WO2020121677A1 - カメラシステム - Google Patents

カメラシステム Download PDF

Info

Publication number
WO2020121677A1
WO2020121677A1 PCT/JP2019/042904 JP2019042904W WO2020121677A1 WO 2020121677 A1 WO2020121677 A1 WO 2020121677A1 JP 2019042904 W JP2019042904 W JP 2019042904W WO 2020121677 A1 WO2020121677 A1 WO 2020121677A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
infrared
conversion element
wavelength
emission wavelength
Prior art date
Application number
PCT/JP2019/042904
Other languages
English (en)
French (fr)
Inventor
浩章 飯島
雅哉 平出
有子 岸本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020559799A priority Critical patent/JP7394323B2/ja
Publication of WO2020121677A1 publication Critical patent/WO2020121677A1/ja
Priority to US17/231,647 priority patent/US11523037B2/en
Priority to US17/975,272 priority patent/US11818450B2/en
Priority to JP2023194255A priority patent/JP2024026091A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a camera system using a near-infrared illumination, a near-infrared photoelectric conversion element, and an imaging device.
  • Near-infrared imaging devices used for vehicle-mounted cameras and surveillance cameras are often equipped with near-infrared lighting to capture images even at night when there is no light due to sunlight. Therefore, in the near-infrared imaging device at night, the object is reflected by the light emitted by the near-infrared illumination, and the reflected light is received by the imaging device, thereby enabling imaging.
  • organic semiconductor materials have physical properties and functions that conventional inorganic semiconductor materials such as silicon do not have. Therefore, as a semiconductor material that can realize new semiconductor devices and electronic devices, organic semiconductor materials have been actively studied in recent years, as described in Non-Patent Document 1 and Patent Document 3, for example.
  • Non-Patent Document 2 describes that a photoelectric conversion element using an organic material thin film can be used as an organic thin film solar cell by extracting charges, which are carriers generated by light, as energy.
  • Patent Document 1 describes that the photoelectric conversion element can be used as an optical sensor such as a solid-state image sensor by extracting electric charges generated by light as an electric signal.
  • phthalocyanine derivatives and naphthalocyanine derivatives are known as organic semiconductor materials having sensitivity in the near infrared band.
  • Patent Document 2 discloses a naphthalocyanine derivative having an absorption maximum wavelength of 805 nm to 825 nm.
  • Patent Document 4 by using a plurality of LED (Light Emitting Diode) illuminations and filters, the temperature of the surveillance camera and the surroundings changes, or the temperature of the LEDs changes due to heat generation of the surveillance camera, Even when the peak shift of the emission wavelength of the LED occurs, it is possible to use a plurality of LED illuminations, transmit the light through the filter, and emit light corresponding to the spectral sensitivity characteristic of the image pickup device, and obtain a good image.
  • a surveillance camera capable of performing the above is disclosed.
  • Patent Document 4 requires a plurality of LEDs and a filter that transmits only a specific wavelength, resulting in a large-scale camera system.
  • the present disclosure aims to provide a camera system that can obtain good imaging characteristics.
  • a camera system includes an illumination having a peak emission wavelength at room temperature in a near infrared band, and an imaging device including a photoelectric conversion element that converts near infrared light into an electric charge.
  • the intensity of the light emitted from the illumination shows a maximum value.
  • the photoelectric conversion element has a spectral sensitivity at the peak emission wavelength.
  • the external quantum efficiency of the photoelectric conversion element has a first peak at a first wavelength longer than the peak emission wavelength, and the external quantum efficiency at the first wavelength is the external quantum at the peak emission wavelength. Higher than efficiency.
  • the external quantum efficiency is less than 1% at a wavelength 200 nm longer than the first wavelength.
  • FIG. 1 is a schematic diagram showing an example of a camera system according to an embodiment.
  • FIG. 2 is a diagram showing the spectral characteristics of the near infrared illumination according to the embodiment.
  • FIG. 3 is a diagram showing temperature-radiation intensity characteristics of the near-infrared illumination according to the embodiment.
  • FIG. 4A is a schematic cross-sectional view showing an example of the near-infrared photoelectric conversion element according to the embodiment.
  • FIG. 4B is a schematic cross-sectional view showing an example of a near-infrared photoelectric conversion element including the visible light photoelectric conversion film according to the embodiment.
  • FIG. 5 is a schematic cross-sectional view showing another example of the near-infrared photoelectric conversion element according to the embodiment.
  • FIG. 1 is a schematic diagram showing an example of a camera system according to an embodiment.
  • FIG. 2 is a diagram showing the spectral characteristics of the near infrared illumination according to the embodiment.
  • FIG. 3 is a diagram showing temperature
  • FIG. 6 is an example of an energy band diagram of the near-infrared photoelectric conversion element shown in FIG.
  • FIG. 7 is a diagram illustrating an example of a circuit configuration of the image pickup apparatus according to the embodiment.
  • FIG. 8 is a schematic cross-sectional view showing an example of a device structure of a pixel in the image pickup apparatus according to the embodiment.
  • FIG. 9A is a diagram of an absorption spectrum of the near-infrared photoelectric conversion film of Example 3.
  • FIG. 9B is a diagram showing a measurement result of photoelectron spectroscopy of the near-infrared photoelectric conversion film of Example 3.
  • FIG. 10A is a diagram of an absorption spectrum of the near-infrared photoelectric conversion film of Example 4.
  • FIG. 9A is a diagram of an absorption spectrum of the near-infrared photoelectric conversion film of Example 4.
  • FIG. 10B is a diagram showing a measurement result of photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 4.
  • FIG. 11A is a diagram of an absorption spectrum of the near-infrared photoelectric conversion film of Example 5.
  • FIG. 11B is a diagram showing a measurement result of photoelectron spectroscopy of the near-infrared photoelectric conversion film of Example 5.
  • 12: is a figure which shows the measurement result of the spectral sensitivity characteristic of the near-infrared photoelectric conversion element of Example 6.
  • FIG. 13 is a figure which shows the measurement result of the spectral sensitivity characteristic of the near-infrared photoelectric conversion element of Example 7.
  • FIG. 14 is a figure which shows the measurement result of the spectral sensitivity characteristic of the near-infrared photoelectric conversion element of Example 8.
  • FIG. 11A is a diagram of an absorption spectrum of the near-infrared photoelectric conversion film of Example 5.
  • FIG. 11B is
  • the energy level can change when the molecular structure of the organic compound used is changed. Therefore, for example, when the organic semiconductor material is used as the photoelectric conversion material, the absorption wavelength can be controlled, and sensitivity can be provided even in the near infrared band where silicon (Si) has no sensitivity.
  • Si silicon
  • organic semiconductor materials if organic semiconductor materials are used, it is possible to utilize light in the wavelength region that has not been used for photoelectric conversion in the past, and realize a solar cell with high efficiency and an optical sensor in the near infrared band. It becomes possible to do. Therefore, in recent years, photoelectric conversion elements and image pickup elements using organic semiconductor materials having sensitivity in the near infrared band have been actively studied. By appropriately selecting the organic semiconductor material in this way, it is possible to obtain a photoelectric conversion element having a characteristic spectral sensitivity characteristic which is not present in conventional inorganic semiconductor materials such as silicon.
  • phthalocyanine derivatives and naphthalocyanine derivatives have a wide ⁇ -conjugated system and have strong absorption (absorption) in the near-infrared band due to ⁇ - ⁇ * absorption. Since it has a maximum wavelength), it is a strong candidate for a material.
  • a peak emission wavelength of near-infrared lighting shifts to the long wavelength side, and the output of the total radiation intensity decreases.
  • a peak emission wavelength has a peak shift of several tens of nm in a temperature range of about ⁇ 60° C., and when the temperature is higher than room temperature, the radiation intensity decreases.
  • the near-infrared imaging device uses a HOMO (Highest Occupied Molecular Orbital) energy level and a LUMO (Lowest Unoccupied Molecular Orbital) energy level of a photoelectric conversion material in a near-infrared photoelectric conversion element used in the near-infrared imaging device.
  • HOMO Highest Occupied Molecular Orbital
  • LUMO Large Unoccupied Molecular Orbital
  • the HOMO-LUMO Gap of the photoelectric conversion material corresponds to the absorption wavelength of the photoelectric conversion material, and when the HOMO-LUMO Gap becomes narrower, absorption of longer wavelength near infrared light can be obtained. The dark current becomes large.
  • the present disclosure provides a camera system that can obtain good imaging characteristics by appropriately selecting a photoelectric conversion material compatible with near infrared illumination and using a material having absorption in the near infrared band.
  • the present invention provides a camera system that has sufficient photoelectric conversion characteristics and obtains good imaging characteristics even when near-infrared illumination causes a peak shift in emission wavelength and a change in radiation intensity due to temperature changes and the like.
  • a camera system includes an illumination having a peak emission wavelength at room temperature in a near infrared band, and an imaging device including a photoelectric conversion element that converts near infrared light into an electric charge.
  • the intensity of the light emitted from the illumination shows a maximum value.
  • the photoelectric conversion element has a spectral sensitivity at the peak emission wavelength.
  • the external quantum efficiency of the photoelectric conversion element has a first peak at a first wavelength longer than the peak emission wavelength, and the external quantum efficiency at the first wavelength is the external quantum at the peak emission wavelength. Higher than efficiency.
  • the external quantum efficiency is less than 1% at a wavelength 200 nm longer than the first wavelength.
  • room temperature means 25°C.
  • the “peak emission wavelength” is a wavelength at which the radiant intensity of illumination becomes maximum.
  • the “near infrared band” is a band where the wavelength of light is 650 nm or more and 3000 nm or less.
  • a photoelectric conversion element has “sensitivity” to a certain wavelength means that the external quantum efficiency of the photoelectric conversion element at the wavelength is 1% or more.
  • the photoelectric conversion element included in the imaging element has the spectral sensitivity at the peak emission wavelength of near-infrared illumination, and has the first peak of the external quantum efficiency on the longer wavelength side than the peak emission wavelength.
  • the external quantum efficiency at a wavelength 200 nm longer than the first spectral sensitivity peak is smaller than 1%, so that the HOMO-LUMO Gap of the photoelectric conversion element is kept wide and the dark current due to thermal excitation of electrons is reduced. Therefore, the SN ratio of the imaging device is improved, and better imaging characteristics can be obtained.
  • the photoelectric conversion element may have spectral sensitivity in the wavelength range of ⁇ 30 nm to +30 nm with respect to the peak emission wavelength.
  • the photoelectric conversion element has a spectral sensitivity. Therefore, the camera system has robustness against a large temperature change.
  • the peak emission wavelength may be 800 nm or more and 980 nm or less.
  • the illumination may be a light emitting diode (LED: Light Emitting Diode) that emits monochromatic light.
  • LED Light Emitting Diode
  • the photoelectric conversion element may include an organic material as a photoelectric conversion material.
  • a HOMO-LUMO Gap is determined by the molecular structure, and an organic material that does not easily cause a difference in spectral sensitivity between materials is included, so that a photoelectric conversion element having a sharp spectral sensitivity peak in the near infrared band can be obtained. .. Therefore, it has the spectral sensitivity characteristic corresponding to the shift of the peak emission wavelength of the near infrared illumination, the dark current is further suppressed, and the better imaging characteristic is obtained.
  • the organic material may be a phthalocyanine derivative or a naphthalocyanine derivative.
  • an organic material that has strong absorption in the near infrared band can be used as a photoelectric conversion material, and a camera system that can efficiently perform photoelectric conversion of light in the near infrared band can be manufactured.
  • the photoelectric conversion element may include a first photoelectric conversion film that converts visible light into an electric charge and a second photoelectric conversion film that converts near infrared light into an electric charge. It may have a structure in which the first photoelectric conversion film and the second photoelectric conversion film are stacked.
  • the external quantum efficiency of the photoelectric conversion element further has a second peak at a second wavelength shorter than the peak emission wavelength, and the external quantum efficiency at the second wavelength is It may be higher than the external quantum efficiency at the peak emission wavelength.
  • a photoelectric conversion element with high spectral sensitivity is used at both the wavelength on the short wavelength side and the wavelength on the long wavelength side of the peak emission wavelength of the near-infrared illumination, which further improves the imaging characteristics.
  • the external quantum efficiency of the photoelectric conversion element at the peak emission wavelength may be 20% or more.
  • the image pickup device includes a substrate, a charge detection circuit provided on the substrate, a photoelectric conversion unit provided on the substrate and including the photoelectric conversion element, and the charge detection circuit and the photoelectric conversion. And a pixel including a charge storage node electrically connected to the portion.
  • the light received by the photoelectric conversion element can be efficiently detected.
  • FIG. 1 is a schematic diagram showing an example of a camera system 1000 according to this embodiment.
  • the camera system 1000 includes a near-infrared illumination 200 having a peak emission wavelength at room temperature in the near-infrared band, and an imaging device 100 having the near-infrared photoelectric conversion element 10.
  • Near-infrared illumination 200 in the present embodiment is an example of illumination.
  • the camera system 1000 includes a control unit 300 that controls the operations of the image pickup apparatus 100 and the near-infrared illumination 200.
  • the illumination light emitted from the near-infrared illumination 200 is reflected by the subject, and the reflected light is photoelectrically converted by the near-infrared photoelectric conversion element 10 of the imaging device 100 to be extracted as an electric signal. It is imaged.
  • the imaging device 100 and the near-infrared illumination 200 are described separately, the imaging device 100 and the near-infrared illumination 200 may be integrated, or a plurality of visible light illuminations and imaging devices may be combined. ..
  • the near-infrared lighting 200 is not particularly limited as long as it has a peak emission wavelength at room temperature in the near-infrared band, but LED lighting, laser diode (LD) and the like are used.
  • the near-infrared illumination 200 is, for example, an LED single-color illumination, and more specifically, is an LED single-color near-infrared illumination having a peak emission wavelength at room temperature in the near-infrared band. This makes it possible to use inexpensive lighting that is commonly available on the market and reduce the cost of the entire camera system.
  • the “near-infrared band” is a band in which the wavelength of light is 650 nm or more and 3000 nm or less, but the near-infrared band at the peak emission wavelength may be a band of 700 nm or more and 2000 nm or less, Further, it may be a band of 750 nm or more and 1400 nm or less.
  • the near-infrared illumination 200 a plurality of LED illuminations including one or more near-infrared illuminations, a laser diode (LD), or the like may be used, and the illumination light can be adjusted by a filter or the like. Good.
  • Near-infrared illumination 200 may have a peak emission wavelength of near-infrared illumination 200 of 800 nm or more and 980 nm or less at room temperature, or a range of 820 nm or more and 880 nm or less, or 910 nm or more and 980 nm or less.
  • the near-infrared illumination 200 is generally an LED and an LD, but these near-infrared illuminations have a peak shift of the emission wavelength on the long wavelength side when the temperature rises above room temperature, and a short wavelength when the temperature falls. It is known that the peak shift of the emission wavelength occurs on the side. That is, the peak emission wavelength of the near infrared illumination 200 shifts to the long wavelength side when the temperature rises, and shifts to the short wavelength side when the temperature falls. Further, the radiation intensity of the near-infrared illumination 200 decreases as the temperature rises, and rises as the temperature falls.
  • FIG. 2 is a diagram showing the spectral characteristics of near-infrared illumination, showing an example of the peak shift of the emission wavelength of near-infrared illumination due to temperature changes.
  • the horizontal axis is the emission wavelength of near infrared illumination
  • the vertical axis is the relative intensity representing the emission intensity of each wavelength when the emission intensity at the peak emission wavelength of near infrared illumination is 1.
  • the near-infrared illumination in FIG. 2 is monochromatic illumination using a near-infrared LED, and has a peak emission wavelength at room temperature (25° C.) near 850 nm. As shown in FIG. 2, it can be seen that the peak emission wavelength shifts to the long wavelength side when the temperature rises, and the peak emission wavelength shifts to the short wavelength side when the temperature decreases.
  • FIG. 3 is a graph showing the radiation intensity of the near-infrared lighting 200 at each temperature, showing the temperature-radiation intensity characteristics.
  • the horizontal axis represents the ambient temperature
  • the vertical axis represents the radiant intensity at the peak emission wavelength at each temperature when the radiant intensity at the peak emission wavelength of the near infrared illumination 200 at 20° C. is 1. It is relative intensity.
  • FIG. 3 shows the measurement results using the same near-infrared illumination 200 as in FIG. As shown in FIG. 3, it can be seen that in the range of ⁇ 40° C. to 100° C. including room temperature (25° C.), the radiation intensity decreases as the temperature rises, and the radiation intensity rises as the temperature falls.
  • a near-infrared LED having a peak emission wavelength near 850 nm is used as an example, but the above-mentioned characteristics are the same in general near-infrared illumination.
  • a peak emission wavelength near 940 nm is used. The same applies to the case of using a near-infrared LED having the above and the case of using near-infrared illumination using an LD.
  • the imaging device 100 has a near infrared photoelectric conversion element 10.
  • the near-infrared photoelectric conversion element 10 has spectral sensitivity at the peak emission wavelength of the near-infrared illumination 200 at room temperature. Furthermore, the near-infrared photoelectric conversion element 10 has a first spectral sensitivity peak having a higher external quantum efficiency than the external quantum efficiency at the peak emission wavelength on the long wavelength side of the peak emission wavelength. External quantum efficiency is less than 1% at a wavelength 200 nm longer than the spectral sensitivity peak.
  • the camera system 1000 can obtain good imaging characteristics even when the emission wavelength causes a peak shift and a change in radiation intensity due to a change in temperature of the near-infrared illumination 200.
  • the near-infrared photoelectric conversion element 10 has an external quantum efficiency of less than 1% at a wavelength longer by 200 nm than the first spectral sensitivity peak, so that in the near-infrared band of a wavelength longer than 200 nm by the first spectral sensitivity peak. Since the external quantum efficiency is lowered, the HOMO-LUMO Gap of the near-infrared photoelectric conversion element is maintained in a wide state, and the dark current due to thermal excitation of electrons is reduced. As a result, the SN ratio of the image pickup apparatus is improved, and better image pickup characteristics can be obtained.
  • the external quantum efficiency of the near-infrared photoelectric conversion element 10 is preferably equal to or higher than the external quantum efficiency at the peak emission wavelength in the range of the peak emission wavelength of the near-infrared illumination 200 at room temperature to the wavelength of the first spectral sensitivity peak. ..
  • the external quantum efficiency of the near-infrared photoelectric conversion element 10 may be monotonically increasing as the wavelength shifts from the peak emission wavelength of the near-infrared illumination 200 at room temperature to the wavelength of the first spectral sensitivity peak. Further, the wavelength of the first spectral sensitivity peak may be 20 nm or more longer than the peak emission wavelength of the near infrared illumination 200 at room temperature.
  • the near-infrared photoelectric conversion element 10 further has a second spectral sensitivity peak having a higher external quantum efficiency than the external quantum efficiency at the peak emission wavelength on the lower wavelength side than the peak emission wavelength of the near-infrared illumination 200. You may have.
  • the near-infrared photoelectric conversion element 10 having high spectral sensitivity is used at both the wavelength on the short wavelength side and the wavelength on the long wavelength side of the peak emission wavelength of the near-infrared illumination 200, so that the imaging characteristics are further improved. ..
  • the external quantum efficiency of the near-infrared photoelectric conversion element 10 is preferably equal to or higher than the external quantum efficiency at the peak emission wavelength in the range of the peak emission wavelength of the near-infrared illumination 200 to the wavelength of the second spectral sensitivity peak.
  • the external quantum efficiency in the near-infrared photoelectric conversion element 10 may monotonically increase as the wavelength shifts from the peak emission wavelength of the near-infrared illumination 200 to the wavelength of the second spectral sensitivity peak.
  • the near infrared photoelectric conversion element 10 may have an external quantum efficiency of 20% or more at the peak emission wavelength of the near infrared illumination 200. As a result, the near-infrared photoelectric conversion element 10 having high spectral sensitivity is used, so that the image pickup characteristics are further improved.
  • the near-infrared photoelectric conversion element 10 may have spectral sensitivity in the wavelength range of -30 nm or more and +30 nm or less with respect to the peak emission wavelength of the near-infrared illumination 200. As a result, the camera system 1000 has robustness against a large temperature change.
  • the near infrared photoelectric conversion element 10 may include an organic material as a photoelectric conversion material.
  • the control unit 300 controls operations such as image capturing of the image capturing apparatus 100 and light emission of the near infrared illumination 200.
  • the control unit 300 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • FIG. 4A is a schematic cross-sectional view of a near infrared photoelectric conversion element 10Aa which is an example of the near infrared photoelectric conversion element 10 in FIG.
  • the near-infrared photoelectric conversion element 10Aa includes an upper electrode 4 and a lower electrode 2 which are a pair of electrodes, and a near-infrared photoelectric conversion film 3 provided between the pair of electrodes.
  • the near infrared photoelectric conversion element 10Aa according to the present embodiment is supported by, for example, the support substrate 1.
  • the support substrate 1 may be a substrate used in a general photoelectric conversion element, and may be, for example, a glass substrate, a quartz substrate, a semiconductor substrate, a plastic substrate, or the like.
  • transparent to near infrared light means that it is substantially transparent to near infrared light, for example, when the transmittance of light in the near infrared band is 60% or more. is there.
  • the transmittance of light in the near infrared band may be 80% or more, or 90% or more.
  • the supporting substrate 1 may be a substrate that absorbs near-infrared light, for example, a Si substrate. ..
  • the near infrared photoelectric conversion film 3 a photoelectric conversion material having sensitivity to near infrared light can be used.
  • the near infrared photoelectric conversion film 3 may contain an organic material as a photoelectric conversion material.
  • organic materials HOMO-LUMO Gap is determined by the molecular structure. Therefore, by appropriately selecting an organic material having an absorption in the near infrared band, the near infrared photoelectric conversion film 3 having a steep spectral sensitivity peak in the near infrared band can be easily obtained.
  • the organic material contained in the near-infrared photoelectric conversion film 3 is, for example, a phthalocyanine derivative or a naphthalocyanine derivative.
  • the near-infrared photoelectric conversion film 3 is produced using, for example, a composition containing a naphthalocyanine derivative represented by the following general formula (1) or a phthalocyanine derivative represented by the following general formula (2).
  • R 1 to R 24 are various substituents
  • M is a tetravalent metal such as Si, Ge and Sn, a divalent metal such as Zn, Cu, Ni, Co and Fe, and Al and Ga.
  • a trivalent metal or the like, R 25 and R 26 do not exist when M is a divalent metal, and when M is a trivalent metal, one of them is various substituents; Where is a tetravalent metal, both are various substituents.
  • the various substituents are, for example, each independently a hydrogen atom, a halogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted alkoxy group, an unsubstituted Or an alkylthio group having a substituent, an aryloxy group having an unsubstituted or a substituent, an arylthio group having an unsubstituted or a substituent, an amino group having an unsubstituted or a substituent, a silanol group having an unsubstituted or a substituent, And a phosphino group having a substituent or a substituent, an oxy group having an unsubstituted or a heterocyclic group having a substituent, a thio group having an unsubstituted or a heterocyclic group having a substituent, and the like.
  • R 27 to R 42 are various substituents
  • M is a tetravalent metal such as Si, Ge and Sn
  • a divalent metal such as Zn, Cu, Ni, Co and Fe
  • Al and Ga A trivalent metal or the like, R 43 and R 44 do not exist when M is a divalent metal, and when M is a trivalent metal, one of them is various substituents, and M is In the case of a tetravalent metal, both are different substituents.
  • the various substituents are, for example, each independently a hydrogen atom, a halogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted alkoxy group, an unsubstituted Or an alkylthio group having a substituent, an aryloxy group having an unsubstituted or a substituent, an arylthio group having an unsubstituted or a substituent, an amino group having an unsubstituted or a substituent, a silanol group having an unsubstituted or a substituent, And a phosphino group having a substituent or a substituent, an oxy group having an unsubstituted or a heterocyclic group having a substituent, a thio group having an unsubstituted or a heterocyclic group having a substituent, and the like.
  • the near-infrared photoelectric conversion film 3 may be produced using a composition containing a naphthalocyanine derivative represented by the following general formula (3) or a phthalocyanine derivative represented by the following general formula (4). ..
  • R 45 to R 52 are each independently an alkyl group
  • R 53 to R 56 are each independently an aryl group.
  • R 57 to R 64 are alkyl groups or aryl groups
  • M is a tetravalent metal
  • R 65 and R 66 are substituents represented by the following general formulas (5) to (8). Either one.
  • R 67 to R 69 are each independently an alkyl group
  • R 70 to R 74 are each independently an alkyl group or an aryl group.
  • At least one hydrogen atom may be substituted with a fluorine atom or a fluorine-containing group.
  • the near-infrared photoelectric conversion film 3 may include a naphthalocyanine derivative or a phthalocyanine derivative having a composition other than the above general formula, and may include a naphthalocyanine derivative or an organic photoelectric conversion material other than the phthalocyanine derivative. Good.
  • naphthalocyanine derivative an organic photoelectric conversion material other than the phthalocyanine derivative, for example, chlorophyll derivative, squarylium derivative, merocyanine derivative, perylene tetracarboxylic acid derivative, triarylamine compound, benzidine compound, pyrazoline compound, styrylamine compound, hydrazone compound, Triphenylmethane compound, carbazole compound, polysilane compound, thiophene compound, phthalocyanine compound, cyanine compound, merocyanine compound, oxonol compound, polyamine compound, indole compound, pyrrole compound, pyrazole compound, polyarylene compound, condensed aromatic carbocyclic compound (naphthalene Examples thereof include derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives), and metal complexes having a nitrogen-containing
  • carbon nanotubes or quantum dots may be used as the photoelectric conversion material in the near infrared photoelectric conversion film 3, and may be an inorganic semiconductor such as a Si semiconductor or a compound semiconductor.
  • a coating method such as spin coating or a vacuum vapor deposition method in which the material of the film is vaporized by heating under vacuum and deposited on the substrate can be used. ..
  • film formation can be performed in the atmosphere, N 2 atmosphere, etc., and the rotation speed may be 300 rpm to 3000 rpm, and the solvent is evaporated after spin coating to stabilize the film.
  • Bake treatment may be performed.
  • the baking temperature may be any temperature, but is, for example, 60°C to 250°C.
  • a vapor deposition method may be used when it is considered that impurities are prevented from being mixed in and multilayering for higher functionality is performed with more flexibility. ..
  • a commercially available device may be used as the vapor deposition device.
  • the temperature of the vapor deposition source during vapor deposition is, for example, 100°C to 500°C.
  • the temperature of the vapor deposition source during vapor deposition may be 150°C to 400°C.
  • the degree of vacuum during vapor deposition is, for example, 1 ⁇ 10 ⁇ 6 Pa to 1 Pa.
  • the degree of vacuum during vapor deposition may be 1 ⁇ 10 ⁇ 6 Pa to 1 ⁇ 10 ⁇ 4 Pa.
  • the near-infrared photoelectric conversion film 3 may be manufactured by a method of adding metal fine particles or the like to a vapor deposition source to increase the vapor deposition rate.
  • the mixing ratio of the materials of the near-infrared photoelectric conversion film 3 is indicated by the weight ratio in the coating method and the volume ratio in the vapor deposition method. More specifically, in the coating method, the mixing ratio is defined by the weight of each material when preparing the solution, and in the vapor deposition method, the mixing ratio of each material is monitored while monitoring the vapor deposition film thickness of each material with a film thickness meter during vapor deposition. Stipulate.
  • At least one of the upper electrode 4 and the lower electrode 2 is a transparent electrode made of a conductive material transparent to near infrared light. It may also be transparent to the visible light band.
  • a bias voltage is applied to the lower electrode 2 and the upper electrode 4 by wiring (not shown). For example, the polarity of the bias voltage is determined such that, of the charges generated in the near-infrared photoelectric conversion film 3, electrons move to the upper electrode 4 and holes move to the lower electrode 2. Further, the bias voltage may be set so that holes of the charges generated in the near-infrared photoelectric conversion film 3 move to the upper electrode 4 and electrons move to the lower electrode 2.
  • the bias voltage is a value obtained by dividing the applied voltage value by the distance between the lower electrode 2 and the upper electrode 4, that is, the strength of the electric field generated in the near-infrared photoelectric conversion element 10Aa is, for example, 1.0 ⁇ .
  • the voltage is applied within the range of 10 3 V/cm to 1.0 ⁇ 10 7 V/cm.
  • the voltage may be applied within the range of 1.0 ⁇ 10 4 V/cm to 1.0 ⁇ 10 7 V/cm.
  • a transparent conductive oxide (TCO: Transparent Conducting Oxide) having a high transmittance of light in the near infrared band and a small resistance value may be used.
  • a metal thin film such as gold (Au) can be used as a transparent electrode
  • the transparent electrode can obtain a transmittance of 60% to 80% when it is desired to obtain a transmittance of light in the near infrared band of 90% or more.
  • the resistance value may be extremely increased as compared with the case of manufacturing. Therefore, it is possible to obtain a transparent electrode in which TCO is more transparent to near infrared light and has a smaller resistance value than a metal material such as Au.
  • the TCO but are not limited to, for example, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), AZO (Aluminum-doped Zinc Oxide), FTO (Florine-doped Tin Oxide), SnO 2, TiO 2, ZnO 2 or the like can be used.
  • the lower electrode 2 and the upper electrode 4 may be made of a single metal material or a combination of a plurality of metal materials such as TCO and Au depending on the desired transmittance.
  • the material of the lower electrode 2 and the upper electrode 4 is not limited to the above-mentioned conductive material transparent to near infrared light, and other materials may be used.
  • Various methods are used for manufacturing the lower electrode 2 and the upper electrode 4, depending on the materials used.
  • ITO an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method such as a sol-gel method, or a method of applying a dispersion of indium tin oxide may be used.
  • UV-ozone treatment, plasma treatment or the like may be further performed.
  • the near-infrared photoelectric conversion element 10Aa photoelectric conversion occurs in the near-infrared photoelectric conversion film 3 by the near-infrared light incident through the upper electrode 4.
  • the generated hole-electron pairs holes are collected in the lower electrode 2 and electrons are collected in the upper electrode 4. Therefore, for example, by measuring the potential of the lower electrode 2, it is possible to detect the near infrared light that has entered the near infrared photoelectric conversion element 10Aa.
  • the near-infrared photoelectric conversion element 10Aa may further include an electron blocking layer 5 and a hole blocking layer 6 described later.
  • an electron blocking layer 5 and a hole blocking layer 6 described later.
  • FIG. 4B is a schematic sectional view of the near-infrared photoelectric conversion element 10Ab including the visible-light photoelectric conversion film 13.
  • the same components as those of the near-infrared photoelectric conversion element 10Aa shown in FIG. 4A are designated by the same reference numerals.
  • the near-infrared photoelectric conversion element 10Ab has a structure in which a visible-light photoelectric conversion film 13 and a near-infrared photoelectric conversion film 3 are stacked.
  • the near-infrared photoelectric conversion element 10Ab includes an upper electrode 4 and a lower electrode 2 which are a pair of electrodes, and a near-infrared photoelectric conversion film 3 and a visible light photoelectric conversion film provided between the pair of electrodes. And a conversion film 13.
  • the upper electrode 4, the visible light photoelectric conversion film 13, the near-infrared photoelectric conversion film 3 and the lower electrode 2 are stacked in this order from the top.
  • the near-infrared photoelectric conversion element 10Ab is the same as the near-infrared photoelectric conversion element 10Aa shown in FIG. 4A described above, except that the near-infrared photoelectric conversion element 10Ab includes the visible-light photoelectric conversion film 13 that photoelectrically converts visible light. The detailed description of is omitted.
  • the near-infrared photoelectric conversion element 10Ab can detect not only near-infrared light but also visible light by including the visible-light photoelectric conversion film 13 and the near-infrared photoelectric conversion film 3.
  • the near-infrared photoelectric conversion element 10Ab has the upper electrode 4, the visible-light photoelectric conversion film 13, the near-infrared photoelectric conversion film 3, and the lower electrode 2 stacked in this order.
  • the order of stacking 13 and the near-infrared photoelectric conversion film 3 may be exchanged.
  • the near-infrared photoelectric conversion element 10Ab includes two films, the visible-light photoelectric conversion film 13 and the near-infrared photoelectric conversion film 3, but the near-infrared photoelectric conversion film 3 has a sensitivity to visible light. Visible light may be photoelectrically converted by further adding the photoelectric conversion material which it has.
  • FIG. 5 is a schematic cross-sectional view of a near-infrared photoelectric conversion element 10B that is another example of the photoelectric conversion element according to the present embodiment.
  • FIG. 6 shows an example of an energy band diagram of the near infrared photoelectric conversion element 10B.
  • the same components as those of the near-infrared photoelectric conversion element 10Aa shown in FIG. 4A are designated by the same reference numerals.
  • the near-infrared photoelectric conversion element 10B includes at least a lower electrode 2, an upper electrode 4, and a photoelectric conversion layer 3A arranged between the lower electrode 2 and the upper electrode 4. .
  • the photoelectric conversion layer 3A includes, for example, a near-infrared photoelectric conversion film 3, a p-type semiconductor layer 7 that functions as a hole transport layer, and an n-type semiconductor layer 8 that functions as an electron transport layer.
  • the outer photoelectric conversion film 3 is arranged between the p-type semiconductor layer 7 and the n-type semiconductor layer 8.
  • the near-infrared photoelectric conversion element 10B includes an electron blocking layer 5 arranged between the lower electrode 2 and the photoelectric conversion layer 3A, and a hole blocking layer arranged between the upper electrode 4 and the photoelectric conversion layer 3A.
  • the layer 6 is provided. Since the near-infrared photoelectric conversion film 3 is as described above in the description of the near-infrared photoelectric conversion element 10Aa shown in FIG. 1, description thereof will be omitted here.
  • the photoelectric conversion layer 3A includes a near infrared photoelectric conversion film 3, a p-type semiconductor layer 7, and an n-type semiconductor layer 8.
  • a near infrared photoelectric conversion film 3 a p-type semiconductor layer 7
  • an n-type semiconductor layer 8 an organic semiconductor described later.
  • the photoelectric conversion layer 3A may include the photoelectric conversion material described above and at least one of an organic p-type semiconductor and an organic n-type semiconductor.
  • the photoelectric conversion layer 3A may include a bulk heterojunction structure layer in which a p-type semiconductor and an n-type semiconductor are mixed.
  • the photoelectric conversion layer 3A can compensate for the defect that the carrier diffusion length in the photoelectric conversion layer 3A is short and improve the photoelectric conversion efficiency.
  • a bulk heterojunction structure layer may be arranged between the p-type semiconductor layer 7 and the n-type semiconductor layer 8.
  • the bulk heterojunction structure layer is sandwiched between the p-type semiconductor layer 7 and the n-type semiconductor layer 8, so that the rectifying properties of holes and electrons are higher than those of the bulk heterojunction structure layer, and charge separation occurs. Loss due to recombination of holes and electrons is reduced, and higher photoelectric conversion efficiency can be obtained.
  • the bulk heterojunction structure layer is as described in detail in JP-B-553727 (Patent Document 5) regarding the bulk hetero-type active layer.
  • the p-type semiconductor and the n-type semiconductor may come into contact with each other to generate electric charges even in a dark state.
  • the dark current includes a dark current derived from thermal excitation of HOMO-LUMO Gap of p-type semiconductor itself and a dark current derived from thermal excitation of HOMO of p-type semiconductor and LUMO of n-type semiconductor.
  • the dark current resulting from the thermal excitation of the HOMO-LUMO Gap of the p-type semiconductor itself can be improved by widening the HOMO-LUMO Gap.
  • the dark current resulting from thermal excitation of the HOMO of the p-type semiconductor and the LUMO of the n-type semiconductor is improved by increasing the HOMO of the p-type semiconductor or the LUMO of the n-type semiconductor.
  • the device resistance is suppressed when the bulk heterojunction structure layer contains a large amount of an n-type semiconductor such as a fullerene derivative or a large amount of a p-type semiconductor.
  • the volume ratio and the weight ratio of the n-type semiconductor to the p-type semiconductor in the bulk heterojunction structure layer may be 4 times or more.
  • the volume ratio and the weight ratio of the p-type semiconductor to the n-type semiconductor in the bulk heterojunction structure layer may be 4 times or more (Patent Document 6: JP-A-2016-225456).
  • the p-type semiconductor of an organic compound is a donor-type organic semiconductor, and is an organic compound that is typified by a hole-transporting organic compound and has a property of easily donating an electron. More specifically, it is an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, as the donor-type organic semiconductor, any organic compound can be used as long as it is an organic compound having an electron-donating property, and examples thereof include triarylamine compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, and triphenyl.
  • an organic compound having an ionization potential smaller than that of the organic compound used as the acceptor semiconductor may be used as the donor organic semiconductor.
  • the n-type semiconductor of an organic compound is an acceptor type organic semiconductor, and is an organic compound which is typified by an electron transporting organic compound and has a property of easily accepting an electron. More specifically, it is an organic compound having a larger electron affinity when two organic compounds are used in contact with each other. Therefore, as the acceptor organic compound, any organic compound can be used as long as it is an organic compound having an electron accepting property.
  • fullerene, fullerene derivative, condensed aromatic carbocyclic compound naphthalene derivative, anthracene derivative, phenanthrene derivative
  • a tetracene derivative, a pyrene derivative, a perylene derivative, a fluoranthene derivative), a 5- to 7-membered heterocyclic compound containing a nitrogen atom, an oxygen atom, and a sulfur atom eg, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline
  • Phthalazine, cinnoline isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole, benzoxazole, benzothiazole, carbazole, purine, triazolopyrimazine, triazolopyrimidine , Tetrazaindene, oxadiazole, imidazo
  • the electron blocking layer 5 is provided to reduce dark current caused by injection of electrons from the lower electrode 2, and suppresses injection of electrons from the lower electrode 2 into the photoelectric conversion layer 3A.
  • the electron blocking layer 5 can also use the above-mentioned p-type semiconductor or hole transporting organic compound.
  • the electron blocking layer 5 has a lower HOMO energy level and a higher LUMO energy level than the p-type semiconductor layer 7 of the photoelectric conversion layer 3A.
  • the photoelectric conversion layer 3A has a HOMO having an energy level higher than that of the electron blocking layer 5 and a LUMO having an energy level lower than that of the electron blocking layer 5 near the interface with the electron blocking layer 5.
  • the hole blocking layer 6 is provided to reduce dark current due to holes injected from the upper electrode 4, and suppresses holes injected from the upper electrode 4 into the photoelectric conversion layer 3A. To do.
  • the material of the hole blocking layer 6 is, for example, copper phthalocyanine, PTCDA (3,4,9,10-Perylenenetracarboxylic dianhydride), acetylacetonate complex, BCP (Bathocuproine), Alq (Tris(8-quinolinolate)aluminum).
  • An organic substance, an organic-metal compound, or an inorganic substance such as MgAg or MgO may be used.
  • the hole blocking layer 6 may have a high transmittance of near infrared light in order not to prevent the near infrared photoelectric conversion film 3 from absorbing light, and for example, a material having no absorption in the visible light region may be used. It may be selected or the thickness of the hole blocking layer 6 may be reduced. The thickness of the hole blocking layer 6 depends on the configuration of the photoelectric conversion layer 3A, the thickness of the upper electrode 4, etc., but may be, for example, 2 nm to 50 nm.
  • the hole blocking layer 6 can also use the above-mentioned n-type semiconductor or electron transporting organic compound.
  • the material of the lower electrode 2 is selected from the above-mentioned materials in consideration of adhesion with the electron blocking layer 5, electron affinity, ionization potential, stability and the like. The same applies to the upper electrode 4.
  • the barrier when holes move to the near infrared photoelectric conversion film 3 when a bias voltage is applied is low. Become. Therefore, it is considered that holes are likely to be injected from the upper electrode 4 into the photoelectric conversion layer 3A, resulting in a large dark current.
  • the hole blocking layer 6 is provided, dark current is suppressed.
  • FIG. 7 is a diagram showing an example of a circuit configuration of the image pickup apparatus 100 according to the present embodiment.
  • FIG. 8 is a schematic cross-sectional view showing an example of the device structure of the pixel 24 in the imaging device 100 according to this embodiment.
  • the image pickup apparatus 100 is provided on the semiconductor substrate 40, the charge detection circuit 35 provided on the semiconductor substrate 40, and the semiconductor substrate 40.
  • the charge storage node 34 stores the charge obtained in the photoelectric conversion unit 10C, and the charge detection circuit 35 detects the charge stored in the charge storage node 34.
  • the charge detection circuit 35 provided on the semiconductor substrate 40 may be provided on the semiconductor substrate 40 or may be provided directly in the semiconductor substrate 40.
  • the imaging device 100 includes a plurality of pixels 24 and peripheral circuits such as the vertical scanning circuit 25 and the horizontal signal reading circuit 20.
  • the image pickup apparatus 100 is an organic image sensor realized by a one-chip integrated circuit, and has a pixel array including a plurality of pixels 24 arranged two-dimensionally.
  • the plurality of pixels 24 are two-dimensionally arranged on the semiconductor substrate 40, that is, arranged in the row direction and the column direction to form a photosensitive area (so-called pixel area).
  • FIG. 7 shows an example in which the pixels 24 are arranged in a matrix of 2 rows and 2 columns. Note that in FIG. 7, for convenience of illustration, a circuit (for example, a pixel electrode control circuit) for individually setting the sensitivity of the pixel 24 is omitted.
  • the image pickup apparatus 100 may be a line sensor. In that case, the plurality of pixels 24 may be arranged one-dimensionally.
  • the row direction and the column direction mean the directions in which the rows and the columns extend, respectively. That is, in FIG. 7, the vertical direction on the paper surface is the column direction, and the horizontal direction is the row direction.
  • each pixel 24 includes a photoelectric conversion unit 10C and a charge storage node 34 electrically connected to a charge detection circuit 35.
  • the charge detection circuit 35 includes an amplification transistor 21, a reset transistor 22, and an address transistor 23.
  • the photoelectric conversion unit 10C includes a lower electrode 2 provided as a pixel electrode and an upper electrode 4 provided as a counter electrode.
  • the near-infrared photoelectric conversion element 10Aa, 10Ab, or 10B described above may be used for the photoelectric conversion unit 10C.
  • a predetermined bias voltage is applied to the upper electrode 4 via the counter electrode signal line 26.
  • the lower electrode 2 is connected to the gate electrode of the amplification transistor 21, and the signal charge collected by the lower electrode 2 is stored in the charge storage node 34 located between the lower electrode 2 and the gate electrode of the amplification transistor 21.
  • the signal charge is a hole in this embodiment, the signal charge may be an electron.
  • the signal charge stored in the charge storage node 34 is applied to the gate electrode of the amplification transistor 21 as a voltage corresponding to the amount of the signal charge.
  • the amplification transistor 21 amplifies this voltage, and the address transistor 23 selectively reads it as a signal voltage.
  • the reset transistor 22 has its source/drain electrode connected to the lower electrode 2 and resets the signal charge stored in the charge storage node 34. In other words, the reset transistor 22 resets the potentials of the gate electrode of the amplification transistor 21 and the lower electrode 2.
  • the imaging device 100 has the power supply wiring 31, the vertical signal line 27, the address signal line 36, and the reset signal line 37, and these lines are Each pixel 24 is connected.
  • the power supply wiring 31 is connected to the source/drain electrodes of the amplification transistor 21, and the vertical signal line 27 is connected to the source/drain electrodes of the address transistor 23.
  • the address signal line 36 is connected to the gate electrode of the address transistor 23.
  • the reset signal line 37 is connected to the gate electrode of the reset transistor 22.
  • the peripheral circuit includes a vertical scanning circuit 25, a horizontal signal reading circuit 20, a plurality of column signal processing circuits 29, a plurality of load circuits 28, and a plurality of differential amplifiers 32.
  • the vertical scanning circuit 25 is also called a row scanning circuit.
  • the horizontal signal reading circuit 20 is also called a column scanning circuit.
  • the column signal processing circuit 29 is also called a row signal storage circuit.
  • the differential amplifier 32 is also called a feedback amplifier.
  • the vertical scanning circuit 25 is connected to the address signal line 36 and the reset signal line 37, selects a plurality of pixels 24 arranged in each row in row units, reads out a signal voltage, and resets the potential of the lower electrode 2. To do.
  • the horizontal signal read circuit 20 is electrically connected to the plurality of column signal processing circuits 29.
  • the column signal processing circuit 29 is electrically connected to the pixels 24 arranged in each column via the vertical signal line 27 corresponding to each column.
  • the load circuit 28 is electrically connected to each vertical signal line 27.
  • the load circuit 28 and the amplification transistor 21 form a source follower circuit.
  • a plurality of differential amplifiers 32 are provided for each column.
  • the negative input terminal of the differential amplifier 32 is connected to the corresponding vertical signal line 27.
  • the output terminal of the differential amplifier 32 is connected to the pixel 24 via the feedback line 33 corresponding to each column.
  • the vertical scanning circuit 25 applies a row selection signal for controlling ON/OFF of the address transistor 23 to the gate electrode of the address transistor 23 through the address signal line 36. As a result, the row to be read is scanned and selected. A signal voltage is read out from the pixel 24 in the selected row to the vertical signal line 27. Further, the vertical scanning circuit 25 applies a reset signal for controlling the on/off of the reset transistor 22 to the gate electrode of the reset transistor 22 via the reset signal line 37. As a result, the row of the pixels 24 to be reset is selected.
  • the vertical signal line 27 transmits the signal voltage read from the pixel 24 selected by the vertical scanning circuit 25 to the column signal processing circuit 29.
  • the column signal processing circuit 29 performs noise suppression signal processing represented by correlated double sampling and analog-digital conversion (AD conversion).
  • the horizontal signal read circuit 20 sequentially reads signals from a plurality of column signal processing circuits 29 to a horizontal common signal line (not shown).
  • the differential amplifier 32 is connected to the drain electrode of the reset transistor 22 via the feedback line 33. Therefore, differential amplifier 32 receives the output value of address transistor 23 at its negative terminal when address transistor 23 and reset transistor 22 are in a conductive state.
  • the differential amplifier 32 performs a feedback operation so that the gate potential of the amplification transistor 21 becomes a predetermined feedback voltage. At this time, the output voltage value of the differential amplifier 32 is 0V or a positive voltage near 0V.
  • the feedback voltage means the output voltage of the differential amplifier 32.
  • FIG. 8 is a schematic cross-sectional view showing an example of the device structure of the pixel 24 in the imaging device 100 according to this embodiment.
  • the pixel 24 includes a semiconductor substrate 40, a charge detection circuit 35, a photoelectric conversion unit 10C, and a charge storage node 34 (see FIG. 7).
  • the semiconductor substrate 40 may be an insulating substrate having a semiconductor layer on the surface on the side where a photosensitive region (so-called pixel region) is formed, and is, for example, a p-type silicon substrate.
  • the semiconductor substrate 40 has impurity regions (here, n-type regions) 21D, 21S, 22D, 22S, and 23S, and an element isolation region 41 for electrical isolation between the pixels 24.
  • the element isolation region 41 is also provided between the impurity region 21D and the impurity region 22D. As a result, leakage of the signal charge accumulated in the charge accumulation node 34 is suppressed.
  • the element isolation region 41 is formed, for example, by performing ion implantation of an acceptor under predetermined implantation conditions.
  • amplification transistor 21 includes impurity regions 21S and 21D and a gate electrode 21G.
  • the impurity regions 21S and 21D respectively function as, for example, a source region and a drain region of the amplification transistor 21.
  • a channel region of amplification transistor 21 is formed between impurity regions 21S and 21D.
  • the address transistor 23 includes impurity regions 23S and 21S and a gate electrode 23G connected to the address signal line 36.
  • the amplification transistor 21 and the address transistor 23 are electrically connected to each other by sharing the impurity region 21S.
  • the impurity region 23S functions as, for example, a source region of the address transistor 23.
  • Impurity region 23S has a connection with vertical signal line 27 shown in FIG.
  • the reset transistor 22 includes impurity regions 22D and 22S and a gate electrode 22G connected to the reset signal line 37.
  • the impurity region 22S functions as, for example, the source region of the reset transistor 22.
  • Impurity region 22S has a connection with reset signal line 37 shown in FIG.
  • An interlayer insulating layer 50 is laminated on the semiconductor substrate 40 so as to cover the amplification transistor 21, the address transistor 23, and the reset transistor 22.
  • a wiring layer (not shown) may be arranged in the interlayer insulating layer 50.
  • the wiring layer is typically formed of a metal such as copper, and may include, for example, a wiring such as the vertical signal line 27 described above as a part thereof.
  • the number of insulating layers in the interlayer insulating layer 50 and the number of layers included in the wiring layers arranged in the interlayer insulating layer 50 can be set arbitrarily.
  • a contact plug 54 connected to the impurity region 22D of the reset transistor 22 a contact plug 53 connected to the gate electrode 21G of the amplification transistor 21, a contact plug 51 connected to the lower electrode 2, and Wirings 52 connecting the contact plugs 51, 54, and 53 are arranged.
  • the impurity region 22D that functions as the drain electrode of the reset transistor 22 is electrically connected to the gate electrode 21G of the amplification transistor 21.
  • the charge detection circuit 35 detects the signal charge captured by the lower electrode 2 and outputs a signal voltage.
  • the charge detection circuit 35 includes an amplification transistor 21, a reset transistor 22, and an address transistor 23, and is formed on the semiconductor substrate 40.
  • the amplification transistor 21 is formed in the semiconductor substrate 40, and is formed on the gate insulating layer 21X and the gate insulating layer 21X formed on the semiconductor substrate 40, the impurity regions 21D and 21S respectively functioning as a drain electrode and a source electrode. And the gate electrode 21G is formed.
  • the reset transistor 22 is formed in the semiconductor substrate 40 and functions as a drain electrode and a source electrode, respectively, and has impurity regions 22D and 22S, a gate insulating layer 22X formed on the semiconductor substrate 40, and a gate insulating layer 22X. And the gate electrode 22G is formed.
  • the address transistor 23 is formed in the semiconductor substrate 40 and is formed on the gate insulating layer 23X and the gate insulating layer 23X formed on the semiconductor substrate 40, the impurity regions 21S and 23S functioning as a drain electrode and a source electrode, respectively. And the gate electrode 23G is formed.
  • the impurity region 21S is shared by the amplification transistor 21 and the address transistor 23, whereby the amplification transistor 21 and the address transistor 23 are connected in series.
  • the above-mentioned photoelectric conversion unit 10C is arranged on the interlayer insulating layer 50.
  • the plurality of pixels 24 forming the pixel array are formed on the semiconductor substrate 40.
  • the plurality of pixels 24 arranged two-dimensionally on the semiconductor substrate 40 form a photosensitive region which is a pixel region.
  • the pixel pitch, which is the distance between two adjacent pixels 24, may be about 2 ⁇ m, for example.
  • the photoelectric conversion unit 10C has the above-described structure of the near-infrared photoelectric conversion element 10Aa, 10Ab, or 10B.
  • a color filter 60 is provided above the photoelectric conversion unit 10C, and a microlens 61 is provided above the color filter 60.
  • the color filter 60 is formed as an on-chip color filter by patterning, for example, and a photosensitive resin in which a dye or a pigment is dispersed is used.
  • the microlens 61 is provided as an on-chip microlens, for example, and an ultraviolet photosensitive material or the like is used. When imaging the near infrared band, at least one type of color filter may transmit near infrared light.
  • the imaging device 100 can be manufactured using a general semiconductor manufacturing process.
  • a silicon substrate is used as the semiconductor substrate 40, it can be manufactured by utilizing various silicon semiconductor processes.
  • the illumination having the peak emission wavelength at room temperature in the near infrared band, and having the spectral sensitivity to the peak emission wavelength, on the longer wavelength side than the peak emission wavelength, the peak It has a first spectral sensitivity peak having a higher external quantum efficiency than the external quantum efficiency at the emission wavelength, and a near infrared photoelectric conversion element having an external quantum efficiency at a wavelength longer by 200 nm than the first spectral sensitivity peak is less than 1%.
  • the near-infrared photoelectric conversion element and the camera system according to the present disclosure will be specifically described in examples, but the present disclosure is not limited to the following examples.
  • Example 5 The composition containing the compound obtained in Example 1 was formed into a film, and near-infrared photoelectric conversion films having different composition ratios of the compounds were designated as Example 3 and Example 4, respectively, and the compound obtained in Example 2 was used.
  • a near-infrared photoelectric conversion film formed by forming a composition containing is referred to as Example 5.
  • near-infrared photoelectric conversion elements using the near-infrared photoelectric conversion films obtained in Examples 3, 4, and 5 will be referred to as Examples 6, 7, and 8, respectively.
  • a phenyl group may be represented by Ph
  • C 4 H 9 may be represented by Bu
  • C 5 H 11 may be represented by Pent
  • C 48 H 26 N 8 may be represented by Nc
  • C 32 H 18 N 8 may be represented by Pc.
  • the reaction solution was allowed to cool to room temperature, 360 mL of distilled water was added to the reaction solution, and the mixture was stirred for 1 hour. 180 mL of triethylamine was added thereto, and extracted with 100 mL of toluene four times. The extracted organic layer was washed with distilled water and the organic layer was concentrated to obtain 1.54 g of a crude composition.
  • the obtained crude composition was purified by a neutral alumina column to obtain a brown solid (OBu) 8 Si(OH) 2 Nc (compound (A-2)). The yield of this compound was 0.53 g, and the yield was 50%.
  • the obtained precipitate was dried under reduced pressure at 100° C. for 3 hours to obtain the target compound (OBu) 8 Si(OPOPh 2 ) 2 Nc (compound (A-3)).
  • the amount of the target compound was 83 mg, and the yield was 50%.
  • the obtained compound was identified by 1 HNMR (proton nuclear magnetic resonance: proton nuclear magnetic resonance spectroscopy), MALDI-TOF-MS Matrix Assisted Laser Desorption/Ionization Time of Flight mass-desorption-assisted desorption ionization-mass-assisted desorption of mass ionization mass spectroscopy. Analysis). The results are shown below.
  • the chemical formula of the target compound is C 104 H 108 N 8 O 12 P 2 Si, and the Exact Mass is 1750.73.
  • a target compound (SPent) 8 SiPc(OH) 2 (compound (A-6) was obtained as a purple powder.
  • the yield of the target compound was 420 mg, and the yield was 40%.
  • SPent silica gel column chromatography
  • the yield of the target compound was 80 mg, and the yield was 21%.
  • the obtained compound was identified by 1 HNMR and MALDI-TOF-MS. The results are shown below.
  • the chemical formula of the target compound is C 96 H 116 N 8 O 4 S 8 P 2 Si, and the Exact Mass is 1790.61.
  • Example 3 A 0.7 mm-thick quartz glass was used as a supporting substrate, and (OBu) 8 Si(OPOPh 2 ) 2 Nc (compound (A-3)) obtained in Example 1 and PCBM ([6,6 ]-Phenyl-C61-Butyric Acid Methyl Ester) derivative was mixed at a weight ratio of 1:9 to apply a chloroform mixed solution by spin coating to form a near infrared photoelectric conversion film having a film thickness of 216 nm and an ionization potential of 4.95 eV. Obtained.
  • the absorption peak of the near-infrared photoelectric conversion film of Example 3 was found around 942 nm.
  • ⁇ Measurement of ionization potential is detected as the number of photoelectrons when the energy of ultraviolet irradiation is changed. Therefore, the energy position at which photoelectrons start to be detected can be the ionization potential.
  • Example 4 A 0.7 mm-thick quartz glass was used as a supporting substrate, and (OBu) 8 Si(OPOPh 2 ) 2 Nc (compound (A-3)) obtained in Example 1 and PCBM ([6,6 ]-Phenyl-C61-Butyric Acid Methyl Ester) derivative was mixed at a weight ratio of 9:1 to apply a chloroform mixed solution by spin coating to form a near-infrared photoelectric conversion film having a film thickness of 270 nm and an ionization potential of 4.95 eV. Obtained.
  • the absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 3.
  • the results are shown in Figure 10A.
  • the ionization potential was measured in the same manner as in Example 3 except that the weight ratio of the compound obtained in Example 1 was changed.
  • the results are shown in Figure 10B.
  • the near-infrared photoelectric conversion film of Example 4 had an absorption peak near 942 nm.
  • Example 5 A 0.7 mm-thick quartz glass was used as a supporting substrate, and (SPent) 8 Si(OPOPh 2 ) 2 Pc (compound (A-7)) obtained in Example 2 and PCBM ([6,6 ]-Phenyl-C61-Butyric Acid Methyl Ester) derivative was mixed at a weight ratio of 9:1 to apply a chloroform mixed solution by a spin coating method to form a near infrared photoelectric conversion film having a film thickness of 246 nm and an ionization potential of 5.08 eV. Obtained.
  • the absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 3.
  • the results are shown in Figure 11A.
  • the ionization potential was measured by the same method as in Example 4, except that the compound obtained in Example 2 was used.
  • the results are shown in Figure 11B.
  • the absorption peak of the near-infrared photoelectric conversion film of Example 5 was found near 948 nm.
  • Example 6 A glass substrate having a thickness of 0.7 mm on which an ITO electrode having a thickness of 150 nm was formed was used as a substrate, and this ITO electrode was used as a lower electrode. Further, on the ITO electrodes, obtained in Example 1 as a photoelectric conversion layer (OBu) 8 Si (OPOPh 2 ) 2 Nc ( Compound (A-3)) and the PCBM derivative weight ratio of 1: Mix 9 The mixed film was formed to have a thickness of 216 nm. Further, an Al electrode having a thickness of 80 nm was formed as an upper electrode on the photoelectric conversion layer. The Al electrode was formed into a film at a vacuum rate of 5.0 ⁇ 10 ⁇ 4 Pa or less at a vapor deposition rate of 1 ⁇ /s.
  • the spectral sensitivity of the obtained near infrared photoelectric conversion element was measured.
  • a long-wavelength type spectral sensitivity measuring device CEP-25RR manufactured by Spectrometer
  • the near-infrared photoelectric conversion element was introduced into a measurement jig that can be sealed in a glove box under a nitrogen atmosphere, and the spectral sensitivity was measured. Results are shown in FIG.
  • the near-infrared photoelectric conversion element of Example 6 had the highest external quantum efficiency (left vertical axis) in the near-infrared band at a wavelength near 920 nm, which was about 49%.
  • Example 7 Example 6 was repeated except that a mixed film in which (OBu) 8 Si(OPOPh 2 ) 2 Nc (compound (A-3)) and a PCBM derivative were mixed at a weight ratio of 9:1 was used as the material for the photoelectric conversion layer.
  • a near infrared photoelectric conversion element having a 270 nm-thick near infrared photoelectric conversion film was obtained.
  • the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured in the same manner as in Example 6. The results are shown in Fig. 13.
  • the external quantum efficiency in the near-infrared band (vertical axis on the left side) is the highest at a wavelength near 800 nm, about 31%, and even at 980 nm. It had a spectral sensitivity peak and the external quantum efficiency was about 25%.
  • Example 8 Example except that (SPent) 8 Si(OPOPh 2 ) 2 Pc (compound (A-7)) obtained in Example 2 was used in place of the compound obtained in Example 1 as the material for the photoelectric conversion layer. The same procedure as in Example 7 was carried out to obtain a near infrared photoelectric conversion element having a 246 nm-thick near infrared photoelectric conversion film. The spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured in the same manner as in Example 6. The results are shown in Fig. 14.
  • the near-infrared photoelectric conversion element of Example 8 has the highest external quantum efficiency (left vertical axis) at a wavelength near 860 nm, which is about 64%, and has a spectral sensitivity peak at 1000 nm.
  • the external quantum efficiency was about 50%.
  • the near-infrared photoelectric conversion films of Examples 3 to 5 have absorption peaks at 942 nm, 942 nm, and 948 nm, respectively, and the absorption coefficients of the absorption peaks are 1.8/ ⁇ m, respectively. , 7.6/ ⁇ m, and 6.4/ ⁇ m.
  • naphthalocyanine having a phosphinate derivative having an alkoxy group at the ⁇ -position of the naphthalocyanine skeleton and having independent aryl groups as axial ligands When a composition containing a derivative or a composition containing a phthalocyanine derivative having a thiol group at the ⁇ -position of the phthalocyanine skeleton is used, the near-infrared photoelectric conversion film can be confirmed to have sensitivity to near-infrared light. It was
  • the near-infrared photoelectric conversion element of Example 6 had the highest external quantum efficiency in the near-infrared band at a wavelength near 920 nm, which was about 49%.
  • the near-infrared photoelectric conversion element of Example 7 has the highest external quantum efficiency in the near-infrared band at a wavelength near 800 nm, which is about 31%, and has a spectral sensitivity peak at 980 nm.
  • the external quantum efficiency was about 25%.
  • the near-infrared photoelectric conversion element of Example 8 has the highest external quantum efficiency in the near-infrared band at a wavelength near 860 nm, which is about 64%, and has a spectral sensitivity peak at 1000 nm.
  • the external quantum efficiency was about 50%.
  • the near-infrared photoelectric conversion elements of Examples 6 to 8 have a spectral sensitivity peak between 900 nm and 1000 nm, and the external quantum efficiency is smaller than 1% at a wavelength 200 nm longer than the spectral sensitivity peak. I understand.
  • Example 6 since the spectral sensitivity peak wavelength is 920 nm, near-infrared illumination having a peak emission wavelength around 880 nm at room temperature (a spectral characteristic of radiated light (right vertical axis) shown by a broken line in FIG. 12) is obtained. (Infrared lighting), even if the peak shift of the emission wavelength to the long wavelength side and the reduction of the radiation output occur in the near infrared illumination due to the temperature rise, the peak emission wavelength of the near infrared illumination is changed to the long wavelength side. As it shifts to, the sensitivity of the spectral sensitivity characteristic of the near infrared photoelectric conversion element increases, that is, the external quantum efficiency increases.
  • the imaging device can easily detect near-infrared light, so that the matching between the near-infrared illumination and the sensitivity of the near-infrared photoelectric conversion element of the imaging device is improved, and good imaging can be obtained. Be done.
  • Example 7 since the spectral sensitivity peak wavelength is 980 nm, near-infrared illumination having a peak emission wavelength around 940 nm at room temperature (a spectral characteristic of radiated light (right vertical axis) shown by a broken line in FIG. 13) is obtained. (Infrared lighting), even if the peak shift of the emission wavelength to the long wavelength side and the reduction of the radiation output occur in the near infrared illumination due to the temperature rise, the peak emission wavelength of the near infrared illumination is changed to the long wavelength side. As it shifts to, the sensitivity of the spectral sensitivity characteristic of the near infrared photoelectric conversion element increases, that is, the external quantum efficiency increases.
  • the imaging device can easily detect near-infrared light, so that the matching between the near-infrared illumination and the sensitivity of the near-infrared photoelectric conversion element of the imaging device is improved, and good imaging can be obtained. Be done.
  • Example 8 since the spectral sensitivity peak wavelength is 1000 nm, near-infrared illumination having a peak emission wavelength around 980 nm at room temperature (a near infrared light spectral characteristic (right vertical axis) indicated by a broken line in FIG. 14). (Infrared lighting), even if the peak shift of the emission wavelength to the long wavelength side and the reduction of the radiation output occur in the near infrared illumination due to the temperature rise, the peak emission wavelength of the near infrared illumination is changed to the long wavelength side. As it shifts to, the sensitivity of the spectral sensitivity characteristic of the near infrared photoelectric conversion element increases, that is, the external quantum efficiency increases.
  • the imaging device can easily detect near-infrared light, so that the matching between the near-infrared illumination and the sensitivity of the near-infrared photoelectric conversion element of the imaging device is improved, and good imaging can be obtained. Be done.
  • compositions, the near-infrared photoelectric conversion element, and the imaging device according to the present disclosure have been described above based on the embodiments and examples, the present disclosure is limited to these embodiments and examples. is not. Without departing from the gist of the present disclosure, various modifications that can be conceived by those skilled in the art are applied to the embodiments and examples, and other forms constructed by combining some components of the embodiments and examples. , Within the scope of the present disclosure.
  • the camera system according to the present disclosure is applicable to an in-vehicle camera, a surveillance camera, and the like, and is particularly suitable as a camera that captures images even at night when there is no light due to sunlight.

Abstract

本開示の一態様に係るカメラシステムは、室温におけるピーク発光波長を近赤外帯域に有する照明と、光電変換素子を含む撮像装置と、を備える。光電変換素子は、ピーク発光波長に分光感度を有する。光電変換素子の外部量子効率は、ピーク発光波長よりも長い第1の波長において第1のピークを有し、第1の波長における外部量子効率は、ピーク発光波長における外部量子効率よりも高い。第1の波長より200nm長い波長における外部量子効率が1%より小さい。

Description

カメラシステム
 本開示は、近赤外照明、近赤外光電変換素子および撮像装置を用いたカメラシステムに関する。
 車載カメラおよび監視カメラに使用される近赤外撮像装置は、日光による光の無い夜間においても撮像するために近赤外照明が搭載される場合が多い。そのため夜間における近赤外撮像装置は、近赤外照明により照射された光を対象物が反射し、その反射された光が撮像装置に受光されることで、撮像が可能となる。
 また、有機半導体材料は、シリコンなどの従来の無機半導体材料にはない物性、機能等を備える。このため、新しい半導体デバイス及び電子機器を実現し得る半導体材料として、例えば、非特許文献1及び特許文献3に記載されているように、近年有機半導体材料が活発に研究されている。
 例えば、有機半導体材料を薄膜化し、光電変換材料として用いることにより、光電変換素子を実現することが研究されている。有機材料薄膜を用いた光電変換素子は、光によって発生するキャリアである電荷をエネルギーとして取り出すことにより有機薄膜太陽電池として利用することができることが、非特許文献2に記載されている。あるいは、上記光電変換素子は、光によって発生する電荷を電気信号として取り出すことにより、固体撮像素子などの光センサとして利用することができることが、特許文献1に記載されている。
 また、近赤外帯域に感度を有する有機半導体材料として、フタロシアニン誘導体およびナフタロシアニン誘導体が知られている。例えば、特許文献2には吸収極大波長が805nmから825nmであるナフタロシアニン誘導体が開示されている。
特開2003-234460号公報 特許第5216279号公報 特開2010-232410号公報 特開2018-22980号公報 特許第5553727号公報 特開2016-225456号公報
JANA ZAUMSEIL et al., "Electron and Ambipolar Transport in Organic Field-Effect Transistors", Chemical Reviews,American Chemical Society, 2007年, Vol.107, No.4, pp.1296-1323 SERAP GUNES et al., "Conjugated Polymer-Based Organic Solar Cells", Chemical Reviews, American Chemical Society, 2007年, Vol.107, No.4, pp.1324-1338 MOHAMED AOUDIA et al., "Synthesis of a Series of Octabutoxy- and Octabutoxybenzophthalocyanines and Photophysical Properties of Two Members of the Series", Journal of American Chemical Society, American Chemical Society, 1997年, Vol.119, No.26, pp.6029-6039 Gcineka Mbambisa et al., "Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentylthio groups", Polyhedron, 2007年, vol. 26, Issue 18, pp.5355-5364
 従来の近赤外撮像装置は、近赤外照明の温度変化によって、近赤外照明の放射強度の変化および発光波長のピークシフトが起き、そのため、撮像装置の中の近赤外光電変換素子の分光感度特性とのマッチングが悪くなり、良好な撮像が得られなくなるという問題がある。
 特許文献4には、複数のLED(Light Emitting Diode)照明とフィルターとを用いることで、監視カメラおよび周囲の温度が変化したり、監視カメラの発熱によりLEDの温度が変化したりした影響で、LEDの発光波長のピークシフトが起きた場合においても、複数のLED照明を用い、フィルターを透過させて、撮像装置の分光感度特性に対応した光を出射することができ、良好な撮像を得ることが可能な監視カメラが開示されている。
 しかしながら特許文献4の方式では、複数のLEDおよび特定波長をのみを透過するフィルターが必要となり、カメラシステムが大規模になってしまう。
 そこで本開示では、良好な撮像特性が得られるカメラシステムを提供することを目的とする。
 本開示の一態様に係るカメラシステムは、室温におけるピーク発光波長を近赤外帯域に有する照明と、近赤外光を電荷に変換する光電変換素子を含む撮像装置と、を備える。前記ピーク発光波長において、前記照明から出射される光の強度が極大値を示す。前記光電変換素子は、前記ピーク発光波長に分光感度を有する。前記光電変換素子の外部量子効率は、前記ピーク発光波長よりも長い第1の波長において第1のピークを有し、前記第1の波長における前記外部量子効率は、前記ピーク発光波長における前記外部量子効率よりも高い。前記第1の波長より200nm長い波長における前記外部量子効率が1%より小さい。
 本開示によれば、良好な撮像特性が得られるカメラシステムを提供できる。
図1は、実施の形態に係るカメラシステムの一例を示す概略図である。 図2は、実施の形態に係る近赤外照明の分光特性を示す図である。 図3は、実施の形態に係る近赤外照明の温度-放射強度特性を示す図である。 図4Aは、実施の形態に係る近赤外光電変換素子の一例を示す概略断面図である。 図4Bは、実施の形態に係る可視光光電変換膜を含む近赤外光電変換素子の一例を示す概略断面図である。 図5は、実施の形態に係る近赤外光電変換素子の他の例を示す概略断面図である。 図6は、図5に示される近赤外光電変換素子のエネルギーバンド図の一例である。 図7は、実施の形態に係る撮像装置の回路構成の一例を示す図である。 図8は、実施の形態に係る撮像装置における画素のデバイス構造の一例を示す概略断面図である。 図9Aは、実施例3の近赤外光電変換膜の吸収スペクトルの図である。 図9Bは、実施例3の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図10Aは、実施例4の近赤外光電変換膜の吸収スペクトルの図である。 図10Bは、実施例4の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図11Aは、実施例5の近赤外光電変換膜の吸収スペクトルの図である。 図11Bは、実施例5の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図12は、実施例6の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図13は、実施例7の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図14は、実施例8の近赤外光電変換素子の分光感度特性の測定結果を示す図である。
 (本開示に至った知見)
 有機半導体材料では、使用する有機化合物の分子構造を変えると、エネルギー準位が変化し得る。このため、例えば、有機半導体材料を光電変換材料として用いる場合、吸収波長の制御が可能であり、シリコン(Si)が感度を有さない近赤外帯域においても感度を持たせることができる。つまり、有機半導体材料を用いれば、従来、光電変換に用いられることのなかった波長領域の光を活用することが可能であり、太陽電池の高効率化及び近赤外帯域での光センサを実現することが可能となる。このため、近年、近赤外帯域に感度を有する有機半導体材料を用いた光電変換素子および撮像素子が活発に検討されている。このように有機半導体材料を適切に選択することにより、シリコンなどの従来の無機半導体材料にはない特徴的な分光感度特性をもつ光電変換素子を得ることができる。
 近年、近赤外帯域で感度を有する撮像素子が検討されており、フタロシアニン誘導体およびナフタロシアニン誘導体は、π共役系が広く、π-π吸収に由来する近赤外帯域での強い吸収(吸収極大波長)を有することから材料の有力な候補となる。
 一方、近赤外照明の温度が上昇すると、近赤外照明のピーク発光波長は長波長側にシフトし、全体の放射強度の出力としては減少する。具体的には、近赤外照明は、±60℃程度の温度範囲において、ピーク発光波長が数10nmのピークシフトが起こり、室温より高温となると放射強度の低下が起こる。
 また、近赤外撮像装置は、近赤外撮像装置に用いられる近赤外光電変換素子において、光電変換材料のHOMO(Highest Occupied Molecular Orbital)エネルギー準位およびLUMO(Lowest Unoccupied Molecular Orbital)エネルギー準位の差であるHOMO-LUMO Gapが狭くなればなるほど、HOMOに存在する電子がLUMOへ熱励起され、暗電流となるため、撮像のSN比が悪くなる。一方、光電変換材料のHOMO-LUMO Gapは、光電変換材料の吸収波長に対応しており、HOMO-LUMO Gapが狭くなると、より長波長の近赤外光の吸収を得られるが、上述のように暗電流が大きくなる。
 そこで、本開示では、近赤外照明に対応した光電変換材料を適切に選択し、近赤外帯域で吸収を持つ材料を用いることで、良好な撮像特性が得られるカメラシステムを提供する。特に、温度変化等により、近赤外照明が発光波長のピークシフトおよび放射強度変化を起こした場合でも、十分な光電変換特性を持ち、良好な撮像特性が得られるカメラシステムを提供する。
 本開示の一態様の概要は、以下の通りである。
 本開示の一態様に係るカメラシステムは、室温におけるピーク発光波長を近赤外帯域に有する照明と、近赤外光を電荷に変換する光電変換素子を含む撮像装置と、を備える。前記ピーク発光波長において、前記照明から出射される光の強度が極大値を示す。前記光電変換素子は、前記ピーク発光波長に分光感度を有する。前記光電変換素子の外部量子効率は、前記ピーク発光波長よりも長い第1の波長において第1のピークを有し、前記第1の波長における前記外部量子効率は、前記ピーク発光波長における前記外部量子効率よりも高い。前記第1の波長より200nm長い波長における前記外部量子効率が1%より小さい。
 なお、本明細書において、「室温」とは25℃のことである。
 また、本明細書において、「ピーク発光波長」とは、照明の放射強度が極大となる波長である。
 また、本明細書において、「近赤外帯域」とは、光の波長が650nm以上3000nm以下の帯域である。
 また、本明細書において、光電変換素子が、ある波長に「感度を有する」とは、当該波長における光電変換素子の外部量子効率が1%以上であることである。
 本開示によれば、撮像素子が有する光電変換素子は、近赤外照明のピーク発光波長に分光感度を有し、当該ピーク発光波長よりも長波長側に、外部量子効率の第1のピークを有する。よって、温度上昇により、近赤外照明において、発光波長の長波長側へのピークシフトおよび放射出力低下が起きた場合でも、近赤外照明のピーク発光波長から長波長側へシフトするにつれ、光電変換素子の分光感度が上昇し、撮像装置が近赤外光を検出しやすくなるため、カメラシステム全体としては、近赤外照明と撮像装置の光電変換素子の感度とのマッチングが良くなる。これにより、近赤外照明が温度変化により、発光波長がピークシフトおよび放射強度変化を起こした際にも良好な撮像特性が得られるカメラシステムを提供できる。
 さらに、第1の分光感度ピークより200nm長い波長における外部量子効率が1%より小さくなることで、光電変換素子のHOMO-LUMO Gapが広い状態で保たれ、電子の熱励起による暗電流が低減されることから、撮像装置はSN比が良くなり、より良好な撮像特性が得られる。
 また、例えば、前記光電変換素子は、前記ピーク発光波長に対して、-30nm以上+30nm以下の波長範囲において分光感度を有してもよい。
 これにより、近赤外照明のピーク発光波長における室温から-30℃程度への低温側のピークシフトおよび室温から90℃程度への高温のピークシフトが起こった場合でも、光電変換素子が分光感度を有することから、大きな温度変化に対してロバスト性を有するカメラシステムとなる。
 また、例えば、前記ピーク発光波長が800nm以上980nm以下であってもよい。
 これにより、市場で一般的に入手できる安価な照明を利用でき、カメラシステム全体のコストを下げることができる。また、当該範囲の波長に分光感度を有する光電変換素子についても入手しやすく、容易にカメラシステムを製造することができる。
 また、例えば、前記照明は、単色の光を出射する発光ダイオード(LED: Light Emitting Diode)であってもよい。
 これにより、市場で一般的に入手できる安価な照明を利用でき、カメラシステム全体のコストを下げることができる。また、従来のカメラシステムのように、近赤外照明側においてフィルターなどで照明光を調整しなくても良好な撮像特性が得られることから、設備を簡素化できる。
 また、例えば、前記光電変換素子は、光電変換材料として有機材料を含んでもよい。
 これにより、分子構造によってHOMO-LUMO Gapが決まるために材料間で分光感度の差が出にくい有機材料を含むため、近赤外帯域に急峻な分光感度ピークを有する光電変換素子を得ることができる。よって、近赤外照明のピーク発光波長のシフトに対応した分光感度特性を有し、かつ、より暗電流が抑制され、より良好な撮像特性が得られる。
 また、例えば、前記有機材料がフタロシアニン誘導体またはナフタロシアニン誘導体であってもよい。
 これにより、近赤外帯域における強い吸収を持つ有機材料を光電変換材料に用いることができ、近赤外帯域の光を効率的に光電変換できるカメラシステムを製造することができる。
 また、例えば、前記光電変換素子は、可視光を電荷に変換する第1光電変換膜と、近赤外光を電荷に変換する第2光電変換膜と、を含んでいてもよい。第1光電変換膜と第2光電変換膜とが積層された構造を有してもよい。
 これにより、1つの撮像装置で可視光および近赤外光の撮像が可能となる。
 また、例えば、前記光電変換素子の前記外部量子効率は、前記ピーク発光波長よりも短い第2の波長において、第2のピークをさらに有し、前記第2の波長における前記外部量子効率は、前記ピーク発光波長における前記外部量子効率よりも高くてもよい。
 これにより、近赤外照明のピーク発光波長より短波長側の波長および長波長側の波長の両方において、分光感度が高い光電変換素子が用いられるため、さらに撮像特性が向上する。
 また、例えば、前記ピーク発光波長における前記光電変換素子の前記外部量子効率が20%以上であってもよい。
 これにより、分光感度が高い光電変換素子が用いられるため、さらに撮像特性が向上する。
 また、例えば、前記撮像装置は、基板と、前記基板に設けられた電荷検出回路と、前記基板上に設けられ、前記光電変換素子を含む光電変換部、および、前記電荷検出回路と前記光電変換部とに電気的に接続された電荷蓄積ノードを含む画素と、を備えてもよい。
 これにより、光電変換素子が受光した光を効率的に検出できる。
 以下、本実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化することがある。
 (実施の形態)
 以下、本開示に係るカメラシステムの実施の形態について説明する。
 [カメラシステム]
 まず、本実施の形態に係るカメラシステム全体について説明する。図1は、本実施の形態に係るカメラシステム1000の一例を示す概略図である。
 本実施の形態に係るカメラシステム1000は、室温におけるピーク発光波長を近赤外帯域に有する近赤外照明200と、近赤外光電変換素子10を有する撮像装置100とを備える。本実施の形態における近赤外照明200は、照明の一例である。さらに、カメラシステム1000は、撮像装置100および近赤外照明200の動作を制御する制御部300を備える。
 カメラシステム1000では、近赤外照明200から照射された照明光が被写体で反射し、その反射光が撮像装置100の近赤外光電変換素子10により光電変換されることで電気信号として取り出され、撮像される。撮像装置100と近赤外照明200とは別々に記載したが、撮像装置100と近赤外照明200は一体となっていてもよく、可視光の照明及び撮像装置が複数組み合わされていてもよい。
 近赤外照明200は、室温におけるピーク発光波長を近赤外帯域に有する照明であれば、特に制限は無いが、LED照明およびレーザーダイオード(LD)等が使用される。近赤外照明200は、例えば、LEDの単色照明であり、詳しくは、室温におけるピーク発光波長を近赤外帯域に有するLEDの単色の近赤外照明である。これにより市場によく出ている安価な照明を利用でき、カメラシステム全体のコストを下げることができる。上述のように「近赤外帯域」とは、光の波長が650nm以上3000nm以下の帯域であるが、ピーク発光波長における近赤外帯域としては、700nm以上2000nm以下の帯域であってもよく、さらに750nm以上1400nm以下の帯域であってもよい。
 また、近赤外照明200としては、近赤外照明を1つ以上含む複数のLED照明、またはレーザーダイオード(LD)等が使用されてもよく、フィルター等で照明光を調整できる照明であってもよい。
 近赤外照明200は、近赤外照明200のピーク発光波長が室温において800nm以上980nm以下であってもよく、820nm以上880nm以下または910nm以上980nm以下の範囲であってもよい。当該範囲のピーク発光波長を有する近赤外照明200を用いることにより、市場によく出ている安価な照明を利用でき、カメラシステム1000全体のコストを下げることができる。
 近赤外照明200は、LEDおよびLDが一般的であるが、これらの近赤外照明は、室温よりも温度が上昇すると長波長側に発光波長のピークシフトがおき、温度が低下すると短波長側に発光波長のピークシフトがおきることがわかっている。つまり、近赤外照明200のピーク発光波長は、温度が上昇すると長波長側にシフトし、温度が低下すると短波長側にシフトする。また、近赤外照明200の放射強度は、温度が上昇すると強度が低下し、温度が低下すると強度が上昇する。
 図2は、近赤外照明の分光特性を示す図であり、温度変化における近赤外照明の発光波長のピークシフトの一例を示している。図2において、横軸は、近赤外照明の発光波長であり、縦軸は、近赤外照明のピーク発光波長での放射強度を1とした場合における各波長の放射強度を表す相対強度である。図2における近赤外照明は、近赤外LEDを用いた単色照明であり、室温(25℃)でのピーク発光波長を850nm付近に有する。図2に示されるように、温度が上昇するとピーク発光波長が長波長側にシフトし、温度が低下するとピーク発光波長が短波長側にシフトすることがわかる。
 また、図3は、各温度における近赤外照明200の放射強度を表すグラフであり、温度-放射強度特性を示している。図3において、横軸は、周囲温度であり、縦軸は、20℃における近赤外照明200のピーク発光波長での放射強度を1とした場合における各温度のピーク発光波長の放射強度を表す相対強度である。図3は、図2と同じ近赤外照明200を用いた測定結果を示している。図3に示されるように、室温(25℃)を含む-40℃から100℃の範囲において、温度が上昇すると放射強度が低下し、温度が低下すると放射強度が上昇することがわかる。
 図2および図3では、850nm付近にピーク発光波長を有する近赤外LEDを例に用いたが、上記特徴は、一般的な近赤外照明でも同様であり、例えば、940nm付近にピーク発光波長を持つ近赤外LEDを用いた場合およびLDを使用した近赤外照明を用いた場合においても同様である。
 撮像装置100は、近赤外光電変換素子10を有する。近赤外光電変換素子10は、室温における近赤外照明200のピーク発光波長に分光感度を有しする。さらに、近赤外光電変換素子10は、当該ピーク発光波長よりも長波長側に、当該ピーク発光波長における外部量子効率よりも外部量子効率が高い第1の分光感度ピークを有し、第1の分光感度ピークより200nm長い波長における外部量子効率が1%より小さい。これにより、温度上昇により、近赤外照明200において発光波長の長波長側へのピークシフトと放射出力低下とが起きた場合でも、近赤外照明200のピーク発光波長から長波長側へシフトするにつれ、近赤外光電変換素子10の分光感度が上昇する。そのため、カメラシステム1000全体としては、近赤外照明200と撮像装置100の近赤外光電変換素子10の感度とのマッチングが良くなる。よって、カメラシステム1000は、近赤外照明200が温度変化により、発光波長がピークシフトおよび放射強度変化を起こした際にも、良好な撮像特性が得られる。さらに、近赤外光電変換素子10は、第1の分光感度ピークより200nm長い波長における外部量子効率が1%より小さいことにより、第1の分光感度ピークより200nm以上長い波長の近赤外帯域において外部量子効率が低くなることから、近赤外光電変換素子のHOMO-LUMO Gapが広い状態で保たれ、電子の熱励起による暗電流が低減される。これにより、撮像装置はSN比が良くなり、より良好な撮像特性が得られる。
 近赤外光電変換素子10における外部量子効率は、室温における近赤外照明200のピーク発光波長から第1の分光感度ピークの波長の範囲において、当該ピーク発光波長における外部量子効率以上であるとよい。また、近赤外光電変換素子10における外部量子効率は、室温における近赤外照明200のピーク発光波長から第1の分光感度ピークの波長に波長がシフトするにつれて、単調増加であってもよい。さらに、第1の分光感度ピークの波長は、室温における近赤外照明200のピーク発光波長よりも20nm以上波長が長くてもよい。
 また、近赤外光電変換素子10は、さらに、近赤外照明200のピーク発光波長よりも低波長側に、ピーク発光波長における外部量子効率よりも外部量子効率が高い第2の分光感度ピークを有してもよい。これにより、近赤外照明200のピーク発光波長より短波長側の波長および長波長側の波長の両方において、分光感度が高い近赤外光電変換素子10が用いられるため、さらに撮像特性が向上する。
 近赤外光電変換素子10における外部量子効率は、近赤外照明200のピーク発光波長から第2の分光感度ピークの波長の範囲において、ピーク発光波長における外部量子効率以上であるとよい。また、近赤外光電変換素子10における外部量子効率は、近赤外照明200のピーク発光波長から第2の分光感度ピークの波長に波長がシフトするにつれて、単調増加であってもよい。
 また、近赤外光電変換素子10は、近赤外照明200のピーク発光波長での外部量子効率が20%以上であってもよい。これにより、分光感度が高い近赤外光電変換素子10が用いられるため、さらに撮像特性が向上する。
 また、近赤外光電変換素子10は、近赤外照明200のピーク発光波長に対して、-30nm以上+30nm以下の波長範囲において分光感度を有してもよい。これにより、大きな温度変化に対してロバスト性を有するカメラシステム1000となる。
 また、近赤外光電変換素子10は、光電変換材料として有機材料を含んでもよい。
 近赤外光電変換素子10および撮像装置100についての詳細は後述する。
 制御部300は、撮像装置100の撮影および近赤外照明200の発光などの動作を制御する。制御部300は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)およびROM(Read Only Memory)などにより構成される。
 [近赤外光電変換素子]
 以下、本実施の形態に係る近赤外光電変換素子について図4A、4Bおよび図5を用いて説明する。図4Aは、図1における近赤外光電変換素子10の一例である近赤外光電変換素子10Aaの概略断面図である。
 本実施の形態に係る近赤外光電変換素子10Aaは、一対の電極である上部電極4および下部電極2と、一対の電極の間に設けられる近赤外光電変換膜3と、を備える。
 本実施の形態に係る近赤外光電変換素子10Aaは、例えば支持基板1に支持されている。
 近赤外光電変換素子10Aaには、図面上の上側もしくは下側から近赤外光を含む光が入射する。下側から支持基板1を介して近赤外光電変換素子10Aaに近赤外光を含む光が入射する場合、支持基板1は近赤外光に対して透明である。支持基板1は、一般的な光電変換素子にて使用される基板であればよく、例えば、ガラス基板、石英基板、半導体基板、または、プラスチック基板等であってもよい。なお、「近赤外光に対して透明である」とは、近赤外光に対して実質的に透明であることをいい、例えば、近赤外帯域の光の透過率が60%以上である。近赤外帯域の光の透過率が、80%以上であってもよく、90%以上であってもよい。また、上側から近赤外光電変換素子10Aaに近赤外光を含む光が入射する場合、支持基板1は近赤外光を吸収する基板であってもよく、例えばSi基板であってもよい。
 以下、本実施の形態に係る近赤外光電変換素子10Aaの各構成要素について説明する。
 近赤外光電変換膜3には、近赤外光に対して感度を有する光電変換材料を用いることができる。近赤外光電変換膜3は、光電変換材料として有機材料を含んでいてもよい。有機材料は、分子構造によってHOMO-LUMO Gapが決まる。そのため、近赤外帯域に吸収を持つ有機材料を適切に選択することで、近赤外帯域に急峻な分光感度ピークを有する近赤外光電変換膜3が得られやすい。
 近赤外光電変換膜3に含まれる有機材料は、例えば、フタロシアニン誘導体またはナフタロシアニン誘導体である。近赤外光電変換膜3は、例えば、下記一般式(1)で表されるナフタロシアニン誘導体、または下記一般式(2)で表されるフタロシアニン誘導体を含む組成物を用いて作製される。
Figure JPOXMLDOC01-appb-C000001
 但し、RからR24は様々な置換基であり、MはSi,Ge,Snなどの4価の金属、Zn、Cu、Ni、Co、Feなどの2価の金属、Al、Gaなどの3価の金属などであり、R25およびR26は、Mが2価の金属の場合にはなく、Mが3価の金属である場合にはどちらか一方が様々な置換基であり、Mが4価の金属の場合には両方が、様々な置換基である。様々な置換基とは、例えばそれぞれ独立に、水素原子、ハロゲン原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアリール基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアルキルチオ基、無置換もしくは置換基を有するアリールオキシ基、無置換もしくは置換基を有するアリールチオ基、無置換もしくは置換基を有するアミノ基、無置換もしくは置換基を有するシラノール基、無置換もしくは置換基を有するホスフィノ基、無置換もしくは置換基を有する複素環基で置換されたオキシ基、無置換もしくは置換基を有する複素環基で置換されたチオ基などを表す。
Figure JPOXMLDOC01-appb-C000002
 但し、R27からR42は様々な置換基であり、MはSi,Ge,Snなどの4価の金属、Zn、Cu、Ni、Co、Feなどの2価の金属、Al、Gaなどの3価の金属などであり、R43およびR44は、Mが2価の金属の場合にはなく、Mが3価の金属の場合にはどちらか一方が様々な置換基であり、Mが4価の金属の場合には両方が、様々な置換基である。様々な置換基とは、例えばそれぞれ独立に、水素原子、ハロゲン原子、無置換もしくは置換基を有するアルキル基、無置換もしくは置換基を有するアリール基、無置換もしくは置換基を有するアルコキシ基、無置換もしくは置換基を有するアルキルチオ基、無置換もしくは置換基を有するアリールオキシ基、無置換もしくは置換基を有するアリールチオ基、無置換もしくは置換基を有するアミノ基、無置換もしくは置換基を有するシラノール基、無置換もしくは置換基を有するホスフィノ基、無置換もしくは置換基を有する複素環基で置換されたオキシ基、無置換もしくは置換基を有する複素環基で置換されたチオ基などを表す。
 特に、近赤外光電変換膜3は、下記一般式(3)で表されるナフタロシアニン誘導体、または下記一般式(4)で表されるフタロシアニン誘導体を含む組成物を用いて作製されてもよい。
Figure JPOXMLDOC01-appb-C000003
 但し、R45からR52は、それぞれ独立してアルキル基であり、R53からR56は、それぞれ独立してアリール基である。
Figure JPOXMLDOC01-appb-C000004
 但し、R57からR64はアルキル基またはアリール基であり、Mは4価の金属であり、R65およびR66は下記一般式(5)から(8)で表される置換基のうちのいずれか1つである。また、R67からR69は、それぞれ独立してアルキル基であり、R70からR74は、それぞれ独立して、アルキル基またはアリール基である。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 また、暗電流の低減の観点から、上記一般式(3)においてR53、R54、R55およびR56の少なくとも1つ、もしくは、上記一般式(4)においてR65およびR66の少なくとも1つは、少なくとも1つの水素原子がフッ素原子または含フッ素基で置換されていてもよい。
 また、近赤外光電変換膜3には、上記一般式以外の組成を持つナフタロシアニン誘導体またはフタロシアニン誘導体が含まれてもよく、ナフタロシアニン誘導体、フタロシアニン誘導体以外の有機光電変換材料が含まれてもよい。ナフタロシアニン誘導体、フタロシアニン誘導体以外の有機光電変換材料としては、例えば、クロロフィル誘導体、スクワリリウム誘導体、メロシアニン誘導体、ペリレンテトラカルボン酸誘導体、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。
 また、近赤外光電変換膜3には、カーボンナノチューブ、または、量子ドットが光電変換材料として用いられてもよく、Si半導体、化合物半導体などの無機半導体でもよい。
 近赤外光電変換膜3の作製方法としては、例えば、スピンコートなどによる塗布法、真空下で加熱することにより膜の材料を気化し、基板上に堆積させる真空蒸着法などを用いることができる。スピンコートの場合は、大気下、N雰囲気下などで成膜ができ、回転数は300rpmから3000rpmで成膜してもよく、また、スピンコート後に溶媒を蒸発させ、膜を安定化するためにベーク処理を行ってもよい。ベーク温度は、いかなる温度でも良いが、例えば、60℃から250℃である。
 近赤外光電変換膜3の作製方法としては、不純物の混入を防止し、高機能化のための多層化をより自由度を持って行うことを考慮する場合には蒸着法を用いてもよい。蒸着装置は、市販の装置を用いてもよい。蒸着中の蒸着源の温度は、例えば、100℃から500℃である。蒸着中の蒸着源の温度は、150℃から400℃であってもよい。蒸着時の真空度は、例えば、1×10-6Paから1Paである。蒸着時の真空度は、1×10-6Paから1×10-4Paであってもよい。また、近赤外光電変換膜3は、蒸着源に金属微粒子等を添加して蒸着速度を高める方法を用いて作製されてもよい。
 近赤外光電変換膜3の材料の配合割合は、塗布法では重量比、蒸着法では体積比で示される。より具体的には、塗布法では、溶液調整時の各材料の重量で配合割合を規定し、蒸着法では、蒸着時に膜厚計で各材料の蒸着膜厚をモニタリングしながら各材料の配合割合を規定する。
 上部電極4および下部電極2の少なくとも一方は、近赤外光に対して透明な導電性材料で構成された透明電極である。また、可視光帯域に対しても透明であってもよい。下部電極2および上部電極4には配線(不図示)によってバイアス電圧が印加される。例えば、バイアス電圧は、近赤外光電変換膜3で発生した電荷のうち、電子が上部電極4に移動し、正孔が下部電極2に移動するように、極性が決定される。また、近赤外光電変換膜3で発生した電荷のうち、正孔が上部電極4に移動し、電子が下部電極2に移動するように、バイアス電圧は設定されてもよい。
 また、バイアス電圧は、印加する電圧値を下部電極2と上部電極4との間の距離で割った値、つまり近赤外光電変換素子10Aaに生じる電界の強さが、例えば、1.0×10V/cmから1.0×10V/cmの範囲内となるように印加される。1.0×10V/cmから1.0×10V/cmの範囲内となるように印加されてもよい。このようにバイアス電圧の大きさを調整することにより、上部電極4に電荷を効率的に移動させ、電荷に応じた信号を外部に取り出すことが可能となる。
 下部電極2および上部電極4の材料としては、近赤外帯域の光の透過率が高く、抵抗値が小さい透明導電性酸化物(TCO:Transparent Conducting Oxide)を用いてもよい。金(Au)などの金属薄膜を透明電極として用いることもできるが、近赤外帯域の光の透過率を90%以上得ようとすると、透過率を60%から80%得られるように透明電極を作製した場合に比べ、抵抗値が極端に増大することがある。そのため、Auなどの金属材料よりもTCOの方が近赤外光に対する透明性が高く、かつ、抵抗値が小さい透明電極を得ることができる。TCOとしては、特に限定されないが、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、AZO(Aluminum-doped Zinc Oxide)、FTO(Florine-doped Tin Oxide)、SnO、TiO、ZnO等を用いることができる。なお、下部電極2および上部電極4は、所望の透過率に応じて、適宜、TCOおよびAuなどの金属材料を単独または複数組み合わせて作製されてもよい。
 なお、下部電極2および上部電極4の材料は、上述した近赤外光に対して透明な導電性材料に限られず、他の材料を用いてもよい。
 下部電極2および上部電極4の作製には、使用する材料によって種々の方法が用いられる。例えばITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、ゾル-ゲル法などの化学反応法、酸化インジウムスズの分散物の塗布などの方法を用いてもよい。この場合、下部電極2および上部電極4の作製には、ITO膜を成膜した後に、さらに、UV-オゾン処理、プラズマ処理などを施してもよい。
 近赤外光電変換素子10Aaによれば、上部電極4を介して入射した近赤外光によって、近赤外光電変換膜3において、光電変換が生じる。これにより生成した正孔電子対のうち、正孔は下部電極2に集められ、電子は上部電極4に集められる。よって、例えば、下部電極2の電位が測定されることによって、近赤外光電変換素子10Aaに入射した近赤外光を検出することができる。
 なお、近赤外光電変換素子10Aaは、さらに、後述する電子ブロッキング層5および正孔ブロッキング層6を備えてもよい。電子ブロッキング層5および正孔ブロッキング層6により近赤外光電変換膜3を挟むことにより、下部電極2から近赤外光電変換膜3に電子が注入されること、および、上部電極4から近赤外光電変換膜3に正孔が注入されることを抑制することができる。これにより、暗電流を抑制することができる。なお、電子ブロッキング層5および正孔ブロッキング層6の詳細については、後述する。
 また、図4Bは、可視光光電変換膜13を含む近赤外光電変換素子10Abの概略断面図である。なお、図4Bに示される近赤外光電変換素子10Abにおいて、図4Aに示される近赤外光電変換素子10Aaと同じ構成要素には同じ参照符号を付している。
 本実施の形態に係る近赤外光電変換素子10Abは、可視光光電変換膜13と近赤外光電変換膜3とが積層された構造を有する。図4Bに示されるように、近赤外光電変換素子10Abは、一対の電極である上部電極4および下部電極2と、一対の電極の間に設けられる近赤外光電変換膜3および可視光光電変換膜13と、を備える。近赤外光電変換素子10Abにおいて、上部電極4、可視光光電変換膜13、近赤外光電変換膜3および下部電極2は、この順で上から積層されている。近赤外光電変換素子10Abは、可視光が光電変換される可視光光電変換膜13を有する以外の点について、上述の図4Aで示される近赤外光電変換素子10Aaと同じであり、ここでの詳細な説明は省略する。近赤外光電変換素子10Abは、可視光光電変換膜13と近赤外光電変換膜3とを備えることにより、近赤外光だけでなく、可視光も検出可能となる。
 なお、図4Bにおいて、近赤外光電変換素子10Abは、上部電極4、可視光光電変換膜13、近赤外光電変換膜3、下部電極2の順で積層されたが、可視光光電変換膜13と近赤外光電変換膜3との積層順は入れ替わってもよい。また、近赤外光電変換素子10Abは、可視光光電変換膜13および近赤外光電変換膜3の2つの膜を備えたが、近赤外光電変換膜3に、可視光に対して感度を有する光電変換材料がさらに添加されることによって、可視光が光電変換されてもよい。
 次に、本実施の形態に係る近赤外光電変換素子の他の例について図5および図6を用いて説明する。図5は、本実施の形態に係る光電変換素子の他の例である近赤外光電変換素子10Bの概略断面図である。図6は、近赤外光電変換素子10Bのエネルギーバンド図の一例を示す。なお、図5に示される近赤外光電変換素子10Bにおいて、図4Aに示される近赤外光電変換素子10Aaと同じ構成要素には同じ参照符号を付している。
 図5に示されるように、近赤外光電変換素子10Bは、少なくとも、下部電極2、上部電極4、および下部電極2と上部電極4との間に配置される光電変換層3Aを備えている。光電変換層3Aは、例えば、近赤外光電変換膜3と、正孔輸送層として機能するp型半導体層7と、電子輸送層として機能するn型半導体層8とを含んでおり、近赤外光電変換膜3は、p型半導体層7およびn型半導体層8の間に配置される。さらに、近赤外光電変換素子10Bは、下部電極2と光電変換層3Aとの間に配置される電子ブロッキング層5、および上部電極4と光電変換層3Aとの間に配置される正孔ブロッキング層6を備える。なお、近赤外光電変換膜3については、図1に示される近赤外光電変換素子10Aaの説明で上述したとおりであるため、ここでの説明は省略する。
 光電変換層3Aは、近赤外光電変換膜3、p型半導体層7、およびn型半導体層8を含む。ここで、p型半導体層7に含まれるp型半導体、およびn型半導体層8に含まれるn型半導体の少なくともいずれかが後述する有機半導体であってもよい。
 また、光電変換層3Aは、上述した光電変換材料と、有機p型半導体および有機n型半導体の少なくとも一方とを含んでいてもよい。
 また、光電変換層3Aは、p型半導体とn型半導体とを混合したバルクヘテロ接合構造層を含んでいてもよい。光電変換層3Aは、バルクへテロ接合構造層を含むことにより、光電変換層3Aにおけるキャリア拡散長が短いという欠点を補い、光電変換効率を向上させることができる。
 さらに、光電変換層3Aは、p型半導体層7およびn型半導体層8の間にバルクヘテロ接合構造層を配置してもよい。近赤外光電変換素子10Bは、バルクヘテロ接合構造層をp型半導体層7およびn型半導体層8で挟むことにより、正孔および電子の整流性がバルクヘテロ接合構造層よりも高くなり、電荷分離した正孔および電子の再結合などによるロスが低減され、さらに高い光電変換効率を得ることができる。なお、バルクへテロ接合構造層については、特許第5553727号公報(特許文献5)においてバルクヘテロ型活性層について詳細に説明されているとおりである。
 バルクへテロ接合構造層では、p型半導体とn型半導体とが接触することにより、暗状態においても電荷が発生する場合がある。
 暗電流には、p型半導体自体のHOMO-LUMO Gapの熱励起に由来する暗電流と、p型半導体のHOMOとn型半導体のLUMOへの熱励起に由来する暗電流がある。
 p型半導体自体のHOMO-LUMO Gapの熱励起に由来する暗電流は、HOMO-LUMO Gapを広くすることで改善される。また、p型半導体のHOMOとn型半導体のLUMOへの熱励起に由来する暗電流は、p型半導体のHOMOを深くするまたはn型半導体のLUMOを浅くすることで改善される。
 また、p型半導体とn型半導体との接触を少なくすることにより、暗電流が抑制される。電荷移動度の観点から、バルクヘテロ接合構造層がフラーレン誘導体などのn型半導体を多く含む場合、またはp型半導体を多く含む場合、素子抵抗が抑制される。この場合、バルクへテロ接合構造層におけるp型半導体に対するn型半導体の体積比、および重量比率は、4倍以上であってもよい。または、バルクへテロ接合構造層におけるn型半導体に対するp型半導体の体積比、および重量比率は、4倍以上であってもよい(特許文献6:特開2016-225456号公報)。
 有機化合物のp型半導体は、ドナー性有機半導体であり、主に、正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物である。さらに詳しくは、2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物である。したがって、ドナー性有機半導体は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能であり、例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができる。なお、これに限らず、上記したように、アクセプター性半導体として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であればドナー性有機半導体として用いてよい。
 有機化合物のn型半導体は、アクセプター性有機半導体であり、主に、電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物である。さらに詳しくは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物である。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能であり、例えば、フラーレン、フラーレン誘導体、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、窒素原子、酸素原子、硫黄原子を含有する5ないし7員のヘテロ環化合物(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピロリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。なお、これに限らず、上記したように、ドナー性有機化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプター性有機半導体として用いてよい。
 電子ブロッキング層5は、下部電極2から電子が注入されることによる暗電流を低減するために設けられており、下部電極2から電子が光電変換層3Aに注入されることを抑制する。電子ブロッキング層5には上述のp型半導体または正孔輸送性有機化合物を用いることもできる。図6に示されるように、電子ブロッキング層5は、光電変換層3Aのp型半導体層7よりも低いHOMOエネルギー準位および高いLUMOエネルギー準位を有する。言い換えると、光電変換層3Aは、電子ブロッキング層5との界面近傍において、電子ブロッキング層5よりも高いエネルギー準位のHOMOおよび電子ブロッキング層5よりも低いエネルギー準位のLUMOを有する。
 正孔ブロッキング層6は、上部電極4から正孔が注入されることによる暗電流を低減するために設けられており、上部電極4からの正孔が光電変換層3Aに注入されるのを抑制する。正孔ブロッキング層6の材料は、例えば、銅フタロシアニン、PTCDA(3,4,9,10-Perylenetetracarboxylic dianhydride)、アセチルアセトネート錯体、BCP(Bathocuproine)、Alq(Tris(8-quinolinolate)aluminum)などの有機物、もしくは、有機-金属化合物、または、MgAg、MgOなどの無機物を用いてもよい。また、正孔ブロッキング層6は、近赤外光電変換膜3の光吸収を妨げないために、近赤外光の透過率が高くてもよく、例えば、可視光領域に吸収を持たない材料を選択してもよく、正孔ブロッキング層6の厚さを小さくしてもよい。正孔ブロッキング層6の厚さは、光電変換層3Aの構成、上部電極4の厚さ等に依存するが、例えば、2nmから50nmの厚さであってもよい。正孔ブロッキング層6は上述のn型半導体または電子輸送性有機化合物を用いることもできる。
 電子ブロッキング層5を設ける場合、下部電極2の材料には、上述した材料の中から電子ブロッキング層5との密着性、電子親和力、イオン化ポテンシャル、および安定性等を考慮して選ばれる。なお、上部電極4についても同様である。
 図6に示されるように、上部電極4の仕事関数が比較的大きい(例えば、4.8eV)と、バイアス電圧印加時に正孔が近赤外光電変換膜3へと移動する際の障壁が低くなる。そのため、上部電極4から光電変換層3Aへの正孔注入が起こりやすくなり、結果として暗電流が大きくなると考えられる。本実施の形態では、正孔ブロッキング層6を設けているため、暗電流が抑制されている。
 [撮像装置]
 以下、本実施の形態に係る撮像装置について図7および図8を用いて説明する。図7は、本実施の形態に係る撮像装置100の回路構成の一例を示す図である。図8は、本実施の形態に係る撮像装置100における画素24のデバイス構造の一例を示す概略断面図である。
 図7および図8に示されるように、本実施の形態に係る撮像装置100は、基板である半導体基板40と、半導体基板40に設けられた電荷検出回路35と、半導体基板40上に設けられ、近赤外光電変換素子10Aa、10Abまたは10Bを含む光電変換部10C、および電荷検出回路35と光電変換部10Cとに電気的に接続された電荷蓄積ノード34を含む画素24と、を備える。電荷蓄積ノード34は、光電変換部10Cで得られた電荷を蓄積し、電荷検出回路35は、電荷蓄積ノード34に蓄積された電荷を検出する。なお、半導体基板40に設けられた電荷検出回路35は、半導体基板40上に設けられていてもよく、半導体基板40中に直接設けられたものであってもよい。
 図7に示されるように、撮像装置100は、複数の画素24と、垂直走査回路25および水平信号読出し回路20などの周辺回路と、を備えている。撮像装置100は、1チップの集積回路で実現される有機イメージセンサであり、2次元に配列された複数の画素24を含む画素アレイを有する。
 複数の画素24は、半導体基板40上に2次元、すなわち行方向および列方向に配列されて、感光領域(いわゆる、画素領域)を形成している。図7では、画素24は、2行2列のマトリックス状に配列される例を示している。なお、図7では、図示の便宜上、画素24の感度を個別に設定するための回路(例えば、画素電極制御回路)を省略している。また、撮像装置100は、ラインセンサであってもよい。その場合、複数の画素24は、1次元に配列されていてもよい。なお、行方向および列方向とは、行および列がそれぞれ伸びる方向をいう。つまり、図7において、紙面における縦方向が列方向であり、横方向が行方向である。
 図7に示されるように、各画素24は、光電変換部10Cと、電荷検出回路35とに電気的に接続された電荷蓄積ノード34とを含む。電荷検出回路35は、増幅トランジスタ21と、リセットトランジスタ22と、アドレストランジスタ23とを含む。
 光電変換部10Cは、画素電極として設けられた下部電極2および対向電極として設けられた上部電極4を含む。光電変換部10Cには上述した近赤外光電変換素子10Aa、10Abまたは10Bを用いてもよい。上部電極4には、対向電極信号線26を介して所定のバイアス電圧が印加される。
 下部電極2は、増幅トランジスタ21のゲート電極に接続され、下部電極2によって集められた信号電荷は、下部電極2と増幅トランジスタ21のゲート電極との間に位置する電荷蓄積ノード34に蓄積される。本実施の形態では、信号電荷は正孔であるが、信号電荷は電子であってもよい。
 電荷蓄積ノード34に蓄積された信号電荷は、信号電荷の量に応じた電圧として増幅トランジスタ21のゲート電極に印加される。増幅トランジスタ21は、この電圧を増幅し、信号電圧として、アドレストランジスタ23によって、選択的に読み出される。リセットトランジスタ22は、そのソース/ドレイン電極が、下部電極2に接続されており、電荷蓄積ノード34に蓄積された信号電荷をリセットする。換言すると、リセットトランジスタ22は、増幅トランジスタ21のゲート電極および下部電極2の電位をリセットする。
 複数の画素24において上述した動作を選択的に行うため、撮像装置100は、電源配線31と、垂直信号線27と、アドレス信号線36と、リセット信号線37とを有し、これらの線が画素24にそれぞれ接続されている。具体的には、電源配線31は、増幅トランジスタ21のソース/ドレイン電極に接続され、垂直信号線27は、アドレストランジスタ23のソース/ドレイン電極に接続される。アドレス信号線36は、アドレストランジスタ23のゲート電極に接続される。またリセット信号線37は、リセットトランジスタ22のゲート電極に接続される。
 周辺回路は、垂直走査回路25と、水平信号読出し回路20と、複数のカラム信号処理回路29と、複数の負荷回路28と、複数の差動増幅器32とを含む。垂直走査回路25は、行走査回路とも称される。水平信号読出し回路20は、列走査回路とも称される。カラム信号処理回路29は、行信号蓄積回路とも称される。差動増幅器32は、フィードバックアンプとも称される。
 垂直走査回路25は、アドレス信号線36およびリセット信号線37に接続されており、各行に配置された複数の画素24を行単位で選択し、信号電圧の読出し、下部電極2の電位のリセットを行う。ソースフォロア電源である電源配線31は、各画素24に所定の電源電圧を供給する。水平信号読出し回路20は、複数のカラム信号処理回路29に電気的に接続されている。カラム信号処理回路29は、各列に対応した垂直信号線27を介して、各列に配置された画素24に電気的に接続されている。負荷回路28は、各垂直信号線27に電気的に接続されている。負荷回路28と増幅トランジスタ21とは、ソースフォロア回路を形成する。
 複数の差動増幅器32は、各列に対応して設けられている。差動増幅器32の負側の入力端子は、対応した垂直信号線27に接続されている。また、差動増幅器32の出力端子は、各列に対応したフィードバック線33を介して画素24に接続されている。
 垂直走査回路25は、アドレス信号線36によって、アドレストランジスタ23のオンおよびオフを制御する行選択信号をアドレストランジスタ23のゲート電極に印加する。これにより、読出し対象の行が走査され、選択される。選択された行の画素24から垂直信号線27に信号電圧が読み出される。また、垂直走査回路25は、リセット信号線37を介して、リセットトランジスタ22のオンおよびオフを制御するリセット信号をリセットトランジスタ22のゲート電極に印加する。これにより、リセット動作の対象となる画素24の行が選択される。垂直信号線27は、垂直走査回路25によって選択された画素24から読み出された信号電圧をカラム信号処理回路29へ伝達する。
 カラム信号処理回路29は、相関二重サンプリングに代表される雑音抑圧信号処理およびアナログ-デジタル変換(AD変換)などを行う。
 水平信号読出し回路20は、複数のカラム信号処理回路29から水平共通信号線(不図示)に信号を順次読み出す。
 差動増幅器32は、フィードバック線33を介してリセットトランジスタ22のドレイン電極に接続されている。したがって、差動増幅器32は、アドレストランジスタ23とリセットトランジスタ22とが導通状態にあるときに、アドレストランジスタ23の出力値を負端子に受ける。増幅トランジスタ21のゲート電位が所定のフィードバック電圧となるように、差動増幅器32はフィードバック動作を行う。このとき、差動増幅器32の出力電圧値は、0Vまたは0V近傍の正電圧である。フィードバック電圧とは、差動増幅器32の出力電圧を意味する。
 図8は、本実施の形態に係る撮像装置100における画素24のデバイス構造の一例を示す概略断面図である。
 図8に示されるように、画素24は、半導体基板40と、電荷検出回路35と、光電変換部10Cと、電荷蓄積ノード34(図7参照)とを含む。
 半導体基板40は、感光領域(いわゆる、画素領域)が形成される側の表面に半導体層が設けられた絶縁性基板などであってもよく、例えば、p型シリコン基板である。半導体基板40は、不純物領域(ここではn型領域)21D、21S、22D、22Sおよび23Sと、画素24間の電気的な分離のための素子分離領域41とを有する。ここでは、素子分離領域41は、不純物領域21Dと不純物領域22Dとの間にも設けられている。これにより、電荷蓄積ノード34で蓄積される信号電荷のリークが抑制される。なお、素子分離領域41は、例えば、所定の注入条件の下でアクセプターのイオン注入を行うことによって形成される。
 不純物領域21D、21S、22D、22Sおよび23Sは、典型的には、半導体基板40内に形成された拡散層である。図8に示されるように、増幅トランジスタ21は、不純物領域21Sおよび21Dと、ゲート電極21Gとを含む。不純物領域21Sおよび21Dは、それぞれ、増幅トランジスタ21の例えばソース領域およびドレイン領域として機能する。不純物領域21Sおよび21Dの間に、増幅トランジスタ21のチャネル領域が形成される。
 同様に、アドレストランジスタ23は、不純物領域23Sおよび21Sと、アドレス信号線36に接続されたゲート電極23Gとを含む。この例では、増幅トランジスタ21およびアドレストランジスタ23は、不純物領域21Sを共有することによって互いに電気的に接続されている。不純物領域23Sは、アドレストランジスタ23の例えばソース領域として機能する。不純物領域23Sは、図7に示される垂直信号線27との接続を有する。
 リセットトランジスタ22は、不純物領域22Dおよび22Sと、リセット信号線37に接続されたゲート電極22Gとを含む。不純物領域22Sは、リセットトランジスタ22の例えばソース領域として機能する。不純物領域22Sは、図7に示されるリセット信号線37との接続を有する。
 半導体基板40上には、増幅トランジスタ21、アドレストランジスタ23およびリセットトランジスタ22を覆うように層間絶縁層50が積層されている。
 また、層間絶縁層50中には、配線層(不図示)が配置され得る。配線層は、典型的には、銅などの金属から形成され、例えば、上述の垂直信号線27などの配線をその一部に含み得る。層間絶縁層50中の絶縁層の層数、および、層間絶縁層50中に配置される配線層に含まれる層数は、任意に設定可能である。
 層間絶縁層50中には、リセットトランジスタ22の不純物領域22Dと接続されたコンタクトプラグ54、増幅トランジスタ21のゲート電極21Gと接続されたコンタクトプラグ53、下部電極2と接続されたコンタクトプラグ51、およびコンタクトプラグ51とコンタクトプラグ54とコンタクトプラグ53とを接続する配線52が配置されている。これにより、リセットトランジスタ22のドレイン電極として機能する不純物領域22Dが増幅トランジスタ21のゲート電極21Gと電気的に接続されている。
 電荷検出回路35は、下部電極2によって捕捉された信号電荷を検出し、信号電圧を出力する。電荷検出回路35は、増幅トランジスタ21と、リセットトランジスタ22と、アドレストランジスタ23とを含み、半導体基板40に形成されている。
 増幅トランジスタ21は、半導体基板40内に形成され、それぞれドレイン電極およびソース電極として機能する不純物領域21Dおよび21Sと、半導体基板40上に形成されたゲート絶縁層21Xと、ゲート絶縁層21X上に形成されたゲート電極21Gとを含む。
 リセットトランジスタ22は、半導体基板40内に形成され、それぞれドレイン電極およびソース電極として機能する不純物領域22Dおよび22Sと、半導体基板40上に形成されたゲート絶縁層22Xと、ゲート絶縁層22X上に形成されたゲート電極22Gとを含む。
 アドレストランジスタ23は、半導体基板40内に形成され、それぞれドレイン電極およびソース電極として機能する不純物領域21Sおよび23Sと、半導体基板40上に形成されたゲート絶縁層23Xと、ゲート絶縁層23X上に形成されたゲート電極23Gとを含む。不純物領域21Sは、増幅トランジスタ21とアドレストランジスタ23とに共用されており、これにより、増幅トランジスタ21とアドレストランジスタ23とが直列に接続される。
 層間絶縁層50上には、上述の光電変換部10Cが配置される。換言すれば、本実施の形態では、画素アレイを構成する複数の画素24が、半導体基板40上に形成されている。そして、半導体基板40上に2次元に配列された複数の画素24は、画素領域である感光領域を形成する。隣接する2つの画素24間の距離である画素ピッチは、例えば2μm程度であってもよい。
 光電変換部10Cは、上述した近赤外光電変換素子10Aa、10Abまたは10Bの構造を備える。
 光電変換部10Cの上方には、カラーフィルタ60、その上方にマイクロレンズ61が設けられている。カラーフィルタ60は、例えば、パターニングによるオンチップカラーフィルタとして形成され、染料または顔料が分散された感光性樹脂等が用いられる。マイクロレンズ61は、例えば、オンチップマイクロレンズとして設けられ、紫外線感光材等が用いられる。近赤外帯域を撮像する場合、少なくとも1種類のカラーフィルタは近赤外光を透過してもよい。
 撮像装置100は、一般的な半導体製造プロセスを用いて製造することができる。特に、半導体基板40としてシリコン基板を用いる場合には、種々のシリコン半導体プロセスを利用することによって製造することができる。
 以上から、本実施の形態によれば、室温におけるピーク発光波長を近赤外帯域に有する照明と、当該ピーク発光波長に分光感度を有し、当該ピーク発光波長よりも長波長側に、当該ピーク発光波長における外部量子効率よりも外部量子効率が高い第1の分光感度ピークを有し、第1の分光感度ピークより200nm長い波長における外部量子効率が1%より小さい近赤外光電変換素子を有する撮像装置とを備えることにより、温度変化等により、近赤外照明が発光波長のピークシフトおよび放射強度変化を起こした際にも、良好な撮像特性を得られるカメラシステムを実現することができる。
 以下、実施例にて本開示に係る近赤外光電変換素子およびカメラシステムを具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。
 なお、実施例1で得られた化合物を含む組成物を成膜し、化合物の組成比率の異なる近赤外光電変換膜をそれぞれ実施例3および実施例4とし、実施例2で得られた化合物を含む組成物を成膜した近赤外光電変換膜を実施例5とする。また、実施例3、実施例4、実施例5で得られた近赤外光電変換膜を用いた近赤外光電変換素子を、それぞれ実施例6、実施例7、実施例8とする。
 以下、フェニル基をPh、CをBu、C11をPent、C4826をNc、C3218をPcと表すことがある。
 [ナフタロシアニン誘導体およびフタロシアニン誘導体]
 以下、実施例1および実施例2を示し、本開示に係るカメラシステムにおける光電変換素子に含まれるナフタロシアニン誘導体およびフタロシアニン誘導体についてより具体的に説明する。
 (実施例1)
 <(OBu)Si(OPOPhNcの合成>
 以下に説明するステップ(1)から(2)に従い、下記構造式で表される化合物(OBu)Si(OPOPhNcを合成した。
Figure JPOXMLDOC01-appb-C000009
 (1)(OBu)Si(OH)Nc(化合物(A-2))の合成
 この合成は、非特許文献3を参考に検討し合成した。
Figure JPOXMLDOC01-appb-C000010
 アルゴン置換された1000mL反応容器に、(OBu)Nc0.95g(化合物(A-1))と、トリブチルアミン92mL、脱水トルエン550mLを加え、HSiCl3.7mLを加え、80℃で24時間加熱攪拌した。次いで、反応溶液を室温まで放冷し、HSiCl3.7mLを加え、80℃で24時間加熱攪拌した。次いで、反応溶液を室温まで放冷し、HSiCl1.9mLを加え、80℃で24時間加熱攪拌した。
 反応溶液を室温まで放冷し、反応溶液に蒸留水360mLを加えて1時間撹拌した。そこにトリエチルアミンを180mL加え、トルエン100mLにて4回抽出した。抽出した有機層は、蒸留水で洗浄し、有機層を濃縮し1.54gの粗組成物を得た。得られた粗組成物を中性アルミナカラムで精製し、褐色固体の(OBu)Si(OH)Nc(化合物(A-2))を得た。この化合物の収量は0.53g、収率は50%であった。
 (2)(OBu)Si(OPOPhNc(化合物(A-3))の合成
Figure JPOXMLDOC01-appb-C000011
 アルゴン置換された200mL反応容器に、上記ステップ(1)で合成された(OBu)Si(OH)Nc(化合物(A-2))0.13gと、クロロジフェニルホスフィン1.3gとトリアミルアミン1.3gとを加えてピリジン10mLに溶解させ、110℃で5時間加熱還流した。室温まで冷却した後、水10mLを加え、30分撹拌し、更に水20mlを加えて固体成分を析出させ、析出した固体成分をろ取した。ろ取した固体成分をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=1:1)にて精製し、更に得られた精製物をメタノールにより再沈殿させた。得られた沈殿物を100℃で3時間減圧乾燥させ、目的化合物(OBu)Si(OPOPhNc(化合物(A-3))を得た。目的化合物の収量は83mg、収率は50%であった。
 得られた化合物の同定はHNMR(proton nuclear magnetic resonance:プロトン核磁気共鳴分光法)、MALDI-TOF-MSMatrix Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry:マトリックス支援レーザ脱離イオン化-飛行時間型質量分析)にて行った。結果を以下に示す。
 HNMR(400 MHz, C): δ(ppm)=9.16(8H)、7.62(8H)、6.13(12H)、6.00(8H)、5.29(16H)、2.26(16H)、1.64(16H)、1.00(24H)
 MALDI-TOF-MS 実測値:m/z=1751.17(M
 目的化合物の化学式がC10410812Siであり、Exact Massが1750.73である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 (実施例2)
 <(S-Pent)Si(OPOPhPcの合成>
 以下に説明するステップ(3)から(5)に従い、下記一般式で表される化合物(S-Pent)Si(OPOPhPcを合成した。
Figure JPOXMLDOC01-appb-C000012
 (3)S-Pentイソインドリン誘導体(化合物(A-5))の合成
Figure JPOXMLDOC01-appb-C000013
 原料となる3,6-ジペンタチオ-4,5-ジシアノベンゼン(化合物(A-4))については、Gcineka Mbambisa et al., “Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentylthio groups”, Polyhedron, 2007年, vol. 26, Issue 18, pp.5355-5364(非特許文献4)の合成法を参照し合成した。
 1000mL反応容器に、3,6-ジペンタチオ-4,5-ジシアノベンゼン(化合物(A-4))7.2g、脱水メタノール450mL、38%ナトリウムメトキシドメタノール溶液(MeONa/MeOH)1.5gを加えた後、アンモニア(NH)ガスを吹き込みながら加熱還流下で24時間撹拌した。薄層クロマトグラフィ(TLC)にて反応の進行を確認した後、室温まで冷却した。次いで、市水を加え、分液洗浄を行った。その後、溶媒を冷却し結晶を析出させ、ろ取した。次いで、ろ取した結晶をメタノール(MeOH)で洗浄し、固体を得た。得られた固体を減圧下60℃で2日間加熱乾燥させ、固体状の目的化合物S-Pentイソインドリン誘導体(化合物(A-5))を得た。目的化合物の収量は2.4g、収率は32%であった。
 (4)(SPent)SiPc(OH)(化合物(A-6))の合成
Figure JPOXMLDOC01-appb-C000014
 アルゴン雰囲気下、S-Pentイソインドリン誘導体(化合物(A-5))1.05g(3mmol)をキノリン6mLに溶解させた後、四塩化ケイ素2.4mL(21mmol)を室温で加えた。反応系を180℃まで昇温させた後、2時間撹拌した。反応2時間後の反応溶液のUV-visスペクトル(紫外可視吸収スペクトル)を測定し、生成物の濃度を確認した。次いで、反応溶液を室温まで冷却し、少量の水を加え反応を停止した。次いで、反応溶液に少量のメタノールおよび大量(約50mL)のクロロホルムを加え、室温で1時間撹拌した。次いで、生成した不溶性の混合物をセライトろ過して除去し、さらに、クロロホルムでろ液が透明になるまで洗浄した。得られたろ液から抽出操作(クロロホルム)で有機層を集め、水で洗浄した。次いで、有機層を硫酸マグネシウムで乾燥させ、綿栓ろ過して硫酸マグネシウムを除去した後、濃縮した。得られた濃縮物にメタノール(約30mL)を加え、約半日放置した後、沈殿物をろ取した。この沈殿物をメタノールで十分に洗浄した後、乾燥させた。紫色粉末の目的化合物(SPent)SiPc(OH)(化合物(A-6))を得た。目的化合物の収量は420mg、収率は40%であった。
 (5)(SPent)SiPc(OPOPh(化合物(A-7))の合成
Figure JPOXMLDOC01-appb-C000015
 アルゴン置換された200mL反応容器に、上記ステップ(4)で合成された(SPent)SiPc(OH)(化合物(A-6))0.3gと、クロロジフェニルホスフィン3.0gとを加え、トリペンチルアミン3.0g、脱水ピリジン20mLに溶解させ、150℃で5時間攪拌した。UV-visスペクトルより反応が進行したことを確認後、反応溶液を室温まで冷却した。次いで、ジクロロメタンで抽出し、市水100mLを加えて、分液漏斗にて有機層を取得した。取得した有機層の溶媒を留去させたところ個体が析出した。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒 トルエン:酢酸エチル=2:1)にて精製し、目的物(SPent)SiPc(OPOPh(化合物(A-7))を得た。目的化合物の収量は80mg、収率は21%であった。
 得られた化合物の同定はHNMR、MALDI-TOF-MSにて行った。結果を以下に示す。
 HNMR(400 MHz, CDCL): δ(ppm)=7.883(8H)、6.63(4H)、6.41(8H)、5.15(8H)、3.37(16H)、2.03(16H)、1.66(16H)、1.50(16H)、0.99(24H)
 MALDI-TOF-MS 実測値:m/z=1790.92(M
 目的化合物の化学式がC96116Siであり、Exact Massが1790.61である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 [近赤外光電変換膜]
 以下、実施例3から実施例5を示し、本開示に係る近赤外光電変換膜についてより具体的に説明する。
 (実施例3)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例1で得られた(OBu)Si(OPOPhNc(化合物(A-3))とPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚216nm、イオン化ポテンシャル4.95eVの近赤外光電変換膜を得た。
 (吸収スペクトルの測定方法)
 得られた近赤外光電変換膜について、吸収スペクトルを測定した。測定には、分光光度計(日立ハイテクノロジーズ製、U4100)を用いた。吸収スペクトルの測定波長域は、400nmから1200nmであった。結果を図9Aに示す。
 図9Aに示すように、実施例3の近赤外光電変換膜は、吸収ピークが942nm付近に見られた。
 (イオン化ポテンシャルの測定方法)
 実施例3で得られた近赤外光電変換膜について、イオン化ポテンシャルを測定した。イオン化ポテンシャルの測定には、上述の重量比で、実施例1で得られた化合物を含む組成物を、それぞれITO基板上に成膜し、大気中光電子分光装置(理研計器製、AC-3)を用いて測定を行った。結果を図9Bに示す。
 イオン化ポテンシャルの測定は紫外線照射のエネルギーを変化させたときの光電子数として検出される。そのため光電子が検出され始めるエネルギー位置をイオン化ポテンシャルとすることができる。
 (実施例4)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例1で得られた(OBu)Si(OPOPhNc(化合物(A-3))とPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比9:1で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚270nm、イオン化ポテンシャル4.95eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例3と同様の方法で行った。結果を図10Aに示す。また、イオン化ポテンシャルの測定は、実施例1で得られた化合物の重量比を変更した以外、実施例3と同様の方法で行った。結果を図10Bに示す。
 図10Aに示すように、実施例4の近赤外光電変換膜は、吸収ピークが942nm付近に見られた。
 (実施例5)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例2で得られた(SPent)Si(OPOPhPc(化合物(A-7))とPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比9:1で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚246nm、イオン化ポテンシャル5.08eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例3と同様の方法で行った。結果を図11Aに示す。また、イオン化ポテンシャルの測定は、実施例2で得られた化合物を用いたこと以外、実施例4と同様の方法で行った。結果を図11Bに示す。
 図11Aに示すように、実施例5の近赤外光電変換膜は、吸収ピークが948nm付近に見られた。
 [近赤外光電変換素子]
 以下、実施例6から実施例8を示し、本開示に係る近赤外光電変換素子についてより具体的に説明する。
 (実施例6)
 基板として150nmのITO電極が成膜された厚さ0.7mmのガラス基板を用い、このITO電極を下部電極とした。さらに、ITO電極の上に、光電変換層として実施例1で得られた(OBu)Si(OPOPhNc(化合物(A-3))とPCBM誘導体とを重量比1:9で混ぜた混合膜を厚さ216nmとなるように成膜した。さらに、光電変換層の上に、上部電極として厚さ80nmのAl電極を成膜した。Al電極は、5.0×10-4Pa以下の真空度で、蒸着速度1Å/sで成膜した。
 (分光感度の測定方法)
 得られた近赤外光電変換素子について、分光感度を測定した。測定には、長波長対応型分光感度測定装置(分光計器製、CEP-25RR)を用いた。より具体的には、近赤外光電変換素子を、窒素雰囲気下のグローブボックス中で密閉できる測定治具に導入し、分光感度の測定を行った。結果を図12に示す。
 図12に示すように、実施例6の近赤外光電変換素子は、近赤外帯域の外部量子効率(左側縦軸)が920nm付近の波長で最も高く、49%程度であった。また、分光感度ピークである920nmより200nm長い波長の1120nmにおける外部量子効率は0.8%であった。
 (実施例7)
 光電変換層の材料として(OBu)Si(OPOPhNc(化合物(A-3))とPCBM誘導体とを重量比9:1で混ぜた混合膜を用いた以外は、実施例6と同様に行い、膜厚270nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例6と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図13に示す。
 図13に示すように、実施例7の近赤外光電変換素子は、近赤外帯域の外部量子効率(左側縦軸)が800nm付近の波長で最も高く、31%程度であり、980nmにも分光感度ピークを有し、外部量子効率が25%程度であった。また、長波長側の分光感度ピークである980nmより200nm長い波長の1180nmにおける外部量子効率は0%であった。
 (実施例8)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例2で得られた(SPent)Si(OPOPhPc(化合物(A-7))を用いること以外は、実施例7と同様に行い、膜厚246nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例6と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図14に示す。
 図14に示すように、実施例8の近赤外光電変換素子は、外部量子効率(左側縦軸)が860nm付近の波長で最も高く、64%程度であり、1000nmにも分光感度ピークを有し、外部量子効率が50%程度であった。また、長波長側の分光感度ピークである1000nmより200nm長い波長の1200nmにおける外部量子効率は0%であった。
 (まとめ)
 図9Aから図11Aに示すように、実施例3から5の近赤外光電変換膜は、それぞれ吸収ピークが942nm、942nm、948nmに見られ、吸収ピークの吸収係数は、それぞれ1.8/μm、7.6/μm、6.4/μmであった。
 これらの結果から、実施例3から実施例5のように、ナフタロシアニン骨格のα位にアルコキシ基を有し、軸配位子にそれぞれ独立したアリール基を有するホスフィナート(phosphinate)誘導体を有するナフタロシアニン誘導体を含む組成物、または、フタロシアニン骨格のα位にチオール基を有するフタロシアニン誘導体を含む組成物を用いると、近赤外光電変換膜は、近赤外光に対して感度を有することが確認できた。
 図12に示すように、実施例6の近赤外光電変換素子は、近赤外帯域の外部量子効率が920nm付近の波長で最も高く、49%程度であった。また、分光感度ピークである920nmより200nm長い波長の1120nmにおける外部量子効率は0.8%であった。
 図13に示すように、実施例7の近赤外光電変換素子は、近赤外帯域の外部量子効率が800nm付近の波長で最も高く、31%程度であり、980nmにも分光感度ピークを有し、外部量子効率が25%程度であった。また、長波長側の分光感度ピークである980nmより200nm長い波長の1180nmにおける外部量子効率は0%であった。
 図14に示すように、実施例8の近赤外光電変換素子は、近赤外帯域の外部量子効率が860nm付近の波長で最も高く、64%程度であり、1000nmにも分光感度ピークを有し、外部量子効率が50%程度であった。また、長波長側の分光感度ピークである1000nmより200nm長い波長の1200nmにおける外部量子効率は0%であった。
 以上のように、実施例6から8の近赤外光電変換素子は、900nmから1000nmの間に分光感度ピークを有し、その分光感度ピークより200nm長い波長において外部量子効率が1%より小さいことがわかる。
 実施例6においては分光感度ピーク波長が920nmにあるため、室温で880nm前後にピーク発光波長をもつ近赤外照明(図12の破線で示される放射光の分光特性(右側縦軸)を有する近赤外照明)を用い、温度上昇により、近赤外照明において、発光波長の長波長側へのピークシフトと放射出力低下とが起きた場合でも、近赤外照明のピーク発光波長から長波長側へシフトするにつれ、近赤外光電変換素子の分光感度特性の感度が上昇、すなわち外部量子効率が上昇する。よって、カメラシステム全体としては、撮像装置が近赤外光を検出しやすくなるため、近赤外照明と撮像装置の近赤外光電変換素子の感度とのマッチングが良くなり、良好な撮像が得られる。
 実施例7においては分光感度ピーク波長が980nmにあるため、室温で940nm前後にピーク発光波長をもつ近赤外照明(図13の破線で示される放射光の分光特性(右側縦軸)を有する近赤外照明)を用い、温度上昇により、近赤外照明において、発光波長の長波長側へのピークシフトと放射出力低下とが起きた場合でも、近赤外照明のピーク発光波長から長波長側へシフトするにつれ、近赤外光電変換素子の分光感度特性の感度が上昇、すなわち外部量子効率が上昇する。よって、カメラシステム全体としては、撮像装置が近赤外光を検出しやすくなるため、近赤外照明と撮像装置の近赤外光電変換素子の感度とのマッチングが良くなり、良好な撮像が得られる。
 実施例8においては分光感度ピーク波長が1000nmにあるため、室温で980nm前後にピーク発光波長をもつ近赤外照明(図14の破線で示される放射光の分光特性(右側縦軸)を有する近赤外照明)を用い、温度上昇により、近赤外照明において、発光波長の長波長側へのピークシフトと放射出力低下とが起きた場合でも、近赤外照明のピーク発光波長から長波長側へシフトするにつれ、近赤外光電変換素子の分光感度特性の感度が上昇、すなわち外部量子効率が上昇する。よって、カメラシステム全体としては、撮像装置が近赤外光を検出しやすくなるため、近赤外照明と撮像装置の近赤外光電変換素子の感度とのマッチングが良くなり、良好な撮像が得られる。
 以上、本開示に係る組成物、近赤外光電変換素子および撮像装置について、実施の形態および実施例に基づいて説明したが、本開示は、これらの実施の形態および実施例に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態および実施例に施したもの、及び実施の形態および実施例における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 本開示に係るカメラシステムは、車載カメラおよび監視カメラなどに適用可能であり、特に、日光による光の無い夜間においても撮像するカメラとして好適である。
 1 支持基板
 2 下部電極
 3 近赤外光電変換膜
 3A 光電変換層
 4 上部電極
 5 電子ブロッキング層
 6 正孔ブロッキング層
 7 p型半導体層
 8 n型半導体層
 10、10Aa、10Ab、10B 近赤外光電変換素子
 10C 光電変換部
 13 可視光光電変換膜
 20 水平信号読出し回路
 21 増幅トランジスタ
 22 リセットトランジスタ
 23 アドレストランジスタ
 21G、22G、23G ゲート電極
 21D、21S、22D、22S、23S 不純物領域
 21X、22X、23X ゲート絶縁層
 24 画素
 25 垂直走査回路
 26 対向電極信号線
 27 垂直信号線
 28 負荷回路
 29 カラム信号処理回路
 31 電源配線
 32 差動増幅器
 33 フィードバック線
 34 電荷蓄積ノード
 35 電荷検出回路
 36 アドレス信号線
 37 リセット信号線
 40 半導体基板
 41 素子分離領域
 50 層間絶縁層
 51、53、54 コンタクトプラグ
 52 配線
 60 カラーフィルタ
 61 マイクロレンズ
 100 撮像装置
 200 近赤外照明
 300 制御部
 1000 カメラシステム

Claims (10)

  1.  室温におけるピーク発光波長を近赤外帯域に有する照明と、
     近赤外光を電荷に変換する光電変換素子を含む撮像装置と、を備え、
     前記ピーク発光波長において、前記照明から出射される光の強度が極大値を示し、
     前記光電変換素子は、前記ピーク発光波長に分光感度を有し、
     前記光電変換素子の外部量子効率は、前記ピーク発光波長よりも長い第1の波長において第1のピークを有し、
     前記第1の波長における前記外部量子効率は、前記ピーク発光波長における前記外部量子効率よりも高く、
     前記第1の波長より200nm長い波長における前記外部量子効率が1%より小さい
     カメラシステム。
  2.  前記光電変換素子は、前記ピーク発光波長に対して、-30nm以上+30nm以下の波長範囲において分光感度を有する、
     請求項1に記載のカメラシステム。
  3.  前記ピーク発光波長が800nm以上980nm以下である、
     請求項1または2に記載のカメラシステム。
  4.  前記照明は、単色の光を出射する発光ダイオードである、
     請求項1から3のいずれか1項に記載のカメラシステム。
  5.  前記光電変換素子は、光電変換材料として有機材料を含む、
     請求項1から4のいずれか1項に記載のカメラシステム。
  6.  前記有機材料がフタロシアニン誘導体またはナフタロシアニン誘導体である、
     請求項5に記載のカメラシステム。
  7.  前記光電変換素子は、
      可視光を電荷に変換する第1光電変換膜と、
      近赤外光を電荷に変換する第2光電変換膜と、を含む、
     請求項1から6のいずれか1項に記載のカメラシステム。
  8.  前記光電変換素子の前記外部量子効率は、前記ピーク発光波長よりも短い第2の波長において、第2のピークをさらに有し、
     前記第2の波長における前記外部量子効率は、前記ピーク発光波長における前記外部量子効率よりも高い、
     請求項1から7のいずれか1項に記載のカメラシステム。
  9.  前記ピーク発光波長における前記光電変換素子の前記外部量子効率が20%以上である、
     請求項1から8のいずれか1項に記載のカメラシステム。
  10.  前記撮像装置は、
      基板と、
      前記基板に設けられた電荷検出回路、
      前記基板上に設けられ、前記光電変換素子を含む光電変換部、および前記電荷検出回路と前記光電変換部とに電気的に接続された電荷蓄積ノードを含む画素と、を含む、
     請求項1から9のいずれか1項に記載のカメラシステム。
PCT/JP2019/042904 2018-12-14 2019-10-31 カメラシステム WO2020121677A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020559799A JP7394323B2 (ja) 2018-12-14 2019-10-31 カメラシステム
US17/231,647 US11523037B2 (en) 2018-12-14 2021-04-15 Camera system
US17/975,272 US11818450B2 (en) 2018-12-14 2022-10-27 Camera system
JP2023194255A JP2024026091A (ja) 2018-12-14 2023-11-15 カメラシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-234399 2018-12-14
JP2018234399 2018-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/231,647 Continuation US11523037B2 (en) 2018-12-14 2021-04-15 Camera system

Publications (1)

Publication Number Publication Date
WO2020121677A1 true WO2020121677A1 (ja) 2020-06-18

Family

ID=71077198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042904 WO2020121677A1 (ja) 2018-12-14 2019-10-31 カメラシステム

Country Status (3)

Country Link
US (2) US11523037B2 (ja)
JP (2) JP7394323B2 (ja)
WO (1) WO2020121677A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202188A1 (ja) * 2021-03-23 2022-09-29 パナソニックIpマネジメント株式会社 光電変換素子および撮像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287250B2 (en) * 2019-08-30 2022-03-29 Eaton Intelligent Power Limited Grading tool for measuring a rocker arm and rocker arm grading system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225456A (ja) * 2015-05-29 2016-12-28 パナソニックIpマネジメント株式会社 撮像装置および光電変換膜の製造方法
JP2018022980A (ja) * 2016-08-02 2018-02-08 シャープ株式会社 監視カメラ
JP2018190964A (ja) * 2017-04-28 2018-11-29 パナソニックIpマネジメント株式会社 光電変換膜、並びにそれを用いた光電変換素子および撮像装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234460A (ja) 2002-02-12 2003-08-22 Nippon Hoso Kyokai <Nhk> 積層型光導電膜および固体撮像装置
JP5216279B2 (ja) 2007-08-23 2013-06-19 富士フイルム株式会社 有機半導体材料、該材料を含む膜、有機電子デバイス及び赤外色素組成物
JP2010232410A (ja) 2009-03-27 2010-10-14 Toyo Ink Mfg Co Ltd 有機光電変換素子
CN102576805A (zh) 2009-10-30 2012-07-11 住友化学株式会社 有机光电转换元件及其制造方法
WO2014093322A1 (en) * 2012-12-10 2014-06-19 Massachusetts Institute Of Technology Near-infrared light emitting device using semiconductor nanocrystals
US10908062B2 (en) * 2015-03-06 2021-02-02 Scanit Technologies, Inc. Airborne particle monitor
CN107018289B (zh) * 2016-01-22 2021-01-19 松下知识产权经营株式会社 摄像装置
JP2017175108A (ja) * 2016-03-17 2017-09-28 パナソニックIpマネジメント株式会社 光センサおよび撮像装置
FR3059829B1 (fr) * 2016-12-05 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photodetecteur infrarouge
CN108389870A (zh) * 2017-02-03 2018-08-10 松下知识产权经营株式会社 摄像装置
CN107749070B (zh) * 2017-10-13 2020-06-02 京东方科技集团股份有限公司 深度信息的获取方法和获取装置、手势识别设备
EP3911920A4 (en) * 2019-01-20 2022-10-19 Magik Eye Inc. THREE-DIMENSIONAL SENSOR INCLUDING A BANDPASS FILTER WITH MULTIPLE PASSBANDS
KR102646902B1 (ko) * 2019-02-12 2024-03-12 삼성전자주식회사 거리 측정을 위한 이미지 센서

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225456A (ja) * 2015-05-29 2016-12-28 パナソニックIpマネジメント株式会社 撮像装置および光電変換膜の製造方法
JP2018022980A (ja) * 2016-08-02 2018-02-08 シャープ株式会社 監視カメラ
JP2018190964A (ja) * 2017-04-28 2018-11-29 パナソニックIpマネジメント株式会社 光電変換膜、並びにそれを用いた光電変換素子および撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202188A1 (ja) * 2021-03-23 2022-09-29 パナソニックIpマネジメント株式会社 光電変換素子および撮像装置

Also Published As

Publication number Publication date
JP7394323B2 (ja) 2023-12-08
US11523037B2 (en) 2022-12-06
US11818450B2 (en) 2023-11-14
US20210258458A1 (en) 2021-08-19
JPWO2020121677A1 (ja) 2021-10-21
US20230283872A1 (en) 2023-09-07
JP2024026091A (ja) 2024-02-28

Similar Documents

Publication Publication Date Title
US11818450B2 (en) Camera system
US10297766B2 (en) Composition containing naphthalocyanine derivative, photoelectric conversion element containing the same, and imaging device
JP2016225456A (ja) 撮像装置および光電変換膜の製造方法
JP2009049278A (ja) 光電変換素子、光電変換素子の製造方法、固体撮像素子
EP3396717A1 (en) Photoelectric conversion film, photoelectric conversion element, and imaging device
WO2020162095A1 (ja) 光電変換素子および撮像装置
WO2015198697A1 (ja) 光電変換膜、固体撮像素子、および電子機器
US11447639B2 (en) Composition, photoelectric conversion element, and imaging device
JP2019137654A (ja) 組成物、近赤外光電変換素子および撮像装置
WO2021049298A1 (ja) 組成物、光電変換素子および撮像装置
JP7486103B2 (ja) 組成物、光電変換素子および撮像装置
JP2013012535A (ja) 光電変換素子およびその使用方法、撮像素子、光センサ、光電変換膜
WO2022172531A1 (ja) 撮像装置
EP4318623A1 (en) Photoelectric conversion element and imaging device
WO2022158268A1 (ja) 光電流増倍素子および撮像装置
WO2020100466A1 (ja) 組成物、光電変換素子および撮像装置
WO2021220691A1 (ja) 光電変換素子および撮像装置
WO2019188118A1 (ja) 組成物、光電変換素子および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020559799

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894473

Country of ref document: EP

Kind code of ref document: A1