WO2018051450A1 - レーザ装置 - Google Patents

レーザ装置 Download PDF

Info

Publication number
WO2018051450A1
WO2018051450A1 PCT/JP2016/077228 JP2016077228W WO2018051450A1 WO 2018051450 A1 WO2018051450 A1 WO 2018051450A1 JP 2016077228 W JP2016077228 W JP 2016077228W WO 2018051450 A1 WO2018051450 A1 WO 2018051450A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
laser
fiber
light traveling
traveling direction
Prior art date
Application number
PCT/JP2016/077228
Other languages
English (en)
French (fr)
Inventor
隼規 坂本
次郎 齊川
東條 公資
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201680089346.0A priority Critical patent/CN109716189A/zh
Priority to US16/333,458 priority patent/US20190341745A1/en
Priority to PCT/JP2016/077228 priority patent/WO2018051450A1/ja
Priority to JP2018539019A priority patent/JPWO2018051450A1/ja
Publication of WO2018051450A1 publication Critical patent/WO2018051450A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to a laser apparatus used for laser processing, laser welding, laser marking, and the like.
  • a laser apparatus that obtains high output from a fiber by coupling beams emitted from a plurality of laser diodes (LD) to a single fiber core is known.
  • LD laser diodes
  • Patent Document 1 describes an optical power combining optical system that can efficiently combine light from a plurality of light sources into a single light receiver to obtain a high output.
  • this optical power combining optical system the magnification of the lens system can be reduced by using the anamorphic optical element to make the vertical light flux and the horizontal light flux the same size.
  • the condensing diameter can be reduced. Therefore, the coupling efficiency to the light receiver can be improved, and a high-power laser beam can be obtained.
  • the beam emitted from the laser diode can be regarded as a Gaussian beam, and the product of the beam waist diameter w 0 and the beam divergence angle ⁇ 0 is constant.
  • M 2 (Msquare) representing the beam quality
  • the light emitting surface of the laser diode has a rectangular shape that is narrow in the laser diode chip stacking direction, that is, in the fast axis direction, and wide in the lateral direction, that is, in the slow axis direction. It is known that the outgoing beam has an elliptical shape that spreads in the fast axis direction under the influence of diffraction.
  • the beam waist diameter w 0 f in the fast axis direction, the beam divergence angle ⁇ 0 f, the beam factor M 2 f, the beam waist diameter w 0 s in the slow axis direction, the beam divergence angle ⁇ 0 s, and the beam factor M 2 s It is represented by the relationship of w 0 s> w 0 f, ⁇ 0 f> ⁇ 0 s, M 2 f ⁇ M 2 s.
  • the high power laser diode the area of the light emitting surface represented by the laser diode chip (2 ⁇ w 0f) ⁇ ( 2 ⁇ w 0s) is greater, in comparison with the transverse single-mode laser diode, M 2 It can be seen that the value of is poor and the beam quality is poor.
  • a beam having a beam diameter larger than the fiber core diameter is incident on the core, the beam leaks into the cladding.
  • a fiber having a small NA and a small core diameter is required to reduce the size of the optical system after emitting the fiber and to reduce the diameter when converging the beam after emitting the fiber.
  • the beam when combining a beam with a fiber having a small NA and a small core diameter, the beam is collected near the fiber axis (optical axis) using a mirror, a prism, etc., and the collimated beam is perpendicular to the fiber axis to the coupling lens. To enter. By doing so, the beam can be efficiently coupled to a fiber having a small NA and a small core diameter.
  • a beam emitted from a plurality of laser diodes can be coupled to a small core, for example, a fiber having a small NA of ⁇ 25, 50, 100 um, to obtain a beam with high brightness and high output.
  • the present invention provides a high-intensity and high-power laser device that can combine a beam with a smaller fiber core and improve the beam quality.
  • a laser apparatus is a laser apparatus that couples a plurality of beams to a single fiber, the plurality of laser diodes emitting the plurality of beams, and the plurality of the plurality of beams.
  • a plurality of optical elements provided in correspondence with the laser diodes, and parallel to the plurality of beams emitted from the plurality of laser diodes; and provided corresponding to the plurality of optical elements, from the plurality of laser diodes
  • a plurality of selective transmission elements that selectively transmit the beams to be emitted or a beam excluding the outer periphery of the beams emitted from the plurality of optical elements, and the plurality of beams to move in the vicinity of the optical axis of the fiber.
  • One or more light traveling direction control units for controlling light traveling directions of the plurality of beams that have passed through the plurality of optical elements and the plurality of selective transmission elements When, and a said at least one condenser part for condensing the plurality of beams in the fiber to be emitted from the light direction control member.
  • the present invention is a laser device that couples a plurality of beams to a single fiber, and is provided corresponding to the plurality of laser diodes that emit the plurality of beams, and the plurality of laser diodes.
  • a plurality of optical elements that collimate the plurality of beams emitted from the laser diode, and one or more first light traveling directions that control a light traveling direction of the plurality of beams emitted from the plurality of optical elements.
  • a control member a plurality of selective transmission elements that selectively transmit the beams excluding the outer peripheral portions of the plurality of beams emitted from the one or more first light traveling direction control members, and in the vicinity of the optical axis of the fiber
  • One or more second light traveling direction control members for controlling the light traveling direction of the plurality of beams emitted from the plurality of selective transmission elements to move the plurality of beams; And a said one or more second light direction control member and the plurality of current focusing the beam on the fiber optical parts which are emitted from.
  • the plurality of selective transmission elements block the high M 2 component included in the outer peripheral portion of the laser diode emission beam, and selectively transmit only the low M 2 component included in the beam excluding the outer peripheral portion of the beam.
  • High M 2 component is becomes heat loss, by extracting only the low M 2 component, it is possible to reduce the spot diameter and angle of incidence when focusing the plurality of beams. For this reason, a beam can be combined with a fiber core smaller than the conventional fiber core.
  • the distance between one or more light traveling direction control members composed of mirrors, prisms, etc. is narrowed, that is, the distance between the beams is narrowed, so that it is projected onto the coupling lens (condensing part) arranged in the front stage of the fiber.
  • the number of beams can be increased, and a larger number of beams can be coupled to the fiber core.
  • the fiber exit beam quality is improved.
  • the diameter of the laser diode beam can be reduced, and the optical members such as lenses, mirrors, prisms, and wave plates used in the subsequent stage can be reduced in size.
  • FIG. 1 is a diagram showing a configuration of a unit including a collimating lens holder and an LD holder in a laser apparatus according to an embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a laser apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view showing the spread of the beam in the fast axis direction and the slow axis direction of the laser diode of the laser device according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing the shape of the diaphragm member of the laser apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a view showing a diaphragm member attached before or after the collimating lens in the laser apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram illustrating a configuration example in which the diaphragm member is radiated by the heat radiating plate in the laser apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a conventional laser device having no diaphragm member.
  • FIG. 8 is a configuration diagram of the laser apparatus according to the first embodiment of the present invention including a diaphragm member.
  • FIG. 9 is a diagram showing a beam filling rate when there is no diaphragm member and a beam filling rate when there is a diaphragm member.
  • FIG. 10 is a configuration diagram of a laser apparatus using a diaphragm member with a diffraction grating according to a second embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a laser apparatus using a diaphragm member with a diffraction grating according to a second embodiment of the present invention.
  • FIG. 11 is a configuration diagram of a laser apparatus using pinholes according to Embodiment 3 of the present invention.
  • FIG. 12 is a configuration diagram of a laser apparatus using a concave mirror and a pinhole according to Embodiment 4 of the present invention.
  • FIG. 13 is a diagram showing a sequence in a case where a beam is passed through a pinhole with a concave mirror in the laser apparatus according to Embodiment 4 of the present invention.
  • FIG. 1 is a diagram showing a configuration of a unit 12 including a collimating lens holder 11-1 and an LD holder 10-1 in a laser apparatus according to an embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a laser apparatus according to an embodiment of the present invention.
  • the laser device is provided corresponding to the plurality of laser diodes 10, the plurality of collimating lenses 11 (corresponding to the optical element of the present invention) provided corresponding to the plurality of laser diodes 10, and the plurality of laser diodes 10.
  • a plurality of units 12 that are manufactured by fixing the laser diode 10 and the collimating lens 11, and a coupling lens 15 that focuses the beam emitted from the laser diode 10 onto the fiber 16 (the present invention).
  • a holder 20 that houses the plurality of units 12 and the coupling lens 15.
  • the laser diode 10 is fixed to the LD holder 10-1, and the collimating lens 11 is fixed to the collimating lens holder 11-1. While confirming that the collimated beam is emitted from the LD holder 10-1 and the collimating lens holder 11-1 to a predetermined allowable range, the LD holder 10-1 and the collimating lens holder 11-1 are welded and fixed. By doing so, the unit 12 can be manufactured. By repeating the above process, a plurality of units 12 are produced.
  • the unit 12 is two examples.
  • the number of units 12 is not limited to two and may be three or more.
  • the units 12 a and 12 b are arranged apart from each other by a predetermined distance and are housed and fixed in the holder 20.
  • the holder 20 further accommodates two mirrors 14 and a coupling lens 15.
  • a fiber 16 including a core 17 and a clad 18 is disposed outside the holder 20 so as to face the coupling lens 15.
  • the traveling direction of the beam 13a emitted from the unit 12a is controlled by the mirror 14 and proceeds to the coupling lens 15 so as to be coupled to the core 17 of the fiber 16.
  • the beam from the unit 12 a and the beam from the unit 12 b are condensed by the coupling lens 15, and the positions of the units 12 a and 12 b are adjusted so as to be coupled to the core 17. Are fixed by laser welding.
  • FIG. 3A shows the structure of the LD holder 10-1 of the laser apparatus according to the embodiment of the present invention
  • FIG. 3B shows the beam spread in the fast axis direction
  • FIG. 3C shows the slow axis. It is a figure which shows the breadth of the beam of a direction.
  • the beam expansion in the fast axis direction (stacking direction) of the laser chip is wider than the slow axis direction (horizontal direction).
  • FIGS. 4 (d) and 4 (e) show the cross-sectional shape of the diaphragm member. It is.
  • the aperture members 21a to 21c correspond to the selective transmission element of the present invention, and selectively transmit the beam emitted from the laser diode 10 or the beam excluding the outer peripheral portion of the beam emitted from the collimating lens 11.
  • the diaphragm members 21a to 21c block high M 2 components included in the outer peripheral portion of the outgoing beam and selectively transmit only low M 2 components included in the beam excluding the outer peripheral portion of the beam.
  • the high M 2 component refers to a component of the beam spread of both fast axis and slow axis direction, but are not limited to either axis.
  • the diaphragm member 21a shown in FIG. 4 (a) has a circular hole 22a in the center of a circular aluminum bar.
  • An aperture member 21b shown in FIG. 4 (b) is obtained by opening an elliptical hole 22b in the center of a circular aluminum bar.
  • a diaphragm member 21c shown in FIG. 4 (c) is obtained by opening a square hole 22c in the center of a circular aluminum bar. It is possible to transmit only the low M 2 component by hole 22a ⁇ 22c.
  • a substance having a predetermined absorption coefficient with respect to the wavelength of the beam emitted from the laser diode 10 may be formed on the surfaces of the diaphragm members 21a to 21c.
  • a substance having a predetermined absorption coefficient with respect to the wavelength of the beam emitted from the laser diode 10 may be formed on the surfaces of the diaphragm members 21a to 21c.
  • black alumite treatment on the surfaces of the aperture members 21a to 21c, it is possible to reduce the reflected beam and efficiently absorb unnecessary beams.
  • a dielectric thin film may be applied to the surfaces of the diaphragm members 21a to 21c instead of black anodizing.
  • the hole 22d shown in FIG. 4 (d) is a rectangular throttle member 21d
  • the hole 22e shown in FIG. 4 (e) is a tapered throttle member 21e.
  • the position of the diaphragm member can also be adjusted back and forth according to variations in the beam divergence angle of the laser diode 10.
  • the diaphragm member 21A shown in FIG. 5A is attached in front of the collimating lens 11, that is, between the laser diode 10 and the collimating lens 11.
  • the diaphragm member 21A has a tapered hole 22A.
  • the beam BM4 that passes through the hole 22A of the aperture member 21A is collimated by the collimating lens 11 to obtain a collimated beam BM5.
  • the diaphragm member 21B shown in FIG. 5B is attached after the collimating lens 11.
  • the aperture member 21B has a rectangular hole 22B.
  • the beam BM6 from the laser diode 10 is collimated by the collimating lens 11 to obtain a collimated beam BM7.
  • the hole 22B is transmitted by the diaphragm member 21B, and the beam BM8 is obtained.
  • the LD holder 10-1 and the collimating lens holder 11-1 can have the role of the diaphragm member 21.
  • FIG. 6 is a diagram illustrating a configuration example in which the diaphragm member is radiated by the heat radiating plate in the laser apparatus according to the first embodiment of the present invention.
  • a heat radiating plate 23 is provided in contact with the throttle members 21-1 to 21-3. Holes 24a to 24c are formed in the heat radiating plate 23 so as to correspond to the diaphragm members 21-1 to 21-3, and the beam transmitted through the diaphragm members 21-1 to 21-3 is formed in the hole 24a of the heat radiating plate 23. Pass through ⁇ 24c.
  • the distance between the diaphragm members 21-1 to 21-3 and the heat radiating plate 23 may change due to the positional deviation of the LD holder 10-1 or the collimating lens holder 11-1.
  • heat can be efficiently radiated by the heat transfer material.
  • FIG. 7 is a block diagram of a conventional laser device without the diaphragm member 21.
  • FIG. 8 is a configuration diagram of the laser apparatus according to the first embodiment of the present invention that includes the diaphragm member 21.
  • FIGS. 7A and 8A are configuration diagrams of the laser device in the slow axis direction.
  • FIGS. 7B and 8B are configuration diagrams of the laser device in the fast axis direction.
  • the conventional laser apparatus shown in FIG. 7 includes a plurality of beams that have passed through the plurality of collimating lenses 11 in order to move the plurality of beams on the optical axes of the plurality of laser diodes 10, the plurality of collimating lenses 11, and the fiber 16.
  • prisms 31a and 31b for controlling the light traveling direction, and a coupling lens 15 for condensing a plurality of beams emitted from the prisms 31a and 31b on the fiber 16.
  • the laser apparatus of Example 1 shown in FIG. 8 is further provided with a diaphragm member 21 as compared with the conventional laser apparatus shown in FIG.
  • the aperture member 21 removes the outer peripheral portion of the collimated beam and outputs the reduced beam to the prisms 31a and 13b, thereby preventing the occurrence of vignetting portions 32 in the prisms 31a and 13b.
  • the plurality of diaphragm members 21, the plurality of collimating lenses 11, and the fiber 16 In order to move the plurality of beams on the optical axes of the plurality of laser diodes 10, the plurality of diaphragm members 21, the plurality of collimating lenses 11, and the fiber 16, the light traveling directions of the plurality of beams that have passed through the plurality of collimating lenses 11 are changed.
  • the prisms 31a and 31b to be controlled and the coupling lens 15 for condensing a plurality of beams emitted from the prisms 31a and 31b onto the fiber 16 are provided.
  • the beam filling rate is improved by using the diaphragm member 21.
  • the intensity distribution of the beam emitted from the laser diode is a perfect Gaussian distribution.
  • the intensity of the Gaussian beam has a maximum value Io
  • the intensity I (r) at a point separated from the central axis by a distance r on a plane perpendicular to the beam traveling direction is expressed by the following equation (2). .
  • the aperture member 21 that can transmit only components of 2.0, 1.5, 1.2, 1.0, and 0.8 times the beam diameters in the fast axis direction and the slow axis direction is arranged in front of or behind the collimating lens. Think about placing it in.
  • the power of the beam transmitted through the aperture member 21 is 99.97%, 98.89%, 94.39%, 86.47%, and 72.2% of the original. It can be seen that when the diameter of the diaphragm member 21 is reduced, the power of the beam transmitted through the diaphragm member 21 is reduced.
  • the diameter on the lens effective for fiber core coupling is denoted by D
  • a plurality of beams are coupled to the core 17 of the fiber 16 as shown in FIGS.
  • D the diameter on the lens effective for fiber core coupling
  • the lower limit of the interval after the shift of each beam is set to d.
  • the power obtained when using a diaphragm member that can transmit only the component of M times the beam diameter w 0 is N ⁇ W 0 ⁇ N + d ⁇ (N ⁇ 1) ⁇ D, where N is the maximum number of beams. It becomes. That is, N ⁇ (D + d) / (M ⁇ w 0 + d).
  • D is a diameter on the lens effective for fiber core coupling.
  • M is a positive number.
  • N is represented by the largest positive integer that satisfies the inequality sign.
  • the maximum number of beams N when using a diaphragm member that can transmit only 2.0, 1.5, 1.2, 1.0, and 0.8 times the beam diameter is 2, 3, 3, respectively. If the power of the laser diode 1pc before entering the diaphragm member is 100%, the values are 199.9%, 296.7%, 283.2%, 345.9%, and 361.0%, respectively. Therefore, it is understood that the fiber incident power can be maximized by improving the beam filling rate when the diaphragm member 21 is used.
  • the throttle member 21 is used in both the fast axis direction and the slow axis direction.
  • the arbitrary size in the fast axis direction or the slow axis direction is selected according to the core diameter and core shape of the fiber to be used.
  • a diaphragm member can be used.
  • FIG. 9 (a) shows the beam filling rate when there is no diaphragm member 21, and FIG. 9 (b) shows the beam filling rate when there is the diaphragm member 21 with a transmittance of 0.8.
  • FIG. 9A six projection images PI are filled in the NA of the core.
  • FIG. 9B nine projection images PI are filled in the NA of the core.
  • the plurality of diaphragm members 21 block the high M 2 component included in the outer peripheral portion of the laser diode emission beam, and the low M included in the beam excluding the outer peripheral portion of the beam. Selectively transmit only two components. High M 2 component is becomes heat loss, by extracting only the low M 2 component, it is possible to reduce the spot diameter and angle of incidence when focusing the plurality of beams. For this reason, a beam can be combined with a fiber core smaller than the conventional fiber core.
  • the number of beams projected onto the coupling lens 15 arranged in front of the fiber 16 can be increased by narrowing the distance between the prisms 31a and 31b, that is, by narrowing the distance between the beams. Can be coupled to the core 17 of the fiber 16.
  • the beam filling factor that can be coupled to one fiber 16 (the sum of the beam cross-sectional areas on the coupling lens / fiber coupling on the coupling lens)
  • the effective area that contributes to the improvement of the output can be improved, so that the total output is high.
  • increasing the beam filling rate means that the beam can be collected in the vicinity of the optical axis of the coupled lens, and the fiber incident NA can be reduced. That is, it is possible to use a lower NA fiber with higher brightness. Since the component that causes the cladding leakage is removed in the previous stage, damage to the fiber 16 is reduced, and the quality of the beam emitted from the fiber is improved.
  • the diameter of the laser diode beam can be reduced, and the optical members such as lenses, mirrors, prisms, and wave plates used in the subsequent stage can be reduced in size.
  • the spectral line width of the transverse multimode laser diode 10 is wider than that of the transverse single mode laser diode 10.
  • the laser apparatus according to Embodiment 2 of the present invention is characterized in that the spectral line width is improved by using a diaphragm member with a diffraction grating.
  • FIG. 10A is a diagram in which a diaphragm member 21d with a diffraction grating is provided in front of the collimating lens 11 in the laser apparatus according to Example 2 of the present invention.
  • FIG. 10B is a diagram in which a diaphragm member with a diffraction grating 33 is provided after the collimating lens 11 in the laser apparatus according to the second embodiment of the present invention.
  • the incident angle to the diaphragm member with diffraction grating 21d is not zero because the laser diode beam has a divergence angle. have.
  • a blazed diffraction grating is used to provide a Littrow arrangement in which light returns in the direction of incident light.
  • the diffraction grating diaphragm member 21d corresponds to the reflection type diffraction grating of the present invention, and a part of the beam BM10 emitted from the laser diode 10 is formed on the light emitting surface of the laser diode 10 on the surface facing the laser diode 10. At the same time, the beam BM11 is obtained through the hole 32a.
  • VHG volume holographic grating
  • an external resonator is configured between the laser diode 10 and the diffraction grating aperture members 21d and 33.
  • the component having a low M 2 value is transmitted through the diffraction grating diaphragm members 21 d and 33, and the component having a high M 2 value is returned to the light emitting surface of the laser diode 10. Therefore, it is possible to realize both the narrowing of the laser wavelength, the stabilization of the wavelength, and the increase of the output.
  • FIG. 11 is a configuration diagram of a laser apparatus using pinholes according to Embodiment 3 of the present invention.
  • FIG. 11 is characterized in that a condensing lens 34, a pinhole 35, and a collimating lens 36 are provided after the collimating lens 11 in the laser apparatus according to Embodiment 3 of the present invention.
  • the condensing lens 34 condenses the beam collimated by the collimating lens 11 in the hole PH opened in the pinhole 35.
  • Pinhole 35 removes high M 2 component holes PH, emitted to the collimating lens 36 is taken out only low M 2 component.
  • Collimator lens 36 collimates the only beam low M 2 component extracted by the pinhole 35.
  • FIG. 12 is a configuration diagram of a laser apparatus using a concave mirror and a pinhole according to Embodiment 4 of the present invention.
  • the laser apparatus shown in FIG. 12 includes a plurality of laser diodes 10a to 10c, cylindrical concave mirrors 37a and 37b for controlling the light traveling directions of a plurality of beams emitted from the plurality of collimating lenses 11a to 11c, and a cylindrical concave mirror 37a. , 37b from the pinholes 38a, 38b for selectively transmitting the beams excluding the outer periphery of the plurality of beams, and the pinholes 38a, 38b for moving the plurality of beams on the optical axis of the fiber 16.
  • Cylindrical concave mirrors 39a and 39b for controlling the light traveling directions of the plurality of emitted beams, and a coupling lens 40 for condensing the plurality of beams emitted from the cylindrical concave mirrors 39a and 39b on the fiber 16 are provided.
  • a slit may be used.
  • the plurality of laser diodes 10a to 10c are arranged in the vertical direction as shown in FIG. Further, although not shown, three laser diodes are arranged in the horizontal direction, and a total of nine laser diodes are arranged in the vertical direction and the horizontal direction.
  • the cylindrical concave mirrors 37a and 37b correspond to one or more first light traveling direction control members of the present invention.
  • the pinholes 38a and 38b correspond to a plurality of selective transmission elements of the present invention.
  • the cylindrical concave mirrors 39a and 39b correspond to one or more second light traveling direction control members of the present invention, and are arranged to face the cylindrical concave mirrors 37a and 37b with the pinholes 38a and 38b interposed therebetween.
  • the coupling lens 40 corresponds to a light collecting unit.
  • the beams emitted from the laser diodes 10a to 10c become collimated beams by the collimating lenses 11a to 11c arranged at the focal positions.
  • Collimated beam, cylindrical concave mirror 37a is reflected by 37b, cylindrical concave mirror 37a, arranged pinholes 38a at the focal point of 37b, by 38b, a high M 2 component in the vertical direction or the horizontal direction is removed.
  • the beams that have passed through the pinholes 38a and 38b become collimated beams again by the cylindrical concave mirrors 39a and 39b, and proceed in the optical axis direction (axis perpendicular to the fiber 16). Since the position of each collimated beam can be shifted to the center side of the optical axis of the coupling lens 40, the fiber NA can be reduced while reducing the influence of aberration in the coupling lens 40. Further, since the number of beams that can be incident on the coupling lens 40 is increased, the output can be increased.
  • the shape of the collimated beam after reflection of the cylindrical concave mirrors 37a, 37b, 39a, 39b can be freely controlled by the position and shape of the cylindrical concave mirrors 37a, 37b, 39a, 39b.
  • FIG. 13 is a diagram showing a sequence in the case where beams are passed through the pinholes 38a and 38b by the cylindrical concave mirrors 37a and 37b in the laser apparatus according to the fourth embodiment of the present invention.
  • nine laser diodes are arranged in the matrix (1,1) to (3,3) in the vertical direction (row direction) and the horizontal direction (column direction).
  • the beams of the nine laser diodes 10 become nine circular collimated beams CBM1 by the nine collimating lenses 11.
  • the size of the circle of the collimated beam CBM1 indicates the initial M2 value.
  • the lateral direction of the collimated beam CBM1 with (2, 3) and (3, 3) is reduced, and the beam CBM2 is obtained. Therefore, high M 2 component in the lateral direction is eliminated.
  • the beam emitted from the nine laser diode 10 the positional relationship between the optical axis, the diameter of the high M 2 component is removed collimated beam of the beam in a position influenced by the aberration of the coupling lens It becomes thin and can improve the filling factor of a beam.
  • the laser diode of the center of the matrix (2,2) because it does not transmit the pinhole or slit, remains high M 2 component that remained.
  • the laser diode of the center because it is disposed on the optical axis, and most insensitive to the aberration of the coupling lens, there is no significant problem even contain high M 2 component.
  • the high M 2 component is not removed only in one axis, but the matrix ( Compared with the laser diodes at the four corners represented by 1, 21, (1, 3), (3, 1), (3, 3), the influence is small.
  • the present invention is applicable to a fine laser processing machine used for soldering, bonding wire connection, substrate welding of electronic parts, micro spot annealing, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

複数の光学素子は、複数のレーザダイオードと対応して設けられ、前記複数のレーザダイオードから出射される前記複数のビームを平行にさせる。複数の選択透過素子は、前記複数の光学素子と対応して設けられ、前記複数のレーザダイオードから出射されるビーム又は前記複数の光学素子から出射されるビームの外周部を除くビームを選択して透過させる。1以上の光進行方向制御部材は、前記ファイバの光軸近傍に前記複数のビームを移動させるために、前記複数の光学素子及び前記複数の選択透過素子を通過した前記複数のビームの光進行方向を制御する。集光部は、前記1以上の光進行方向制御部材から出射される前記複数のビームを前記ファイバに集光させる。

Description

レーザ装置
 本発明は、レーザ加工、レーザ溶接、レーザマーキング等に用いられるレーザ装置に関する。
 複数のレーザダイオード(LD)から出射されたビームを1本のファイバコアに結合させ、ファイバから高出力を得るレーザ装置が知られている。
 特許文献1には、複数の光源からの光を1個の受光器に効率良く結合させて高出力を得ることができる光パワー合成用光学系が記載されている。この光パワー合成用光学系によれば、アナモルフィック光学素子を用いて垂直方向の光束と水平方向の光束とを同様の大きさとすることで、レンズ系の倍率を小さくすることができるので、集光径を小さくすることができる。従って、受光器への結合効率を向上でき、高出力のレーザビームを得ることができる。
 レーザダイオードから出射されるビームは、ガウシアンビームとみなすことができ、ビームウェスト径wとビーム拡がり角θの積が一定である。ビーム品質を表す因子M(エムスクエア)を利用すると、これらの関係は波長λを用いて式(1)で表される。
  M=(π・w・θ)/λ    …(1)
 レーザダイオードの発光面は、レーザダイオードチップの積層方向、即ちファスト軸方向に狭く、横方向、即ちスロー軸方向に広がった長方形である。出射ビームは、回折の影響を受けて、ファスト軸方向に広がった楕円形状であることが知られている。ファスト軸方向のビームウェスト径wf,ビーム拡がり角θf,ビーム因子Mf,スロー軸方向のビームウェスト径ws,ビーム拡がり角θs,ビーム因子Msとすると、ws>wf、θf>θs、Mf<Msの関係で表される。
 高出力のレーザダイオードでは、レーザダイオードチップの(2×w0f)×(2×w0s)で表される発光面の面積が、大きいため、横シングルモードのレーザダイオードと比較して、Mの値が悪く、ビーム品質が悪いことがわかる。
 また、ファイバNA(開口数)以上の入射角でコアにビームを入射しても、コアとクラッド間で全反射が起こらず、ビームがクラッド及びその周囲を覆う樹脂層や保護層に漏れる。また、ファイバのコア径以上のビーム径を有するビームをコアに入射しても、ビームがクラッドに漏れる。一方、ファイバ出射後の光学系の小型化、ファイバ出射後のビーム集光時の細径化のためには、NAが小さく、コア径の小さなファイバが求められる。
 このため、NAが小さく、コア径の小さなファイバにビームを結合させるときには、ミラーやプリズム等を利用して、ファイバ軸(光軸)近辺にビームを集め、結合レンズへコリメートビームをファイバ軸に垂直に入射させる。このようにすることで、NAが小さく、コア径の小さなファイバに効率良くビームを結合させることができる。
 例えば、複数のレーザダイオードから出射されるビームを小さなコア、例えばΦ25,50,100umのNAが小さなファイバに結合させて、高輝度、高出力なビームを得ることができる。
特開2005-114977号公報
島津評論vol.71,no.1・2(2014.9)
 しかしながら、高出力のレーザダイオードでは、発光面が低出力(シングルモード等)のレーザダイオードに比べて、ビーム品質が悪いため、複数のレーザダイオードから出射されるビームを小さなコアに高効率で結合させることが困難であった。
 また、特許文献1に記載されたアナモルフィック光学素子を利用した場合、光学素子のコストや組立調整工数が増大していた。小さなコアのファイバから高輝度、高出力のビームを得る場合に、ロスによりファイバ入射部におけるエネルギー損失の割合が高いため、ファイバ入射部の加熱による信頼性の悪化や、クラッド漏れ光によりビーム品質がさらに悪化する傾向があった。
 本発明は、より小さいファイバコアにビームを結合でき、ビーム品質を向上できる高輝度で高出力なレーザ装置を提供する。
 上記の課題を解決するために、本発明に係るレーザ装置は、複数のビームを1本のファイバに結合させるレーザ装置であって、前記複数のビームを出射する複数のレーザダイオードと、前記複数のレーザダイオードと対応して設けられ、前記複数のレーザダイオードから出射される前記複数のビームを平行にさせる複数の光学素子と、前記複数の光学素子と対応して設けられ、前記複数のレーザダイオードから出射されるビーム又は前記複数の光学素子から出射されるビームの外周部を除くビームを選択して透過させる複数の選択透過素子と、前記ファイバの光軸近傍に前記複数のビームを移動させるために、前記複数の光学素子及び前記複数の選択透過素子を通過した前記複数のビームの光進行方向を制御する1以上の光進行方向制御部材と、前記1以上の光進行方向制御部材から出射される前記複数のビームを前記ファイバに集光させる集光部とを備える。
 また、本発明は、複数のビームを1本のファイバに結合させるレーザ装置であって、前記複数のビームを出射する複数のレーザダイオードと、前記複数のレーザダイオードと対応して設けられ、前記複数のレーザダイオードから出射される前記複数のビームを平行にさせる複数の光学素子と、前記複数の光学素子から出射される前記複数のビームの光進行方向を制御する1以上の第1の光進行方向制御部材と、前記1以上の第1の光進行方向制御部材から出射される前記複数のビームの外周部を除くビームを選択して透過させる複数の選択透過素子と、前記ファイバの光軸近傍に前記複数のビームを移動させるために、前記複数の選択透過素子から出射される前記複数のビームの光進行方向を制御する1以上の第2の光進行方向制御部材と、前記1以上の第2の光進行方向制御部材から出射される前記複数のビームを前記ファイバに集光させる集光部とを備える。
 本発明によれば、複数の選択透過素子は、レーザダイオード出射ビームの外周部に含まれる高M成分を遮断し、ビームの外周部を除くビームに含まれる低M成分のみを選択透過させる。高M成分は、熱損失になってしまうが、低M成分のみを取り出すことによって、複数のビームを集光した時のスポット径及び入射角を小さくすることができる。このため、従来のファイバコアよりも小さいファイバコアにビームを結合させることができる。
 従って、ミラーやプリズム等からなる1以上の光進行方向制御部材同士の間隔を狭める、即ち、ビームの間隔を狭めることによって、ファイバの前段に配置された結合レンズ(集光部)上に投影されるビームの本数を増大させることができ、より多くの本数のビームをファイバコアに結合させることができる。
 高M成分を除去することで、各レーザダイオードのパワーにロスが生じるが、1本のファイバに結合できるビーム充填率(結合レンズ上のビーム断面積の総和/結合レンズ上のファイバ結合に寄与する有効面積)が増大するため、トータルでは高出力化をはかることができる。また、ビーム充填率を高めることは、結合レンズの光軸近傍にビームを集められることを意味し、ファイバ入射NAを低減することができる。即ち、より高輝度なビームが得られる低NAファイバを使用することができる。クラッド漏れとなる成分を前段階で除去するため、ファイバ出射ビーム品質が向上する。
 また、レーザダイオード出射ビームの細径化が可能となり、後段で使用するレンズ、ミラー、プリズム、波長板等の光学部材を小型化できる。
図1は本発明の実施形態に係るレーザ装置においてコリメートレンズホルダとLDホルダからなるユニットの構成を示す図である。 図2は本発明の実施形態に係るレーザ装置の全体構成図である。 図3は本発明の実施形態に係るレーザ装置のレーザダイオードのファスト軸方向とスロー軸方向のビームの広がりを示す図である。 図4は本発明の実施例1に係るレーザ装置の絞り部材の形状を示す図である。 図5は本発明の実施例1に係るレーザ装置においてコリメートレンズの前又は後に取り付けられた絞り部材を示す図である。 図6は本発明の実施例1に係るレーザ装置において絞り部材を放熱板で放熱させる構成例を示す図である。 図7は絞り部材がない従来のレーザ装置の構成図である。 図8は絞り部材を備えた本発明に係る実施例1のレーザ装置の構成図である。 図9は絞り部材がない場合のビーム充填率と絞り部材がある場合のビーム充填率とを示す図である。 図10は本発明の実施例2に係る回折格子付絞り部材を用いたレーザ装置の構成図である。 図11は本発明の実施例3に係るピンホールを用いたレーザ装置の構成図である。 図12は本発明の実施例4に係る凹面ミラーとピンホールを用いたレーザ装置の構成図である。 図13は本発明の実施例4に係るレーザ装置において凹面ミラーでピンホールにビームを通す場合のシーケンスを示す図である。
 (実施例1)
 以下、本発明の実施形態に係るレーザ装置を図面を参照しながら詳細に説明する。
 (本発明の基本的な構成)
 まず、本発明のレーザ装置の基本的な構成について説明する。図1は本発明の実施形態に係るレーザ装置においてコリメートレンズホルダ11-1とLDホルダ10-1からなるユニット12の構成を示す図である。図2は本発明の実施形態に係るレーザ装置の全体構成図である。
 レーザ装置は、複数のレーザダイオード10と、複数のレーザダイオード10と対応して設けられた複数のコリメートレンズ11(本発明の光学素子に対応)と、複数のレーザダイオード10に対応して設けられ、各レーザダイオード10毎に、レーザダイオード10とコリメートレンズ11とを固定して作製される複数のユニット12と、レーザダイオード10から出射されるビームをファイバ16に集光させる結合レンズ15(本発明の集光部に対応)と、複数のユニット12と結合レンズ15とを収納するホルダ20とを備えている。
 レーザダイオード10は、図1に示すように、LDホルダ10-1に固定され、コリメートレンズ11は、コリメートレンズホルダ11-1に固定される。LDホルダ10-1とコリメートレンズホルダ11-1とからコリメートビームが予め決めた許容範囲に出射されるように確認しながら、LDホルダ10-1とコリメートレンズホルダ11-1とを溶接して固定することにより、ユニット12を作製することができる。以上の処理を繰り返すことにより、複数のユニット12を作製する。
 図2では、ユニット12が2つの例である。ユニット12の数は、2つに限定されることなく、3つ以上でも良い。図2に示すように、ユニット12a,12bは、互いに所定距離だけ離して配置され、ホルダ20に収納固定されている。ホルダ20は、さらに、2つのミラー14、結合レンズ15を収納している。また、ホルダ20の外部には、結合レンズ15に対向してコア17とクラッド18とからなるファイバ16が配置されている。
 図2に示すように、ユニット12aから出射されたビーム13aは、ミラー14により進行方向を制御され、ファイバ16のコア17に結合するように結合レンズ15に進行する。ユニット12aからのビームとユニット12bからのビームとが結合レンズ15により集光されて、コア17に結合するようにユニット12aとユニット12bとの位置を調整し、各ユニット12a,12b及びホルダ20間をレーザ溶接して固定する。
 図3(a)は本発明の実施形態に係るレーザ装置のLDホルダ10-1の構造を示し、図3(b)はファスト軸方向のビームの広がりを示し、図3(c)はスロー軸方向のビームの広がりを示す図である。レーザダイオード10から出射されたビームについて、レーザチップのファスト軸方向(積層方向)のビーム拡がりは、スロー軸方向(水平方向)よりも広がっている。
 (本発明の特徴的な構成)
 次に、本発明の特徴的な構成である絞り部材について説明する。図4(a)~図4(c)は実施例1に係るレーザ装置の絞り部材21a~21cの形状を示し、図4(d)、図4(e)は絞り部材の断面形状を示す図である。絞り部材21a~21cは、本発明の選択透過素子に対応し、レーザダイオード10から出射されるビーム又はコリメートレンズ11から出射されるビームの外周部を除くビームを選択して透過させる。即ち、絞り部材21a~21cは、出射ビームの外周部に含まれる高M成分を遮断し、ビームの外周部を除くビームに含まれる低M成分のみを選択透過させる。なお、高M成分とは、ファスト軸方向及びスロー軸方向の両方の拡がったビームの成分を指し、どちらかの軸に限定されない。
 図4(a)に示す絞り部材21aは、円形のアルミニウム棒材の中央部に円状の穴22aを開けたものである。図4(b)に示す絞り部材21bは、円形のアルミニウム棒材の中央部に楕円状の穴22bを開けたものである。図4(c)に示す絞り部材21cは、円形のアルミニウム棒材の中央部に四角状の穴22cを開けたものである。穴22a~22cにより低M成分のみを透過させることができる。
 また、絞り部材21a~21cの表面に、レーザダイオード10から出射されるビームの波長に対して所定の吸収係数を有する物質を形成してもよい。例えば、絞り部材21a~21cの表面に、黒アルマイト処理を施すことにより、反射ビームを低減させて、不要なビームを効率よく吸収することができる。なお、絞り部材21a~21cの表面に、黒アルマイト処理を施す代わりに、誘電体薄膜を施しても良い。
 さらに、絞り部材21a~21cの断面例としては、図4(d)に示す穴部22dが四角形状の絞り部材21d、図4(e)に示す穴部22eがテーパ形状の絞り部材21eを例示することができる。穴部22eのテーパ角を目的のビーム拡がり角と同値に設定し、テーパ角がなす円錐の頂点の位置とビームウェストの位置とを対応させることにより、より効果的に低M成分のみを取り出すことができる。レーザダイオード10のビーム拡がり角のばらつきに応じて、絞り部材の位置を前後に調整することもできる。
 図5(a)に示す絞り部材21Aは、コリメートレンズ11の前、即ちレーザダイオード10とコリメートレンズ11との間に取り付けている。絞り部材21Aは、テーパ形状の穴部22Aを有する。レーザダイオード10からのビームBM3の内、絞り部材21Aの穴部22Aを透過するビームBM4がコリメートレンズ11によりコリメートされて、コリメートビームBM5が得られる。
 また、図5(b)に示す絞り部材21Bは、コリメートレンズ11の後に取り付けられている。絞り部材21Bは、四角形状の穴部22Bを有する。レーザダイオード10からのビームBM6はコリメートレンズ11によりコリメートされてコリメートビームBM7が得られる。コリメートビームBM7の内、絞り部材21Bにより穴部22Bのみ透過させてビームBM8が得られる。なお、絞り部材21を別途用意しなくても、LDホルダ10-1やコリメートレンズホルダ11-1に絞り部材21の役割を持たせることもできる。
 図6は本発明の実施例1に係るレーザ装置において絞り部材を放熱板で放熱させる構成例を示す図である。上記のように、絞り部材21に対してアルマイト処理を施すと、高M成分を除去することができるが、絞り部材21が発熱しやすい。このため、図6に示すように、絞り部材21-1~21-3に接触させて放熱板23を設けている。放熱板23には、絞り部材21-1~21-3に対応させて穴部24a~24cが形成され、絞り部材21-1~21-3で透過されたビームが放熱板23の穴部24a~24cを通過する。放熱板23を絞り部材21-1~21-3に接触させることで、絞り部材21-1~21-3の発熱を抑えることができる。
 また、絞り部材21-1~21-3と放熱板23間の距離がLDホルダ10-1やコリメートレンズホルダ11-1の位置ずれにより変化することがある。この場合、絞り部材21-1~21-3と放熱板23間に伝熱材を挿入することで、伝熱材により効率的に放熱することができる。 
 図7は絞り部材21がない従来のレーザ装置の構成図である。図8は絞り部材21を備えた本発明に係る実施例1のレーザ装置の構成図である。図7(a)、図8(a)は、スロー軸方向のレーザ装置の構成図である。図7(b)、図8(b)は、ファスト軸方向のレーザ装置の構成図である。
 図7に示す従来のレーザ装置は、複数のレーザダイオード10、複数のコリメートレンズ11、ファイバ16の光軸上に複数のビームを移動させるために、複数のコリメートレンズ11を通過した複数のビームの光進行方向を制御するプリズム31a,31b、プリズム31a,31bから出射される複数のビームをファイバ16に集光させる結合レンズ15を備える。
 図7(b)に示すように、従来のレーザ装置では、コリメートレンズ11からのコリメートビームの一部がプリズム31a,13bの外側に漏れるケラレ箇所32が発生する。このため、図8に示す実施例1のレーザ装置は、図7に示す従来のレーザ装置に対して、さらに、絞り部材21を備えている。絞り部材21によりコリメートビームの外周部を除いて、細径化されたビームをプリズム31a,13bに出力することで、プリズム31a,13bにおけるケラレ箇所32の発生を防止している。
 複数のレーザダイオード10、複数の絞り部材21、複数のコリメートレンズ11、ファイバ16の光軸上に複数のビームを移動させるために、複数のコリメートレンズ11を通過した複数のビームの光進行方向を制御するプリズム31a,31b、プリズム31a,31bから出射される複数のビームをファイバ16に集光させる結合レンズ15を備える。
 次に、絞り部材21を用いることにより、ビーム充填率が向上することを例示して説明する。レーザダイオードから出射されるビームの強度分布が、完全なガウス分布であると仮定する。ガウシアンビームの強度が最大値Ioとなる点としたとき、ビーム進行方向に垂直な平面上の距離rだけ中心軸から離れた点における強度I(r)は以下の式(2)で表される。
    I(r)=Iexp(-2r/w )    …(2)
 wをビーム半径と呼び、ビーム半径w内には、ビームの全パワーの1-1/e=86.5%が存在する。ここで、ファスト軸及びスロー軸方向のビーム径の2.0,1.5,1.2,1.0,0.8倍の成分のみが透過可能な絞り部材21をコリメートレンズの前方又は後方に配置することを考える。
 このとき、絞り部材21を透過するビームのパワーは、それぞれ元の99.97%、98.89%、94.39%、86.47%、72.2%となる。絞り部材21の径を小さくすると、絞り部材21を透過するビームのパワーが小さくなることがわかる。
 ここで、結合レンズ15に入射されるビームの内、ファイバコア結合に有効なレンズ上の径をDとおき、図7、図8に示すように複数のビームがファイバ16のコア17に結合される場合を考える。プリズム31a,31bにより、ビーム位置をシフトさせたとき、各ビームのシフト後の間隔の下限をdとする。このとき、ビーム径wのM倍の成分のみが透過可能な絞り部材を利用したときに得られるパワーは、最大ビーム本数をNとして、M×w×N+d×(N-1)<Dとなる。即ち、N<(D+d)/(M×w+d)である。Dはファイバコア結合に有効なレンズ上の径である。Mは正数である。ここで、D=5w,d=0.2wとすると、最大ビーム本数Nは、N<5.2/(M+0.2)である。但し、Nは不等号を満たす最大の正の整数で表される。ビーム径の2.0,1.5,1.2,1.0,0.8倍の成分のみが透過可能な絞り部材を用いたときの最大ビーム本数Nは、それぞれ2,3,3,4,5本となり、レーザダイオード1pcの絞り部材入射前のパワーを100%とすると、それぞれ199.9%、296.7%、283.2%、345.9%、361.0%となる。従って、ファイバ入射パワーは、絞り部材21を利用した際にビーム充填率を向上させることによって最大となり得ることがわかる。
 上記の例では、ファスト軸方向、スロー軸方向ともに絞り部材21を用いる例を示したが、使用するファイバのコア径、コア形状に合わせて、ファスト軸方向又はスロー軸方向の任意の大きさの絞り部材を使用することができる。
 図9(a)は、絞り部材21がない場合のビーム充填率を示し、図9(b)は、透過率0.8の絞り部材21がある場合のビーム充填率を示す。図9(a)では、コアのNA内に投影像PIが6本充填される。図9(b)では、コアのNA内に投影像PIが9本充填される。1ビームの出力をPとし、ファイバ出力をPoとすると、図9(a)では、Po=6本×P=6Pである。図9(b)では、Po=透過率0.8×(9本×P)=7.2Pである。即ち、絞り部材21を用いた方が高輝度・高出力となる。
 このように実施例1のレーザ装置によれば、複数の絞り部材21は、レーザダイオード出射ビームの外周部に含まれる高M成分を遮断し、ビームの外周部を除くビームに含まれる低M成分のみを選択透過させる。高M成分は、熱損失になってしまうが、低M成分のみを取り出すことによって、複数のビームを集光した時のスポット径及び入射角を小さくすることができる。このため、従来のファイバコアよりも小さいファイバコアにビームを結合させることができる。
 従って、プリズム31a,31b同士の間隔を狭める、即ち、ビームの間隔を狭めることによって、ファイバ16の前段に配置された結合レンズ15上に投影されるビームの本数を増大させることができ、より多くの本数のビームをファイバ16のコア17に結合させることができる。
 高M成分を除去することで、各レーザダイオード10のパワーにロスが生じるが、1本のファイバ16に結合できるビーム充填率(結合レンズ上のビーム断面積の総和/結合レンズ上のファイバ結合に寄与する有効面積)の向上が可能なため、トータルでは高出力となる。また、ビーム充填率を高めることは、結合レンズ光軸近傍にビームを集められることを意味し、ファイバ入射NAを低減することができる。即ち、より高輝度な低NAファイバを使用することができる。クラッド漏れとなる成分を前段階で除去するため、ファイバ16へのダメージが減り、ファイバ出射ビーム品質が向上する。
 また、レーザダイオード出射ビームの細径化が可能となり、後段で使用するレンズ、ミラー、プリズム、波長板等の光学部材を小型化できる。
 (実施例2)
 横マルチモードのレーザダイオード10のスペクトル線幅は、横シングルモードのレーザダイオード10に比べて広い。蛍光励起用光源等の高強度・狭スペクトル線幅が求められるアプリケーションにおいては、スペクトル線幅を改善する必要がある。このため、本発明の実施例2に係るレーザ装置では、回折格子付絞り部材を用いてスペクトル線幅を改善したことを特徴とする。
 図10(a)は本発明の実施例2に係るレーザ装置において、コリメートレンズ11の前に回折格子付絞り部材21dを設けた図である。図10(b)は本発明の実施例2に係るレーザ装置において、コリメートレンズ11の後に回折格子付絞り部材33を設けた図である。
 図10(a)に示すように、回折格子付絞り部材21dを入射側に配置する場合、レーザダイオードビームが拡がり角を有するため、回折格子付絞り部材21dへの入射角は、ゼロではない値を持つ。このため、ブレーズド回折格子を利用し、光が入射光の方向に戻るリトロー配置としている。
 即ち、回折格子付絞り部材21dは、本発明の反射型回折格子に対応し、レーザダイオード10に対向する表面に、レーザダイオード10から出射されるビームBM10の一部をレーザダイオード10の発光面に戻すとともに、穴部32aによりビームBM11を得る。
 図10(b)に示すように、回折格子付絞り部材33をコリメートレンズ11の後に配置する場合には、ビームの回折格子への入射角がほぼゼロとなるため、ボリュームホログラフィックグレーティング(VHG)を利用することができる。この場合も、レーザダイオード10から出射されるビームBM10の一部をレーザダイオード10の発光面に戻す。
 以上の構成により、レーザダイオード10と回折格子付絞り部材21d,33との間で外部共振器を構成する。M値が低い成分は回折格子付絞り部材21d,33を透過し、M値が高い成分は、レーザダイオード10の発光面に戻される。従って、レーザ波長の狭線幅化と波長安定化と高出力化の両方を実現することができる。
 (実施例3)
 図11は本発明の実施例3に係るピンホールを用いたレーザ装置の構成図である。図11は本発明の実施例3に係るレーザ装置は、コリメートレンズ11の後に集光レンズ34、ピンホール35、コリメートレンズ36を設けたことを特徴とする。
 集光レンズ34は、コリメートレンズ11でコリメートされたビームをピンホール35に開けられたホールPHに集光する。ピンホール35は、ホールPHで高M成分を除去し、低M成分のみを取り出してコリメートレンズ36に出射する。コリメートレンズ36は、ピンホール35で取り出された低M成分のみのビームをコリメートする。
 このように、実施例3に係るピンホールを用いたレーザ装置によっても、実施例1に係るレーザ装置の効果と同様な効果が得られる。
 (実施例4)
 図12は本発明の実施例4に係る凹面ミラーとピンホールを用いたレーザ装置の構成図である。図12に示すレーザ装置は、複数のレーザダイオード10a~10cと、複数のコリメートレンズ11a~11cから出射される複数のビームの光進行方向を制御するシリンドリカル凹面ミラー37a,37bと、シリンドリカル凹面ミラー37a,37bから出射される複数のビームの外周部を除くビームを選択して透過させるピンホール38a,38bと、ファイバ16の光軸上に複数のビームを移動させるために、ピンホール38a,38bから出射される複数のビームの光進行方向を制御するシリンドリカル凹面ミラー39a,39bと、シリンドリカル凹面ミラー39a,39bから出射される複数のビームをファイバ16に集光させる結合レンズ40を備える。なお、ピンホール38a,38bに代えて、スリットを用いてもよい。
 複数のレーザダイオード10a~10cは、図12に示すように縦方向に3個配置されている。さらに、複数のレーザダイオードは、図示していないが、横方向に3個配置され、縦方向及び横方向で合計9個配置されている。シリンドリカル凹面ミラー37a,37bは、本発明の1以上の第1の光進行方向制御部材に対応する。ピンホール38a,38bは、本発明の複数の選択透過素子に対応する。シリンドリカル凹面ミラー39a,39bは、本発明の1以上の第2の光進行方向制御部材に対応し、ピンホール38a,38bを挟んでシリンドリカル凹面ミラー37a,37bと対向して配置されている。結合レンズ40は、集光部に対応する。
 このような構成によれば、レーザダイオード10a~10cから出射されたビームは、焦点位置に配置されたコリメートレンズ11a~11cによりコリメートビームとなる。コリメートビームは、シリンドリカル凹面ミラー37a,37bで反射され、シリンドリカル凹面ミラー37a,37bの焦点位置に配置されたピンホール38a,38bにより、垂直方向又は水平方向の高M成分が除去される。
 ピンホール38a,38bを透過したビームは、シリンドリカル凹面ミラー39a,39bにより再びコリメートビームとなり、光軸方向(ファイバ16に対して垂直な軸)に進む。各コリメートビームの位置を結合レンズ40の光軸の中心側にシフトできるので、結合レンズ40における収差の影響を低減させつつ、ファイバNAを小さくすることができる。また、結合レンズ40に入射可能なビーム本数が増加するため、高出力化することができる。
 また、シリンドリカル凹面ミラー37a,37b,39a,39bの位置や形状によって、シリンドリカル凹面ミラー37a,37b,39a,39b反射後のコリメートビームの形状を自由に制御することができる。
 図13は本発明の実施例4に係るレーザ装置においてシリンドリカル凹面ミラー37a,37bでピンホール38a,38bにビームを通す場合のシーケンスを示す図である。図12で説明したように、複数のレーザダイオードは、縦方向(行方向)及び横方向(列方向)に行列(1,1)~(3,3)で9個配置されている。
 9個のレーザダイオード10のビームは、9個のコリメートレンズ11により、9個の円状のコリメートビームCBM1となる。コリメートビームCBM1の円の大きさは、初期M2値を示す。
 次に、縦矢印で示すように、複数のレーザダイオードの1列目(1,1)、(2,1)、(3,1)と、3列目(1,3)、(2,3)、(3,3)との横方向にピンホール38を適用すると、1列目(1,1)、(2,1)、(3,1)と、3列目(1,3)、(2,3)、(3,3)とのコリメートビームCBM1の横方向が小さくなり、ビームCBM2が得られる。このため、横方向の高M成分が除去される。
 次に、横矢印で示すように、複数のレーザダイオードの1行目(1,1)、(1,2)、(1,3)と、3行目(3,1)、(3,2)、(3,3)との縦方向にピンホール38を適用すると、1行目(1,1)、(1,2)、(1,3)と、3行目(3,1)、(3,2)、(3,3)とのビームCBM2の縦方向が小さくなり、ビームCBM3が得られる。このため、縦方向の高M成分が除去される。
 このように、9つのレーザダイオード10から発せられたビームについて、光軸との位置関係により、結合レンズの収差の影響を受ける位置にあるビームの高M成分が除去されてコリメートビームの径が細くなり、ビームの充填率を向上させることができる。
 なお、行列(2,2)の中心のレーザダイオードについては、ピンホール又はスリットを透過していないため、高M成分は残ったままである。しかし、中心のレーザダイオードは、光軸上に配置されているため、結合レンズの収差の影響を最も受けにくく、高M成分が含まれていても大きな問題はない。
 同様に、行列(1,2)、(2,1)、(2,3)、(3,2)におけるビームCBM3については、片方の軸のみ高M成分が除去されていないが、行列(1,21、(1,3)、(3,1)、(3,3)で表される四隅のレーザダイオードに比べると影響は少ない。
 なお、必要であれば、高M成分を除去するために、結合レンズ40の後に、実施例3で説明したピンホール35とコリメートレンズ36を追加するように構成しても良い。
 本発明は、半田付け、ボンディングワイヤ接続、電子部品の基板溶接、微小スポットアニール等に用いる微細レーザ加工機に適用可能である。

Claims (6)

  1.  複数のビームを1本のファイバに結合させるレーザ装置であって、
     前記複数のビームを出射する複数のレーザダイオードと、
     前記複数のレーザダイオードと対応して設けられ、前記複数のレーザダイオードから出射される前記複数のビームを平行にさせる複数の光学素子と、
     前記複数の光学素子と対応して設けられ、前記複数のレーザダイオードから出射されるビーム又は前記複数の光学素子から出射されるビームの外周部を除くビームを選択して透過させる複数の選択透過素子と、
     前記ファイバの光軸近傍に前記複数のビームを移動させるために、前記複数の光学素子及び前記複数の選択透過素子を通過した前記複数のビームの光進行方向を制御する1以上の光進行方向制御部材と、
     前記1以上の光進行方向制御部材から出射される前記複数のビームを前記ファイバに集光させる集光部と、
    を備えるレーザ装置。
  2.  前記複数の選択透過素子の各々は、前記複数のレーザダイオードから出射される前記複数のビームの波長に対して所定の吸収係数を有する物質が表面に形成されている請求項1記載のレーザ装置。
  3.  前記複数の選択透過素子の各々には、前記複数の選択透過素子の熱を放熱させるための放熱板が取り付けられている請求項1又は請求項2記載のレーザ装置。
  4.  前記複数の選択透過素子の各々の表面には、前記複数のレーザダイオードから出射される前記複数のビームの一部を前記複数のレーザダイオードの発光面に戻す反射型回折格子が形成され、前記複数のレーザダイオードと前記反射型回折格子との間で外部共振器を構成する請求項1記載のレーザ装置。
  5.  複数のビームを1本のファイバに結合させるレーザ装置であって、
     前記複数のビームを出射する複数のレーザダイオードと、
     前記複数のレーザダイオードと対応して設けられ、前記複数のレーザダイオードから出射される前記複数のビームを平行にさせる複数の光学素子と、
     前記複数の光学素子から出射される前記複数のビームの光進行方向を制御する1以上の第1の光進行方向制御部材と、
     前記1以上の第1の光進行方向制御部材から出射される前記複数のビームの外周部を除くビームを選択して透過させる複数の選択透過素子と、
     前記ファイバの光軸近傍に前記複数のビームを移動させるために、前記複数の選択透過素子から出射される前記複数のビームの光進行方向を制御する1以上の第2の光進行方向制御部材と、
     前記1以上の第2の光進行方向制御部材から出射される前記複数のビームを前記ファイバに集光させる集光部と、
    を備えるレーザ装置。
  6.  前記1以上の第1の光進行方向制御部材及び前記1以上の第2の光進行方向制御部材は、凹面ミラーであり、前記複数の選択透過素子は、ピンホール又はスリットである請求項5記載のレーザ装置。
PCT/JP2016/077228 2016-09-15 2016-09-15 レーザ装置 WO2018051450A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680089346.0A CN109716189A (zh) 2016-09-15 2016-09-15 激光装置
US16/333,458 US20190341745A1 (en) 2016-09-15 2016-09-15 Laser device
PCT/JP2016/077228 WO2018051450A1 (ja) 2016-09-15 2016-09-15 レーザ装置
JP2018539019A JPWO2018051450A1 (ja) 2016-09-15 2016-09-15 レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077228 WO2018051450A1 (ja) 2016-09-15 2016-09-15 レーザ装置

Publications (1)

Publication Number Publication Date
WO2018051450A1 true WO2018051450A1 (ja) 2018-03-22

Family

ID=61619922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077228 WO2018051450A1 (ja) 2016-09-15 2016-09-15 レーザ装置

Country Status (4)

Country Link
US (1) US20190341745A1 (ja)
JP (1) JPWO2018051450A1 (ja)
CN (1) CN109716189A (ja)
WO (1) WO2018051450A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502440A (ja) * 2019-11-21 2023-01-24 イオテック,エルエルシー 温度安定化ホログラフィック照準器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121770A1 (ja) * 2018-12-13 2020-06-18 ソニー株式会社 光コネクタ、光ケーブルおよび電子機器
CN114678774B (zh) * 2022-05-24 2022-08-09 江苏镭创高科光电科技有限公司 一种带光束校正的激光阵列耦合系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284270A (ja) * 1998-03-31 1999-10-15 Nec Eng Ltd 半導体レーザユニット
JP2004014583A (ja) * 2002-06-03 2004-01-15 Ricoh Co Ltd 半導体レーザ装置、光書き込み装置および画像形成装置
JP2005175049A (ja) * 2003-12-09 2005-06-30 Sony Corp 外部共振器型半導体レーザ
JP2007017925A (ja) * 2005-06-07 2007-01-25 Fujifilm Holdings Corp 合波レーザ光源
JP2009529786A (ja) * 2006-03-09 2009-08-20 インフェイズ テクノロジーズ インコーポレイテッド 外部キャビティレーザ
WO2016080252A1 (ja) * 2014-11-20 2016-05-26 カナレ電気株式会社 外部共振器型半導体レーザ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651237A (ja) * 1992-07-30 1994-02-25 Hitachi Cable Ltd レーザ光伝送装置
JP4236435B2 (ja) * 2002-09-17 2009-03-11 オリンパス株式会社 顕微鏡
PL217893B1 (pl) * 2009-10-10 2014-08-29 Inst Wysokich Ciśnień Polskiej Akademii Nauk Sposób i urządzenie do wprowadzania do jednego światłowodu światła laserowego pochodzącego z co najmniej dwóch źródeł laserowych

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284270A (ja) * 1998-03-31 1999-10-15 Nec Eng Ltd 半導体レーザユニット
JP2004014583A (ja) * 2002-06-03 2004-01-15 Ricoh Co Ltd 半導体レーザ装置、光書き込み装置および画像形成装置
JP2005175049A (ja) * 2003-12-09 2005-06-30 Sony Corp 外部共振器型半導体レーザ
JP2007017925A (ja) * 2005-06-07 2007-01-25 Fujifilm Holdings Corp 合波レーザ光源
JP2009529786A (ja) * 2006-03-09 2009-08-20 インフェイズ テクノロジーズ インコーポレイテッド 外部キャビティレーザ
WO2016080252A1 (ja) * 2014-11-20 2016-05-26 カナレ電気株式会社 外部共振器型半導体レーザ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502440A (ja) * 2019-11-21 2023-01-24 イオテック,エルエルシー 温度安定化ホログラフィック照準器
US11709333B2 (en) 2019-11-21 2023-07-25 Eotech, Llc Temperature stabilized holographic sight
JP7355938B2 (ja) 2019-11-21 2023-10-03 イオテック,エルエルシー 温度安定化ホログラフィック照準器

Also Published As

Publication number Publication date
US20190341745A1 (en) 2019-11-07
JPWO2018051450A1 (ja) 2019-06-27
CN109716189A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
US7668214B2 (en) Light source
US9596034B2 (en) High brightness dense wavelength multiplexing laser
US7515346B2 (en) High power and high brightness diode-laser array for material processing applications
US6680800B1 (en) Device for symmetrizing the radiation emitted by linear optical transmitters
JP6157194B2 (ja) レーザ装置および光ビームの波長結合方法
CN111610604B (zh) 光源装置、直接二极管激光装置以及光耦合器
JP2002148491A (ja) 半導体レーザ加工装置及びその調整方法
JP2005531135A (ja) 高光学出力密度を生成するための方法およびレーザ装置
JP2015072955A (ja) スペクトルビーム結合ファイバレーザ装置
WO2018051450A1 (ja) レーザ装置
WO2015145608A1 (ja) レーザ装置
CN112928597A (zh) 一种半导体激光器光纤耦合模块
US11287574B2 (en) Optical fiber bundle with beam overlapping mechanism
US10386031B2 (en) Light device with movable scanning means and optical fiber
JP7212274B2 (ja) 光源装置、ダイレクトダイオードレーザ装置
WO2018158892A1 (ja) レーザ発振装置
US20060203873A1 (en) Semiconductor laser diode
JP2007248581A (ja) レーザーモジュール
JPH07112084B2 (ja) アレイ半導体レーザ励起固体レーザ装置
CN108803065B (zh) 一种密集光纤阵列光谱合束装置及方法
JPH07287104A (ja) 光路変換器及び光路変換アレイ
JPH07287189A (ja) 光路変換器およびそれを用いたレーザ装置
JPH05145151A (ja) 固体レーザ
JPH1117268A (ja) 半導体レーザーアレイ装置
Possner et al. Assembly of fast-axis collimating lenses with high-power laser diode bars

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916233

Country of ref document: EP

Kind code of ref document: A1