互いに接続される送信側光コネクタ300Tおよび受信側光コネクタ300Rにより、光結合コネクタが構成されている。
 なお、電子機器100は、例えば、携帯電話、スマートフォン、PHS、PDA、タブレットPC、ラップトップコンピュータ、ビデオカメラ、ICレコーダ、携帯メディアプレーヤ、電子手帳、電子辞書、電卓、携帯ゲーム機等のモバイル電子機器や、デスクトップコンピュータ、ディスプレイ装置、テレビ受信機、ラジオ受信機、ビデオレコーダ、プリンタ、カーナビゲーションシステム、ゲーム機、ルータ、ハブ、光回線終端装置(ONU)等の他の電子機器であることができる。あるいは、電子機器100は、冷蔵庫、洗濯機、時計、インターホン、空調設備、加湿器、空気清浄器、照明器具、調理器具等の電気製品または後述するような車両の一部または全部を構成することができる。
 [光コネクタの構成例]
 図10は、光結合コネクタを構成する送信側光コネクタ300Tおよび受信側光コネクタ300Rの一例を示す斜視図である。図11も、送信側光コネクタ300Tおよび受信側光コネクタ300Rの一例を示す斜視図であるが、図10とは逆の方向から見た図である。図示の例は、複数チャネルの光信号の並行伝送に対応したものである。なお、ここでは、複数チャネルの光信号の並行伝送に対応したものを示しているが、詳細説明は省略するが、1チャネルの光信号の伝送に対応するものも同様に構成できる。
 送信側光コネクタ300Tは、外観が略直方体状のコネクタ本体311を備えている。コネクタ本体311の背面側には、各チャネルにそれぞれ対応した複数の光ファイバ330が水平方向に並んだ状態で接続されている。この場合、各光ファイバ330は、その先端側が光ファイバ挿入孔320に挿入されて固定されている。ここで、光ファイバ330は、発光体を構成している。また、コネクタ本体311の上面側には長方形の開口部を持つ接着剤注入孔314が形成されている。この接着剤注入孔314から、光ファイバ330をコネクタ本体311に固定するための接着剤が挿入される。
 また、コネクタ本体311の前面側には、長方形の開口部を持つ凹状の光出射部(光伝達空間)315が形成されており、その光出射部315の底部分に、各チャネルにそれぞれ対応して複数のレンズ(凸レンズ)316が水平方向に並んだ状態で形成されている。これにより、レンズ316の表面が相手側のコネクタ等に不用意に当たって傷つくことが防止される。
 また、コネクタ本体311の前面側には、受信側光コネクタ300Rとの位置合わせをするための凸状または凹状、図示の例では凸状の位置規制部317が一体的に形成されている。これにより、受信側光コネクタ300Rとの接続時の光軸合わせを容易に行い得るようになる。なお、この位置規制部317は、コネクタ本体311に一体的に形成されるものに限定されるものではなく、ピンを用いても良いし、他の手法で行うものであってもよい。
 受信側光コネクタ300Rは、外観が略直方体状のコネクタ本体351を備えている。コネクタ本体351は、第1の光学部352および第2の光学部353が接続されて構成されている。このようにコネクタ本体351が第1、第2の光学部352,353から構成されることで、図10、図11には図示されていないが、コネクタ本体351が持つレンズの製造などを容易に行うことができる。
 第1の光学部352の前面側には、長方形の開口部を持つ凹状の光入射部(光伝達空間)354が形成されており、その光入射部354の底部分に、各チャネルにそれぞれ対応して複数の光路調整部355が水平方向に並んだ状態で形成されている。これにより、光路調整部355の表面が相手側のコネクタ等に不用意に当たって傷つくことが防止される。
 また、第1の光学部352の前面側には、送信側光コネクタ300Tとの位置合わせをするための凸状または凹状、図示の例では凹状の位置規制部356が一体的に形成されている。これにより、送信側光コネクタ300Tとの接続時の光軸合わせを容易に行い得るようになる。なお、この位置規制部356は、第1の光学部352に一体的に形成されるものに限定されるものではなく、ピンを用いても良いし、他の手法で行うものであってもよい。
 第2の光学部353の背面側には、各チャネルにそれぞれ対応した複数の光ファイバ370が水平方向に並んだ状態で接続されている。この場合、各光ファイバ370は、その先端側が光ファイバ挿入孔357に挿入されて固定されている。ここで、光ファイバ370は、受光体を構成している。また、第2の光学部353の上面側には長方形の開口部を持つ接着剤注入孔358が形成されている。この接着剤注入孔358から、光ファイバ370を第2の光学部353に固定するための接着剤が挿入される。
 図12および図13は、コネクタ本体351を構成する第1の光学部352と第2の光学部353を分離した状態を示す斜視図である。図7と図8は、それぞれ反対方向から見た図である。第2の光学部353の前面側には、長方形の開口部を持つ凹状の空間359が形成されており、その空間359の底部分に、各チャネルにそれぞれ対応して複数のレンズ360が水平方向に並んだ状態で形成されている。また、第1の光学部352の背面側には、各チャネルの光路調整部355を通過した光が出射される円形の開口部361が形成されている。
 図14は、送信側光コネクタ300Tの一例を示す断面図である。図示の例では、位置規制部317(図10、図11参照)の図示を省略している。この図14を参照して、送信側光コネクタ300Tについてさらに説明する。
 送信側光コネクタ300Tは、コネクタ本体311を備えている。コネクタ本体311は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなり、レンズ付きフェルールの構成となっている。
 コネクタ本体311には、その前面側に、凹状の光出射部(光伝達空間)315が形成されている。そして、このコネクタ本体311には、この光出射部315の底部分に位置するように、各チャネルに対応した複数のレンズ(凸レンズ)316が水平方向に並んだ状態で一体的に形成されている。これにより、コネクタ本体311に対するレンズ316の位置精度を高めることができる。
 また、コネクタ本体311には、背面側から前方に延びる光ファイバ挿入孔320が、各チャネルのレンズ316に合わせて、水平方向に並んだ状態で複数設けられている。光ファイバ330は、光路となる中心部のコア331と、その周囲を覆うクラッド332の二重構造となっている。
 各チャネルの光ファイバ挿入孔320は、そこに挿入される光ファイバ330のコア331と対応するレンズ316の光軸が一致するように、成形されている。また、各チャネルの光ファイバ挿入孔320は、その底位置、つまり光ファイバ330を挿入した際に、その先端(入射端)の当接位置がレンズ316の焦点位置と合致するように、成形されている。
 また、コネクタ本体311には、上面側から下方に延びる接着剤注入孔314が、水平方向に並んだ状態にある複数の光ファイバ挿入孔320の底位置付近に連通するように、形成されている。光ファイバ330が光ファイバ挿入孔320に挿入された後、接着剤注入孔314から接着剤321が光ファイバ330の周囲に注入されることで、光ファイバ330はコネクタ本体311に固定される。
 送信側光コネクタ300Tにおいて、レンズ316は、入射される光をコリメート光に成形する機能を持つ。これにより、光ファイバ330の出射端から所定のNAで出射された光はレンズ316に入射されてコリメート光に成形されて出射される。
 図15は、受信側光コネクタ300Rの一例を示す断面図である。図示の例では、位置規制部356(図11参照)の図示を省略している。この図15を参照して、受信側光コネクタ300Rについてさらに説明する。
 受信側光コネクタ300Rは、第1の光学部352と第2の光学部353が接続されて構成されたコネクタ本体351を備えている。第1の光学部352は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなっている。
 第1の光学部352には、その前面側に、凹状の光入射部(光伝達空間)354が形成されている。そして、この第1の光学部352には、この光入射部354の底部分に位置するように、各チャネルに対応した複数の光路調整部355が水平方向に並んだ状態で一体的に形成されている。これにより、第1の光学部352に対する光路調整部355の位置を、複数チャネルにおいて全部同時に調整することが可能となる。また、第1の光学部352には、その背面側に、各チャネルの光路調整部355を通過した光が出射される円形の開口部361が形成されている。
 光路調整部355は、上述の図7における光路調整部26に対応するものである。この光路調整部355は、入射された光(コリメート光)に対して入射角を維持しながら径が小さくなるように光路調整をする。この場合、入射された光の外周側の光は、光路調整部355により内周側に平行移動され、その結果として径が小さくされる。
 ここで、図示の光路調整部355は、中心部分に貫通孔363を有する構成となっている。この場合、中心部分の光は、もともと、光路調整部355で光路を調整して得られる光の径内に収まっているので、光路調整を行う必要はない。このように光路調整部355をその中心部分に貫通孔363を有する構成とすることで、中心部分の光に対する光路調整を防止して、光路調整で弾かれてロスとなる光の量を低減できる。
 第2の光学部353は、例えば合成樹脂またはガラスなどの光透過性材料、あるいは特定の波長を透過するシリコン等の材料からなり、レンズ付きフェルールの構成となっている。このようにレンズ付きフェルールの構成とされることで、光ファイバ370とレンズ360との光軸合わせを容易に行うことができる。また、このように第2の光学部353がレンズ付きフェルールの構成とされることで、多チャネルの場合でも、光ファイバ370をフェルールに挿入するだけで、多チャネル通信を容易に実現できる。
 第2の光学部353は、第1の光学部352と接続されてコネクタ本体351を構成するものである。熱膨張係数を揃えた方が、熱が変化した際の2つの光学部での歪による光路ずれが抑えられるため、第2の光学部353の材料は第1の光学部352の材料と同一であることが好ましいが、別材料であってもよい。
 第2の光学部353には、その正面側に、長方形の開口部を持つ凹状の空間359が形成されており、その空間359の底部分に、各チャネルにそれぞれ対応して複数のレンズ360が水平方向に並んだ状態で一体的に形成されている。これにより、第2の光学部353に設置される光ファイバ370のコア371に対するレンズ360の位置精度を、複数チャネルにおいて全部同時に高めることが可能となる。
 また、第2の光学部353には、背面側から前方に延びる光ファイバ挿入孔357が、各チャネルのレンズ360に合わせて、水平方向に並んだ状態で複数設けられている。光ファイバ370は、光路となる中心部のコア371と、その周囲を覆うクラッド372の二重構造となっている。
 各チャネルの光ファイバ挿入孔357は、そこに挿入される光ファイバ370のコア371と、それに対応するレンズ360の光軸が一致するように、成形されている。また、各チャネルの光ファイバ挿入孔357は、その底位置、つまり光ファイバ370を挿入した際に、その先端(出射端)の当接位置がレンズ360の焦点位置と合致するように、成形されている。
 また、第2の光学部353には、上面側から下方に延びる接着剤注入孔358が、水平方向に並んだ状態にある複数の光ファイバ挿入孔357の底位置付近に連通するように、形成されている。光ファイバ370が光ファイバ挿入孔357に挿入された後、接着剤注入孔358から接着剤362が光ファイバ370の周囲に注入されることで、光ファイバ370は第2の光学部353に固定される。
 ここで、光ファイバ370の先端と光ファイバ挿入孔357の底位置との間に空気層が存在すると、レンズ360から出射された光はその底位置で反射し易くなり、信号品質の低下が発生する。そのため、接着剤362は、光透過剤であって、光ファイバ370の先端と光ファイバ挿入孔357の底位置との間に注入される方が望ましく、これにより反射を低減することができる。
 上述したように、第1の光学部352と第2の光学部353が接続されてコネクタ本体351が構成される。この接続方法として、ボスのような一方に凹部、もう一方に凸部を新に設けて嵌合する方法、あるいは画像処理システム等でレンズどうしの光軸位置を合わせて接着固定する方法等を採り得る。
 受信側光コネクタ300Rにおいて、光路調整部355は、入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする機能を持つ。レンズ360は、光路調整部355で光路調整された光を集光する機能を持つ。これにより、入射されたコリメート光は光路調整部355に入力されて、入射角を維持しながら径が小さくなるように光路調整される。そして、この光路調整された光は、レンズ360に入射されて集光され、この集光された光は、受光体である光ファイバ370の入射端に所定のNAで入射される。
 図16は、光結合コネクタを構成する送信側光コネクタ300Tおよび受信側光コネクタ300Rの断面図を示している。図示の例では、送信側光コネクタ300Tと受信側光コネクタ300Rが接続された状態を示している。
 送信側光コネクタ300Tにおいて、光ファイバ330を通じて送られてくる光はこの光ファイバ330の出射端から所定のNAで出射される。この出射された光はレンズ316に入射されてコリメート光に成形され、受信側光コネクタ300Rに向かって出射される。
 また、受信側光コネクタ300Rにおいて、送信側光コネクタ300Tから出射された光(コリメート光)は、光路調整部355に入射され、入射角を維持しながら径が小さくなるように光路調整される。この光路調整された光は、レンズ360に入射されて集光される。そして、この集光された光は、光ファイバ370の入射端に入射され、光ファイバ370を通じて送られていく。
 上述したように構成される光結合コネクタにおいて、受信側光コネクタ300Rは、入射された光に対して光路調整部355で入射角を維持しながら径が小さくなるように光路調整をし、この光路調整された光をレンズ360で集光して受光体である光ファイバ370に入射するものである。そのため、光ファイバ370への光の入射角がNAを満たすようにしつつ、レンズ360の焦点距離を短くして、送信側での軸ずれに対する受信側での光パワーの結合ロスを緩和することが可能となる。ここで、レンズ360の焦点距離を短くすることで、レンズ360から集光ポイントまでの距離を短くでき、送信側での軸ずれに対する受信側の集光ポイントのずれが抑制される。
 本技術による効果のシミュレーション結果について説明する。ここでは、光ファイバのモードフィールド径(MFD:Mode Field Diameter)は8μmとし、光ファイバのNAが0.15の光学系を用いている。図17(a)は、コリメート径が180μmと大きく、レンズの焦点距離が0.9mmと長い場合の例を示している。図17(b)は、コリメート径を90μmと小さくして、レンズの焦点距離を0.48mmと短くした場合の例を示している。
 図18のグラフは、受信側の光ファイバへ入力される光の結合効率のシミュレーション結果を示している。横軸は軸ずれ量で、光軸に対して垂直方向に光源がずれた場合のずれ量を示し、縦軸は受信側での光の結合効率を示している。実線(a)は、図17(a)の例における軸ずれ量と結合効率の関係を示している。実線(b)は、図17(b)の例における軸ずれ量と結合効率の関係を示している。
 光ファイバのMFDが8μmであるため、例えば、軸ずれが5μmになると、図17(a)の例の場合には実線(a)から7.5割程度のパワーロスが発生する。しかし、図17(b)の例の場合には実線(b)からパワーロスは1割程度となり、パワーロスが大幅に減少されている。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
 図19(a)~(e)、図20(a)~(e)、図21(a)~(e)、図22(a)~(e)は、光路調整部355の変形例を示している。これらの変形例においても、光路調整部355は、入射光に対して入射角を維持しながら径が小さくなるように光路調整を行うことができる。なお、図21(a)~(e)、図22(a)~(e)の変形例においては、光路調整部355はミラー365を含んでいる。光路調整部355がミラー365を含むことで、効率よく光路調整を行うことができ、ロスとなる光の量を低減することが可能となる。
 [受信側光コネクタの他の構成例]
 受信側光コネクタの構成としては、上述した受信側光コネクタ300R(図15参照)の他にも種々の構成が考えられる。
 「他の構成例1」
 図23は、他の構成例1としての受信側光コネクタ300R-1を示す断面図である。この図23において、図15と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。受信側光コネクタ300R-1においては、第2の光学部353に固定される受光体は、光ファイバ370ではなく、PD(Photodiode)などの受光素子380である。
 この場合、受光素子380は、第2の光学部353の背面側に、各チャネルのレンズ360に合わせて、水平方向に並んだ状態で複数固定される。そして、この場合、各チャネルの受光素子380は、その入射部が対応するレンズ360の光軸に一致するように、固定される。また、この場合、各チャネルの受光素子380の入射部がそれぞれ対応するレンズ360の焦点位置と合致するように、第2の光学部353の光軸方向の厚み等が設定されている。
 この受信側光コネクタ300R-1においては、入射されたコリメート光は光路調整部355に入力されて、入射角を維持しながら径が小さくなるように光路調整される。そして、この光路調整された光は、レンズ360に入射されて集光され、この集光された光は、受光体である受光素子380の入射部(受光部)に入射される。
 このように第2の光学部353に受光素子380が固定される構成とすることで、伝送されてくる光を受光素子380に入射する際に、光ファイバが不要となり、コストの低減が可能となる。
 「他の構成例2」
 図24は、他の構成例2としての受信側光コネクタ300R-2を示す断面図である。この図24において、図15、図23と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。送信側光コネクタ300R-2においては、コネクタ本体351の下面側に、受光素子380が載置された基板381が固定される。この場合、基板381には、受光素子380が、各チャネルのレンズ360に合わせて、水平方向に並んだ状態で複数載置されている。
 第2の光学部353には、下面側から上方に延びる受光素子配置用孔366が形成されている。そして、各チャネルのレンズ360で集光された光の光路をそれぞれ対応する受光素子380の方向に変更するために、受光素子配置用孔366の底部分は傾斜面とされ、この傾斜面にミラー382が配置されている。なお、ミラー382に関しては、別個に生成されたものを傾斜面に固定するだけでなく、傾斜面に蒸着等で形成することも考えられる。
 ここで、基板381は、各チャネルの受光素子380の入射部がそれぞれ対応するレンズ360の光軸に一致するように、位置が調整されて固定される。また、この場合、各チャネルの受光素子380の入射部がそれぞれ対応するレンズ360の焦点位置と合致するように、レンズ360の形成位置、受光素子配置用孔366の形成位置・長さ等が設定されている。
 この受信側光コネクタ300R-2においては、入射されたコリメート光は光路調整部355に入力されて、入射角を維持しながら径が小さくなるように光路調整される。そして、この光路調整された光は、レンズ360に入射されて集光され、この集光された光は、ミラー382で光路変更された後に受光素子380の入射部(受光部)に入射される。
 このようにコネクタ本体351に受光素子380が載置された基板381が固定されることで、受光素子380に光信号を伝送する際に、光ファイバが不要となり、コストの低減が可能となる。また、レンズ360で集光された光をミラー382で光路変更して受光素子380に入射する構成とされることで、実装が容易となり、設計自由度を上げることができる。
 「他の構成例3」
 図25は、他の構成例3としての受信側光コネクタ300R-3を示す断面図である。この図25において、図15、図24と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。送信側光コネクタ300R-3においては、第2の光学部353には、下面側から上方に延びる光ファイバ挿入孔367が、各チャネルのレンズ360に合わせて、水平方向に並んだ状態で複数形成されている。
 各チャネルのレンズ360で集光された光をそれぞれ対応する光ファイバ370の方向に変更するために、各光ファイバ挿入孔367の底部分は傾斜面とされ、この傾斜面にミラー382が配置されている。また、各光ファイバ挿入孔367は、そこに挿入される光ファイバ370のコア371と、それに対応するレンズ360の光軸が一致するように、成形されている。
 各光ファイバ挿入孔367には、それぞれ対応するチャネルの光ファイバ370が挿入され、例えば図示しない接着剤が光ファイバ370の周囲に注入されることで固定される。この場合、光ファイバ370は、その先端(入射端)が対応するレンズ360の焦点位置と合致するように、従って、その先端(入射端)がミラー382から一定距離に位置するように、その挿入位置が設定される。
 この受信側光コネクタ300R-3においては、入射されたコリメート光は光路調整部355に入力されて、入射角を維持しながら径が小さくなるように光路調整される。そして、この光路調整された光は、レンズ360に入射されて集光され、この集光された光は、ミラー382で光路変更された後に、光ファイバ370の入射端に所定のNAで入射される。
 この構成例の場合、第2の光学部353がレンズ付きフェルールの構成とされているので、光ファイバ370とレンズ360との光軸合わせを容易に行うことができる。また、この構成例の場合、光ファイバ370への光の光路をミラー382で変更する構成であることから、実装が容易となり、設計自由度を上げることができる。
 「他の構成例4」
 図26は、他の構成例4としての受信側光コネクタ300R-4を示す断面図である。この図26において、図15、図25と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。受信側光コネクタ300R-4においては、第2の光学部353に形成される光ファイバ挿入孔367の径が大きくされる。そして、この光ファイバ挿入孔367に、光ファイバ370が予め突き当てで固定されたフェルール368が挿入され、例えば図示しない接着剤によって固定されている。このような構成とすることで、光ファイバ370の先端位置をミラー382から一定距離に保つことが容易となる。
 <2.変形例>
 なお、上述の実施の形態においては、シングルモードの光ファイバを用いる例で説明したが、本技術はマルチモードの光ファイバを用いる場合にも同様に適用でき、また、特定のNAに限定されない。また、上述実施の形態におけるミラーは、その他の光路変更部で実現することも考えられる。例えば、屈折率を利用した全反射による光路変更部も考えられる。
 また。上述実施の形態においては、受信側光コネクタ300Rが備えるコネクタ本体351が光路調整部355を持つ第1の光学部352とレンズ360を持つ第2の光学部353とからなる例を示したが、コネクタ本体351を光路調整部355とレンズ360を持つ1つの光学部で構成することも考えられる。例えば、3Dプリンタあるいはそれに類した技術を適用して製造することが考えられる。
 また、上述実施の形態においては、送信側のレンズ316がコリメート光に成形する例で説明したが。これに限定されない。図27は、コリメート光ではなく、収束光(集光方向に曲げられた光)を用いた光結合コネクタについて示している。この図27において、図3と対応する部分については同一符号を付して示している。
 図27(a)のように、送信側の光ファイバ15から出射される光を光源とした場合、その光源の位置がずれると、受信側の集光ポイントも大きくずれる(破線参照)。これは、レンズ11における収束光が崩れて、受信側では斜めにレンズ21に入力され、集光ポイントがずれるためである。
 しかし、図27(b)に示すように、受信側のレンズ21と光ファイバ25との間の距離が短い場合、光源の位置がずれても、図27(a)の場合に比べて、集光ポイントのずれ量は少なくなる(破線参照)。これにより、送信側のレンズ11でコリメート光に成形する場合でなくても、受信側のレンズ21と集光ポイントとの間の距離を短くすることで、送信側での光軸ずれに対する受信側での光パワーの結合ロスを減らすことが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏し得る。
 なお、本技術は、以下のような構成もとることができる。
 (1)入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
 光コネクタ。
 (2)上記光路調整部は、中心部分に貫通孔を有する
 前記(1)に記載の光コネクタ。
 (3)上記光路調整部は、光路変更部を含む
 前記(1)または(2)に記載の光コネクタ。
 (4)上記コネクタ本体は、上記光路調整部を持つ第1の光学部と、上記レンズを持つ第2の光学部とからなる
 前記(1)から(3)のいずれかに記載の光コネクタ。
 (5)上記受光体は光ファイバであり、
 上記コネクタ本体は、上記光ファイバを挿入する挿入孔を有する
 前記(1)から(4)のいずれかに記載の光コネクタ。
 (6)上記コネクタ本体は、上記挿入孔の底部分に光路を変更するための光路変更部を持ち、上記レンズで集光された光は上記光路変更部で光路変更されて上記光ファイバに入射される
 前記(5)に記載の光コネクタ。
 (7)上記挿入孔は、上記光ファイバが挿入固定されたフェルールを挿入するための挿入孔である
 前記(6)に記載の光コネクタ。
 (8)上記受光体は、光信号を電気信号に変換する受光素子である
 (1)から(4)のいずれかに記載の光コネクタ。
 (9)上記受光素子は上記コネクタ本体に接続されており、
 上記レンズで集光された光は光路変更されずに上記受光素子に入射される
 前記(8)に記載の光コネクタ。
 (10)上記コネクタ本体は光路を変更するための光路変更部を持ち、
 上記受光素子は基板に固定されており、
 上記レンズで集光された光は上記光路変更部で光路変更されて上記受光素子に入射される
 前記(8)に記載の光コネクタ。
 (11)上記光路調整部に入射される光はコリメート光である
 前記(1)から(10)のいずれかに記載の光コネクタ。
 (12)上記コネクタ本体は光透過性材料からなり、
 上記光路調整部および上記レンズを一体的に持つ
 前記(1)から(11)のいずれかに記載の光コネクタ。
 (13)上記コネクタ本体は、上記光路調整部と上記レンズの組み合わせを複数持つ
 前記(1)から(12)のいずれかに記載の光コネクタ。
 (14)上記コネクタ本体は凹状の光入射部を持ち、
 上記光路調整部は上記光入射部の底部分に位置する
 前記(1)から(13)のいずれかに記載の光コネクタ。
 (15)上記コネクタ本体は、前面側に、接続相手側のコネクタとの位置合わせをするための凸状あるいは凹状の位置規制部を一体的に持つ
 前記(1)から(14)のいずれかに記載の光コネクタ。
 (16)上記受光体をさらに備える
 前記(1)から(15)のいずれかに記載の光コネクタ。
 (17)プラグとしての光コネクタを有する光ケーブルであって、
 上記光コネクタは、
 入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
 光ケーブル。
 (18)レセプタクルとしての光コネクタを有する電子機器であって、
 上記光コネクタは、
 入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
 電子機器。
 100・・・電子機器
 101・・・光通信部
 102・・・発光部
 103,104・・・光伝送路
 105・・・受光部
 200A,200B・・・光ケーブル
 201A、201B・・・ケーブル本体
 300T・・・送信側光コネクタ
 300R,300R-1~300R-4・・・受信側光コネクタ
 311・・・コネクタ本体
 314・・・接着剤注入孔
 315・・・光出射部
 316・・・レンズ
 317・・・位置規制部
 320・・・光ファイバ挿入孔
 321・・・接着剤
 330・・・光ファイバ
 331・・・コア
 332・・・クラッド
 351・・・コネクタ本体
 352・・・第1の光学部
 353・・・第2の光学部
 354・・・光入射部
 355・・・光路調整部
 356・・・位置規制部
 357・・・光ファイバ挿入孔
 358・・・接着剤挿入孔
 359・・・空間
 360・・・レンズ
 361・・・開口部
 362・・・接着剤
 363・・・貫通孔
 365・・・ミラー
 366・・・受光素子配置孔
 367・・・光ファイバ挿入孔
 368・・・フェルール
 370・・・光ファイバ
 371・・・コア
 372・・・クラッド
 380・・・受光素子
 381・・・基板
 382・・・ミラー

Claims (18)

  1.  入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
     光コネクタ。
  2.  上記光路調整部は、中心部分に貫通孔を有する
     請求項1に記載の光コネクタ。
  3.  上記光路調整部は、光路変更部を含む
     請求項1に記載の光コネクタ。
  4.  上記コネクタ本体は、上記光路調整部を持つ第1の光学部と、上記レンズを持つ第2の光学部とからなる
     請求項1に記載の光コネクタ。
  5.  上記受光体は光ファイバであり、
     上記コネクタ本体は、上記光ファイバを挿入する挿入孔を有する
     請求項1に記載の光コネクタ。
  6.  上記コネクタ本体は、上記挿入孔の底部分に光路を変更するための光路変更部を持ち、上記レンズで集光された光は上記光路変更部で光路変更されて上記光ファイバに入射される
     請求項5に記載の光コネクタ。
  7.  上記挿入孔は、上記光ファイバが挿入固定されたフェルールを挿入するための挿入孔である
     請求項6に記載の光コネクタ。
  8.  上記受光体は、光信号を電気信号に変換する受光素子である
     請求項1に記載の光コネクタ。
  9.  上記受光素子は上記コネクタ本体に接続されており、
     上記レンズで集光された光は光路変更されずに上記受光素子に入射される
     請求項8に記載の光コネクタ。
  10.  上記コネクタ本体は光路を変更するための光路変更部を持ち、
     上記受光素子は基板に固定されており、
     上記レンズで集光された光は上記光路変更部で光路変更されて上記受光素子に入射される
     請求項8に記載の光コネクタ。
  11.  上記光路調整部に入射される光はコリメート光である
     請求項1に記載の光コネクタ。
  12.  上記コネクタ本体は光透過性材料からなり、
     上記光路調整部および上記レンズを一体的に持つ
     請求項1に記載の光コネクタ。
  13.  上記コネクタ本体は、上記光路調整部と上記レンズの組み合わせを複数持つ
     請求項1に記載の光コネクタ。
  14.  上記コネクタ本体は凹状の光入射部を持ち、
     上記光路調整部は上記光入射部の底部分に位置する
     請求項1に記載の光コネクタ。
  15.  上記コネクタ本体は、前面側に、接続相手側のコネクタとの位置合わせをするための凸状あるいは凹状の位置規制部を一体的に持つ
     請求項1に記載の光コネクタ。
  16.  上記受光体をさらに備える
     請求項1に記載の光コネクタ。
  17.  プラグとしての光コネクタを有する光ケーブルであって、
     上記光コネクタは、
     入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
     光ケーブル。
  18.  レセプタクルとしての光コネクタを有する電子機器であって、
     上記光コネクタは、
     入射された光に対して入射角を維持しながら径が小さくなるように光路調整をする光路調整部と該光路調整部で光路調整された光を集光して受光体に入射するレンズを持つコネクタ本体を備える
     電子機器。
PCT/JP2019/045593 2018-12-13 2019-11-21 光コネクタ、光ケーブルおよび電子機器 WO2020121770A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980080336.4A CN113260890B (zh) 2018-12-13 2019-11-21 光学连接器、光缆和电子设备
US17/309,549 US11506850B2 (en) 2018-12-13 2019-11-21 Optical connector, optical cable, and electronic device
JP2020559906A JP7428140B2 (ja) 2018-12-13 2019-11-21 光コネクタ、光ケーブルおよび電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233319 2018-12-13
JP2018-233319 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020121770A1 true WO2020121770A1 (ja) 2020-06-18

Family

ID=71076400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045593 WO2020121770A1 (ja) 2018-12-13 2019-11-21 光コネクタ、光ケーブルおよび電子機器

Country Status (4)

Country Link
US (1) US11506850B2 (ja)
JP (1) JP7428140B2 (ja)
CN (1) CN113260890B (ja)
WO (1) WO2020121770A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121770A1 (ja) * 2018-12-13 2020-06-18 ソニー株式会社 光コネクタ、光ケーブルおよび電子機器
JP2022069323A (ja) * 2020-10-23 2022-05-11 住友電気工業株式会社 光デバイス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333245A (ja) * 1992-06-03 1993-12-17 Alps Electric Co Ltd 光通信用光学装置およびその調整方法
US6498875B1 (en) * 2000-05-01 2002-12-24 E20 Communications Inc. Optical connector for connecting a plurality of light sources to a plurality of light sinks

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2792751A (en) * 1953-10-27 1957-05-21 Taylor Taylor & Hobson Ltd Refracting compound prism anamorphotic optical systems
US2828670A (en) * 1954-08-30 1958-04-01 Eastman Kodak Co Prism-lens optical systems of variable focal length and including two anamorphotic prismatic systems
US4580879A (en) * 1983-09-06 1986-04-08 Storage Technology Partners Ii In-line optical anamorphic beam expander/contractor
US4948233A (en) * 1984-02-20 1990-08-14 Asahi Kogaku Kogyo Kabushiki Kaisha Beam shaping optical system
JPS60220309A (ja) * 1984-04-18 1985-11-05 Ricoh Co Ltd 光走査光学系
JP2584224B2 (ja) * 1987-03-30 1997-02-26 富士写真フイルム株式会社 光ビ−ム記録装置
US4872747A (en) * 1987-04-15 1989-10-10 Cyberoptics Corporation Use of prisms to obtain anamorphic magnification
JPH02150812A (ja) * 1988-12-01 1990-06-11 Sharp Corp 光回路結合素子
JPH02222918A (ja) * 1989-02-23 1990-09-05 Fuji Photo Film Co Ltd ビーム形状変換装置
US5333077A (en) * 1989-10-31 1994-07-26 Massachusetts Inst Technology Method and apparatus for efficient concentration of light from laser diode arrays
EP0601873B1 (en) * 1992-12-11 1999-07-28 Raytheon Company Achromatic and apochromatic prism element employing prisms and gratings
US5321717A (en) * 1993-04-05 1994-06-14 Yoshifumi Adachi Diode laser having minimal beam diameter and optics
US5596456A (en) * 1994-02-25 1997-01-21 New Focus, Inc. Achromatic anamorphic prism pair
US5825555A (en) * 1994-09-19 1998-10-20 Asahi Kogaku Kogyo Kabushiki Kaisha Beam projecting apparatus
US5559911A (en) * 1995-01-17 1996-09-24 Radiant Imaging, Inc. Optical fiber coupler using segmented lenses
JPH0949947A (ja) * 1995-08-10 1997-02-18 Hitachi Ltd 光モジュール
US6120191A (en) * 1997-02-26 2000-09-19 Matsushita Electric Industrial Co., Ltd. Laser diode module
US6125222A (en) * 1998-04-21 2000-09-26 Scientific-Atlanta, Inc. Fiber grating feedback stabilization of broad area laser diode
US6795473B1 (en) * 1999-06-23 2004-09-21 Lambda Physik Ag Narrow band excimer laser with a prism-grating as line-narrowing optical element
EP1033597A4 (en) * 1998-09-17 2005-09-28 Matsushita Electric Ind Co Ltd COUPLING LENS AND SEMICONDUCTOR LASER MODULE
US6108355A (en) * 1998-10-16 2000-08-22 New Focus, Inc. Continuously-tunable external cavity laser
DE19939750C2 (de) * 1999-08-21 2001-08-23 Laserline Ges Fuer Entwicklung Optische Anordnung zur Verwendung bei einer Laserdiodenanordnung sowie Laserdiodenanordnung mit einer solchen optischen Anordnung
US7179536B1 (en) * 1999-09-29 2007-02-20 Konica Corporation Optical element having a low surface roughness, an optical pickup device including the optical element, and a die for making the optical element
US6400513B1 (en) * 2000-03-15 2002-06-04 Quantum Devices, Inc. Optical beam coupling of multiple wavelengths into an output channel using spatial wavefront segmentation
JP3941334B2 (ja) * 2000-04-20 2007-07-04 株式会社日立製作所 光伝送モジュールおよびそれを用いた光通信システム
US6493148B1 (en) * 2000-11-08 2002-12-10 Opto Power Corporation Increasing laser beam power density
US6516011B1 (en) * 2000-11-08 2003-02-04 Opto-Power Corp. Focusing multiple laser beams
WO2002075399A1 (en) * 2001-03-19 2002-09-26 C Speed Corporation Modular fiber optic switch core
JP2004006439A (ja) * 2001-07-02 2004-01-08 Furukawa Electric Co Ltd:The 半導体レーザモジュール及びその製造方法
JPWO2003005106A1 (ja) * 2001-07-02 2004-10-28 古河電気工業株式会社 半導体レーザモジュール及び光増幅器
US7027230B2 (en) * 2002-11-01 2006-04-11 Finisar Corporation Asymmetric optical focusing system
WO2004047239A2 (en) * 2002-11-20 2004-06-03 Mems Optical, Inc. Laser diode bar integrator/reimager
KR20040062073A (ko) * 2002-12-31 2004-07-07 엘지전자 주식회사 미세 렌즈 배열을 이용한 광섬유-결합기
JP4153438B2 (ja) * 2003-01-30 2008-09-24 富士フイルム株式会社 レーザ光合波方法および装置
DE10311570B4 (de) * 2003-03-10 2005-03-10 Infineon Technologies Ag Bidirektionale Sende- und Empfangseinrichtung
US20040213097A1 (en) * 2003-04-25 2004-10-28 Konica Minolta Opto, Inc. Optical pick-up device
CN1781043B (zh) * 2003-04-30 2011-05-11 株式会社藤仓 光收发器及光连接器
JP3865137B2 (ja) * 2003-04-30 2007-01-10 株式会社フジクラ 光コネクタ
US6993059B2 (en) * 2003-06-11 2006-01-31 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
US7006549B2 (en) * 2003-06-11 2006-02-28 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
JP2005107319A (ja) * 2003-09-30 2005-04-21 Toshiba Corp 光モジュール、光ファイバレーザ装置、映像表示装置
JP2005181987A (ja) * 2003-11-27 2005-07-07 Konica Minolta Holdings Inc 光双方向モジュール
JP2005165088A (ja) * 2003-12-04 2005-06-23 Nec Compound Semiconductor Devices Ltd 光半導体装置
JP2005170711A (ja) * 2003-12-09 2005-06-30 Fujinon Corp 光学素子及びその成形方法
JP2006066875A (ja) * 2004-07-26 2006-03-09 Fuji Photo Film Co Ltd レーザモジュール
US7121741B2 (en) * 2004-10-26 2006-10-17 Konica Minolta Holdings, Inc. Optical communication module
ATE406587T1 (de) * 2005-04-21 2008-09-15 Konica Minolta Opto Inc Optisches übertragungsmodul und optisches element für ein optisches übertragungsmodul
JPWO2006134794A1 (ja) * 2005-06-15 2009-01-08 コニカミノルタホールディングス株式会社 光双方向モジュール
US20070024959A1 (en) * 2005-07-26 2007-02-01 Infocus Corporation Laser combiner
JP2007264013A (ja) * 2006-03-27 2007-10-11 Konica Minolta Opto Inc 光学素子及び双方向光通信モジュール
US7680170B2 (en) * 2006-06-15 2010-03-16 Oclaro Photonics, Inc. Coupling devices and methods for stacked laser emitter arrays
JP5141080B2 (ja) 2007-04-10 2013-02-13 セイコーエプソン株式会社 光源装置、及び、それを用いた画像表示装置、モニタ装置、並びに照明装置
US8804246B2 (en) * 2008-05-08 2014-08-12 Ii-Vi Laser Enterprise Gmbh High brightness diode output methods and devices
JP5192452B2 (ja) * 2009-06-25 2013-05-08 富士フイルム株式会社 光ファイバの接続構造及び内視鏡システム
CN102243366A (zh) * 2010-05-13 2011-11-16 富士迈半导体精密工业(上海)有限公司 聚光元件及太阳能发电装置
WO2012056991A1 (ja) * 2010-10-26 2012-05-03 コニカミノルタオプト株式会社 プローブ
US9014220B2 (en) * 2011-03-10 2015-04-21 Coherent, Inc. High-power CW fiber-laser
CN102147563A (zh) * 2011-03-30 2011-08-10 青岛海信电器股份有限公司 激光投影光源模块及其光束整形方法、激光显示设备
TWI573650B (zh) * 2011-12-16 2017-03-11 應用材料股份有限公司 輻射源及用於結合同調光束的光束組合器
US8599485B1 (en) * 2012-05-25 2013-12-03 Corning Incorporated Single-emitter etendue aspect ratio scaler
JP6228791B2 (ja) 2012-11-12 2017-11-08 日本オクラロ株式会社 受光モジュール
JP6395357B2 (ja) * 2013-04-05 2018-09-26 住友電工デバイス・イノベーション株式会社 光モジュール
JP6285650B2 (ja) * 2013-07-03 2018-02-28 浜松ホトニクス株式会社 レーザ装置
CN104459925A (zh) * 2013-09-17 2015-03-25 富士康(昆山)电脑接插件有限公司 透镜模组
JP6446815B2 (ja) 2014-04-08 2019-01-09 住友電気工業株式会社 光接続構造
JP2016020935A (ja) * 2014-07-11 2016-02-04 株式会社リコー レーザー装置
US20170023747A1 (en) * 2015-07-20 2017-01-26 Samtec, Inc. Eye-safe interface for optical connector
JP6784260B2 (ja) 2015-09-30 2020-11-11 ソニー株式会社 光通信コネクタ、光通信ケーブル及び電子機器
CN105487236B (zh) * 2016-01-27 2018-05-18 成都成亿光电科技有限公司 激光整形压缩装置
JP2017134282A (ja) * 2016-01-28 2017-08-03 ソニー株式会社 光コネクタ及び光伝送モジュール
JP2017142450A (ja) * 2016-02-12 2017-08-17 古河電気工業株式会社 光結合装置
WO2017143089A1 (en) * 2016-02-16 2017-08-24 Nlight, Inc. Passively aligned single element telescope for improved package brightness
US20190113683A1 (en) * 2016-03-31 2019-04-18 Sumitomo Osaka Cement Co., Ltd Optical modulation device
WO2018051450A1 (ja) * 2016-09-15 2018-03-22 株式会社島津製作所 レーザ装置
JP6880733B2 (ja) * 2016-12-28 2021-06-02 住友電気工業株式会社 光モジュール
US10314491B2 (en) * 2017-02-11 2019-06-11 The General Hospital Corporation Optics for apodizing an optical imaging probe beam
JP2019004061A (ja) * 2017-06-16 2019-01-10 株式会社島津製作所 発光装置
JP7069677B2 (ja) * 2017-12-12 2022-05-18 株式会社島津製作所 発光装置
WO2019124110A1 (ja) * 2017-12-21 2019-06-27 ソニー株式会社 光通信コネクタ、光通信ケーブル、及び電子機器
US10371906B1 (en) * 2018-01-17 2019-08-06 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for delivering the fiber laser radiation into dynamical waveguide
EP3763062B1 (en) * 2018-03-07 2024-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical antenna
US11567272B2 (en) * 2018-08-23 2023-01-31 Shimadzu Corporation Optical coupling device
JP6808892B2 (ja) * 2018-09-18 2021-01-06 三菱電機株式会社 合波光学系
WO2020121770A1 (ja) * 2018-12-13 2020-06-18 ソニー株式会社 光コネクタ、光ケーブルおよび電子機器
WO2020129147A1 (ja) * 2018-12-18 2020-06-25 オリンパス株式会社 内視鏡用光源装置、及びこれを有する内視鏡
WO2021030721A1 (en) * 2019-08-14 2021-02-18 Nlight, Inc. Variable magnification afocal telescope element
JP7367579B2 (ja) * 2020-03-23 2023-10-24 住友大阪セメント株式会社 光機能デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333245A (ja) * 1992-06-03 1993-12-17 Alps Electric Co Ltd 光通信用光学装置およびその調整方法
US6498875B1 (en) * 2000-05-01 2002-12-24 E20 Communications Inc. Optical connector for connecting a plurality of light sources to a plurality of light sinks

Also Published As

Publication number Publication date
JPWO2020121770A1 (ja) 2021-10-21
CN113260890B (zh) 2024-06-11
US11506850B2 (en) 2022-11-22
CN113260890A (zh) 2021-08-13
JP7428140B2 (ja) 2024-02-06
US20220035111A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
CN101872038B (zh) 光纤连接器模块及收发器模块与光纤间耦合光信号的方法
JP6956211B2 (ja) 光コネクタ及び光コネクタシステム並びにこれらを備えたアクティブ光ケーブル
JP7396304B2 (ja) 光通信装置、光通信方法および光通信システム
US11716146B2 (en) Optical communication apparatus, optical communication method, and optical communication system
JP4805657B2 (ja) 光レシーバ
KR20160101037A (ko) 다중모드 광학 커넥터
US9733438B2 (en) Optical connector for data transceiver modules and lens block for optical connectors
US11474300B2 (en) Optical communication connector, optical transmitter, optical receiver, optical communication system, and optical communication cable
WO2020121770A1 (ja) 光コネクタ、光ケーブルおよび電子機器
US12013582B2 (en) Optical communication apparatus, optical communication method, and optical communication system
TW201331657A (zh) 光學次組裝模組及中間光學機構
WO2020153238A1 (ja) 光コネクタ、光ケーブルおよび電子機器
JP7384172B2 (ja) 光結合コネクタ
US20130308911A1 (en) Optical fiber module
JP2008116743A (ja) 多チャンネル光通信用レンズ及びそれを用いた光モジュール
US20120288237A1 (en) Optical fiber module
WO2020153239A1 (ja) 光コネクタ、光ケーブルおよび電子機器
JP7459519B2 (ja) 光通信装置、光通信方法および光通信システム
US20240069273A1 (en) Optical waveguide, optical communication device, optical communication method, and optical communication system
JP2021121089A (ja) 光受信装置、波長幅調整装置および波長幅調整方法
KR101362436B1 (ko) 서로 다른 코어 크기를 갖는 광송수신 모듈 및 이를 적용한 광송수신 시스템
JP2005338297A (ja) 光結合レンズ及び光通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897397

Country of ref document: EP

Kind code of ref document: A1