WO2019188118A1 - 組成物、光電変換素子および撮像装置 - Google Patents

組成物、光電変換素子および撮像装置 Download PDF

Info

Publication number
WO2019188118A1
WO2019188118A1 PCT/JP2019/009322 JP2019009322W WO2019188118A1 WO 2019188118 A1 WO2019188118 A1 WO 2019188118A1 JP 2019009322 W JP2019009322 W JP 2019009322W WO 2019188118 A1 WO2019188118 A1 WO 2019188118A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
compound
group
general formula
conversion element
Prior art date
Application number
PCT/JP2019/009322
Other languages
English (en)
French (fr)
Inventor
浩章 飯島
雅哉 平出
学 中田
渓行 古山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018215834A external-priority patent/JP6767695B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980009718.8A priority Critical patent/CN111655701B/zh
Publication of WO2019188118A1 publication Critical patent/WO2019188118A1/ja
Priority to US17/013,780 priority patent/US11447639B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a composition including a phthalocyanine derivative, a photoelectric conversion element, and an imaging device.
  • phthalocyanine derivatives and naphthalocyanine derivatives are not limited to organic semiconductor materials as materials having light absorption characteristics in the near-infrared light region. Researched as a material that can be used in various fields.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a method for synthesizing a phthalocyanine derivative having light absorption characteristics in a near-infrared light region having a longer wavelength.
  • Patent Document 1 discloses that a semiconductor element and an electronic element are realized by thinning a phthalocyanine derivative and using it as a photoelectric conversion material.
  • Non-Patent Document 3 discloses a photodetector and a solar cell using a low molecular weight organic thin film. These Patent Document 1 and Non-Patent Document 3 disclose phthalocyanine derivatives having an absorption maximum wavelength of 600 nm to 800 nm.
  • compositions, a photoelectric conversion element, and an imaging device having high light absorption characteristics in a near-infrared light region having a longer wavelength are provided.
  • composition according to one embodiment of the present disclosure includes a phthalocyanine derivative represented by the following general formula (1).
  • R 1 to R 8 are each independently an alkyl group or an aryl group
  • M is a tetravalent metal
  • each of R 9 and R 10 is represented by the following general formulas (2) to (5): Any one of the substituents represented.
  • R 11 to R 13 are each independently an alkyl group
  • R 14 to R 18 are each independently an alkyl group or an aryl group.
  • a photoelectric conversion element according to one embodiment of the present disclosure is provided between a pair of electrodes and the pair of electrodes, includes any one of the above compositions, and has light absorption characteristics in a near-infrared light region.
  • a photoelectric conversion film is provided between a pair of electrodes and the pair of electrodes, includes any one of the above compositions, and has light absorption characteristics in a near-infrared light region.
  • An imaging device includes a substrate, a charge detection circuit provided on the substrate surface, a photoelectric conversion unit provided on the substrate, and the charge detection circuit and the photoelectric conversion unit.
  • compositions, a photoelectric conversion element, and an imaging device having high light absorption characteristics in a near-infrared light region having a longer wavelength are provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a near-infrared photoelectric conversion element according to this embodiment.
  • FIG. 2 is a schematic cross-sectional view showing another example of the near-infrared photoelectric conversion element according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of an energy band diagram of the near-infrared photoelectric conversion element illustrated in FIG. 2.
  • FIG. 4 is a diagram illustrating an example of a circuit configuration of the imaging apparatus according to the present embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating an example of a device structure of a pixel in the imaging apparatus according to the present embodiment.
  • 6A is an absorption spectrum diagram of the phthalocyanine derivatives of Examples 1 to 5.
  • 6B is an absorption spectrum diagram of the phthalocyanine derivatives of Examples 6 to 9.
  • 7A is a graph of the absorption spectrum of the near-infrared photoelectric conversion film of Example 10.
  • FIG. 7B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 10.
  • 8A is a graph of the absorption spectrum of the near-infrared photoelectric conversion film of Example 11.
  • FIG. FIG. 8B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 11.
  • 9A is a graph of the absorption spectrum of the near-infrared photoelectric conversion film of Example 12.
  • FIG. 9B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 12.
  • 10A is a graph of the absorption spectrum of the near-infrared photoelectric conversion film of Example 13.
  • FIG. 10B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 13.
  • FIG. 11A is an absorption spectrum diagram of the near-infrared photoelectric conversion film of Example 14.
  • FIG. 11B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 14.
  • 12A is an absorption spectrum diagram of the near-infrared photoelectric conversion film of Example 15.
  • FIG. 12B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 15.
  • FIG. 13A is a graph of the absorption spectrum of the near-infrared photoelectric conversion film of Example 16.
  • FIG. 13B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 16.
  • 14A is a graph of the absorption spectrum of the near-infrared photoelectric conversion film of Example 17.
  • FIG. FIG. 14B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 17.
  • FIG. 15A is the absorption spectrum of the near-infrared photoelectric conversion film of Example 18.
  • FIG. 15B is a diagram showing the measurement result of the photoelectron spectroscopy measurement of the near-infrared photoelectric conversion film of Example 18.
  • FIG. 16 is a diagram showing the measurement results of the spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 19.
  • FIG. 17 is a diagram illustrating a measurement result of spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 20.
  • FIG. 18 is a diagram illustrating a measurement result of spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 21.
  • FIG. 19 is a diagram showing the measurement results of the spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 22.
  • FIG. 20 is a diagram showing the measurement results of the spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 23.
  • FIG. 21 is a diagram showing the measurement results of the spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 24.
  • FIG. 22 is a diagram showing the measurement results of the spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 25.
  • FIG. 23 is a diagram illustrating a measurement result of spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 26.
  • FIG. 24 is a diagram showing the measurement results of the spectral sensitivity characteristics of the near-infrared photoelectric conversion element of Example 27.
  • the energy level can be changed by changing the molecular structure of the organic compound used.
  • the absorption wavelength can be controlled, and sensitivity can be imparted even in the near-infrared light region where Si does not have sensitivity.
  • an organic semiconductor material it is possible to utilize light in a wavelength region that has not been used for photoelectric conversion in the past. It can be realized.
  • a photoelectric conversion element and an imaging element using an organic semiconductor material having sensitivity in a near infrared light region having a wavelength range of 650 nm to 3.0 ⁇ m are actively studied.
  • phthalocyanine derivatives have a wide ⁇ -conjugated system and strong absorption in the near-infrared light region due to ⁇ - ⁇ * absorption.
  • a potential candidate for materials is as large as about 700 to 800 nm, and a molecular structure that achieves both longer wavelength and imaging element characteristics is required. That is, in the prior art, a near-infrared photoelectric conversion film having light absorption characteristics in a near-infrared light region of 800 nm or more has not been obtained.
  • the present inventors have found that the response wavelength of the organic material photoelectric conversion film can be controlled by controlling the electronic state of the phthalocyanine ring.
  • the present disclosure provides a composition, a photoelectric conversion element, and an imaging device having high light absorption characteristics in a near-infrared light region having a longer wavelength.
  • composition according to one embodiment of the present disclosure includes a phthalocyanine derivative represented by the following general formula (1).
  • R 1 to R 8 are each independently an alkyl group or an aryl group
  • M is a tetravalent metal
  • each of R 9 and R 10 is represented by the following general formulas (2) to (5): Any one of the represented substituents.
  • R 11 to R 13 are each independently an alkyl group
  • R 14 to R 18 are each independently an alkyl group or an aryl group.
  • the phthalocyanine derivative represented by the general formula (1) since the phthalocyanine derivative represented by the general formula (1) has an electron-withdrawing axial ligand, the electron density of the phthalocyanine ring is reduced, Both the HOMO (High Occupied Molecular Orbital) energy level and the LUMO (Lowest Unoccupied Molecular Orbital) energy level become deeper. Further, in the composition, since the phthalocyanine derivative has an electron donating ⁇ -side chain, only the LUMO energy level is lowered. Therefore, the composition has a deep HOMO energy level and a narrow energy gap (Eg) that is a difference between the HOMO energy level and the LUMO energy level.
  • Eg narrow energy gap
  • the composition which concerns on 1 aspect of this indication contains the phthalocyanine derivative represented by the said General formula (1), an energy gap becomes narrow, Therefore In a near-infrared-light area
  • the oxygen atom bonded to the central metal mainly plays the role of electron withdrawing. Therefore, in any of the cases where R 9 to R 10 are changed to the above general formulas (1) to (5), they have high light absorption characteristics in the near infrared light region and can reduce dark current. .
  • R 1 to R 8 may be an alkyl group having 5 or less carbon atoms.
  • the phthalocyanine derivative represented by the general formula (1) becomes a solid at room temperature, which facilitates synthesis.
  • M may be Si or Sn.
  • composition according to one embodiment of the present disclosure synthesis is relatively easy by using Si or Sn among the tetravalent metals.
  • the phthalocyanine derivative may be any one of compounds represented by the following general formulas (6) to (11).
  • Ar is an aryl group and X is an alkyl group having 10 or less carbon atoms.
  • the phthalocyanine derivative represented by the general formula (1) can be easily synthesized.
  • At least one hydrogen atom contained in at least one selected from the group consisting of R 9 and R 10 is a fluorine atom.
  • it may be substituted with a fluorine-containing group.
  • the electron withdrawing property of the axial ligand of the phthalocyanine derivative is further increased, so that the electron density of the phthalocyanine ring is further reduced, and the HOMO energy level and the LUMO energy are reduced. Both levels become deeper. Therefore, the ionization potential of the naphthalocyanine derivative represented by the general formula (1) is further lowered, and the dark current can be further suppressed. Further, since the LUMO energy level is deeper than the HOMO energy level, the energy gap (Eg) is further narrowed. Therefore, in the composition according to one embodiment of the present disclosure, the energy gap is further narrowed, and the absorption peak in the near-infrared light region is further increased in wavelength.
  • R 9 and R 10 are the general formula (5)
  • R 17 and R 18 are each independently an aryl group, and at least one hydrogen atom contained in at least one selected from the group consisting of R 17 and R 18 may be substituted with a fluorine atom or a fluorine-containing group.
  • the introduction of the axial ligand becomes easy, and the synthesis becomes relatively easy.
  • R 17 and R 18 are each independently a phenyl group, and are selected from the group consisting of R 17 and R 18. At least one hydrogen atom contained in at least one may be substituted with a fluorine atom or a trifluoromethyl group.
  • the introduction of the axial ligand becomes easy, and the synthesis becomes relatively easy.
  • the phthalocyanine derivative may be any one of compounds represented by the following structural formulas (12) to (15).
  • an axial ligand that can be easily prepared can be used, so that the synthesis becomes relatively easy.
  • a photoelectric conversion element according to one embodiment of the present disclosure is provided between a pair of electrodes and the pair of electrodes, includes any one of the above compositions, and has light absorption characteristics in a near-infrared light region.
  • a photoelectric conversion film is provided between a pair of electrodes and the pair of electrodes, includes any one of the above compositions, and has light absorption characteristics in a near-infrared light region.
  • the photoelectric conversion film includes the composition, and thus the photoelectric conversion film has high light absorption characteristics in a near-infrared light region having a longer wavelength and reduces dark current. can do. Therefore, the photoelectric conversion element according to one embodiment of the present disclosure can exhibit high light absorption characteristics in a wide range of the near infrared light region.
  • the ionization potential of the photoelectric conversion film may be 5.1 eV or more.
  • the concentration of the composition in the photoelectric conversion film may be 5 wt% or more and 25 wt% or less.
  • the photoelectric conversion element according to one embodiment of the present disclosure can achieve both reduction in dark current and sensitivity in the near-infrared light region.
  • the absorption spectrum of the photoelectric conversion film may include an absorption peak in a wavelength range of 803 nm or more.
  • the photoelectric conversion element according to one embodiment of the present disclosure can have high light absorption characteristics over a wide range in the near-infrared light region.
  • An imaging device includes a substrate, a charge detection circuit provided on the substrate surface, a photoelectric conversion unit provided on the substrate, and the charge detection circuit and the photoelectric conversion unit.
  • the imaging device has high light absorption characteristics in a near-infrared light region having a longer wavelength and can reduce dark current.
  • composition includes a phthalocyanine derivative represented by the following general formula (1).
  • R 1 to R 8 are each independently an alkyl group or an aryl group
  • M is a tetravalent metal
  • each of R 9 and R 10 is represented by the following general formulas (2) to (5): Any one of the substituents represented.
  • R 11 to R 13 are each independently an alkyl group
  • R 14 to R 18 are each independently an alkyl group or an aryl group.
  • the composition according to the present embodiment has high light absorption characteristics in the near-infrared light region and can suppress dark current. it can.
  • the phthalocyanine derivative represented by the above general formula (1) has a tetravalent metal as a central metal, and has an axial ligand type structure having two axial ligands above and below the molecular plane. Thereby, since the interaction between molecules is relaxed, film formation by vapor deposition becomes easy.
  • the phthalocyanine derivative represented by the general formula (1) has an electron-withdrawing axial ligand, the electron density of the phthalocyanine ring is reduced, and a HOMO (High Occupied Molecular Orbital) energy level (hereinafter, Both the HOMO level and the LUMO (Lowest Unoccupied Molecular Orbital) energy level (hereinafter referred to as the LUMO level) become deeper.
  • HOMO High Occupied Molecular Orbital
  • the phthalocyanine derivative since the phthalocyanine derivative has an electron donating ⁇ -side chain, only the LUMO level is lowered. In the phthalocyanine derivative, the HOMO level and the LUMO level become deeper and only the LUMO level becomes deeper due to a combination of the effects of having the above-described central metal, axial ligand, and ⁇ -side chain. Therefore, the phthalocyanine derivative has a lower LUMO level than a HOMO level. Thus, the phthalocyanine derivative has a large HOMO level and a narrow energy gap (Eg) between the HOMO level and the LUMO level.
  • Eg energy gap
  • the composition according to the present embodiment includes the phthalocyanine derivative, so that the composition has high light absorption characteristics in the near-infrared light region, and the HOMO energy level is deepened, the ionization potential is lowered, and the ionization potential is decreased.
  • dark current can be reduced when used in a near-infrared photoelectric conversion element or the like.
  • R 1 to R 8 may be the same or different, and may be an alkyl group from the viewpoint of photoelectric conversion efficiency.
  • the alkyl group includes a linear or branched alkyl group.
  • R 1 to R 8 may have 5 or less carbon atoms.
  • Examples of R 1 to R 8 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • the phthalocyanine derivative represented by the general formula (1) has an alkylthio group or an arylthio group containing a sulfur element at the ⁇ -position, so that it is absorbed in a near infrared light region of 803 nm or more. It has a wavelength peak, that is, an absorption maximum wavelength. That is, as compared with a phthalocyanine derivative having no sulfur element at the ⁇ -position, it has an absorption wavelength peak on the high wavelength side and can have high light absorption characteristics over a wide range in the near-infrared light region.
  • composition according to the present embodiment is solid at room temperature because the phthalocyanine derivative represented by the above general formula (1) has an alkyl group having 5 or less carbon atoms in R 1 to R 8 , and thus the composition can be synthesized. It becomes easy.
  • R 11 to R 13 may be the same or different and are each independently an alkyl group.
  • R 14 to R 18 may be the same or different and are each independently an alkyl group or an aryl group.
  • the alkyl group may include a linear, branched, or cyclic unsubstituted or substituted alkyl group.
  • Examples of the unsubstituted alkyl group include a methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl group.
  • the alkyl group may further have a substituent.
  • substituents include alkyl groups, alkoxy groups, halogen atoms, hydroxyl groups, amino groups, thiol groups, silyl groups, ester groups, aryl groups, heteroaryl groups, and other known substituents.
  • alkyl group substituted with a halogen atom include an ⁇ -bromoalkyl group and a perfluoroalkyl group.
  • Examples of the alkyl group substituted with a hydroxyl group include a methylol group and a butyrol group.
  • alkyl group substituted with an amino group examples include primary or secondary amino groups such as a dimethylamino group, a diphenylamino group, a methylphenylamino group, a methylamino group, and an ethylamino group.
  • alkyl group substituted with a thiol group examples include a mercapto group and an alkylthio group.
  • Examples of the alkyl group substituted with a silyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a triisopropylsilyl group, a dimethylisopropylsilyl group, and a dimethyl tert-butylsilyl group.
  • Examples of the alkyl group substituted with an ester group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a tert-butoxycarbonyl group, a phenoxycarbonyl group, an acetyloxy group, and a benzoyloxy group. It is done.
  • the aryl group is, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, an anthryl group, a terphenyl group, a pyrenyl group, a fluorenyl group, or a perylenyl group, or a heteroaryl group. Yes, it may be unsubstituted or substituted.
  • substituent in the case of substitution include the substituents mentioned as examples of the substituent that the alkyl group has.
  • R 11 to R 13 may be an alkyl group having 10 or less carbon atoms or 4 or less carbon atoms from the viewpoints of solubility and ease of synthesis.
  • R 14 may be an alkyl group having 10 or less carbon atoms.
  • R 15 to R 18 may be a phenyl group, a fluorophenyl group, or a trifluoromethylphenyl group.
  • the central metal M may be Si or Sn from the viewpoint of ease of synthesis.
  • At least one hydrogen atom contained in at least one selected from the group consisting of R 9 and R 10 may be substituted with a fluorine atom or a fluorine-containing group.
  • being substituted with a fluorine atom indicates that the fluorine atom is directly substituted on the carbon forming the skeleton of the alkyl group or aryl group contained in R 9 and R 10 .
  • being substituted with a fluorine-containing group means that the carbon forming the skeleton of the alkyl group or aryl group contained in R 9 and R 10 has another substituent, and the other substituent is Indicates that the fluorine atom is substituted.
  • the phthalocyanine derivative represented by the general formula (1) in the phthalocyanine derivative represented by the general formula (1), at least one hydrogen atom in R 9 and R 10 is substituted with a fluorine atom or a fluorine-containing group.
  • the electron withdrawing property of the axial ligand of the phthalocyanine derivative is further increased, the electron density of the phthalocyanine ring is further decreased, and both the HOMO level and the LUMO level are further deepened. Therefore, the phthalocyanine derivative represented by the above general formula (1), in which at least one hydrogen atom in R 9 and R 10 is substituted with a fluorine atom or a fluorine-containing group, further increases dark current when used in a photoelectric conversion element. Can be reduced.
  • Examples of the fluorine-containing group include an alkyl group, an aryl group, and an alkenyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • Examples of the alkyl group and aryl group are as described above.
  • Specific examples of the fluorine-containing group include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a difluoroethyl group, a trifluoroethyl group, a tetrafluoroethyl group, a pentafluoroethyl group, and a fluorophenyl group. , Difluorophenyl group, trifluorophenyl group, trifluorophenyl group, tetrafluorophenyl group, pentafluorophenyl group and the like.
  • the fluorine-containing group further has an alkyl group, an alkoxy group, a halogen atom, a hydroxyl group, an amino group, a thiol group, a silyl group, an ester group, an aryl group, a heteroaryl group, and other known substituents. Also good.
  • R 9 and R 10 are the general formula (5).
  • R 17 and R 18 are independent of each other. And at least one hydrogen atom contained in at least one selected from the group consisting of R 17 and R 18 may be substituted with a fluorine atom or a fluorine-containing group.
  • R 17 and R 18 are each independently a phenyl group, and at least one hydrogen atom contained in at least one selected from the group consisting of R 17 and R 18 is a fluorine atom or a trifluoromethyl group. May be substituted.
  • R 17 and R 18 examples include 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 3,5-difluorophenyl group, pentafluorophenyl group, 3-trifluoromethylphenyl group, 4 -Trifluoromethylphenyl group, 3,5-bistrifluorophenyl group and the like.
  • the phthalocyanine derivative represented by the general formula (1) can be easily synthesized by being a compound represented by the following general formulas (6) to (11). As a result, a composition having high absorption characteristics in a near-infrared light region having a longer wavelength and capable of reducing dark current can be obtained relatively easily. Further, phthalocyanine derivatives represented by the above general formula (1), in which at least one hydrogen atom in R 9 and R 10 is substituted with a fluorine atom or a fluorine-containing group, are represented by the following structural formulas (12) to (15). Can be easily synthesized. Thereby, the composition which can further reduce a dark current can be obtained comparatively easily.
  • R 1 to R 8 are pentyl groups having 5 carbon atoms
  • M is Si
  • R 9 to R 10 are represented by the general formula (2). May be a substituent.
  • R 11 to R 13 may each independently be an alkyl group having 10 or less carbon atoms.
  • R 11 to R 13 may each be the same alkyl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following general formula (6).
  • the phthalocyanine derivative represented by the general formula (1) is a compound in which X in the following general formula (6) is a butyl group. .
  • R 1 to R 8 are pentyl groups having 5 carbon atoms
  • M is Sn
  • R 9 to R 10 are the general formula (2).
  • the substituent represented by these may be sufficient.
  • R 11 to R 13 may each independently be an alkyl group having 10 or less carbon atoms.
  • R 11 to R 13 may each be the same alkyl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following general formula (7).
  • the phthalocyanine derivative represented by the general formula (1) is a compound in which X in the following general formula (7) is a hexyl group. .
  • R 1 to R 8 are pentyl groups having 5 carbon atoms
  • M is Si
  • R 9 to R 10 are the above general formula (5).
  • the substituent represented by these may be sufficient.
  • R 17 to R 18 may each independently be an aryl group.
  • R 17 to R 18 may be the same aryl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following general formula (8).
  • the phthalocyanine derivative represented by the general formula (1) is a compound in which Ar in the following general formula (8) is a phenyl group.
  • R 1 to R 8 are ethyl groups having 2 carbon atoms
  • M is Si
  • R 9 to R 10 are the general formula (2).
  • the substituent represented by these may be sufficient.
  • R 11 to R 13 may each independently be an alkyl group having 10 or less carbon atoms.
  • R 11 to R 13 may each be the same alkyl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following general formula (9).
  • the phthalocyanine derivative represented by the general formula (1) is a compound in which X in the following general formula (9) is a butyl group. .
  • R 1 to R 8 are ethyl groups having 2 carbon atoms
  • M is Si
  • R 9 to R 10 are the general formula (5).
  • the substituent represented by these may be sufficient.
  • R 17 to R 18 may each independently be an aryl group.
  • R 17 to R 18 may be the same aryl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following general formula (10).
  • the phthalocyanine derivative represented by the general formula (1) is a compound in which Ar in the following general formula (10) is a phenyl group.
  • R 1 to R 8 are isopropyl groups having 3 carbon atoms
  • M is Sn
  • R 9 to R 10 are the general formula (2).
  • the substituent represented by these may be sufficient.
  • R 11 to R 13 may each independently be an alkyl group having 10 or less carbon atoms.
  • R 11 to R 13 may each be the same alkyl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following general formula (11).
  • the phthalocyanine derivative represented by the general formula (1) is a compound in which X in the following general formula (11) is a hexyl group. .
  • R 1 to R 8 are pentyl groups having 5 carbon atoms
  • M is Si
  • R 9 to R 10 are the above general formula (5).
  • the substituent represented by these may be sufficient.
  • R 17 to R 18 may be a 4-fluorophenyl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following structural formula (12).
  • R 1 to R 8 are pentyl groups having 5 carbon atoms
  • M is Si
  • R 9 to R 10 are the above general formula (5).
  • the substituent represented by these may be sufficient.
  • R 17 to R 18 may be a 3,5-difluorophenyl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following structural formula (13).
  • R 1 to R 8 are pentyl groups having 5 carbon atoms
  • M is Si
  • R 9 to R 10 are the above general formula (5).
  • the substituent represented by these may be sufficient.
  • R 17 to R 18 may be a 4-trifluoromethylphenyl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following structural formula (14).
  • R 1 to R 8 are pentyl groups having 5 carbon atoms
  • M is Si
  • R 9 to R 10 are the above general formula (5).
  • the substituent represented by these may be sufficient.
  • R 17 to R 18 may be a 3,5-bistrifluorophenyl group.
  • the phthalocyanine derivative represented by the general formula (1) is a compound represented by the following structural formula (15).
  • Non-Patent Document 4 The phthalocyanine ring formation reaction of the compound represented by the above general formula (1) is described in pages 1 to 62 of “Phthalocyanine—Chemistry and Function” edited by Masayoshi Shirai and Nagao Kobayashi (published by IPC, 1997). Non-Patent Document 4) can be performed.
  • any reaction conditions may be used in the phthalocyanine ring formation reaction.
  • Sn metal or Si metal as a central metal of phthalocyanine may be added, but Sn metal or Si metal may be introduced after synthesizing a phthalocyanine derivative having no central metal.
  • reaction solvent any solvent may be used, but a solvent having a high boiling point is preferable.
  • an acid or a base may be used, and in particular, a base may be used.
  • the optimum reaction conditions vary depending on the structure of the target phthalocyanine derivative, but can be set with reference to the specific reaction conditions described in Non-Patent Document 4 above.
  • phthalocyanine derivatives such as phthalic anhydride, phthalimide, phthalic acid and salts thereof, phthalic acid diamide, phthalonitrile, 1,3-diiminobenzoisoindoline can be used. These raw materials may be synthesized by any known method.
  • FIG. 1 is a schematic cross-sectional view of a near-infrared photoelectric conversion element 10A that is an example of a near-infrared photoelectric conversion element according to the present embodiment.
  • Near-infrared photoelectric conversion element 10A is provided between upper electrode 4 and lower electrode 2, which are a pair of electrodes, and the pair of electrodes, and includes near-infrared light including any of the above-described compositions. And a photoelectric conversion film 3.
  • the near-infrared photoelectric conversion element 10A according to the present embodiment is supported by the support substrate 1, for example.
  • the support substrate 1 is transparent to near-infrared light, and light enters the near-infrared photoelectric conversion element 10 ⁇ / b> A through the support substrate 1.
  • the support substrate 1 may be a substrate used in a general photoelectric conversion element, and may be, for example, a glass substrate, a quartz substrate, a semiconductor substrate, a plastic substrate, or the like.
  • transparent to near-infrared light means substantially transparent to near-infrared light.
  • the transmittance of light in the near-infrared light region is 60% or more. It may be 80% or more, or 90% or more.
  • the near-infrared photoelectric conversion film 3 is produced using, for example, a composition containing a phthalocyanine derivative represented by the following general formula (1).
  • R 1 to R 8 are each independently an alkyl group or an aryl group
  • M is a tetravalent metal
  • each of R 9 and R 10 is represented by the following general formulas (2) to (5): Any one of the represented substituents.
  • R 11 to R 13 are each independently an alkyl group
  • R 14 to R 18 are each independently an alkyl group or an aryl group.
  • the phthalocyanine derivatives represented by the general formula (1) are, for example, compounds represented by the following general formulas (6) to (11) and the following structural formulas (12) to (15). Any one of them may be sufficient.
  • the composition according to the present embodiment can have high light absorption characteristics in the near infrared light region.
  • a method for producing the near-infrared photoelectric conversion film 3 for example, a coating method by spin coating or the like, a vacuum evaporation method in which the material of the film is vaporized by heating under vacuum and deposited on the substrate can be used.
  • An evaporation method may be used in order to prevent the mixing of impurities and to consider the multi-layering for higher functionality with more flexibility.
  • a commercially available apparatus may be used as the vapor deposition apparatus.
  • the temperature of the vapor deposition source during vapor deposition may be 100 ° C. to 500 ° C., or 150 ° C. to 400 ° C.
  • the degree of vacuum at the time of deposition may be 1 ⁇ 10 ⁇ 6 Pa to 1 Pa, or 1 ⁇ 10 ⁇ 6 Pa to 1 ⁇ 10 ⁇ 4 Pa.
  • a method of increasing the deposition rate by adding metal fine particles or the like to the deposition source may be used.
  • the blending ratio of the material of the near-infrared photoelectric conversion film 3 is represented by a weight ratio in the coating method and a volume ratio in the vapor deposition method. More specifically, in the coating method, the blending ratio is defined by the weight of each material at the time of solution adjustment, and in the vapor deposition method, the blending ratio of each material while monitoring the deposited film thickness of each material with a film thickness meter during deposition. Is specified.
  • the composition ratio of the material in the near-infrared photoelectric conversion film 3 is 5% by weight to 25% by weight. It may be. Thereby, near-infrared photoelectric conversion element 10A and 10B can make compatible suppression of a dark current, and the sensitivity in a near-infrared-light area
  • the concentration of the composition in the near-infrared photoelectric conversion film has been found to be 5 volume% or more and 25 volume% or more.
  • the acceptor organic compound eg, fullerene (C60)
  • the absorption maximum wavelength in the absorption spectrum of the near-infrared photoelectric conversion film 3 is 803 nm or more, 820 nm or more, or 860 nm or more.
  • the near-infrared photoelectric conversion element which concerns on this Embodiment can have a high light absorption characteristic over the wide range of a near-infrared-light area
  • the ionization potential of the near-infrared photoelectric conversion film 3 is 5.1 eV or more. Thereby, in the near-infrared photoelectric conversion element according to the present embodiment, dark current is reduced.
  • At least one of the upper electrode 4 and the lower electrode 2 is a transparent electrode made of a conductive material that is transparent to near infrared light.
  • a bias voltage is applied to the lower electrode 2 and the upper electrode 4 by wiring (not shown).
  • the polarity of the bias voltage is determined so that electrons move to the upper electrode 4 and holes move to the lower electrode 2 among the charges generated in the near-infrared photoelectric conversion film 3.
  • the bias voltage may be set so that holes move to the upper electrode 4 and electrons move to the lower electrode 2 among the charges generated in the near-infrared photoelectric conversion film 3.
  • the bias voltage is obtained by dividing the applied voltage value by the distance between the lower electrode 2 and the upper electrode 4, that is, the electric field strength generated in the near-infrared photoelectric conversion element 10A is 1.0 ⁇ 10 3.
  • V / cm to 1.0 ⁇ 10 7 V / cm may be applied, and 1.0 ⁇ 10 4 V / cm to 1.0 ⁇ 10 7 V / cm. It may be applied as follows. By adjusting the magnitude of the bias voltage in this way, it is possible to efficiently move the charge to the upper electrode 4 and take out a signal corresponding to the charge to the outside.
  • a transparent conductive oxide (TCO) having a high light transmittance in the near-infrared light region and a small resistance value may be used.
  • a metal thin film such as Au can be used as a transparent electrode, but if an attempt is made to obtain a light transmittance of 90% or more in the near-infrared light region, a transparent electrode is produced so that the transmittance is obtained from 60% to 80%. Compared with the case, the resistance value may increase extremely. Therefore, it is possible to obtain a transparent electrode in which TCO is more transparent to near infrared light and has a smaller resistance value than a metal material such as Au.
  • TCO is not particularly limited, for example, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), AZO (Aluminum-doped Zinc Oxide), FTO (Florine-doped Tin Oxide), SnO 2, TiO 2, ZnO 2 Etc. can be used.
  • the lower electrode 2 and the upper electrode 4 may be made of metal materials such as TCO and Au, alone or in combination, depending on the desired transmittance.
  • the material of the lower electrode 2 and the upper electrode 4 is not limited to the above-described conductive material transparent to near-infrared light, and other materials may be used.
  • Various methods are used for producing the lower electrode 2 and the upper electrode 4 depending on the materials used.
  • a chemical reaction method such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a sol-gel method, or a method of applying a dispersion of indium tin oxide may be used.
  • UV-ozone treatment, plasma treatment, or the like may be further performed.
  • the near-infrared photoelectric conversion element 10 ⁇ / b> A photoelectric conversion occurs in the near-infrared photoelectric conversion film 3 by the near-infrared light incident through the support substrate 1 and the lower electrode 2.
  • the hole-electron pairs thus generated holes are collected at the lower electrode 2 and electrons are collected at the upper electrode 4. Therefore, for example, by measuring the potential of the lower electrode 2, it is possible to detect near-infrared light incident on the near-infrared photoelectric conversion element 10A.
  • the near-infrared photoelectric conversion element 10A may further include an electron blocking layer 5 and a hole blocking layer 6 described later.
  • an electron blocking layer 5 and a hole blocking layer 6 By sandwiching the near-infrared photoelectric conversion film 3 between the electron blocking layer 5 and the hole blocking layer 6, electrons are injected from the lower electrode 2 into the near-infrared photoelectric conversion film 3, and from the upper electrode 4 to the near red Injecting holes into the outer photoelectric conversion film 3 can be suppressed. Thereby, dark current can be suppressed. Details of the electron blocking layer 5 and the hole blocking layer 6 will be described later.
  • FIG. 2 is a schematic cross-sectional view of a near-infrared photoelectric conversion element 10B which is another example of the near-infrared photoelectric conversion element according to the present embodiment.
  • FIG. 3 shows an example of an energy band diagram of the near-infrared photoelectric conversion element 10B.
  • the near-infrared photoelectric conversion element 10 ⁇ / b> B includes at least a lower electrode 2, an upper electrode 4, and a photoelectric conversion layer 3 ⁇ / b> A disposed between the lower electrode 2 and the upper electrode 4.
  • the photoelectric conversion layer 3A includes, for example, a near-infrared photoelectric conversion film 3, a p-type semiconductor layer 7 that functions as a hole transport layer, and an n-type semiconductor layer 8 that functions as an electron transport layer.
  • the outer photoelectric conversion film 3 is disposed between the p-type semiconductor layer 7 and the n-type semiconductor layer 8.
  • the near-infrared photoelectric conversion element 10B includes an electron blocking layer 5 disposed between the lower electrode 2 and the photoelectric conversion layer 3A, and a hole blocking disposed between the upper electrode 4 and the photoelectric conversion layer 3A. Layer 6 is provided.
  • the near-infrared photoelectric conversion film 3 is as described above in the description of the near-infrared photoelectric conversion element 10A shown in FIG.
  • the photoelectric conversion layer 3 ⁇ / b> A includes a near-infrared photoelectric conversion film 3, a p-type semiconductor layer 7, and an n-type semiconductor layer 8.
  • at least one of the p-type semiconductor included in the p-type semiconductor layer 7 and the n-type semiconductor included in the n-type semiconductor layer 8 may be an organic semiconductor described later.
  • the photoelectric conversion layer 3A may contain the above-described composition and at least one of an organic p-type semiconductor and an organic n-type semiconductor.
  • the photoelectric conversion layer 3A may include a bulk heterojunction structure layer in which a p-type semiconductor and an n-type semiconductor are mixed.
  • the photoelectric conversion layer 3 ⁇ / b> A can compensate for the disadvantage that the carrier diffusion length in the photoelectric conversion layer 3 ⁇ / b> A is short, and can improve the photoelectric conversion efficiency.
  • a bulk heterojunction structure layer may be disposed between the p-type semiconductor layer 7 and the n-type semiconductor layer 8.
  • the rectification of holes and electrons is higher than that of the bulk heterojunction structure layer, and due to recombination of charge-separated holes and electrons. Loss is reduced and higher photoelectric conversion efficiency can be obtained.
  • the bulk heterojunction structure layer is as described in detail for the bulk hetero active layer in Japanese Patent No. 5553727 (Patent Document 3).
  • the p-type semiconductor and the n-type semiconductor are in contact with each other, so that charges may be generated even in the dark state. Therefore, dark current can be suppressed by reducing the contact between the p-type semiconductor and the n-type semiconductor.
  • the bulk heterojunction structure layer contains a large amount of an n-type semiconductor such as a fullerene derivative, device resistance can be suppressed.
  • the volume ratio and weight ratio of the n-type semiconductor to the p-type semiconductor in the bulk heterojunction structure layer may be four times or more.
  • the volume ratio of the n-type semiconductor to the p-type semiconductor may not be too large in the bulk heterojunction structure layer. For example, it may be 20 times or less. As disclosed in Patent Document 4, if the volume ratio of the n-type semiconductor to the p-type semiconductor in the bulk heterojunction structure layer is 4 to 20 times, suppression of dark current and sensitivity in the near-infrared light region Can be made compatible.
  • the p-type semiconductor of an organic compound is a donor organic semiconductor, and is mainly an organic compound represented by a hole transporting organic compound and having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic semiconductor as long as it is an electron-donating organic compound.
  • the metal complex etc. which it has as can be used.
  • the present invention is not limited thereto, and as described above, any organic compound having an ionization potential smaller than that of the organic compound used as the acceptor semiconductor may be used as the donor organic semiconductor.
  • An n-type semiconductor of an organic compound is an acceptor organic semiconductor, and is mainly an organic compound represented by an electron transporting organic compound and having a property of easily accepting electrons. More specifically, the organic compound having the higher electron affinity when two organic compounds are used in contact with each other. Therefore, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound.
  • fullerene, fullerene derivative, condensed aromatic carbocyclic compound naphthalene derivative, anthracene derivative, phenanthrene derivative, tetracene derivative, pyrene derivative, perylene derivative, fluoranthene derivative
  • nitrogen atom oxygen atom, sulfur atom containing 5 to 7
  • heterocyclic compounds for example, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole, indazole, benz Imidazole, benzotriazole, benzoxazole, benzothiazole, carbazole, purine, triazolopyridazine, tria
  • the electron blocking layer 5 is provided in order to reduce dark current due to injection of electrons from the lower electrode 2, and suppresses injection of electrons from the lower electrode 2 into the photoelectric conversion layer 3A.
  • the electron blocking layer 5 may be made of the above-described p-type semiconductor, a hole transporting organic compound, or an inorganic material such as a metal oxide.
  • the electron blocking layer 5 has a lower HOMO energy level and a higher LUMO energy level than the p-type semiconductor layer 7 of the photoelectric conversion layer 3A.
  • the photoelectric conversion layer 3 ⁇ / b> A has a higher energy level HOMO than the electron blocking layer 5 and an energy level LUMO lower than the electron blocking layer 5 in the vicinity of the interface with the electron blocking layer 5.
  • the hole blocking layer 6 is provided in order to reduce dark current caused by injection of holes from the upper electrode 4, and suppresses injection of holes from the upper electrode 4 into the photoelectric conversion layer 3A. To do.
  • the material of the hole blocking layer 6 is, for example, copper phthalocyanine, PTCDA (3,4,9,10-Perylenetetracarboxylic dianhydride), acetylacetonate complex, BCP (Bathocuprine), Alq (Tris (8-quinolinate) aluminum, etc.
  • An organic substance, an organic-metal compound, or an inorganic substance such as MgAg or MgO may be used.
  • the hole blocking layer 6 does not hinder the light absorption of the near-infrared photoelectric conversion film 3, a material having a high near-infrared light transmittance and having no absorption in the visible light region is selected. Alternatively, the thickness of the hole blocking layer 6 may be reduced. The thickness of the hole blocking layer 6 depends on the configuration of the photoelectric conversion layer 3A, the thickness of the upper electrode 4, and the like, but may be, for example, 2 nm to 50 nm. The hole blocking layer 6 can also use the n-type semiconductor or the electron transporting organic compound described above.
  • the material for the lower electrode 2 is selected from the materials described above in consideration of adhesion to the electron blocking layer 5, electron affinity, ionization potential, stability, and the like. The same applies to the upper electrode 4.
  • the barrier when holes move to the near-infrared photoelectric conversion film 3 when a bias voltage is applied is low. Become. Therefore, it is considered that hole injection from the upper electrode 4 to the photoelectric conversion layer 3A is likely to occur, and as a result, dark current increases.
  • FIG. 4 is a diagram illustrating an example of a circuit configuration of the imaging apparatus 100 according to the present embodiment.
  • FIG. 5 is a schematic cross-sectional view showing an example of the device structure of the pixel 24 in the imaging apparatus 100 according to the present embodiment.
  • imaging device 100 is provided on semiconductor substrate 40 that is a substrate, charge detection circuit 35 provided on the surface of semiconductor substrate 40, and semiconductor substrate 40.
  • the photoelectric conversion unit 10C of the pixel 24 includes the near infrared
  • the photoelectric conversion element 10A or 10B is included.
  • the imaging device 100 includes a plurality of pixels 24 and peripheral circuits such as a vertical scanning circuit 25 and a horizontal signal readout circuit 20.
  • the imaging device 100 is an organic image sensor realized by a one-chip integrated circuit, and has a pixel array including a plurality of pixels 24 arranged in a two-dimensional manner.
  • the plurality of pixels 24 are two-dimensionally arranged on the semiconductor substrate 40, that is, in the row direction and the column direction to form a photosensitive region (so-called pixel region).
  • FIG. 4 shows an example in which the pixels 24 are arranged in a matrix of 2 rows and 2 columns.
  • a circuit for example, a pixel electrode control circuit
  • the imaging device 100 may be a line sensor.
  • the plurality of pixels 24 may be arranged one-dimensionally.
  • the row direction and the column direction refer to directions in which the row and the column extend, respectively. That is, in FIG. 4, the vertical direction on the paper is the column direction, and the horizontal direction is the row direction.
  • each pixel 24 includes a photoelectric conversion unit 10 ⁇ / b> C and a charge storage node 34 electrically connected to the charge detection circuit 35.
  • the charge detection circuit 35 includes an amplification transistor 21, a reset transistor 22, and an address transistor 23.
  • the photoelectric conversion unit 10C includes a lower electrode 2 provided as a pixel electrode and an upper electrode 4 provided as a counter electrode.
  • the above-described near-infrared photoelectric conversion element 10A (see FIG. 1) or 10B (see FIG. 2) may be used for the photoelectric conversion unit 10C.
  • a predetermined bias voltage is applied to the upper electrode 4 via the counter electrode signal line 26.
  • the lower electrode 2 is connected to the gate electrode of the amplification transistor 21, and the signal charge collected by the lower electrode 2 is accumulated in a charge accumulation node 34 located between the lower electrode 2 and the gate electrode of the amplification transistor 21.
  • the signal charge is a hole, but the signal charge may be an electron.
  • the signal charge stored in the charge storage node 34 is applied to the gate electrode of the amplification transistor 21 as a voltage corresponding to the amount of signal charge.
  • the amplification transistor 21 amplifies this voltage and is selectively read out as a signal voltage by the address transistor 23.
  • the reset transistor 22 has its source / drain electrode connected to the lower electrode 2 and resets the signal charge stored in the charge storage node 34. In other words, the reset transistor 22 resets the potentials of the gate electrode and the lower electrode 2 of the amplification transistor 21.
  • the imaging apparatus 100 includes a power supply wiring 31, a vertical signal line 27, an address signal line 36, and a reset signal line 37.
  • Each pixel 24 is connected.
  • the power supply line 31 is connected to the source / drain electrode of the amplification transistor 21, and the vertical signal line 27 is connected to the source / drain electrode of the address transistor 23.
  • the address signal line 36 is connected to the gate electrode of the address transistor 23.
  • the reset signal line 37 is connected to the gate electrode of the reset transistor 22.
  • the peripheral circuit includes a vertical scanning circuit 25, a horizontal signal readout circuit 20, a plurality of column signal processing circuits 29, a plurality of load circuits 28, and a plurality of differential amplifiers 32.
  • the vertical scanning circuit 25 is also referred to as a row scanning circuit.
  • the horizontal signal readout circuit 20 is also referred to as a column scanning circuit.
  • the column signal processing circuit 29 is also referred to as a row signal storage circuit.
  • the differential amplifier 32 is also referred to as a feedback amplifier.
  • the vertical scanning circuit 25 is connected to the address signal line 36 and the reset signal line 37, selects a plurality of pixels 24 arranged in each row in units of rows, and reads out the signal voltage and resets the potential of the lower electrode 2. .
  • the power supply wiring 31 supplies a predetermined power supply voltage to each pixel 24.
  • the horizontal signal readout circuit 20 is electrically connected to a plurality of column signal processing circuits 29.
  • the column signal processing circuit 29 is electrically connected to the pixels 24 arranged in each column via a vertical signal line 27 corresponding to each column.
  • the load circuit 28 is electrically connected to each vertical signal line 27.
  • the load circuit 28 and the amplification transistor 21 form a source follower circuit.
  • a plurality of differential amplifiers 32 are provided corresponding to each column.
  • the negative input terminal of the differential amplifier 32 is connected to the corresponding vertical signal line 27.
  • the output terminal of the differential amplifier 32 is connected to the pixel 24 via a feedback line 33 corresponding to each column.
  • the vertical scanning circuit 25 applies a row selection signal for controlling on / off of the address transistor 23 to the gate electrode of the address transistor 23 by the address signal line 36. As a result, the row to be read is scanned and selected. A signal voltage is read out from the pixel 24 in the selected row to the vertical signal line 27. Further, the vertical scanning circuit 25 applies a reset signal for controlling on and off of the reset transistor 22 to the gate electrode of the reset transistor 22 via the reset signal line 37. Thereby, the row of the pixels 24 to be reset is selected.
  • the vertical signal line 27 transmits the signal voltage read from the pixel 24 selected by the vertical scanning circuit 25 to the column signal processing circuit 29.
  • the column signal processing circuit 29 performs noise suppression signal processing represented by correlated double sampling, analog-digital conversion, and the like.
  • the horizontal signal reading circuit 20 sequentially reads signals from a plurality of column signal processing circuits 29 to a horizontal common signal line (not shown).
  • the differential amplifier 32 is connected to the drain electrode of the reset transistor 22 via the feedback line 33. Therefore, the differential amplifier 32 receives the output value of the address transistor 23 at the negative terminal when the address transistor 23 and the reset transistor 22 are in a conductive state.
  • the differential amplifier 32 performs a feedback operation so that the gate potential of the amplification transistor 21 becomes a predetermined feedback voltage. At this time, the output voltage value of the differential amplifier 32 is 0V or a positive voltage near 0V.
  • the feedback voltage means the output voltage of the differential amplifier 32.
  • FIG. 5 is a schematic cross-sectional view showing an example of the device structure of the pixel 24 in the imaging apparatus 100 according to the present embodiment.
  • the pixel 24 includes a semiconductor substrate 40, a charge detection circuit 35, a photoelectric conversion unit 10C, and a charge storage node 34 (see FIG. 4).
  • the semiconductor substrate 40 may be an insulating substrate in which a semiconductor layer is provided on the surface on the side where a photosensitive region (so-called pixel region) is formed, for example, a p-type silicon substrate.
  • the semiconductor substrate 40 includes impurity regions (here, n-type regions) 21D, 21S, 22D, 22S, and 23S, and element isolation regions 41 for electrical isolation between the pixels 24.
  • the element isolation region 41 is also provided between the impurity region 21D and the impurity region 22D. As a result, leakage of signal charges accumulated at the charge accumulation node 34 is suppressed.
  • the element isolation region 41 is formed, for example, by performing ion implantation of acceptors under predetermined implantation conditions.
  • the impurity regions 21D, 21S, 22D, 22S and 23S are typically diffusion layers formed in the semiconductor substrate 40.
  • the amplification transistor 21 includes impurity regions 21S and 21D and a gate electrode 21G.
  • the impurity regions 21S and 21D function as, for example, a source region and a drain region of the amplification transistor 21, respectively.
  • a channel region of the amplification transistor 21 is formed between the impurity regions 21S and 21D.
  • the address transistor 23 includes impurity regions 23S and 21S and a gate electrode 23G connected to the address signal line 36.
  • the amplification transistor 21 and the address transistor 23 are electrically connected to each other by sharing the impurity region 21S.
  • the impurity region 23S functions as, for example, a source region of the address transistor 23.
  • the impurity region 23S has a connection with the vertical signal line 27 shown in FIG.
  • the reset transistor 22 includes impurity regions 22D and 22S and a gate electrode 22G connected to the reset signal line 37.
  • the impurity region 22S functions as a source region of the reset transistor 22, for example.
  • Impurity region 22S has a connection with reset signal line 37 shown in FIG.
  • an interlayer insulating layer 50 is laminated so as to cover the amplification transistor 21, the address transistor 23, and the reset transistor 22.
  • a wiring layer (not shown) can be disposed in the interlayer insulating layer 50.
  • the wiring layer is typically formed of a metal such as copper, and may include, for example, a wiring such as the vertical signal line 27 described above.
  • the number of insulating layers in the interlayer insulating layer 50 and the number of layers included in the wiring layer disposed in the interlayer insulating layer 50 can be arbitrarily set.
  • the impurity region 22D functioning as the drain electrode of the reset transistor 22 is electrically connected to the gate electrode 21G of the amplification transistor 21.
  • the charge detection circuit 35 detects the signal charge captured by the lower electrode 2 and outputs a signal voltage.
  • the charge detection circuit 35 includes an amplification transistor 21, a reset transistor 22, and an address transistor 23, and is formed on the surface of the semiconductor substrate 40.
  • the amplification transistor 21 is formed in the semiconductor substrate 40, and is formed on the impurity regions 21D and 21S functioning as a drain electrode and a source electrode, a gate insulating layer 21X formed on the semiconductor substrate 40, and the gate insulating layer 21X, respectively.
  • Gate electrode 21G is formed in the semiconductor substrate 40, and is formed on the impurity regions 21D and 21S functioning as a drain electrode and a source electrode, a gate insulating layer 21X formed on the semiconductor substrate 40, and the gate insulating layer 21X, respectively.
  • Gate electrode 21G is formed in the semiconductor substrate 40, and is formed on the impurity regions 21D and 21S functioning as a drain electrode and a source electrode, a gate insulating layer 21X formed on the semiconductor substrate 40, and the gate insulating layer 21X, respectively.
  • the reset transistor 22 is formed in the semiconductor substrate 40, and is formed on the impurity regions 22D and 22S functioning as a drain electrode and a source electrode, a gate insulating layer 22X formed on the semiconductor substrate 40, and a gate insulating layer 22X, respectively.
  • Gate electrode 22G is formed in the semiconductor substrate 40, and is formed on the impurity regions 22D and 22S functioning as a drain electrode and a source electrode, a gate insulating layer 22X formed on the semiconductor substrate 40, and a gate insulating layer 22X, respectively.
  • Gate electrode 22G is formed in the semiconductor substrate 40, and is formed on the impurity regions 22D and 22S functioning as a drain electrode and a source electrode, a gate insulating layer 22X formed on the semiconductor substrate 40, and a gate insulating layer 22X, respectively.
  • the address transistor 23 is formed in the semiconductor substrate 40, and is formed on the impurity regions 21S and 23S functioning as a drain electrode and a source electrode, a gate insulating layer 23X formed on the semiconductor substrate 40, and a gate insulating layer 23X, respectively. Gate electrode 23G.
  • the impurity region 21S is shared by the amplification transistor 21 and the address transistor 23, whereby the amplification transistor 21 and the address transistor 23 are connected in series.
  • the above-described photoelectric conversion unit 10C is disposed on the interlayer insulating layer 50.
  • the plurality of pixels 24 constituting the pixel array are formed on the semiconductor substrate 40.
  • the plurality of pixels 24 arranged two-dimensionally on the semiconductor substrate 40 form a photosensitive region.
  • the pixel pitch which is the distance between two adjacent pixels 24, may be about 2 ⁇ m, for example.
  • a color filter 60 is provided above the photoelectric conversion unit 10C, and a microlens 61 is provided above the color filter 60.
  • the color filter 60 is formed as an on-chip color filter by patterning, for example, and a photosensitive resin in which a dye and a pigment are dispersed is used.
  • the microlens 61 is provided as an on-chip microlens, for example, and an ultraviolet photosensitive material or the like is used.
  • the imaging device 100 can be manufactured using a general semiconductor manufacturing process.
  • a silicon substrate is used as the semiconductor substrate 40, it can be manufactured by utilizing various silicon semiconductor processes.
  • the present embodiment by using a composition having high light absorption characteristics in the near-infrared light region having a longer wavelength and capable of reducing dark current, a wide range of near-infrared light region can be obtained. Thus, it is possible to realize a photoelectric conversion element and an imaging device having high light absorption characteristics.
  • composition and the photoelectric conversion element according to the present disclosure will be specifically described in Examples, but the present disclosure is not limited to the following Examples.
  • Example 10 the composition containing the compounds obtained in Example 1, Example 2, Example 3, Example 4, Example 5, Example 5, Example 6, Example 7, Example 8, and Example 9 was formed into a film.
  • the obtained near-infrared photoelectric conversion films are referred to as Example 10, Example 11, Example 12, Example 13, Example 14, Example 15, Example 16, Example 17, and Example 18, respectively.
  • the near-infrared photoelectric conversion films obtained in Example 10, Example 11, Example 12, Example 13, Example 14, Example 15, Example 16, Example 17, and Example 18 were used.
  • the near-infrared photoelectric conversion elements are referred to as Example 19, Example 12, Example 21, Example 22, Example 23, Example 24, Example 25, Example 26, and Example 27, respectively.
  • C 2 H 5 is represented as Et, iso-C 3 H 7 as iPr, C 4 H 9 as Bu, C 5 H 11 as Pent, C 6 H 13 as Hex, and C 32 H 18 N 8 as Pc. There is.
  • Example 1 Synthesis of (S-Pent) 8 Si (OSiBu 3 ) 2 Pc> According to steps (1) to (3) described below, a compound (S-Pent) 8 Si (OSiBu 3 ) 2 Pc represented by the following structural formula was synthesized.
  • the collected crystals were washed with methanol (MeOH) to obtain a solid.
  • the obtained solid was heat-dried under reduced pressure at 60 ° C. for 2 days to obtain the target compound (A-2) as a solid.
  • the yield of the target compound was 2.4 g, and the yield was 32%.
  • the obtained compound was dissolved in chloroform, and the absorption spectrum was measured. The results are shown in FIG. 6A. As shown in FIG. 6A, the wavelength of the absorption peak of the obtained compound in the near-infrared light region was 806.5 nm. Therefore, it was found that the compound obtained in Example 1 is a material having an absorption maximum wavelength in the near infrared light region.
  • Steps (1) to (2) from the synthesis of (S-Pent) 8 SiPc (OH) 2 were carried out in the same manner as in Example 1.
  • the yield of the target compound was 80 mg, and the yield was 21%.
  • the obtained compound was identified by 1 HNMR and MALDI-TOF-MS. The results are shown below.
  • the chemical formula of the target compound is C 96 H 116 N 8 O 4 S 8 P 2 Si, Exact Mass is 1790.61.
  • the obtained compound was dissolved in tetrahydrofuran, and the absorption spectrum was measured. The results are shown in FIG. 6A. As shown in FIG. 6A, the wavelength of the absorption peak in the near-infrared light region of the obtained compound was 842 nm. Therefore, it was found that the compound obtained in Example 2 is a material having an absorption maximum wavelength in the near infrared light region.
  • Example 3 Synthesis of (S-Pent) 8 Sn (OSiHex 3 ) 2 Pc> According to steps (5) to (7) described below, a compound (S-Pent) 8 Sn (OSiHex 3 ) 2 Pc represented by the following structural formula was synthesized.
  • the obtained compound was identified by 1 HNMR and MALDI-TOF-MS. The results are shown below.
  • the chemical formula of the target compound is C 108 H 174 N 8 O 2 S 8 Si 2 Sn, and the Exact Mass is 2047.01.
  • the obtained compound was dissolved in chloroform, and the absorption spectrum was measured. The results are shown in FIG. 6A. As shown in FIG. 6A, the wavelength of the absorption peak of the obtained compound in the near-infrared light region was 854 nm. Therefore, it was found that the compound obtained in Example 3 was a material having an absorption maximum wavelength in the near infrared light region.
  • the organic layer was washed with water and saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure to give a crude product.
  • Methanol ⁇ 10 mL was added to the obtained crude product and allowed to stand at room temperature for 1 day. The resulting precipitate was collected by filtration, washed with methanol, and then dried under reduced pressure to obtain the target compound (A-12) as a dark purple powder.
  • the yield of the target compound was 54 mg, and the yield was 36%.
  • UV-vis (CHCl 3 ): ⁇ max (nm) 297, 359, 539, 718, 807.
  • UV-vis (CHCl 3 ): ⁇ max (nm) 296, 357, 532, 715, 803.
  • the obtained compound was dissolved in chloroform, and the absorption spectrum was measured. The results are shown in FIG. 6A. As shown in FIG. 6A, the wavelength of the absorption peak of the obtained compound in the near-infrared light region was 802.5 nm. Therefore, it was found that the compound obtained in Example 4 was a material having an absorption maximum wavelength in the near infrared light region.
  • a three- necked flask was charged with 15 g of SiCl (C 6 H 13 ) 3 (compound (A-14)) and 75 mL of THF (tetrahydrofuran). The three -necked flask was placed in a cooling bath containing water and ice and cooled to 10 ° C. or lower. A dropping funnel was charged with 75 mL of aqueous ammonia, and the entire amount was dropped into a three-necked flask over 10 minutes, followed by stirring at room temperature for 2 hours. Next, 150 mL of ethyl acetate and 150 mL of city water were added and stirred for 10 minutes, and then separated with a separatory funnel to separate the organic layer.
  • THF tetrahydrofuran
  • the yield of the target compound was 340 mg, and the yield was 62%.
  • UV-vis (CHCl 3 ): ⁇ max (nm) ( ⁇ (molar extinction coefficient) ⁇ 10 ⁇ 4 ) 304 (6.4), 351 (4.9), 773 sh (3.8), 865 (9. 2).
  • the obtained compound was dissolved in chloroform, and the absorption spectrum was measured. The results are shown in FIG. 6A. As shown in FIG. 6A, the wavelength of the absorption peak of the obtained compound in the near-infrared light region was 865 nm. Therefore, it was found that the compound obtained in Example 5 was a material having an absorption maximum wavelength in the near infrared light region.
  • the yield of the target compound was 48 mg, and the yield was 71%.
  • the obtained compound was identified by 1 HNMR and MALDI-TOF-MS. The results are shown below.
  • the chemical formula of the target compound is C 96 H 112 F 4 N 8 O 4 P 2 S 8 Si, Exact Mass is 1862.58.
  • the obtained compound was dissolved in chloroform, and the absorption spectrum was measured. The result is shown by the solid line in FIG. 6B. As shown by the solid line in FIG. 6B, the wavelength of the absorption peak of the obtained compound in the near-infrared light region was 868 nm. Therefore, it was found that the compound obtained in Example 6 was a material having an absorption maximum wavelength in the near infrared light region.
  • reaction vessel was cooled to ⁇ 5 ° C., and a solution obtained by mixing 1.9 mL of diethyl phosphite and THF (anhydrous) was dropped into the reaction vessel over 25 minutes.
  • the reaction solution was stirred for 14 hours as it was.
  • the concentrate was dissolved in diethyl ether, air bubbled at room temperature for 4 hours, and concentrated.
  • the concentrate was stored in a cool and dark place, a solid precipitated.
  • the precipitated solid was collected by filtration to obtain the target compound (A-22).
  • the yield of the target compound was 512 mg, and the yield was 12%.
  • the obtained compound was identified by 1 HNMR and 19 FNMR. The results are shown below.
  • the obtained compound was identified by 1 HNMR, 19 FNMR, and 31 PNMR. The results are shown below.
  • the obtained compound was identified by 1 HNMR and MALDI-TOF-MS. The results are shown below.
  • the chemical formula of the target compound is C 96 H 108 F 8 N 8 O 4 P 2 S 8 Si, Exact Mass is 1934.54.
  • the obtained compound was dissolved in chloroform, and the absorption spectrum was measured. The result is shown by the dotted line in FIG. 6B. As shown by the dotted line in FIG. 6B, the wavelength of the absorption peak in the near-infrared light region of the obtained compound was 886 nm. Therefore, it was found that the compound obtained in Example 7 was a material having an absorption maximum wavelength in the near infrared light region.
  • the obtained compound was identified by 1 HNMR and MALDI-TOF-MS. The results are shown below.
  • the chemical formula of the target compound is C 100 H 112 F 12 N 8 O 4 P 2 S 8 Si, Exact Mass is 2062.56.
  • the obtained compound was dissolved in chloroform, and the absorption spectrum was measured. The result is shown by the broken line in FIG. 6B. As shown by the broken line in FIG. 6B, the wavelength of the absorption peak in the near-infrared light region of the obtained compound was 882 nm. Therefore, it was found that the compound obtained in Example 8 was a material having an absorption maximum wavelength in the near infrared light region.
  • Example 9 ⁇ Synthesis of (S-Pent) 8 Si (OPO (Ph-3,5-bisCF 3 ) 2 ) 2 Pc> According to step (22) described below, a compound (S-Pent) 8 Si (OPO (Ph-3,5-bisCF 3 ) 2 ) 2 Pc represented by the following structural formula (15) was synthesized.
  • the solid target compound (A-26) was obtained.
  • the yield of the target compound was 36.9 mg, and the yield was 26%.
  • the obtained compound was identified by 1 HNMR and MALDI-TOF-MS. The results are shown below.
  • the target compound was obtained by the above synthesis procedure.
  • the obtained compound was dissolved in chloroform, and the absorption spectrum was measured. The result is shown by a one-dot broken line in FIG.
  • the wavelength of the absorption peak of the obtained compound in the near-infrared light region was 900 nm. Therefore, it was found that the compound obtained in Example 9 was a material having an absorption maximum wavelength in the near infrared light region.
  • Example 10 A quartz glass having a thickness of 0.7 mm was used as a supporting substrate, and (S-Pent) 8 Si (OSiBu 3 ) 2 Pc and PCBM ([6,6] -Phenyl-C61-) obtained in Example 1 were used thereon.
  • the absorption spectrum was measured about the obtained near-infrared photoelectric conversion film.
  • a spectrophotometer manufactured by Hitachi High-Technologies Corporation, U4100 was used.
  • the measurement wavelength range of the absorption spectrum was 400 nm to 1200 nm. The results are shown in FIG. 7A.
  • the absorption peak of the near-infrared photoelectric conversion film of Example 10 was observed near 824 nm.
  • Example 10 The near-infrared photoelectric conversion film obtained in Example 10 was measured for ionization potential.
  • the compound obtained in Example 1 was formed on an ITO substrate and measured using an atmospheric photoelectron spectrometer (AC-3, manufactured by Riken Keiki Co., Ltd.). The result is shown in FIG. 7B.
  • the measurement of ionization potential is detected as the number of photoelectrons when the energy of ultraviolet irradiation is changed. Therefore, the energy position at which photoelectrons start to be detected can be used as the ionization potential.
  • Example 11 A quartz glass with a thickness of 0.7 mm was used as a supporting substrate, and (S-Pent) 8 Si (OPOPh 2 ) 2 Pc and PCBM ([6,6] -Phenyl-C61- obtained in Example 2 were used thereon.
  • a chloroform mixed solution mixed with a Butyric Acid Methyl Ester) derivative at a weight ratio of 1: 9 was applied by spin coating to obtain a near-infrared photoelectric conversion film having a film thickness of 187 nm and an ionization potential of 5.12 eV.
  • the absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 10.
  • the results are shown in FIG. 8A.
  • the ionization potential was measured in the same manner as in Example 10, except that the compound obtained in Example 2 was used.
  • the result is shown in FIG. 8B.
  • the near-infrared photoelectric conversion film of Example 11 had an absorption peak near 896 nm.
  • Example 12 A quartz glass having a thickness of 0.7 mm was used as a supporting substrate, and (S-Pent) 8 Sn (OSiHex3) 2 Pc and PCBM ([6,6] -Phenyl-C61-Buticic obtained in Example 3 were used thereon.
  • a chloroform mixed solution prepared by mixing the acid methyl ester) derivative at a weight ratio of 1: 9 was applied by spin coating to obtain a near-infrared photoelectric conversion film having a film thickness of 267 nm and an ionization potential of 5.32 eV.
  • the absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 10. The results are shown in FIG. 9A.
  • the ionization potential was measured in the same manner as in Example 10, except that the compound obtained in Example 3 was used.
  • the result is shown in FIG. 9B.
  • the near-infrared photoelectric conversion film of Example 12 had an absorption peak near 882 nm.
  • Example 13 A quartz glass having a thickness of 0.7 mm was used as a support substrate, and (S-Et) 8 Si (OSiBu3) 2 Pc and PCBM ([6,6] -Phenyl-C61-Buticic obtained in Example 4 were used thereon.
  • the absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 10.
  • the results are shown in FIG. 10A.
  • the ionization potential was measured in the same manner as in Example 10, except that the compound obtained in Example 4 was used.
  • the results are shown in FIG. 10B.
  • the near-infrared photoelectric conversion film of Example 13 had an absorption peak near 822 nm.
  • Example 14 A quartz glass having a thickness of 0.7 mm was used as a supporting substrate, and (S-iPr) 8 Sn (OSiHex 3 ) 2 Pc and PCBM ([6,6] -Phenyl-C61-) obtained in Example 5 were used thereon.
  • the absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 10. The results are shown in FIG. 11A.
  • the ionization potential was measured in the same manner as in Example 10, except that the compound obtained in Example 5 was used.
  • the result is shown in FIG. 11B.
  • the absorption peak of the near-infrared photoelectric conversion film of Example 14 was observed near 860 nm.
  • Example 15 A quartz glass having a thickness of 0.7 mm was used as a supporting substrate, and (S-Pent) 8 Si (OPO (Ph-4-F) 2 ) 2 Pc and PCBM ([6, 6] -Phenyl-C61-Butyl Acid Methyl Ester) derivative mixed with chloroform at a weight ratio of 1: 9 was applied by spin coating, and a near-infrared photoelectric conversion film having a film thickness of 200 nm and an ionization potential of 5.15 eV Got. The absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 10. The results are shown in FIG. 12A. The ionization potential was measured in the same manner as in Example 10 except that the compound obtained in Example 6 was used. The result is shown in FIG. 12B.
  • the absorption peak of the near-infrared photoelectric conversion film of Example 15 was observed near 898 nm.
  • Example 16 A quartz glass having a thickness of 0.7 mm was used as a supporting substrate, and (S-Pent) 8 Si (OPO (Ph-3,5-diF) 2 ) 2 Pc and PCBM ([ 6,6] -Phenyl-C61-Butylic Acid Methyl Ester) derivative in a weight ratio of 1: 9 was applied by spin coating to form a near-infrared photoelectric film having a film thickness of 217 nm and an ionization potential of 5.20 eV. A conversion membrane was obtained. The absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 10. The results are shown in FIG. 13A. The ionization potential was measured in the same manner as in Example 10 except that the compound obtained in Example 7 was used. The results are shown in FIG. 13B.
  • the near-infrared photoelectric conversion film of Example 16 had an absorption peak near 920 nm.
  • Example 17 A quartz glass having a thickness of 0.7 mm was used as a supporting substrate, and (S-Pent) 8 Si (OPO (Ph-4-CF 3 ) 2 ) 2 Pc and PCBM ([6 , 6] -Phenyl-C61-Butylic Acid Methyl Ester) derivative in a weight ratio of 1: 9 was applied by spin coating to form a near-infrared photoelectric conversion film having a film thickness of 206 nm and an ionization potential of 5.32 eV. A membrane was obtained. The absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 10. The results are shown in FIG. 14A. The ionization potential was measured in the same manner as in Example 10, except that the compound obtained in Example 8 was used. The results are shown in FIG. 14B.
  • the near-infrared photoelectric conversion film of Example 17 had an absorption peak near 940 nm.
  • Example 18 A quartz glass having a thickness of 0.7 mm was used as a supporting substrate, and (S-Pent) 8 Si (OPO (Ph-3,5-bisCF 3 ) 2 ) 2 Pc and PCBM obtained in Example 9 were used thereon.
  • the absorption spectrum of the obtained near-infrared photoelectric conversion film was measured by the same method as in Example 10. The results are shown in FIG. 15A.
  • the ionization potential was measured in the same manner as in Example 10, except that the compound obtained in Example 9 was used. The results are shown in FIG. 15B.
  • the near-infrared photoelectric conversion film of Example 18 had an absorption peak near 956 nm.
  • Examples 19 to 27 will be shown below, and the near-infrared photoelectric conversion element according to the present disclosure will be described more specifically.
  • Example 19 A glass substrate having a thickness of 0.7 mm on which a 150 nm ITO electrode was formed was used as a substrate, and this ITO electrode was used as a lower electrode. Furthermore, a chloroform mixed solution obtained by mixing (S-Pent) 8 Si (OSiBu 3 ) 2 Pc obtained in Example 1 as a photoelectric conversion layer and a PCBM derivative at a weight ratio of 1: 9 was spin-coated on the ITO electrode. The mixture was applied by a coating method to form a mixed film having a thickness of 196 nm. Further, an Al electrode having a thickness of 80 nm was formed as an upper electrode on the photoelectric conversion layer. The Al electrode was formed at a vacuum degree of 5.0 ⁇ 10 ⁇ 4 Pa or less and a deposition rate of 1 ⁇ / s.
  • the spectral sensitivity was measured.
  • a long wavelength spectral sensitivity measuring apparatus CEP-25RR, manufactured by Spectrometer Co., Ltd.
  • the near-infrared photoelectric conversion element was introduced into a measurement jig that can be sealed in a glove box under a nitrogen atmosphere, and the spectral sensitivity was measured. The results are shown in FIG.
  • the near-infrared photoelectric conversion element of Example 19 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 820 nm, which was about 39%.
  • Example 20 The same procedure as in Example 19 was performed except that (S-Pent) 8 Si (OPOPh 2 ) 2 Pc obtained in Example 2 was used instead of the compound obtained in Example 1 as the material of the photoelectric conversion layer.
  • the near-infrared photoelectric conversion element which has a near-infrared photoelectric conversion film with a film thickness of 187 nm was obtained.
  • the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured. The results are shown in FIG.
  • the near-infrared photoelectric conversion element of Example 20 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 880 nm, which was about 30%.
  • Example 21 The same procedure as in Example 19 was performed except that (S-Pent) 8 Sn (OSiHex 3 ) 2 Pc obtained in Example 3 was used instead of the compound obtained in Example 1 as a material for the photoelectric conversion layer. A near-infrared photoelectric conversion element having a near-infrared photoelectric conversion film with a film thickness of 267 nm was obtained. In the same manner as in Example 19, the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured. The results are shown in FIG.
  • the near-infrared photoelectric conversion element of Example 21 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 880 nm, which was about 22%.
  • Example 22 The same procedure as in Example 19 was performed except that (S-Et) 8 Si (OSiBu 3 ) 2 Pc obtained in Example 4 was used instead of the compound obtained in Example 1 as the material of the photoelectric conversion layer.
  • the near-infrared photoelectric conversion element which has a near-infrared photoelectric conversion film with a film thickness of 246 nm was obtained.
  • the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured. The results are shown in FIG.
  • the near-infrared photoelectric conversion element of Example 22 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 820 nm, which was about 62%.
  • Example 23 The same procedure as in Example 19 was performed except that (S-iPr) 8 Sn (OSiHex 3 ) 2 Pc obtained in Example 5 was used instead of the compound obtained in Example 1 as a material for the photoelectric conversion layer. A near-infrared photoelectric conversion element having a near-infrared photoelectric conversion film having a thickness of 280 nm was obtained. In the same manner as in Example 19, the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured. The results are shown in FIG.
  • the external quantum efficiency in the near-infrared light region was highest at a wavelength near 860 nm, which was about 19%.
  • Example 24 Except for using (S-Pent) 8 Si (OPO (Ph-4-F) 2 ) 2 Pc obtained in Example 6 instead of the compound obtained in Example 1 as the material of the photoelectric conversion layer, It carried out similarly to Example 19 and obtained the near-infrared photoelectric conversion element which has a near-infrared photoelectric conversion film with a film thickness of 200 nm. In the same manner as in Example 19, the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured. The results are shown in FIG.
  • the near-infrared photoelectric conversion element of Example 24 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 880 nm, which was about 31%.
  • Example 25 Other than using (S-Pent) 8 Si (OPO (Ph-3,5-diF) 2 ) 2 Pc obtained in Example 7 instead of the compound obtained in Example 1 as the material of the photoelectric conversion layer was performed in the same manner as in Example 19 to obtain a near-infrared photoelectric conversion element having a near-infrared photoelectric conversion film having a thickness of 217 nm. In the same manner as in Example 19, the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured. The results are shown in FIG.
  • the near-infrared photoelectric conversion element of Example 25 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 900 nm, which was about 39%.
  • Example 26 Except for using (S-Pent) 8 Si (OPO (Ph-4-CF 3 ) 2 ) 2 Pc obtained in Example 8 instead of the compound obtained in Example 1 as the material of the photoelectric conversion layer.
  • (S-Pent) 8 Si (OPO (Ph-4-CF 3 ) 2 ) 2 Pc obtained in Example 8 instead of the compound obtained in Example 1 as the material of the photoelectric conversion layer.
  • a near-infrared photoelectric conversion element having a near-infrared photoelectric conversion film with a film thickness of 206 nm was obtained.
  • the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured. The results are shown in FIG.
  • the external quantum efficiency in the near-infrared light region was highest at a wavelength near 920 nm and was about 5%.
  • Example 27 Use (S-Pent) 8 Si (OPO (Ph-3,5-bisCF 3 ) 2 ) 2 Pc obtained in Example 9 instead of the compound obtained in Example 1 as the material of the photoelectric conversion layer. Otherwise, the same procedure as in Example 19 was performed to obtain a near-infrared photoelectric conversion element having a near-infrared photoelectric conversion film having a thickness of 241 nm. In the same manner as in Example 19, the spectral sensitivity of the obtained near-infrared photoelectric conversion element was measured. The results are shown in FIG.
  • the near-infrared photoelectric conversion element of Example 27 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 920 nm, which was about 4%.
  • the phthalocyanine derivative had a thiol group at the ⁇ -position of the phthalocyanine skeleton, and was further substituted with a fluorine atom or a fluorine-containing group as an axial ligand. It has been confirmed that the wavelength having sensitivity to near-infrared light is further increased when it has a substituent.
  • the absorption characteristics of the near-infrared photoelectric conversion film differed depending on the chemical structure of the phthalocyanine derivative, that is, the presence or absence of the ⁇ -position side chain of the phthalocyanine skeleton and the structure of the axial ligand. .
  • the near-infrared photoelectric conversion film containing the composition can absorb near-infrared light.
  • the wavelength having sensitivity was increased.
  • the phthalocyanine skeleton has a thiol group at the ⁇ -position, and further has a substituent substituted with a fluorine atom or a fluorine-containing group as an axial ligand.
  • the composition containing a phthalocyanine derivative was used, it was confirmed that the near-infrared photoelectric conversion film containing the composition has a wavelength that is more sensitive to near-infrared light.
  • the near-infrared photoelectric conversion films of Examples 10 to 14 have ionization potentials of 5.25 eV, 5.10 eV, 5.10 eV, 5.25 eV, and 5 respectively. .30 eV.
  • the near-infrared photoelectric conversion films of Examples 15 to 18 had ionization potentials of 5.15 eV, 5.20 eV, 5.32 eV, and 5.37 eV, respectively.
  • the composition containing the phthalocyanine derivative of Example 1 to Example 9 was used for the near infrared photoelectric conversion film, it was confirmed that a near infrared photoelectric conversion film having an ionization potential of 5.1 eV or more was obtained. That is, the compositions containing the phthalocyanine derivatives of Examples 1 to 9 increase the numerical value of the ionization potential as the HOMO level becomes deeper, so that the dark current is reduced when used in a photoelectric conversion element. Can do.
  • the phthalocyanine skeleton has a thiol group at the ⁇ -position, and further has a substituent substituted with a fluorine atom or a fluorine-containing group as an axial ligand. It was found that by including the compound, the near-infrared photoelectric conversion film has a deeper HOMO level and a higher ionization potential value. Thereby, the composition containing the phthalocyanine derivative of Example 15 to Example 18 can further reduce dark current when used in a photoelectric conversion element.
  • the near-infrared photoelectric conversion element of Example 19 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 820 nm, which was about 39%.
  • the near-infrared photoelectric conversion element of Example 20 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 880 nm, which was about 30%.
  • the near-infrared photoelectric conversion element of Example 21 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 880 nm, which was about 22%.
  • the near-infrared photoelectric conversion element of Example 22 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 820 nm, which was about 62%.
  • the external quantum efficiency in the near-infrared light region was highest at a wavelength near 860 nm, which was about 19%.
  • the near-infrared photoelectric conversion element of Example 24 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 880 nm, which was about 31%.
  • the partial quantum efficiency in the outer near-infrared light region was highest at a wavelength near 900 nm, which was about 39%.
  • the external quantum efficiency in the near-infrared light region was highest at a wavelength near 920 nm and was about 5%.
  • the near-infrared photoelectric conversion element of Example 27 had the highest external quantum efficiency in the near-infrared light region at a wavelength near 920 nm, which was about 4%.
  • Example 1 phthalocyanine derivatives in which R 11 to R 13 are each a butyl group having 4 carbon atoms were synthesized, but phthalocyanine having a carbon number different from R 11 to R 13 of Example 1 was synthesized by the following method. Derivatives can be obtained. For example, (nBu) 3 SiOH (tributylsilanol) used in the synthesis of (S-Pent) 8 Si (OSiBu 3 ) 2 Pc (compound (A-4)) shown in Step (3) of Example 1 is ( nDec) 3 SiOH (tridecylsilanol) may be substituted.
  • the phthalocyanine derivative in which the alkyl group of R 11 to R 13 in Example 1 is replaced with a decyl group having 10 carbon atoms can be obtained.
  • the inventors of the present application describe a compound in which a substituent corresponding to R 9 to R 14 in the general formula (1) of the present disclosure is a decyl group in a tin naphthalocyanine compound having a structure similar to the phthalocyanine derivative in the present disclosure. It has been confirmed that the synthesis of Details are described in Japanese Patent Application No. 2017-090808, which is an unpublished patent application filed by the present applicant.
  • the HOMO energy levels and LUMO energy levels of these compounds 1 to 21 were determined by calculation using Gaussian09.
  • the calculation by Gaussian 09 was performed by the DFT method using B3LYP, and the basis function was 3-21G * .
  • the results are shown in Table 1, Table 2, Table 3, and Table 4.
  • Example 1 Example 2, Example 4, Example 6, Example 7, Example 8, and Example 9
  • Compound 1 Compound 2, Compound 6, and Compound 11, Compound 12, Compound 13, and Compound 14
  • actual measurement values actual measurement values in Example 10, Example 11, Example 13, Example 15, Example 16, Example 17, and Example 18.
  • Compounds 1 to 5 shown in Table 1 are compounds in which the central metal M of the phthalocyanine derivative represented by the general formula (1) is Si and the ⁇ -side chain is S-Pent.
  • Compounds 6 to 10 shown in Table 2 are compounds in which the central metal M of the phthalocyanine derivative represented by the general formula (1) is Si and the ⁇ -position side chain is S-Et.
  • compounds 11 to 15 shown in Table 3 are compounds in which the central metal M of the phthalocyanine derivative represented by the general formula (1) is Si or Sn, and the ⁇ -position side chain is S-Pent.
  • Compounds 16 to 21 shown in Table 4 are compounds in which the central metal M of the phthalocyanine derivative represented by the general formula (1) is Si and the ⁇ -position side chain is S-Et.
  • Compound 1, Compound 2, Compound 6, Compound 11, Compound 12, Compound 13, and Compound 14 do not match the measured value and calculated value of HOMO, respectively.
  • the calculated values of HOMO of Compound 2, Compound 3 and Compound 5 are the same, the calculated values of HOMO of Compound 1, Compound 4, Compound 6, Compound 7, Compound 9, and Compound 10 are almost the same, and the HOMO of Compound 8
  • the calculated value is slightly deep. Therefore, in the same manner as Compound 1, Compound 2, and Compound 6 actually synthesized in Example 1, Example 2 and Example 4, also in Compound 3 to Compound 5 and Compound 10, photoelectric conversion materials having deep HOMO levels are obtained. It is considered to be. Therefore, when a photoelectric conversion film is prepared using these compounds, the obtained photoelectric conversion film can reduce dark current.
  • the compounds 15 to 21 are considered to be photoelectric conversion materials having a deeper HOMO level. Therefore, when a photoelectric conversion film is produced using a compound in which a fluorine atom is introduced into an axial ligand, the obtained photoelectric conversion film can further reduce dark current.
  • Compound 3 and compound 8 can be synthesized according to the synthesis method described in JP-A-4-53713 (Patent Document 5).
  • Compound 7 can be synthesized according to the synthesis method described in Step (4) of Example 2.
  • the resulting concentrate is purified by neutral alumina column chromatography.
  • the target compound 16 can be obtained by concentrating the purified product solution and washing with heptane.
  • Compound 17 is synthesized according to the synthesis method described in Japanese Patent Application No. 2018-024367, which is an unpublished patent application filed by the present applicant.
  • the resulting concentrate is purified by neutral alumina column chromatography.
  • the target compound 21 can be obtained by concentrating the purified product solution and washing with heptane.
  • compositions, photoelectric conversion element, and imaging device which concern on this indication were demonstrated based on embodiment and an Example, this indication is not limited to these embodiment and an Example.
  • various modifications conceived by those skilled in the art have been made in the embodiments and examples, and other forms constructed by combining some components in the embodiments and examples are also possible. Are within the scope of this disclosure.
  • composition and photoelectric conversion element which concern on this indication for a solar cell by taking out the electric charge which generate
  • composition according to the present disclosure may be used as a near-infrared light-cutting material for films, sheets, glass, building materials, and the like. Moreover, you may mix and use an ink, resin, glass etc. as an infrared absorber.
  • compositions, the photoelectric conversion element, and the imaging element according to the present disclosure can be applied to an image sensor and the like, and are particularly suitable for an image sensor having high light absorption characteristics in a near infrared light region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Biochemistry (AREA)
  • Electromagnetism (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本開示の一態様に係る組成物は、下記一般式(1)で表されるフタロシアニン誘導体を含む、 組成物。 但し、RからRは、それぞれ独立して、アルキル基またはアリール基であり、Mは4価の金属であり、RおよびR10の各々は下記一般式(2)から(5)で表される置換基のうちのいずれか1つである。また、R11からR13は、それぞれ独立してアルキル基であり、R14からR18は、それぞれ独立して、アルキル基またはアリール基である。

Description

組成物、光電変換素子および撮像装置
 本開示は、フタロシアニン誘導体を含む組成物、光電変換素子および撮像装置に関する。
 特許文献1、特許文献2に開示されているように、フタロシアニン誘導体およびナフタロシアニン誘導体は、近赤外光領域に光吸収特性を有する物質として、有機半導体材料に限らず、製品のマーキング材など様々な分野に利用可能な物質として研究されている。
 例えば、非特許文献1および非特許文献2には、より長波長の近赤外光領域に光吸収特性を有するフタロシアニン誘導体の合成方法が開示されている。
 また、特許文献1には、フタロシアニン誘導体を薄膜化し、光電変換材料として用いることにより、半導体素子および電子素子を実現することが開示されている。また、非特許文献3には、低分子量の有機薄膜を用いた光検出器および太陽電池について開示されている。これらの特許文献1、非特許文献3には、吸収極大波長が600nmから800nmであるフタロシアニン誘導体が開示されている。
特許第5405719号公報 米国特許第5525516号明細書 特許第5553727号公報 特開2016-225456号公報 特開平4-53713号公報
Samson Khene et. al., "Synthesis, electrochemical characterization of tetra- and octa-substituted dodecyl-mercaptotin phthalocyanines in solution and as self-assembled monolayers", Electrochemica Acta, Elsevier, 2008年, vol.54, pp.183-191 Taniyuki Furuyama et. al., "Design, Synthesis, and Properties of Phthalocyanine Complexes with Main-Group Elements Showing Main Absorption and Fluorescence beyond 1000 nm", Journal of the American Chemical Society, American Chemical Society, 2014年, vol.136, No.2, pp.765-776 Peter Peumans et. al., "Small molecular weight organic thin-film photodetectors and solar cells", Journal of Applied Physics, American Institute of Physics, 2003年, Vol.93, No.7, pp.3693-3723 白井汪芳、小林長夫編・著、「フタロシアニン-化学と機能-」、アイピーシー社、1997年、第1から62頁 Gcineka Mbambisa et.al., "Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentylthio groups", Polyhedron, 2007年, vol. 26, Issue 18, pp.5355-5364 Jian-Yong et. al., "Switching the photo-induced energy and electron-transfer processes in BODIPY-phthalocyanine conjugates", Chemical Communications,Royal Society of Chemistry, 2009年, pp.1517-1519
 本開示では、より波長の長い近赤外光領域において高い光吸収特性を有する組成物、光電変換素子および撮像装置を提供する。
 本開示の一様態に係る組成物は、下記一般式(1)で表されるフタロシアニン誘導体を含む。
Figure JPOXMLDOC01-appb-C000016
 但し、RからRは、それぞれ独立して、アルキル基またはアリール基であり、Mは4価の金属であり、RおよびR10の各々は下記一般式(2)から(5)で表される置換基のうちのいずれか1つである。また、R11からR13は、それぞれ独立してアルキル基であり、R14からR18は、それぞれ独立して、アルキル基またはアリール基である。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 また、本開示の一態様に係る光電変換素子は、一対の電極と、前記一対の電極の間に設けられ、前記のいずれかの組成物を含み、近赤外光領域において光吸収特性を有する光電変換膜と、を備える。
 また、本開示の一態様に係る撮像装置は、基板と、前記基板表面に設けられた電荷検出回路、前記基板上に設けられた光電変換部、および前記電荷検出回路と前記光電変換部とに電気的に接続された電荷蓄積ノードを含む画素と、を備え、前記光電変換部は上記の光電変換素子を含む。
 本開示によれば、より波長の長い近赤外光領域において高い光吸収特性を有する組成物、光電変換素子および撮像装置が提供される。
図1は、本実施の形態に係る近赤外光電変換素子の一例を示す概略断面図である。 図2は、本実施の形態に係る近赤外光電変換素子の他の例を示す概略断面図である。 図3は、図2に示される近赤外光電変換素子のエネルギーバンド図の一例を示す図である。 図4は、本実施の形態に係る撮像装置の回路構成の一例を示す図である。 図5は、本実施の形態に係る撮像装置における画素のデバイス構造の一例を示す概略断面図である。 図6Aは、実施例1から実施例5のフタロシアニン誘導体の吸収スペクトルの図である。 図6Bは、実施例6から実施例9のフタロシアニン誘導体の吸収スペクトルの図である。 図7Aは、実施例10の近赤外光電変換膜の吸収スペクトルの図である。 図7Bは、実施例10の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図8Aは、実施例11の近赤外光電変換膜の吸収スペクトルの図である。 図8Bは、実施例11の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図9Aは、実施例12の近赤外光電変換膜の吸収スペクトルの図である。 図9Bは、実施例12の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図10Aは、実施例13の近赤外光電変換膜の吸収スペクトルの図である。 図10Bは、実施例13の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図11Aは、実施例14の近赤外光電変換膜の吸収スペクトルの図である。 図11Bは、実施例14の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図12Aは、実施例15の近赤外光電変換膜の吸収スペクトルの図である。 図12Bは、実施例15の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図13Aは、実施例16の近赤外光電変換膜の吸収スペクトルの図である。 図13Bは、実施例16の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図14Aは、実施例17の近赤外光電変換膜の吸収スペクトルの図である。 図14Bは、実施例17の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図15Aは、実施例18の近赤外光電変換膜の吸収スペクトルの図である。 図15Bは、実施例18の近赤外光電変換膜の光電子分光測定の測定結果を示す図である。 図16は、実施例19の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図17は、実施例20の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図18は、実施例21の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図19は、実施例22の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図20は、実施例23の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図21は、実施例24の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図22は、実施例25の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図23は、実施例26の近赤外光電変換素子の分光感度特性の測定結果を示す図である。 図24は、実施例27の近赤外光電変換素子の分光感度特性の測定結果を示す図である。
 (本開示に至った知見)
 有機半導体材料では、使用する有機化合物の分子構造を変えると、エネルギー準位が変化し得る。このため、例えば、有機半導体材料を光電変換材料として用いる場合、吸収波長の制御が可能であり、Siが感度を有さない近赤外光領域においても感度を持たせることができる。つまり、有機半導体材料を用いれば、従来、光電変換に用いられることのなかった波長領域の光を活用することが可能であり、太陽電池の高効率化及び近赤外光領域での光センサを実現することが可能となる。このため、近年、波長範囲が650nm以上3.0μm以下である近赤外光領域に感度を有する有機半導体材料を用いた光電変換素子および撮像素子が活発に検討されている。
 近年、近赤外光領域で感度を有する撮像素子が検討されており、フタロシアニン誘導体は、π共役系が広く、π―π吸収に由来する近赤外光領域での強い吸収を有することから材料の有力な候補となる。しかしながら、従来のフタロシアニン誘導体の吸収極大波長は大きいもので700から800nm程度であり、更なる長波長化と撮像素子特性を両立する分子構造が求められている。つまり、従来技術では、800nm以上の近赤外光領域において光吸収特性を有する近赤外光電変換膜が得られていない。
 本発明者らは、フタロシアニン環の電子状態を制御することにより、有機材料光電変換膜の応答波長を制御できることを見出した。
 そこで、本開示では、より波長の長い近赤外光領域において高い光吸収特性を有する組成物、光電変換素子および撮像装置を提供する。
 本開示の一態様の概要は、以下の通りである。
 本開示の一様態に係る組成物は、下記一般式(1)で表されるフタロシアニン誘導体を含む。
Figure JPOXMLDOC01-appb-C000021
 但し、RからRは、それぞれ独立して、アルキル基またはアリール基であり、Mは4価の金属であり、RおよびR10の各々は下記一般式(2)から(5)で表される置換基のうちいずれか1つである。R11からR13は、それぞれ独立してアルキル基であり、R14からR18は、それぞれ独立して、アルキル基またはアリール基である。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 このように、本開示の一態様に係る組成物は、前記一般式(1)で表されるフタロシアニン誘導体が電子求引性の軸配位子を有するため、フタロシアニン環の電子密度が低下し、HOMO(Highest Occupied Molecular Orbital)エネルギー準位およびLUMO(Lowest Unoccupied Molecular Orbital)エネルギー準位が共に深くなる。さらに、当該組成物は、当該フタロシアニン誘導体が電子供与性のα位側鎖を有するため、LUMOエネルギー準位のみが低下する。そのため、当該組成物は、HOMOエネルギー準位が深くなると同時に、HOMOエネルギー準位とLUMOエネルギー準位の差であるエネルギーギャップ(Eg)が狭くなる。
 これにより、本開示の一態様に係る組成物は、上記一般式(1)で表されるフタロシアニン誘導体を含むため、エネルギーギャップが狭くなることから、より波長の長い近赤外光領域において高い光吸収特性を有し、かつ、HOMOエネルギー準位が深くなり真空準位とHOMOエネルギー準位との差であるイオン化ポテンシャルの数値は大きくなることから、近赤外光電変換素子に用いた場合に暗電流を低減することができる。そのため、当該組成物を用いることにより、より波長の長い近赤外光領域において高い光吸収特性を有し、かつ、暗電流の発生が低減された近赤外光電変換素子および撮像装置を得ることができる。
 また、上記の軸配位子の効果については、中心金属と結合している酸素原子が電子求引性の役割を主に担っている。そのため、RからR10を上記一般式(1)から(5)とした場合のいずれにおいても、近赤外光領域に高い光吸収特性を有し、かつ、暗電流を低減することができる。
 また、例えば、本開示の一態様に係る組成物では、前記一般式(1)において、RからRは炭素数5以下のアルキル基であってもよい。
 これにより、本開示の一態様に係る組成物では、前記一般式(1)で表されるフタロシアニン誘導体が室温で固体となり、合成が容易となる。
 また、例えば、本開示の一態様に係る組成物では、前記一般式(1)において、MはSiまたはSnであってもよい。
 これにより、本開示の一態様に係る組成物では、4価の金属のうちSiまたはSnを用いることにより、合成が比較的容易になる。
 また、例えば、本開示の一態様に係る組成物では、前記フタロシアニン誘導体は、下記一般式(6)から(11)で表される化合物のいずれか1つであってもよい。但し、Arはアリール基であり、Xは炭素数10以下のアルキル基である。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 これにより、前記一般式(1)で表されるフタロシアニン誘導体を容易に合成することができる。
 また、例えば、本開示の一態様に係る組成物では、前記一般式(1)において、RおよびR10からなる群から選択される少なくとも1つに含まれる少なくとも1つの水素原子が、フッ素原子または含フッ素基で置換されていてもよい。
 これにより、本開示の一態様に係る組成物では、フタロシアニン誘導体が有する軸配位子の電子求引性がさらに高くなるため、フタロシアニン環の電子密度がさらに低下し、HOMOエネルギー準位およびLUMOエネルギー準位が共にさらに深くなる。そのため、前記一般式(1)で表されるナフタロシアニン誘導体のイオン化ポテンシャルがさらに下がり、暗電流をさらに抑制することができる。また、HOMOエネルギー準位に比べ、LUMOエネルギー準位の方が深くなることから、エネルギーギャップ(Eg)がさらに狭くなる。よって、本開示の一態様に係る組成物は、エネルギーギャップがさらに狭くなり、近赤外光領域における吸収ピークがさらに長波長化する。
 また、例えば、本開示の一態様に係る組成物では、前記一般式(1)において、RおよびR10は、前記一般式(5)であり、前記一般式(5)においてR17およびR18は、それぞれ独立してアリール基であり、R17およびR18からなる群から選択される少なくとも1つに含まれる少なくとも1つの水素原子が、フッ素原子または含フッ素基で置換されていてもよい。
 これにより、本開示の一態様に係る組成物では、軸配位子の導入が容易になり、合成が比較的容易になる。
 また、例えば、本開示の一態様に係る組成物では、前記一般式(5)においてR17およびR18は、それぞれ独立してフェニル基であり、R17およびR18からなる群から選択される少なくとも1つに含まれる少なくとも一つの水素原子が、フッ素原子またはトリフルオロメチル基で置換されていてもよい。
 これにより、本開示の一態様に係る組成物では、軸配位子の導入が容易になり、合成が比較的容易になる。
 また、例えば、本開示の一態様に係る組成物において、前記フタロシアニン誘導体は、下記構造式(12)から(15)で表される化合物のいずれか1つであってもよい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 これにより、本開示の一態様に係る組成物では、容易に準備できる軸配位子を用いることができるため、合成が比較的容易になる。
 また、本開示の一態様に係る光電変換素子は、一対の電極と、前記一対の電極の間に設けられ、前記のいずれかの組成物を含み、近赤外光領域において光吸収特性を有する光電変換膜と、を備える。
 これにより、本開示の一態様に係る光電変換素子では、上記組成物を含むため、光電変換膜はより波長の長い近赤外光領域において高い光吸収特性を有し、かつ、暗電流を低減することができる。そのため、本開示の一態様に係る光電変換素子は、近赤外光領域の広い範囲において高い光吸収特性を発現することができる。
 また、例えば、本開示の一態様に係る光電変換素子において、前記光電変換膜のイオン化ポテンシャルは5.1eV以上であってもよい。
 これにより、本開示の一態様に係る光電変換素子では、暗電流が低減される。
 また、例えば、本開示の一態様に係る光電変換素子において、前記光電変換膜における前記組成物の濃度は、5重量%以上25重量%以下であってもよい。
 これにより、本開示の一態様に係る光電変換素子は、暗電流の低減と近赤外光領域における感度とを両立させることができる。
 また、例えば、本開示の一態様に係る光電変換素子において、前記光電変換膜の吸収スペクトルは、803nm以上の波長範囲において吸収ピークを含んでいてもよい。
 これにより、本開示の一態様に係る光電変換素子は、近赤外光領域の広範囲に亘り高い光吸収特性を有することができる。
 また、本開示の一態様に係る撮像装置は、基板と、前記基板表面に設けられた電荷検出回路、前記基板上に設けられた光電変換部、および前記電荷検出回路と前記光電変換部とに電気的に接続された電荷蓄積ノードを含む画素と、を備え、前記光電変換部は前記のいずれかの光電変換素子を含む。
 これにより、本開示の一態様に係る撮像装置は、より波長の長い近赤外光領域に高い光吸収特性を有し、かつ、暗電流を低減することができる。
 以下、本実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化することがある。
 (実施の形態)
 以下、本開示に係る組成物、光電変換素子および撮像装置の実施の形態について説明する。
 [組成物]
 まず、本実施の形態に係る組成物について説明する。本実施の形態に係る組成物は、下記一般式(1)で表されるフタロシアニン誘導体を含む。
Figure JPOXMLDOC01-appb-C000036
 但し、RからRは、それぞれ独立して、アルキル基またはアリール基であり、Mは4価の金属であり、RおよびR10の各々は下記一般式(2)から(5)で表される置換基のうちのいずれか1つである。また、R11からR13は、それぞれ独立してアルキル基であり、R14からR18は、それぞれ独立して、アルキル基またはアリール基である。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 本実施の形態に係る組成物は、上記一般式(1)で表されるフタロシアニン誘導体を含むことにより、近赤外光領域に高い光吸収特性を有し、かつ、暗電流を抑制することができる。
 上記一般式(1)で表されるフタロシアニン誘導体は、中心金属として4価の金属を有し、分子平面に対して上下に2つの軸配位子を有する軸配位子型の構造を有する。これにより、分子間の相互作用が緩和されるため、蒸着による成膜が容易になる。また、上記一般式(1)で表されるフタロシアニン誘導体が電子求引性の軸配位子を有するため、フタロシアニン環の電子密度が低下し、HOMO(Highest Occupied Molecular Orbital)エネルギー準位(以下、HOMO準位)およびLUMO(Lowest Unoccupied Molecular Orbital)エネルギー準位(以下、LUMO準位)が共に深くなる。さらに、当該フタロシアニン誘導体は、電子供与性のα位側鎖を有することにより、LUMO準位のみが低下する。当該フタロシアニン誘導体は、上述の中心金属、軸配位子およびα位側鎖を有することによる効果の組み合わせにより、HOMO準位およびLUMO準位が深くなるとともに、LUMO準位のみがさらに深くなる。そのため、当該フタロシアニン誘導体は、LUMO準位の下げ幅がHOMO準位の下げ幅よりも大きくなる。これにより、当該フタロシアニン誘導体は、そのHOMO準位が大きくなると共に、HOMO準位とLUMO準位との間のエネルギーギャップ(Eg)が狭くなる。したがって、本実施の形態に係る組成物は、当該フタロシアニン誘導体を含むことにより、近赤外光領域に高い光吸収特性を有し、かつ、HOMOエネルギー準位が深くなりイオン化ポテンシャルが下がり、イオン化ポテンシャルの数値は大きくなることにより、近赤外光電変換素子等に用いた場合に暗電流を低減することができる。
 上記一般式(1)において、RからRは、同じであっても異なってもよく、光電変換効率の観点から、アルキル基であってもよい。また、アルキル基は、直鎖または分岐のアルキル基を含む。中でも、RからRは、炭素数5以下であってもよい。RからRとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。
 本実施の形態に係る組成物は、上記一般式(1)で表されるフタロシアニン誘導体がα位に硫黄元素を含むアルキルチオ基またはアリールチオ基を有することにより、803nm以上の近赤外光領域に吸収波長のピーク、すなわち吸収極大波長を有する。すなわち、α位に硫黄元素を有さないフタロシアニン誘導体に比べて、高波長側に吸収波長のピークを有し、近赤外光領域の広範囲に亘り高い光吸収特性を有することができる。
 さらに、本実施の形態に係る組成物は、上記一般式(1)で表されるフタロシアニン誘導体がRからRに炭素数5以下のアルキル基を有することにより、室温で固体となり、合成が容易となる。
 また、R11からR13は、同じであっても異なってもよく、それぞれ独立してアルキル基である。また、R14からR18は、同じであっても異なってもよく、それぞれ独立して、アルキル基またはアリール基である。また、アルキル基は、直鎖、分岐、もしくは環状の無置換または置換のアルキル基を含んでもよい。
 無置換のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、およびn-ドデシル基等の直鎖のアルキル基、イソプロピル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、iso-ペンチル基、neo-ペンチル基、tert-ペンチル基、iso-ヘキシル基、sec-ヘキシル基、tert-ヘキシル基、iso-ヘプチル基、sec-ヘプチル基、tert-ヘプチル基、iso-オクチル基、sec-オクチル基、tert-オクチル基、イソノニル基、sec-ノニル基、tert-ノニル基、iso-デシル基、sec-デシル基、tert-デシル基、iso-ウンデシル基、sec-ウンデシル基、tert-ウンデシル基、iso-ドデシル基、sec-ドデシル基、およびtert-ドデシル基等の分岐鎖アルキル基、または、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、およびシクロドデシル基等の環状アルキル基が挙げられる。
 上記アルキル基は、さらに置換基を有していてもよい。かかる置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、水酸基、アミノ基、チオール基、シリル基、エステル基、アリール基、ヘテロアリール基、およびその他の公知の置換基が挙げられる。ハロゲン原子で置換されたアルキル基としては、例えば、ω-ブロモアルキル基、パーフルオロアルキル基などが挙げられる。水酸基で置換されたアルキル基としては、メチロール基、ブチロール基等を挙げられる。アミノ基で置換されたアルキル基としては、例えば、ジメチルアミノ基、ジフェニルアミノ基、メチルフェニルアミノ基、メチルアミノ基、エチルアミノ基等の1級または2級のアミノ基が挙げられる。チオール基で置換されたアルキル基としては、例えば、メルカプト基、アルキルチオ基等が挙げられる。シリル基で置換されたアルキル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジメチルtert-ブチルシリル基等が挙げられる。エステル基で置換されたアルキル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基、フェノキシカルボニル基、アセチルオキシ基、ベンゾイルオキシ基等が挙げられる。
 また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、ターフェニル基、ピレニル基、フルオレニル基、ペリレニル基などの芳香族炭化水素基、または、ヘテロアリール基であり、無置換でも置換されていてもよい。置換される場合の置換基の例としては、上記アルキル基が有する置換基の例として挙げた置換基等である。
 R11からR13は、溶解性および合成の容易性の観点から、炭素数10以下のアルキル基であってもよく、炭素数4以下であってもよい。また、R14は、炭素数10以下のアルキル基であってもよい。また、R15からR18はフェニル基またはフルオロフェニル基、トリフルオロメチルフェニル基であってもよい。
 また、上記一般式(1)において、合成の容易性の観点から、中心金属Mは、SiまたはSnであってもよい。
 また、上記一般式(1)において、RおよびR10からなる群から選択される少なくとも1つに含まれる少なくとも1つの水素原子が、フッ素原子または含フッ素基で置換されていてもよい。ここで、フッ素原子で置換されるとは、RおよびR10に含まれるアルキル基またはアリール基の骨格を形成する炭素に、直接フッ素原子が置換されていることを示す。また、ここで、含フッ素基で置換されるとは、RおよびR10に含まれるアルキル基またはアリール基の骨格を形成する炭素に更に別の置換基を有し、当該別の置換基にフッ素原子が置換されていることを示す。
 本実施の形態に係る組成物は、上記一般式(1)で表されるフタロシアニン誘導体が、RおよびR10において少なくとも1つの水素原子がフッ素原子または含フッ素基で置換されていることにより、フタロシアニン誘導体が有する軸配位子の電子求引性がさらに高くなることにより、フタロシアニン環の電子密度がさらに低下し、HOMO準位およびLUMO準位が共に更に深くなる。従って、上記一般式(1)で表され、RおよびR10における少なくとも1つの水素原子がフッ素原子または含フッ素基で置換されたフタロシアニン誘導体は、光電変換素子に用いた場合に暗電流をさらに低減することができる。
 含フッ素基としては、例えば、少なくとも1つの水素原子がフッ素原子に置換されたアルキル基、アリール基、アルケニル基等が挙げられる。アルキル基およびアリール基の例としては、上述の通りである。具体的な含フッ素基の例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、トリフルオロフェニル基、テトラフルオロフェニル基、ペンタフルオロフェニル基等が挙げられる。
 また、含フッ素基は、さらに、アルキル基、アルコキシ基、ハロゲン原子、水酸基、アミノ基、チオール基、シリル基、エステル基、アリール基、ヘテロアリール基、およびその他の公知の置換基を有してもよい。
 また、上記一般式(1)において、合成の容易性の観点から、RおよびR10は、上記一般式(5)であり、上記一般式(5)においてR17およびR18は、それぞれ独立してアリール基であり、R17およびR18からなる群から選択される少なくとも1つに含まれる少なくとも1つの水素原子が、フッ素原子または含フッ素基で置換されていてもよい。中でも、R17およびR18は、それぞれ独立してフェニル基であり、R17およびR18からなる群から選択される少なくとも1つに含まれる少なくとも1つの水素原子が、フッ素原子またはトリフルオロメチル基で置換されていてもよい。R17およびR18としては、例えば、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、3,5-ジフルオロフェニル基、ペンタフルオロフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、3,5-ビストリフルオロフェニル基等が挙げられる。
 以下、上記一般式(1)で表されるフタロシアニン誘導体について、より具体的に説明する。上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(6)から(11)で表される化合物であることにより、容易に合成され得る。これにより、より波長の長い近赤外光領域に高い吸収特性を有し、かつ、暗電流を低減することができる組成物を比較的容易に得ることができる。また、上記一般式(1)で表され、RおよびR10における少なくとも1つの水素原子がフッ素原子または含フッ素基で置換されたフタロシアニン誘導体は、下記構造式(12)から(15)で表される化合物であることにより、容易に合成され得る。これにより、暗電流をさらに低減することができる組成物を比較的容易に得ることができる。
 本実施の形態では、上記一般式(1)において、RからRは炭素数5のペンチル基であり、MはSiであり、RからR10は、上記一般式(2)で表される置換基であってもよい。また、上記一般式(2)において、R11からR13は、それぞれ独立して、炭素数10以下のアルキル基であってもよい。また、R11からR13は、それぞれ同一のアルキル基であってもよい。この場合、R11からR13をXで表すと、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(6)で表される化合物である。例えば、R11からR13がそれぞれ炭素数4のブチル基である場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(6)中のXがブチル基である化合物である。
Figure JPOXMLDOC01-appb-C000041
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数5のペンチル基であり、MはSnであり、RからR10は、上記一般式(2)で表される置換基であってもよい。また、上記一般式(2)において、R11からR13は、それぞれ独立して、炭素数10以下のアルキル基であってもよい。また、R11からR13は、それぞれ同一のアルキル基であってもよい。この場合、R11からR13をXで表すと、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(7)で表される化合物である。例えば、R11からR13がそれぞれ炭素数6のヘキシル基である場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(7)中のXがヘキシル基である化合物である。
Figure JPOXMLDOC01-appb-C000042
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数5のペンチル基であり、MはSiであり、RからR10は、上記一般式(5)で表される置換基であってもよい。また、上記一般式(5)において、R17からR18は、それぞれ独立して、アリール基であってもよい。また、R17からR18は、それぞれ同一のアリール基であってもよい。この場合、R17からR18をArで表すと、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(8)で表される化合物である。例えば、R17からR18がそれぞれフェニル基である場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(8)中のArがフェニル基である化合物である。
Figure JPOXMLDOC01-appb-C000043
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数2のエチル基であり、MはSiであり、RからR10は、上記一般式(2)で表される置換基であってもよい。また、上記一般式(2)において、R11からR13は、それぞれ独立して、炭素数10以下のアルキル基であってもよい。また、R11からR13は、それぞれ同一のアルキル基であってもよい。この場合、R11からR13をXで表すと、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(9)で表される化合物である。例えば、R11からR13がそれぞれ炭素数4のブチル基である場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(9)中のXがブチル基である化合物である。
Figure JPOXMLDOC01-appb-C000044
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数2のエチル基であり、MはSiであり、RからR10は、上記一般式(5)で表される置換基であってもよい。また、上記一般式(5)において、R17からR18は、それぞれ独立して、アリール基であってもよい。また、R17からR18は、それぞれ同一のアリール基であってもよい。この場合、R17からR18をArで表すと、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(10)で表される化合物である。例えば、R17からR18がそれぞれフェニル基である場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(10)中のArがフェニル基である化合物である。
Figure JPOXMLDOC01-appb-C000045
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数3のイソプロピル基であり、MはSnであり、RからR10は、上記一般式(2)で表される置換基であってもよい。また、上記一般式(2)において、R11からR13は、それぞれ独立して、炭素数10以下のアルキル基であってもよい。また、R11からR13は、それぞれ同一のアルキル基であってもよい。この場合、R11からR13をXで表すと、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(11)で表される化合物である。例えば、R11からR13がそれぞれ炭素数6のヘキシル基である場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記一般式(11)中のXがヘキシル基である化合物である。
Figure JPOXMLDOC01-appb-C000046
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数5のペンチル基であり、MはSiであり、RからR10は、上記一般式(5)で表される置換基であってもよい。また、上記一般式(5)において、R17からR18は、4-フルオロフェニル基であってもよい。この場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記構造式(12)で表される化合物である。
Figure JPOXMLDOC01-appb-C000047
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数5のペンチル基であり、MはSiであり、RからR10は、上記一般式(5)で表される置換基であってもよい。また、上記一般式(5)において、R17からR18は、3,5-ジフルオロフェニル基であってもよい。この場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記構造式(13)で表される化合物である。
Figure JPOXMLDOC01-appb-C000048
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数5のペンチル基であり、MはSiであり、RからR10は、上記一般式(5)で表される置換基であってもよい。また、上記一般式(5)において、R17からR18は、4-トリフルオロメチルフェニル基であってもよい。この場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記構造式(14)で表される化合物である。
Figure JPOXMLDOC01-appb-C000049
 また、本実施の形態では、上記一般式(1)において、RからRは炭素数5のペンチル基であり、MはSiであり、RからR10は、上記一般式(5)で表される置換基であってもよい。また、上記一般式(5)において、R17からR18は、3,5-ビストリフルオロフェニル基であってもよい。この場合、上記一般式(1)で表されるフタロシアニン誘導体は、下記構造式(15)で表される化合物である。
Figure JPOXMLDOC01-appb-C000050
 以下、本実施の形態における上記一般式(1)で表される化合物の合成法について説明する。
 上記一般式(1)で表される化合物のフタロシアニン環形成反応は、白井汪芳、小林長夫編・著「フタロシアニン-化学と機能-」(アイピーシー社、1997年刊)の第1から62頁(非特許文献4)に準じて行うことができる。
 フタロシアニン誘導体の代表的な合成方法としては、上記の非特許文献4に記載のワイラー法、フタロニトリル法、リチウム法、サブフタロシアニン法、および塩素化フタロシアニン法などが挙げられる。本実施の形態では、フタロシアニン環形成反応において、いかなる反応条件を用いてもよい。環形成反応においては、フタロシアニンの中心金属となるSn金属またはSi金属を添加してもよいが、中心金属を持たないフタロシアニン誘導体を合成した後に、Sn金属またはSi金属を導入してもよい。
 反応溶媒としては、いかなる溶媒を用いてもよいが、高沸点の溶媒であるとよい。また、環形成反応促進のために、酸または塩基を用いてもよく、特に、塩基を用いるとよい。最適な反応条件は、目的とするフタロシアニン誘導体の構造により異なるが、上記の非特許文献4に記載された具体的な反応条件を参考に設定することができる。
 上記のフタロシアニン誘導体の合成に使用する原料としては、無水フタル酸、フタルイミド、フタル酸およびその塩、フタル酸ジアミド、フタロニトリル、1,3-ジイミノベンゾイソインドリンなどの誘導体を用いることができる。これらの原料は公知のいかなる方法で合成してもよい。
 本実施の形態では、Sn金属を中心金属にした場合は、中心金属を持たないフタロシアニン誘導体を合成した後に、SnClを含む試薬を組み合わせることでフタロシアニン環の中心にSn金属を導入した。一方、Si金属を中心金属にした場合は、イソインドリン誘導体とSiClを含む試薬を組み合わせることで、フタロシアニン環を形成しながら中心にSi金属を導入した。
 [近赤外光電変換素子]
 以下、本実施の形態に係る近赤外光電変換素子について図1を用いて説明する。図1は、本実施の形態に係る近赤外光電変換素子の一例である近赤外光電変換素子10Aの概略断面図である。
 本実施の形態に係る近赤外光電変換素子10Aは、一対の電極である上部電極4および下部電極2と、一対の電極の間に設けられ、上述のいずれかの組成物を含む近赤外光電変換膜3と、を備える。
 本実施の形態に係る近赤外光電変換素子10Aは、例えば支持基板1に支持されている。
 支持基板1は近赤外光に対して透明であり、支持基板1を介して近赤外光電変換素子10Aに光が入射する。支持基板1は、一般的な光電変換素子にて使用される基板であればよく、例えば、ガラス基板、石英基板、半導体基板、または、プラスチック基板等であってもよい。なお、「近赤外光に対して透明である」とは、近赤外光に対して実質的に透明であることをいい、例えば、近赤外光領域の光の透過率が60%以上であり、80%以上であってもよく、90%以上であってもよい。
 以下、本実施の形態に係る近赤外光電変換素子10Aの各構成要素について説明する。
 近赤外光電変換膜3は、例えば、下記一般式(1)で表されるフタロシアニン誘導体を含む組成物を用いて作製される。
Figure JPOXMLDOC01-appb-C000051
 但し、RからRは、それぞれ独立して、アルキル基またはアリール基であり、Mは4価の金属であり、RおよびR10の各々は下記一般式(2)から(5)で表される置換基のうちいずれか1つである。R11からR13は、それぞれ独立してアルキル基であり、R14からR18は、それぞれ独立して、アルキル基またはアリール基である。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
 本実施の形態では、上記一般式(1)で表されるフタロシアニン誘導体は、例えば、下記一般式(6)から(11)、および、下記構造式(12)から(15)で表される化合物のうちのいずれか1つであってもよい。これにより、本実施の形態に係る組成物は、近赤外光領域において高い光吸収特性を有することができる。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
 近赤外光電変換膜3の作製方法は、例えば、スピンコートなどによる塗布法、真空下で加熱することにより膜の材料を気化し、基板上に堆積させる真空蒸着法などを用いることができる。不純物の混入を防止し、高機能化のための多層化をより自由度を持って行うことを考慮する場合には蒸着法を用いてもよい。蒸着装置は、市販の装置を用いてもよい。蒸着中の蒸着源の温度は、100℃から500℃であってもよく、150℃から400℃であってもよい。蒸着時の真空度は、1×10-6Paから1Paであってもよく、1×10-6Paから1×10-4Paであってもよい。また、蒸着源に金属微粒子等を添加して蒸着速度を高める方法を用いてもよい。
 近赤外光電変換膜3の材料の配合割合は、塗布法では重量比、蒸着法では体積比で示される。より具体的には、塗布法では、溶液調整時の各材料の重量で配合割合を規定し、蒸着法では、蒸着時に膜厚計で各材料の蒸着膜厚をモニタリングしながら各材料の配合割合を規定する。
 上記材料の配合割合は、例えば、近赤外光電変換素子10Aおよび10B(後述、図2参照)では、近赤外光電変換膜3における上記組成物の濃度は、5重量%以上25重量%以下であってもよい。これにより、近赤外光電変換素子10Aおよび10Bは、暗電流の抑制と近赤外光領域における感度とを両立させることができる。
 本願発明者らの研究により、中心金属にSn(スズ)を有し、α位側鎖および軸配位子を有するナフタロシアニン誘導体を含む組成物では、近赤外光電変換膜における組成物の濃度は、5体積%以上25体積%以上であるとよいことが分かっている。ナフタロシアニン誘導体では、電子は、ナフタロシアニン全体に広がる電子雲からアクセプター性有機化合物(例えばフラーレン(C60))側に移動する。そのため、ナフタロシアニン環をフタロシアニン環に置き換えても、光電変換効率に大きな影響を与えないと考えられる。
 また、本実施の形態では、近赤外光電変換膜3の吸収スペクトルにおける吸収極大波長は803nm以上であり、820nm以上であってもよく、860nm以上であってもよい。これにより、本実施の形態に係る近赤外光電変換素子は、近赤外光領域の広範囲に亘り高い光吸収特性を有することができる。
 また、近赤外光電変換膜3のイオン化ポテンシャルは5.1eV以上である。これにより、本実施の形態に係る近赤外光電変換素子では、暗電流が低減される。
 上部電極4および下部電極2の少なくとも一方は、近赤外光に対して透明な導電性材料で構成された透明電極である。下部電極2および上部電極4には配線(不図示)によってバイアス電圧が印加される。例えば、バイアス電圧は、近赤外光電変換膜3で発生した電荷のうち、電子が上部電極4に移動し、正孔が下部電極2に移動するように、極性が決定される。また、近赤外光電変換膜3で発生した電荷のうち、正孔が上部電極4に移動し、電子が下部電極2に移動するように、バイアス電圧を設定してもよい。
 また、バイアス電圧は、印加する電圧値を下部電極2と上部電極4との間の距離で割った値、つまり近赤外光電変換素子10Aに生じる電界の強さが、1.0×10V/cmから1.0×10V/cmの範囲内となるように印加されてもよく、1.0×10V/cmから1.0×10V/cmの範囲内となるように印加されてもよい。このようにバイアス電圧の大きさを調整することにより、上部電極4に電荷を効率的に移動させ、電荷に応じた信号を外部に取り出すことが可能となる。
 下部電極2および上部電極4の材料としては、近赤外光領域の光の透過率が高く、抵抗値が小さい透明導電性酸化物(TCO:Transparent Conducting Oxide)を用いてもよい。Auなどの金属薄膜を透明電極として用いることもできるが、近赤外光領域の光の透過率を90%以上得ようとすると、透過率を60%から80%得られるように透明電極を作製した場合に比べ、抵抗値が極端に増大することがある。そのため、Auなどの金属材料よりもTCOの方が近赤外光に対する透明性が高く、かつ、抵抗値が小さい透明電極を得ることができる。TCOは、特に限定されないが、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、AZO(Aluminum-doped Zinc Oxide)、FTO(Florine-doped Tin Oxide)、SnO、TiO、ZnO等を用いることができる。なお、下部電極2および上部電極4は、所望の透過率に応じて、適宜、TCOおよびAuなどの金属材料を単独または複数組み合わせて作製してもよい。
 なお、下部電極2および上部電極4の材料は、上述した近赤外光に対して透明な導電性材料に限られず、他の材料を用いてもよい。
 下部電極2および上部電極4の作製には、使用する材料によって種々の方法が用いられる。例えばITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、ゾルーゲル法などの化学反応法、酸化インジウムスズの分散物の塗布などの方法を用いてもよい。この場合、ITO膜を成膜した後に、さらに、UV-オゾン処理、プラズマ処理などを施してもよい。
 近赤外光電変換素子10Aによれば、支持基板1および下部電極2を介して入射した近赤外光によって、近赤外光電変換膜3において、光電変換が生じる。これにより生成した正孔電子対のうち、正孔は下部電極2に集められ、電子は上部電極4に集められる。よって、例えば、下部電極2の電位を測定することによって、近赤外光電変換素子10Aに入射した近赤外光を検出することができる。
 なお、近赤外光電変換素子10Aは、さらに、後述する電子ブロッキング層5および正孔ブロッキング層6を備えてもよい。電子ブロッキング層5および正孔ブロッキング層6により近赤外光電変換膜3を挟むことにより、下部電極2から近赤外光電変換膜3に電子が注入されること、および、上部電極4から近赤外光電変換膜3に正孔が注入されることを抑制することができる。これにより、暗電流を抑制することができる。なお、電子ブロッキング層5および正孔ブロッキング層6の詳細については、後述する。
 次に、本実施の形態に係る近赤外光電変換素子の他の例について図2および図3を用いて説明する。図2は、本実施の形態に係る近赤外光電変換素子の他の例である近赤外光電変換素子10Bの概略断面図である。図3は、近赤外光電変換素子10Bのエネルギーバンド図の一例を示す。なお、図2に示される近赤外光電変換素子10Bにおいて、図1に示される近赤外光電変換素子10Aと同じ構成要素には同じ参照符号を付している。
 図2に示されるように、近赤外光電変換素子10Bは、少なくとも、下部電極2、上部電極4、および下部電極2と上部電極4との間に配置される光電変換層3Aを備えている。光電変換層3Aは、例えば、近赤外光電変換膜3と、正孔輸送層として機能するp型半導体層7と、電子輸送層として機能するn型半導体層8とを含んでおり、近赤外光電変換膜3は、p型半導体層7およびn型半導体層8の間に配置される。さらに、近赤外光電変換素子10Bは、下部電極2と光電変換層3Aとの間に配置される電子ブロッキング層5、および上部電極4と光電変換層3Aとの間に配置される正孔ブロッキング層6を備える。なお、近赤外光電変換膜3については、図1に示される近赤外光電変換素子10Aの説明で上述した通りであるため、ここでの説明は省略する。
 光電変換層3Aは、近赤外光電変換膜3、p型半導体層7、およびn型半導体層8を含む。ここで、p型半導体層7に含まれるp型半導体、およびn型半導体層8に含まれるn型半導体の少なくともいずれかが後述する有機半導体であってもよい。
 また、光電変換層3Aは、上述した組成物と、有機p型半導体および有機n型半導体の少なくとも一方とを含んでいてもよい。
 また、光電変換層3Aは、p型半導体とn型半導体とを混合したバルクヘテロ接合構造層を含んでいてもよい。光電変換層3Aは、バルクヘテロ接合構造層を含むことにより、光電変換層3Aにおけるキャリア拡散長が短いという欠点を補い、光電変換効率を向上させることができる。
 さらに、光電変換層3Aは、p型半導体層7およびn型半導体層8の間にバルクヘテロ接合構造層を配置してもよい。バルクヘテロ接合構造層をp型半導体層7およびn型半導体層8で挟むことにより、正孔および電子の整流性がバルクヘテロ接合構造層よりも高くなり、電荷分離した正孔および電子の再結合などによるロスが低減され、さらに高い光電変換効率を得ることができる。なお、バルクヘテロ接合構造層については、特許第5553727号(特許文献3)においてバルクヘテロ型活性層について詳細に説明されている通りである。
 バルクヘテロ接合構造層では、p型半導体とn型半導体とが接触することにより、暗状態においても電荷が発生する場合がある。そのため、p型半導体とn型半導体との接触を少なくすることにより、暗電流を抑制することができる。電荷移動度の観点から、バルクヘテロ接合構造層がフラーレン誘導体などのn型半導体を多く含む場合、素子抵抗を抑制することができる。この場合、バルクヘテロ接合構造層におけるp型半導体に対するn型半導体の体積比、および重量比率は、4倍以上であってもよい。しかしながら、バルクヘテロ接合構造層において、p型半導体の割合が少なくなると、近赤外光領域における感度が低下する。そのため、感度の観点から、バルクヘテロ接合構造層において、p型半導体に対するn型半導体の体積比率が大きすぎなくてもよい。例えば、20倍以下であってもよい。特許文献4に開示されているように、バルクヘテロ接合構造層におけるp型半導体に対するn型半導体の体積比率が4倍以上20倍以下であれば、暗電流の抑制と近赤外光領域における感度とを両立させることができる。
 有機化合物のp型半導体は、ドナー性有機半導体であり、主に、正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは、2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機半導体は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができる。なお、これに限らず、上記したように、アクセプター性半導体として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であればドナー性有機半導体として用いてよい。
 有機化合物のn型半導体は、アクセプター性有機半導体であり、主に、電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、フラーレン、フラーレン誘導体、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、窒素原子、酸素原子、硫黄原子を含有する5ないし7員のヘテロ環化合物(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピロリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。なお、これに限らず、上記したように、ドナー性有機化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプター性有機半導体として用いてよい。
 電子ブロッキング層5は、下部電極2から電子が注入されることによる暗電流を低減するために設けられており、下部電極2から電子が光電変換層3Aに注入されることを抑制する。電子ブロッキング層5には上述のp型半導体または正孔輸送性有機化合物または金属酸化物などの無機物を用いることもできる。図3に示されるように、電子ブロッキング層5は、光電変換層3Aのp型半導体層7よりも低いHOMOエネルギー準位および高いLUMOエネルギー準位を有する。言い換えると、光電変換層3Aは、電子ブロッキング層5との界面近傍において、電子ブロッキング層5よりも高いエネルギー準位のHOMOおよび電子ブロッキング層5よりも低いエネルギー準位のLUMOを有する。
 正孔ブロッキング層6は、上部電極4から正孔が注入されることによる暗電流を低減するために設けられており、上部電極4からの正孔が光電変換層3Aに注入されるのを抑制する。正孔ブロッキング層6の材料は、例えば、銅フタロシアニン、PTCDA(3,4,9,10-Perylenetetracarboxylic dianhydride)、アセチルアセトネート錯体、BCP(Bathocuproine)、Alq(Tris(8-quinolinolate)aluminum)などの有機物、もしくは、有機-金属化合物、または、MgAg、MgOなどの無機物を用いてもよい。また、正孔ブロッキング層6は、近赤外光電変換膜3の光吸収を妨げないために、近赤外光の透過率が高くてもよく、可視光領域に吸収を持たない材料を選択してもよく、正孔ブロッキング層6の厚さを小さくしてもよい。正孔ブロッキング層6の厚さは、光電変換層3Aの構成、上部電極4の厚さ等に依存するが、例えば、2nmから50nmの厚さであってもよい。正孔ブロッキング層6は上述のn型半導体または電子輸送性有機化合物を用いることもできる。
 電子ブロッキング層5を設ける場合、下部電極2の材料には、上述した材料の中から電子ブロッキング層5との密着性、電子親和力、イオン化ポテンシャル、および安定性等を考慮して選ばれる。なお、上部電極4についても同様である。
 図3に示されるように、上部電極4の仕事関数が比較的大きい(例えば、4.8eV)と、バイアス電圧印加時に正孔が近赤外光電変換膜3へと移動する際の障壁が低くなる。そのため、上部電極4から光電変換層3Aへの正孔注入が起こりやすくなり、結果として暗電流が大きくなると考えられる。
 [撮像装置]
 以下、本実施の形態に係る撮像装置について図4および図5を用いて説明する。図4は、本実施の形態に係る撮像装置100の回路構成の一例を示す図である。図5は、本実施の形態に係る撮像装置100における画素24のデバイス構造の一例を示す概略断面図である。
 図4および図5に示されるように、本実施の形態に係る撮像装置100は、基板である半導体基板40と、半導体基板40表面に設けられた電荷検出回路35、半導体基板40上に設けられた光電変換部10C、および電荷検出回路35と光電変換部10Cとに電気的に接続された電荷蓄積ノード34を含む画素24と、を備え、画素24の光電変換部10Cは上記の近赤外光電変換素子10Aまたは10Bを含む。
 図4に示されるように、撮像装置100は、複数の画素24と、垂直走査回路25および水平信号読出し回路20などの周辺回路と、を備えている。撮像装置100は、1チップの集積回路で実現される有機イメージセンサであり、2次元に配列された複数の画素24を含む画素アレイを有する。
 複数の画素24は、半導体基板40上に2次元、すなわち行方向および列方向に配列されて、感光領域(いわゆる、画素領域)を形成している。図4では、画素24は、2行2列のマトリックス状に配列される例を示している。なお、図4では、図示の便宜上、画素24の感度を個別に設定するための回路(例えば、画素電極制御回路)を省略している。また、撮像装置100は、ラインセンサであってもよい。その場合、複数の画素24は、1次元に配列されていてもよい。なお、行方向および列方向とは、行および列がそれぞれ伸びる方向をいう。つまり、図4において、紙面における縦方向が列方向であり、横方向が行方向である。
 図4に示されるように、各画素24は、光電変換部10Cと、電荷検出回路35とに電気的に接続された電荷蓄積ノード34とを含む。電荷検出回路35(図5参照)は、増幅トランジスタ21と、リセットトランジスタ22と、アドレストランジスタ23とを含む。
 光電変換部10Cは、画素電極として設けられた下部電極2および対向電極として設けられた上部電極4を含む。光電変換部10Cには上述した近赤外光電変換素子10A(図1参照)または10B(図2参照)を用いてもよい。上部電極4には、対向電極信号線26を介して所定のバイアス電圧が印加される。
 下部電極2は、増幅トランジスタ21のゲート電極に接続され、下部電極2によって集められた信号電荷は、下部電極2と増幅トランジスタ21のゲート電極との間に位置する電荷蓄積ノード34に蓄積される。本実施の形態では、信号電荷は正孔であるが、信号電荷は電子であってもよい。
 電荷蓄積ノード34に蓄積された信号電荷は、信号電荷の量に応じた電圧として増幅トランジスタ21のゲート電極に印加される。増幅トランジスタ21は、この電圧を増幅し、信号電圧として、アドレストランジスタ23によって、選択的に読み出される。リセットトランジスタ22は、そのソース/ドレイン電極が、下部電極2に接続されており、電荷蓄積ノード34に蓄積された信号電荷をリセットする。換言すると、リセットトランジスタ22は、増幅トランジスタ21のゲート電極および下部電極2の電位をリセットする。
 複数の画素24において上述した動作を選択的に行うため、撮像装置100は、電源配線31と、垂直信号線27と、アドレス信号線36と、リセット信号線37とを有し、これらの線が画素24にそれぞれ接続されている。具体的には、電源配線31は、増幅トランジスタ21のソース/ドレイン電極に接続され、垂直信号線27は、アドレストランジスタ23のソース/ドレイン電極に接続される。アドレス信号線36は、アドレストランジスタ23のゲート電極に接続される。またリセット信号線37は、リセットトランジスタ22のゲート電極に接続される。
 周辺回路は、垂直走査回路25と、水平信号読出し回路20と、複数のカラム信号処理回路29と、複数の負荷回路28と、複数の差動増幅器32とを含む。垂直走査回路25は、行走査回路とも称される。水平信号読出し回路20は、列走査回路とも称される。カラム信号処理回路29は、行信号蓄積回路とも称される。差動増幅器32は、フィードバックアンプとも称される。
 垂直走査回路25は、アドレス信号線36およびリセット信号線37に接続されており、各行に配置された複数の画素24を行単位で選択し、信号電圧の読出し下部電極2の電位のリセットを行う。電源配線31は、各画素24に所定の電源電圧を供給する。水平信号読出し回路20は、複数のカラム信号処理回路29に電気的に接続されている。カラム信号処理回路29は、各列に対応した垂直信号線27を介して、各列に配置された画素24に電気的に接続されている。負荷回路28は、各垂直信号線27に電気的に接続されている。負荷回路28と増幅トランジスタ21とは、ソースフォロア回路を形成する。
 複数の差動増幅器32は、各列に対応して設けられている。差動増幅器32の負側の入力端子は、対応した垂直信号線27に接続されている。また、差動増幅器32の出力端子は、各列に対応したフィードバック線33を介して画素24に接続されている。
 垂直走査回路25は、アドレス信号線36によって、アドレストランジスタ23のオンおよびオフを制御する行選択信号をアドレストランジスタ23のゲート電極に印加する。これにより、読出し対象の行が走査され、選択される。選択された行の画素24から垂直信号線27に信号電圧が読み出される。また、垂直走査回路25は、リセット信号線37を介して、リセットトランジスタ22のオンおよびオフを制御するリセット信号をリセットトランジスタ22のゲート電極に印加する。これにより、リセット動作の対象となる画素24の行が選択される。垂直信号線27は、垂直走査回路25によって選択された画素24から読み出された信号電圧をカラム信号処理回路29へ伝達する。
 カラム信号処理回路29は、相関二重サンプリングに代表される雑音抑圧信号処理およびアナログ-デジタル変換などを行う。
 水平信号読出し回路20は、複数のカラム信号処理回路29から水平共通信号線(不図示)に信号を順次読み出す。
 差動増幅器32は、フィードバック線33を介してリセットトランジスタ22のドレイン電極に接続されている。したがって、差動増幅器32は、アドレストランジスタ23とリセットトランジスタ22とが導通状態にあるときに、アドレストランジスタ23の出力値を負端子に受ける。増幅トランジスタ21のゲート電位が所定のフィードバック電圧となるように、差動増幅器32はフィードバック動作を行う。このとき、差動増幅器32の出力電圧値は、0Vまたは0V近傍の正電圧である。フィードバック電圧とは、差動増幅器32の出力電圧を意味する。
 図5は、本実施の形態に係る撮像装置100における画素24のデバイス構造の一例を示す概略断面図である。
 図5に示されるように、画素24は、半導体基板40と、電荷検出回路35と、光電変換部10Cと、電荷蓄積ノード34(図4参照)とを含む。
 半導体基板40は、感光領域(いわゆる、画素領域)が形成される側の表面に半導体層が設けられた絶縁性基板などであってもよく、例えば、p型シリコン基板である。半導体基板40は、不純物領域(ここではn型領域)21D、21S、22D、22Sおよび23Sと、画素24間の電気的な分離のための素子分離領域41とを有する。ここでは、素子分離領域41は、不純物領域21Dと不純物領域22Dとの間にも設けられている。これにより、電荷蓄積ノード34で蓄積される信号電荷のリークが抑制される。なお、素子分離領域41は、例えば、所定の注入条件の下でアクセプターのイオン注入を行うことによって形成される。
 不純物領域21D、21S、22D、22Sおよび23Sは、典型的には、半導体基板40内に形成された拡散層である。図5に示すように、増幅トランジスタ21は、不純物領域21Sおよび21Dと、ゲート電極21Gとを含む。不純物領域21Sおよび21Dは、それぞれ、増幅トランジスタ21の例えばソース領域およびドレイン領域として機能する。不純物領域21Sおよび21Dの間に、増幅トランジスタ21のチャネル領域が形成される。
 同様に、アドレストランジスタ23は、不純物領域23Sおよび21Sと、アドレス信号線36に接続されたゲート電極23Gとを含む。この例では、増幅トランジスタ21およびアドレストランジスタ23は、不純物領域21Sを共有することによって互いに電気的に接続されている。不純物領域23Sは、アドレストランジスタ23の例えばソース領域として機能する。不純物領域23Sは、図4に示す垂直信号線27との接続を有する。
 リセットトランジスタ22は、不純物領域22Dおよび22Sと、リセット信号線37に接続されたゲート電極22Gとを含む。不純物領域22Sは、リセットトランジスタ22の例えばソース領域として機能する。不純物領域22Sは、図4に示されるリセット信号線37との接続を有する。
 半導体基板40上には、増幅トランジスタ21、アドレストランジスタ23およびリセットトランジスタ22を覆うように層間絶縁層50が積層されている。
 また、層間絶縁層50中には、配線層(不図示)が配置され得る。配線層は、典型的には、銅などの金属から形成され、例えば、上述の垂直信号線27などの配線をその一部に含み得る。層間絶縁層50中の絶縁層の層数、および、層間絶縁層50中に配置される配線層に含まれる層数は、任意に設定可能である。
 層間絶縁層50中には、リセットトランジスタ22の不純物領域22Dと接続されたコンタクトプラグ54、増幅トランジスタ21のゲート電極21Gと接続されたコンタクトプラグ53、下部電極2と接続されたコンタクトプラグ51、およびコンタクトプラグ51とコンタクトプラグ54とコンタクトプラグ53とを接続する配線52が配置されている。これにより、リセットトランジスタ22のドレイン電極として機能する不純物領域22Dが増幅トランジスタ21のゲート電極21Gと電気的に接続されている。
 電荷検出回路35は、下部電極2によって捕捉された信号電荷を検出し、信号電圧を出力する。電荷検出回路35は、増幅トランジスタ21と、リセットトランジスタ22と、アドレストランジスタ23とを含み、半導体基板40表面に形成されている。
 増幅トランジスタ21は、半導体基板40内に形成され、それぞれドレイン電極およびソース電極として機能する不純物領域21Dおよび21Sと、半導体基板40上に形成されたゲート絶縁層21Xと、ゲート絶縁層21X上に形成されたゲート電極21Gとを含む。
 リセットトランジスタ22は、半導体基板40内に形成され、それぞれドレイン電極およびソース電極として機能する不純物領域22Dおよび22Sと、半導体基板40上に形成されたゲート絶縁層22Xと、ゲート絶縁層22X上に形成されたゲート電極22Gとを含む。
 アドレストランジスタ23は、半導体基板40内に形成され、それぞれドレイン電極およびソース電極として機能する不純物領域21Sおよび23Sと、半導体基板40上に形成されたゲート絶縁層23Xと、ゲート絶縁層23X上に形成されたゲート電極23Gとを含む。不純物領域21Sは、増幅トランジスタ21とアドレストランジスタ23とに共用されており、これにより、増幅トランジスタ21とアドレストランジスタ23とが直列に接続される。
 層間絶縁層50上には、上述の光電変換部10Cが配置される。換言すれば、本実施の形態では、画素アレイを構成する複数の画素24が、半導体基板40上に形成されている。そして、半導体基板40上に2次元に配列された複数の画素24は、感光領域を形成する。隣接する2つの画素24間の距離である画素ピッチは、例えば2μm程度であってもよい。
 光電変換部10Cは、上述した近赤外光電変換素子10Aまたは10Bの構造を備える。
 光電変換部10Cの上方には、カラーフィルタ60、その上方にマイクロレンズ61が設けられている。カラーフィルタ60は、例えば、パターニングによるオンチップカラーフィルタとして形成され、染料及び顔料が分散された感光性樹脂等が用いられる。マイクロレンズ61は、例えば、オンチップマイクロレンズとして設けられ、紫外線感光材等が用いられる。
 撮像装置100は、一般的な半導体製造プロセスを用いて製造することができる。特に、半導体基板40としてシリコン基板を用いる場合には、種々のシリコン半導体プロセスを利用することによって製造することができる。
 以上から、本実施の形態によれば、より波長の長い近赤外光領域において高い光吸収特性を有し、かつ暗電流を低減可能な組成物を用いることにより、近赤外光領域の広範囲に亘り高い光吸収特性を有する光電変換素子および撮像装置を実現することができる。
 以下、実施例にて本開示に係る組成物および光電変換素子を具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。
 なお、実施例1、実施例2、実施例3、実施例4、実施例5、実施例6、実施例7、実施例8、および実施例9で得られた化合物を含む組成物を成膜した近赤外光電変換膜を、それぞれ実施例10、実施例11、実施例12、実施例13、実施例14、実施例15、実施例16、実施例17、および実施例18とする。また、実施例10、実施例11、実施例12、実施例13、実施例14、実施例15、実施例16、実施例17、および実施例18で得られた近赤外光電変換膜を用いた近赤外光電変換素子を、それぞれ実施例19、実施例12、実施例21、実施例22、実施例23、実施例24、実施例25、実施例26、および実施例27とする。
 以下、CをEt、iso-CをiPr、CをBu、C11をPent、C13をHex、C3218をPcと表すことがある。
 [フタロシアニン誘導体]
 以下、実施例1から実施例9を示し、本開示に係る組成物に含まれるフタロシアニン誘導体についてより具体的に説明する。
 (実施例1)
 <(S-Pent)Si(OSiBuPcの合成>
 以下に説明するステップ(1)から(3)に従い、下記構造式で表される化合物(S-Pent)Si(OSiBuPcを合成した。
Figure JPOXMLDOC01-appb-C000066
 (1)化合物(A-2)の合成
Figure JPOXMLDOC01-appb-C000067
 原料となる3,6-ジペンタチオ-4,5-ジシアノベンゼン(化合物(A-1))については、Gcineka Mbambisa et.al., “Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentylthio groups”, Polyhedron, 2007年, vol. 26, Issue 18, pp.5355-5364(非特許文献5)の合成法を参照し合成した。
 1000mL反応容器に、3,6-ジペンタチオ-4,5-ジシアノベンゼン(化合物(A-1))7.2g、脱水メタノール450mL、38%ナトリウムメトキシドメタノール溶液(MeONa/MeOH)1.5gを加えた後、アンモニア(NH)ガスを吹き込みながら加熱還流下で24時間撹拌した。薄層クロマトグラフィ(TLC)にて反応の進行を確認した後、室温まで冷却した。次いで、市水を加え、分液洗浄を行った。その後、溶媒を冷却し結晶を析出させ、ろ取した。次いで、ろ取した結晶をメタノール(MeOH)で洗浄し、固体を得た。得られた固体を減圧下60℃で2日間加熱乾燥させ、固体状の目的化合物(A-2)を得た。目的化合物の収量は2.4g、収率は32%であった。
 (2)化合物(A-3)の合成
Figure JPOXMLDOC01-appb-C000068
 アルゴン雰囲気下、S-Pentイソインドリン誘導体(化合物(A-2))1.05g(3mmol)をキノリン6mLに溶解させた後、四塩化ケイ素2.4mL(21mmol)を室温で加えた。反応系を180℃まで昇温させた後、2時間撹拌した。反応2時間後の反応溶液のUV-visスペクトル(紫外可視吸収スペクトル)を測定し、生成物の濃度を確認した。次いで、反応溶液を室温まで冷却し、少量の水を加え反応を停止した。次いで、反応溶液に少量のメタノールおよび大量(~50mL)のクロロホルムを加え、室温で1時間撹拌した。次いで、生成した不溶性の混合物をセライトろ過して除去し、さらに、クロロホルムでろ液が透明になるまで洗浄した。得られたろ液から抽出操作で有機層を集め、水で洗浄した。次いで、有機層を硫酸マグネシウムで乾燥させ、綿栓ろ過して硫酸マグネシウムを除去した後、濃縮した。得られた濃縮物にメタノール(~30mL)を加え、約半日放置した後、沈殿物をろ取した。この沈殿物をメタノールで良く洗浄した後、乾燥させた。紫色粉末の目的化合物(A-3)を得た。目的化合物の収量は420mg、収率は40%であった。
 (3)(S-Pent)Si(OSiBuPc(化合物(A-4))の合成
Figure JPOXMLDOC01-appb-C000069
 アルゴン雰囲気下、Pcケイ素錯体((S-Pent)PcSi(OH))(化合物(A-3))70mg(50.0μmol)を脱水トルエン1.7mLに溶解させ、(nBu)SiOH320mg(1.5mmol)を加えた後、3時間加熱還流した。反応の終了をTLCにより確認した後、反応溶液をエバポレーターで濃縮し、粗生成物を得た。得られた粗生成物をアルミナカラムクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=2/1(v/v))で2回精製し、暗紫色の粉末の目的化合物(A-4)を得た。目的化合物の収量は48.7mg、収率は55%であった。
 得られた化合物の同定はHNMR(proton nuclear magnetic resonance:プロトン核磁気共鳴分光法)、MALDI-TOF-MSMatrix Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry:マトリックス支援レーザ脱離イオン化-飛行時間型質量分析)にて行った。結果を以下に示す。
 HNMR(400 MHz, CDCl): δ(ppm)=7.85(s, 8H)、3.34(t、 16H、 J=7.6 Hz)、2.02―1.96(m、 16H)、1.65―1.59(m、 16H)、1.48―1.41(m、 16H)、0.95(t、 24H、 J=7.6 Hz)、0.20―0.16(m、 12H)、0.13―0.09(m、 18H)、-1.03―-1.05(m、 12H)、-2.22―-2.26(m、 12H)。
 MALDI-TOF-MS 実測値:m/z=1787.18(M)。
 目的化合物の化学式がC96150Siであり、Exact Massが1786.90である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 得られた化合物をクロロホルムに溶解させ、吸収スペクトルを測定した。結果を図6Aに示す。図6Aに示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、806.5nmであった。したがって、実施例1で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 (実施例2)
 <(S-Pent)Si(OPOPhPcの合成>
 以下に説明するステップ(1)から(2)、およびステップ(4)に従い、下記構造式で表される化合物(S-Pent)Si(OPOPhPcを合成した。
Figure JPOXMLDOC01-appb-C000070
 (S-Pent)SiPc(OH)(化合物(A-3))の合成までのステップ(1)から(2)は、実施例1と同様の方法で行った。
 (4)(S-Pent)Si(OPOPhPc(化合物(A-5))の合成
Figure JPOXMLDOC01-appb-C000071
 アルゴン置換された200mL反応容器に、上記ステップ(2)で合成された(S-Pent)SiPc(OH)(化合物(A-3))0.3gと、クロロジフェニルホスフィン3.0gとを加え、トリペンチルアミン3.0g、脱水ピリジン20mLに溶解させ、150℃で5時間攪拌した。UV-visスペクトルにより反応が進行したことを確認した後、室温まで冷却した。次いで、ジクロロメタンで抽出し、市水100mLを加えて、分液漏斗にて有機層を分取した。分取した有機層の溶媒を留去させたところ固体が析出した。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/酢酸エチル=2/1(v/v))で精製し、目的化合物(A-5)を得た。目的化合物の収量は80mg、収率は21%であった。
 得られた化合物の同定はHNMR、MALDI-TOF-MSにて行った。結果を以下に示す。
 HNMR(400 MHz、 CDCl): δ(ppm)=7.883(8H)、6.63(4H)、6.41(8H)、5.15(8H)、3.37(16H)、2.03(16H)、1.66(16H)、1.50(16H)、0.99(24H)。
 MALDI-TOF-MS 実測値:m/z=1790.92(M)。
 目的化合物の化学式がC96116Siであり、Exact Massが1790.61である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 得られた化合物をテトラヒドロフランに溶解させ、吸収スペクトルを測定した。結果を図6Aに示す。図6Aに示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、842nmであった。したがって、実施例2で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 (実施例3)
 <(S-Pent)Sn(OSiHexPcの合成>
 以下に説明するステップ(5)から(7)に従い、下記構造式で表される化合物(S-Pent)Sn(OSiHexPcを合成した。
Figure JPOXMLDOC01-appb-C000072
 (5)化合物(A-6)の合成
Figure JPOXMLDOC01-appb-C000073
 アルゴン置換された500mL反応容器に、1-ブタノール(無水)を50mL入れ、金属リチウム1.0gを投入し、よくかき混ぜた。氷冷しながら金属リチウムの塊がなくなるまで反応が進行したら、湯浴をオイルバスに付け替え、金属リチウムが全て反応し、透明均一溶液になるまで30分間加熱還流した。
 その後、90℃程度までオイルバスの温度を下げ、その溶液に(S-Pent)CNPh(化合物(A-1))6.5gを加え、2時間加熱還流した。次いで、室温に冷却した後、メタノール:水:濃硫酸(150:5:0.5(v/v))混合液を加えLiをHに置換し、目的化合物を含む沈殿物を析出させた。析出した沈殿物をろ取した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、目的化合物(A-6)を得た。目的化合物の収量は3.8g、収率は62%であった。
 (6)化合物(A-7)の合成
Figure JPOXMLDOC01-appb-C000074
 アルゴン置換された500mL反応容器に、無水DMF(N,N-ジメチルホルムアミド)を150mL入れ、ステップ(5)で得られた化合物(A-6)3.8gを加え、よく撹拌した。ここに、塩化スズ(SnCl)(無水物)8.0gを投入し、100℃で1時間加熱した。室温に冷却した後、メタノールと水を入れ、目的化合物を含む沈殿物を析出させた。析出した沈殿物をろ取し、メタノール100mLを用いて70℃で2回洗浄し、ヘキサン50mLで60℃で1回洗浄した。洗浄後、減圧下100℃で2時間加熱乾燥させ、目的化合物(A-7)を得た。目的化合物の収量は1.5g、収率は82%であった。
 (7)(S-Pent)Sn(OSiHexPc(化合物(A-8))の合成
Figure JPOXMLDOC01-appb-C000075
 アルゴン置換された500mL反応容器に、脱水トルエンを200mL入れ、トリヘキシルシラノール5.1mLとナトリウムメトキシド510mgを加えた。次いで、トルエン還流を1時間実施し、室温に冷却した。これに、化合物(A-7)1.5gを加え、8時間還流させた。室温に冷却した後、水10mLを加え、分液し有機層を取り分けた。有機層をできるだけ留去した後、メタノールを加え、固体を析出させた。析出した固体を、メタノール100mLを用いて60℃で洗浄し、減圧下70℃で3時間加熱乾燥して、目的化合物(A-8)を得た。目的化合物の収量は1.6g、収率は78%であった。
 得られた化合物の同定はHNMR、MALDI-TOF-MSにて行った。結果を以下に示す。
 HNMR(400 MHz, CDCl): δ(ppm)=7.95(8H)、3.41(16H)、2.05(16H)、1.68(16H)、1.50(16H)、1.00(24H)、0.83(12H)、0.67(18H)、0.43(12H)、0.17(12H)、-0.96(12H)、-2.08(12H)。
 MALDI-TOF-MS 実測値:m/z=2047.17(M)。
 目的化合物の化学式はC108174SiSnであり、Exact Massは2047.01である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 得られた化合物をクロロホルム溶解させ、吸収スペクトルを測定した。結果を図6Aに示す。図6Aに示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、854nmであった。したがって、実施例3で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 (実施例4)
 <(S-Et)Si(OSiBuPcの合成>
 以下に説明するステップ(8)から(11)に従い、下記構造式で表される化合物(S-Et)Si(OSiBuPcを合成した。
Figure JPOXMLDOC01-appb-C000076
 (8)化合物(A-10)の合成
Figure JPOXMLDOC01-appb-C000077
 3,6-ジトシルオキシ-4,5-ジシアノベンゼン(化合物(A-9))2.81g(6mmol)のDMSO(ジメチルスルホシド)20mL溶液に対し、ナトリウムエタンチオラート1.51g(18mmol)を室温で徐々に加え、14時間撹拌した。反応溶液を酢酸エチルで抽出した後、有機層を水および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、減圧濃縮した。粗生成物をメタノールより再結晶することで、黄土色針状結晶の目的化合物(A-10)を得た。目的化合物の収量は371mg、収率は25%であった。
 HNMR(400 MHz、 CDCl): δ(ppm)=7.49(s、 2H)、3.04(q、 4H、 J=7.3 Hz)、1.35(t、 6H、 J=7.3 Hz)。
 (9)化合物(A-11)の合成
Figure JPOXMLDOC01-appb-C000078
 ナトリウム(3かけら)を溶解させたエチレングリコール(10mL)に化合物(A-10)347mg(1.4mmol)を加えた。反応溶液を120°Cまで昇温し、アンモニアガスを通気しながら2時間撹拌した。反応溶液を室温まで冷却した後、氷水100mLに注ぎ、沈殿をろ過により集め、水でよく洗浄した後、乾燥して、黄色の粉末の目的化合物(A-11)を得た。目的化合物の収量は345mg、収率は93%であった。この粉末は不純物を含むと考えられるが、これ以上の精製を行うことなく次の反応に使用した。
 (10)化合物(A-12)の合成
Figure JPOXMLDOC01-appb-C000079
 アルゴン雰囲気下、化合物(A-11)135mg(0.50mmol)のキノリン1mL溶液に対し、四塩化ケイ素0.45mL(4.0mmol)を室温で徐々に加えた。反応溶液を180°Cまで昇温させ、2時間撹拌した。反応溶液を室温まで冷却した後、水1mL、メタノール1mLの順に加え反応を停止した後、クロロホルム(~30mL)を加え室温で1時間撹拌した。不溶物をセライトろ過により除いた後、ろ液をクロロホルムで抽出し、有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、減圧濃縮し、粗生成物を得た。得られた粗生成物に対し、メタノール(~10mL)を加え、室温で1日静置した。生じた沈殿をろ取し、メタノールで洗浄した後、減圧乾燥して、暗紫色の粉末の目的化合物(A-12)を得た。目的化合物の収量は54mg、収率は36%であった。
 UV-vis (CHCl): λmax(nm)=297、359、539、718、807。
 (11)(S-Et)Si(OSiBuPc(化合物(A-13))の合成
Figure JPOXMLDOC01-appb-C000080
 アルゴン雰囲気下、化合物(A-12)50mg(47μmol)を脱水トルエン1.5mLに溶解させ、トリブチルシラノール(nBuSiOH)307mg(1.4mmol)を加えた後、5時間加熱還流した。反応の終了をTLCにより確認した後、反応溶液をエバポレーターで濃縮し、粗生成物を得た。得られた粗生成物に対しメタノール(~5mL)を加え、室温で1日静置した。生じた沈殿物をろ取し、メタノールで洗浄した後、減圧下乾燥して、暗紫色の粉末の目的化合物(A-13)を得た。目的化合物の収量は57.3mg、収率は84%であった。
 HNMR (400 MHz、 CDCl): δ(ppm)=7.87(s、 8H)、3.41(q、 16H、 J=7.3 Hz)、1.62(t、 24H、 J=7.3Hz)、0.20―0.16(m、 12H)、 0.11(t、 18H、 J=6.4 Hz)、-1.03―-1.07(m、 12H)、-2.22―-2.27(m、 12H)。
 UV-vis (CHCl): λmax(nm)=296、357、532、715、803。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 得られた化合物をクロロホルムに溶解させ、吸収スペクトルを測定した。結果を図6Aに示す。図6Aに示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、802.5nmであった。したがって、実施例4で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 (実施例5)
 <(S-iPr)Sn(OSiHexPcの合成>
 以下に説明するステップ(12)から(16)に従い、下記構造式で表される化合物(S-iPr)Sn(OSiHexPcを合成した。
Figure JPOXMLDOC01-appb-C000081
 (12)化合物(A-15)の合成
Figure JPOXMLDOC01-appb-C000082
 三ツ口フラスコにSiCl(C13(化合物(A-14))15g、THF(テトラヒドロフラン)75mLを入れ、三ツ口フラスコを水と氷の入った冷却バスに入れて10℃以下に冷やした。滴下ろうとにアンモニア水75mLを入れ、10分かけて三ツ口フラスコ内へ全量滴下し、室温で2時間攪拌した。次いで、酢酸エチル150mLと市水150mLを添加し、10分間攪拌した後、分液ロートで分液し、有機層を分取した。分液された水層に酢酸エチルを150mL加え、酢酸エチルで水層中の反応生成物を抽出した。この酢酸エチルによる抽出は、2回行った。分取および抽出により得られた有機層に飽和塩化アンモニウム水溶液150mLを加え、分液洗浄を3回行った後、市水150mLを加え、分液洗浄を1回行った。続いて、有機層に飽和食塩水150mLを加え、分液洗浄を行った。洗浄により得られた有機層を硫酸マグネシウムで乾燥させた後、硫酸マグネシウムをろ過した。得られたろ液を減圧下濃縮し、得られた残渣を60℃で減圧乾燥させることにより、(C13SiOH(化合物(A-15))を得た。目的化合物の収量は13.8g、収率は97%であった。
 (13)化合物(A-16)の合成
Figure JPOXMLDOC01-appb-C000083
 アルゴン雰囲気下、3,6-ジトシルオキシ-4,5-ジシアノベンゼン(化合物(A-9))937mg(2.0mmol)をDMSO8mLに溶解させた後、iPrSNa654mg(6.0mmol)を加え、室温で5時間攪拌した。これに、水を加え反応を停止させた後、酢酸エチルで抽出し、有機層を水および飽和食塩水で洗浄し、硫酸ナトリウムで脱水した後、濃縮して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1(v/v))で精製し、黄色の粉末の目的化合物(A-16)を得た。目的化合物の収量は340mg、収率は62%であった。
 HNMR(400 MHz、 CDCl): δ(ppm)=7.56(s、 2H)、3.57(septet、 2H、 J=6.8 Hz)、1.35(d、 12H、 J=6.8 Hz)。
 (14)化合物(A-17)の合成
Figure JPOXMLDOC01-appb-C000084
 アルゴン雰囲気下、金属Li(4かけら程度)を1-ブタノール(無水)1mLに加え、Liが全て溶解するまで10から30分程度、加熱還流した。得られた溶液に化合物(A-16)150mg(0.54mmol)を加え、4時間加熱還流した。希塩酸(2M)を加え反応を停止させた後、クロロホルムで抽出し、有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで脱水した後、濃縮して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(CHCl)で精製し、暗赤色の粉末の目的化合物(A-17)を得た。目的化合物の収量は66mg、収率は44%であった。
 HNMR(500 MHz、 CDCl): δ(ppm)=7.87(s、 8H)、4.04(septet、 8H、 J=6.5 Hz)、1.62(d、 48H、 J=6.5 Hz)。
 UV-vis (CHCl): λmax(nm)=802。
 (15)化合物(A-18)の合成
Figure JPOXMLDOC01-appb-C000085
 アルゴン雰囲気下、化合物(A-17)28.6mgを無水DMF0.7mLに溶解させた後、SnCl0.1mLを加え、30分間加熱還流させた。水を加え反応を停止させた後、クロロホルムで抽出し、有機層を水および飽和食塩水で洗浄し、硫酸マグネシウムで脱水した後、濃縮して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(CHCl/MeOH=20/1(v/v))で精製し、暗青色の粉末の目的化合物(A-18)を得た。目的化合物の収量は14mgであった。
 UV-vis (CHCl): λmax(nm)=883。
 (16)(S-iPr)Sn(OSiHexPc(化合物(A-19))の合成
Figure JPOXMLDOC01-appb-C000086
 アルゴン雰囲気下、化合物(A-18)50mg(38.6μmol)を脱水トルエン2mLに溶解させ、(nHex)SiOH0.25mL、tBuOK12.5mg(0.1mmol)を順次加えた後、4時間加熱還流した。反応の終了を吸収スペクトル、TLCにより確認した後、反応溶液をエバポレーターで濃縮し、残渣にメタノールを加えた。次いで、不溶物をろ取し、ろ取した不溶物を粘性が無くなるまでメタノールで洗浄し、暗青色の粉末の目的化合物(A-19)を得た。目的化合物の収量は32.7mg、収率は48%であった。
 HNMR (500 MHz、 CDCl): δ(ppm)=8.03(s、 8H)、4.10(septet、 8H、 J=6.0 Hz)、1.67(d、 48H、 J=6.0 Hz)、0.84―0.79(m、 12H)、0.62(t、 18H、 J=7.0 Hz)、0.43―0.40(m、 12H)、0.14―0.11(m、 12H)、-0.98―-1.01(m、 12H)、-2.13―-2.16(m、 12H)。
 UV-vis (CHCl): λmax(nm) (ε(モル吸光係数)×10-4)=304(6.4)、351(4.9)、773sh(3.8)、865(9.2)。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 得られた化合物をクロロホルムに溶解させ、吸収スペクトルを測定した。結果を図6Aに示す。図6Aに示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、865nmであった。したがって、実施例5で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 (実施例6)
 <(S-Pent)Si(OPO(Ph-4-F)Pcの合成>
 以下に説明するステップ(17)に従い、下記構造式(12)で表される化合物(S-Pent)Si(OPO(Ph-4-F)Pcを合成した。
Figure JPOXMLDOC01-appb-C000087
 (17)(S-Pent)Si(OPO(Ph-4-F)Pc(化合物(A-20))の合成
Figure JPOXMLDOC01-appb-C000088
 アルゴン置換された10mL反応容器に、上記ステップ(2)で合成された(S-Pent)SiPc(OH)(化合物(A-3))0.050gと、クロロビス(4-フルオロフェニル)ホスフィン0.20gとを加え、さらに、トリブチルアミン0.5mLおよび脱水ピリジン2mLを加え、110℃で12時間攪拌した。次いで、反応溶液を室温まで冷却し、反応溶液にジクロロメタン、蒸留水を加えて、分液漏斗にて有機層を分取した。分取した有機層の溶媒を留去させ濃縮した。
 得られた濃縮物をシリカゲルカラムクロマトグラフィー(展開溶媒 トルエン:酢酸エチル=10:1)で精製し、目的化合物(A-20)を得た。目的化合物の収量は48mg、収率は71%であった。
 得られた化合物の同定はHNMR、MALDI-TOF-MSにて行った。結果を以下に示す。
 HNMR(400 MHz, CDCL): δ(ppm)=7.875(8H)、6.167(8H)、5.22(8H)、3.36(16H)、2.03(16H)、1.65(16H)、1.50(16H)、1.01(24H)
 MALDI-TOF-MS 実測値:m/z=1863.60(M
 目的化合物の化学式がC96112Siであり、Exact Massが1862.58である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 得られた化合物をクロロホルムに溶解させ、吸収スペクトルを測定した。結果を図6Bの実線に示す。図6Bの実線に示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、868nmであった。したがって、実施例6で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 (実施例7)
 <(S-Pent)Si(OPO(Ph-3,5-diF)Pcの合成>
 以下に説明するステップ(18)から(20)に従い、下記構造式(13)で表される化合物(S-Pent)Si(OPO(Ph-3,5-diF)Pcを合成した。
Figure JPOXMLDOC01-appb-C000089
 (18)化合物(A-22)の合成
Figure JPOXMLDOC01-appb-C000090
 アルゴン置換された200mL反応容器に、THF(無水)を40ml入れ、次いで金属マグネシウム0.85gを投入し、さらにヨウ素7mgを加えかき混ぜた。次に1-ブロモ-3,5-ジフルオロベンゼン(化合物(A-21))3.7mLとジエチルエーテル16.3mLとを混ぜた溶液を、25分間かけて、反応容器内に滴下した。滴下終了後、反応溶液を室温にて2時間撹拌した。その後反応容器を-5℃に冷却し、亜リン酸ジエチル1.9mLとTHF(無水)とを混ぜた溶液を25分間かけて、反応容器内に滴下した。そのまま、反応溶液を14時間撹拌した。
 その後、反応溶液に0.3MのHCl水溶液を約100mL加え、次いで、酢酸エチルを約100mL加えて、分液漏斗にて分液し、水層から酢酸エチルにより反応生成物を抽出した。抽出した有機層をMgSOで脱水し、有機層の溶媒を留去させて濃縮した。
 その後、濃縮物をジエチルエーテルに溶解し、室温で4時間空気バブリングした後、濃縮した。濃縮液を冷暗所で保管すると固体が析出した。析出した固体をろ取し、目的化合物(A-22)を得た。目的化合物の収量は512mg、収率は12%であった。
 得られた化合物の同定はHNMR、19FNMRにて行った。結果を以下に示す。
 HNMR(400 MHz, CDCL): δ(ppm)=7.45(6H)
 19FNMR(376 MHz, DMSO): δ(ppm)=108.3(4F)
 (19)化合物(A-23)の合成
Figure JPOXMLDOC01-appb-C000091
 アルゴン置換された10mL反応容器に、上記ステップ(18)で合成された化合物(A-22)150mgと塩化チオニル3mlとを入れ、反応容器を110℃で5時間加熱還流させた。その後、反応溶液を放冷し、反応溶液を濃縮して、更に脱水トルエンを加え、反応溶液と共沸させる操作を5回繰り返し、透明液体の目的化合物(A-23)を得た。目的化合物の収量は139mg、収率は82%であった。
 得られた化合物の同定はHNMR、19FNMR、31PNMRにて行った。結果を以下に示す。
 HNMR(400 MHz, CDCL): δ(ppm)=7.46(6H)
 19FNMR(376 MHz, DMSO): δ(ppm)=108.3(4F)
 31PNMR(162 MHz, DMSO): δ(ppm)=17.8(1P)
 (20)(S-Pent)Si(OPO(Ph-3,5-diF)Pc(化合物(A-24))の合成
Figure JPOXMLDOC01-appb-C000092
 アルゴン置換された10mL反応容器に、上記ステップ(2)で合成された(S-Pent)SiPc(OH)(化合物(A-3))150mgと、化合物(A-23)405mgとを加え、さらに、トリブチルアミン0.5mLおよび脱水ピリジン4mLを加え、130℃で12時間攪拌した。次いで、反応溶液を室温まで冷却し、反応溶液にクロロホルム、蒸留水を加えて、分液漏斗にて有機層を分取した。分取した有機層の溶媒を留去させ濃縮した。
 得られた濃縮物を中性アルミナカラムクロマトグラフィー(展開溶媒 トルエン:酢酸エチル=100:0→50:1)にて精製した。展開溶媒を留去させ濃縮した後、ヘプタン洗浄を行い、目的化合物(A-24)を得た。目的化合物の収量は117.1mg、収率は65%であった。
 得られた化合物の同定はHNMR、MALDI-TOF-MSにて行った。結果を以下に示す。
 HNMR(400 MHz, CDCL): δ(ppm)=7.90(8H)、6.22(4H)、4.77(8H)、3.34(16H)、2.02(16H)、1.66(16H)、1.49(16H)、0.99(24H)
 MALDI-TOF-MS 実測値:m/z=1935.51(M
 目的化合物の化学式がC96108Siであり、Exact Massが1934.54である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 得られた化合物をクロロホルムに溶解させ、吸収スペクトルを測定した。結果を図6Bの点線に示す。図6Bの点線に示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、886nmであった。したがって、実施例7で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 (実施例8)
 <(S-Pent)Si(OPO(Ph-4-CFPcの合成>
 以下に説明するステップ(21)に従い、下記構造式(14)で表される化合物(S-Pent)Si(OPO(Ph-4-CFPcを合成した。
Figure JPOXMLDOC01-appb-C000093
 (21)(S-Pent)Si(OPO(Ph-4-CFPc(化合物(A-25))の合成
Figure JPOXMLDOC01-appb-C000094
 アルゴン置換された20mL反応容器に、上記ステップ(2)で合成された(S-Pent)SiPc(OH)(化合物(A-3))0.150gと、クロロビス(4-トリフルオロメチルフェニル)ホスフィン0.576gとを加え、さらに、トリブチルアミン1.5mLおよび脱水ピリジン10mLを加え、130℃で12時間攪拌した。次いで、反応溶液を室温まで冷却し、反応溶液にクロロホルム、蒸留水を加えて、分液漏斗にて有機層を分取した。分取した有機層の溶媒を留去させ濃縮した。得られた濃縮物はPLC(Preparative Glass Plates)シリカゲル(展開溶媒 トルエン:酢酸エチル=5:1)を用いて精製し、精製物をシリカゲルから展開溶媒にて抽出し、抽出溶液を濃縮後、冷ヘプタンにて再結晶を行い、固体の目的化合物(A-25)を得た。目的化合物の収量は144mg、収率は48%であった。
 得られた化合物の同定はHNMR、MALDI-TOF-MSにて行った。結果を以下に示す。
 HNMR(400 MHz, CDCL): δ(ppm)=7.86(8H)、6.76(8H)、5.42(8H)、3.34(16H)、2.05(16H)、1.67(16H)、1.49(16H)、1.01(24H)
 MALDI-TOF-MS 実測値:m/z=2061.92(M
 目的化合物の化学式がC10011212Siであり、Exact Massが2062.56である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。
 得られた化合物をクロロホルムに溶解させ、吸収スペクトルを測定した。結果を図6Bの破線に示す。図6Bの破線に示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、882nmであった。したがって、実施例8で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 (実施例9)
 <(S-Pent)Si(OPO(Ph-3,5-bisCFPcの合成>
 以下に説明するステップ(22)に従い、下記構造式(15)で表される化合物(S-Pent)Si(OPO(Ph-3,5-bisCFPcを合成した。
Figure JPOXMLDOC01-appb-C000095
 (22)(S-Pent)Si(OPO(Ph-3,5-bisCFPc(化合物(A-26))の合成
Figure JPOXMLDOC01-appb-C000096
 アルゴン置換された10mL反応容器に、上記ステップ(2)で合成された(S-Pent)SiPc(OH)(化合物(A-3))84.7mgと、クロロビス(3,5-ビストリフルオロメチルフェニル)ホスフィン0.66gとを加え、さらに、トリブチルアミン0.9mL、脱水ピリジン4mLを加え、120℃で12時間攪拌した。次いで、反応溶液を室温まで冷却し、反応溶液にクロロホルム、蒸留水を加えて、分液漏斗にて有機層を分取した。分取した有機層の溶媒を留去させ濃縮した。得られた濃縮物をPLCシリカゲル(展開溶媒 トルエン:酢酸エチル=20:1)を用いて精製し、精製物をシリカゲルから展開溶媒にて抽出し、抽出溶液を濃縮後、冷ヘプタンにて再結晶を行い、固体の目的化合物(A-26)を得た。目的化合物の収量は36.9mg、収率は26%であった。
 得られた化合物の同定はHNMR、MALDI-TOF-MSにて行った。結果を以下に示す。
 HNMR(400 MHz, CDCL): δ(ppm)=7.90(8H)、7.33(4H)、5.73(8H)、3.29(16H)、2.05(16H)、1.68(16H)、1.49(16H)、1.04(24H)
 MALDI-TOF-MS 実測値:m/z=2334.36(M
 目的化合物の化学式がC10410824Siであり、Exact Massが2334.51である。
 以上の結果から、上記合成手順により、目的化合物が得られたことが確認できた。得られた化合物をクロロホルムに溶解させ、吸収スペクトルを測定した。結果を図6Bの1点破線に示す。図6Bの1点破線に示すように、得られた化合物の近赤外光領域での吸収ピークの波長は、900nmであった。したがって、実施例9で得られた化合物は、近赤外光領域に吸収極大波長を持つ材料であることが分かった。
 [近赤外光電変換膜]
 以下、実施例10から実施例18を示し、本開示における近赤外光電変換膜についてより具体的に説明する。
 (実施例10)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例1で得られた(S-Pent)Si(OSiBuPcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚196nm、イオン化ポテンシャル5.25eVの近赤外光電変換膜を得た。
 (吸収スペクトルの測定方法)
 得られた近赤外光電変換膜について、吸収スペクトルを測定した。測定には、分光光度計(日立ハイテクノロジーズ製、U4100)を用いた。吸収スペクトルの測定波長域は、400nmから1200nmであった。結果を図7Aに示す。
 図7Aに示すように、実施例10の近赤外光電変換膜は、吸収ピークが824nm付近に見られた。
 (イオン化ポテンシャルの測定方法)
 実施例10で得られた近赤外光電変換膜について、イオン化ポテンシャルを測定した。イオン化ポテンシャルの測定には、実施例1で得られた化合物を、ITO基板上に成膜し、大気中光電子分光装置(理研計器製、AC-3)を用いて測定を行った。結果を図7Bに示す。
 イオン化ポテンシャルの測定は紫外線照射のエネルギーを変化させたときの光電子数として検出される。そのため光電子が検出され始めるエネルギー位置をイオン化ポテンシャルとすることができる。
 (実施例11)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例2で得られた(S-Pent)Si(OPOPhPcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚187nm、イオン化ポテンシャル5.12eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例10と同様の方法で行った。結果を図8Aに示す。また、イオン化ポテンシャルの測定は、実施例2で得られた化合物を用いること以外、実施例10と同様の方法で行った。結果を図8Bに示す。
 図8Aに示すように、実施例11の近赤外光電変換膜は、吸収ピークが896nm付近に見られた。
 (実施例12)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例3で得られた(S-Pent)Sn(OSiHex3)PcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚267nm、イオン化ポテンシャル5.32eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例10と同様の方法で行った。結果を図9Aに示す。また、イオン化ポテンシャルの測定は、実施例3で得られた化合物を用いること以外、実施例10と同様の方法で行った。結果を図9Bに示す。
 図9Aに示すように、実施例12の近赤外光電変換膜は、吸収ピークが882nm付近に見られた。
 (実施例13)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例4で得られた(S-Et)Si(OSiBu3)PcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚246nm、イオン化ポテンシャル5.25eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例10と同様の方法で行った。結果を図10Aに示す。また、イオン化ポテンシャルの測定は、実施例4で得られた化合物を用いること以外、実施例10と同様の方法で行った。結果を図10Bに示す。
 図10Aに示すように、実施例13の近赤外光電変換膜は、吸収ピークが822nm付近に見られた。
 (実施例14)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例5で得られた(S-iPr)Sn(OSiHexPcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚280nm、イオン化ポテンシャル5.30eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例10と同様の方法で行った。結果を図11Aに示す。また、イオン化ポテンシャルの測定は、実施例5で得られた化合物を用いること以外、実施例10と同様の方法で行った。結果を図11Bに示す。
 図11Aに示すように、実施例14の近赤外光電変換膜は、吸収ピークが860nm付近に見られた。
 (実施例15)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例6で得られた(S-Pent)Si(OPO(Ph-4-F)PcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚200nm、イオン化ポテンシャル5.15eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例10と同様の方法で行った。結果を図12Aに示す。また、イオン化ポテンシャルの測定は、実施例6で得られた化合物を用いること以外、実施例10と同様の方法で行った。結果を図12Bに示す。
 図12Aに示すように、実施例15の近赤外光電変換膜は、吸収ピークが898nm付近に見られた。
 (実施例16)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例7で得られた(S-Pent)Si(OPO(Ph-3,5-diF)PcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚217nm、イオン化ポテンシャル5.20eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例10と同様の方法で行った。結果を図13Aに示す。また、イオン化ポテンシャルの測定は、実施例7で得られた化合物を用いること以外、実施例10と同様の方法で行った。結果を図13Bに示す。
 図13Aに示すように、実施例16の近赤外光電変換膜は、吸収ピークが920nm付近に見られた。
 (実施例17)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例8で得られた(S-Pent)Si(OPO(Ph-4-CFPcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚206nm、イオン化ポテンシャル5.32eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例10と同様の方法で行った。結果を図14Aに示す。また、イオン化ポテンシャルの測定は、実施例8で得られた化合物を用いること以外、実施例10と同様の方法で行った。結果を図14Bに示す。
 図14Aに示すように、実施例17の近赤外光電変換膜は、吸収ピークが940nm付近に見られた。
 (実施例18)
 支持基板として厚さ0.7mmの石英ガラスを用い、その上に実施例9で得られた(S-Pent)Si(OPO(Ph-3,5-bisCFPcとPCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、膜厚241nm、イオン化ポテンシャル5.37eVの近赤外光電変換膜を得た。得られた近赤外光電変換膜の吸収スペクトルの測定は、実施例10と同様の方法で行った。結果を図15Aに示す。また、イオン化ポテンシャルの測定は、実施例9で得られた化合物を用いること以外、実施例10と同様の方法で行った。結果を図15Bに示す。
 図15Aに示すように、実施例18の近赤外光電変換膜は、吸収ピークが956nm付近に見られた。
 [近赤外光電変換素子]
 以下、実施例19から実施例27を示し、本開示に係る近赤外光電変換素子についてより具体的に説明する。
 (実施例19)
 基板として150nmのITO電極が成膜された厚さ0.7mmのガラス基板を用い、このITO電極を下部電極とした。さらに、ITO電極の上に、光電変換層として実施例1で得られた(S-Pent)Si(OSiBuPcとPCBM誘導体とを重量比1:9で混ぜたクロロホルム混合溶液をスピンコート法により塗布し、混合膜を厚さ196nmとなるように成膜した。さらに、光電変換層の上に、上部電極として厚さ80nmのAl電極を成膜した。Al電極は、5.0×10-4Pa以下の真空度で、蒸着速度1Å/sで成膜した。
 (分光感度の測定方法)
 得られた近赤外光電変換素子について、分光感度を測定した。測定には、長波長対応型分光感度測定装置(分光計器製、CEP-25RR)を用いた。より具体的には、近赤外光電変換素子を、窒素雰囲気下のグローブボックス中で密閉できる測定治具に導入し、分光感度の測定を行った。結果を図16に示す。
 図16に示すように、実施例19の近赤外光電変換素子は、近赤外光領域における外部量子効率が820nm付近の波長で最も高く、39%程度であった。
 (実施例20)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例2で得られた(S-Pent)Si(OPOPhPcを用いること以外は、実施例19と同様に行い、膜厚187nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例19と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図17に示す。
 図17に示すように、実施例20の近赤外光電変換素子は、近赤外光領域における外部量子効率が880nm付近の波長で最も高く、30%程度であった。
 (実施例21)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例3で得られた(S-Pent)Sn(OSiHexPcを用いること以外は、実施例19と同様に行い、膜厚267nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例19と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図18に示す。
 図18に示すように、実施例21の近赤外光電変換素子は、近赤外光領域における外部量子効率が880nm付近の波長で最も高く、22%程度であった。
 (実施例22)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例4で得られた(S-Et)Si(OSiBuPcを用いること以外は、実施例19と同様に行い、膜厚246nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例19と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図19に示す。
 図19に示すように、実施例22の近赤外光電変換素子は、近赤外光領域における外部量子効率が820nm付近の波長で最も高く、62%程度であった。
 (実施例23)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例5で得られた(S-iPr)Sn(OSiHexPcを用いること以外は、実施例19と同様に行い、膜厚280nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例19と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図20に示す。
 図20に示すように、実施例23の近赤外光電変換素子は、近赤外光領域における外部量子効率が860nm付近の波長で最も高く、19%程度であった。
 (実施例24)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例6で得られた(S-Pent)Si(OPO(Ph-4-F)Pcを用いること以外は、実施例19と同様に行い、膜厚200nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例19と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図21に示す。
 図21に示すように、実施例24の近赤外光電変換素子は、近赤外光領域における外部量子効率が880nm付近の波長で最も高く、31%程度であった。
 (実施例25)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例7で得られた(S-Pent)Si(OPO(Ph-3,5-diF)Pcを用いること以外は、実施例19と同様に行い、膜厚217nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例19と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図22に示す。
 図22に示すように、実施例25の近赤外光電変換素子は、近赤外光領域における外部量子効率が900nm付近の波長で最も高く、39%程度であった。
 (実施例26)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例8で得られた(S-Pent)Si(OPO(Ph-4-CFPcを用いること以外は、実施例19と同様に行い、膜厚206nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例19と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図23に示す。
 図23に示すように、実施例26の近赤外光電変換素子は、近赤外光領域における外部量子効率が920nm付近の波長で最も高く、5%程度であった。
 (実施例27)
 光電変換層の材料として実施例1で得られた化合物の代わりに実施例9で得られた(S-Pent)Si(OPO(Ph-3,5-bisCFPcを用いること以外は、実施例19と同様に行い、膜厚241nmの近赤外光電変換膜を有する近赤外光電変換素子を得た。実施例19と同様に、得られた近赤外光電変換素子の分光感度を測定した。結果を図24に示す。
 図24に示すように、実施例27の近赤外光電変換素子は、近赤外光領域における外部量子効率が920nm付近の波長で最も高く、4%程度であった。
 (まとめ)
 図6Aに示すように、実施例1から実施例5のフタロシアニン誘導体は、それぞれ吸収ピークが806.5nm、842nm、854nm、802.5nmおよび865nm付近に見られた。また、図6Bに示すように、実施例6から実施例9のフタロシアニン誘導体は、それぞれ吸収ピークが868nm、886nm、882nm、および900nm付近に見られた。一方、特許文献1および非特許文献3に開示されているフタロシアニン誘導体は、いずれも800nm未満に吸収ピークを有する。
 これらのフタロシアニン誘導体の化学構造および吸収スペクトルの結果から、フタロシアニン骨格のα位側鎖の有無および軸配位子の構造の違いにより、近赤外光電変換膜の吸収特性に差異が生じることが分かった。また、実施例1から実施例9のように、フタロシアニン誘導体は、フタロシアニン骨格のα位にチオール基を有すると、近赤外光に対して感度を有する波長が長波長化されることが確認できた。
 また、実施例2と実施例6から実施例9との比較より、フタロシアニン誘導体は、フタロシアニン骨格のα位にチオール基を有し、更に軸配位子としてフッ素原子または含フッ素基で置換された置換基を有すると、近赤外光に対して感度を有する波長がさらに長波長化されることが確認できた。
 図7Aから図11Aに示すように、実施例10から実施例14の近赤外光電変換膜は、それぞれの吸収ピークが824nm、896nm、882nm、822nm、および860nm付近に見られた。
 また、図12Aから図15Aに示すように、実施例15から18のフタロシアニン誘導体を含む近赤外光電変換膜は、それぞれの吸収ピークが898nm、920nm、940nm、および956nm付近に見られた。
 これらの結果から、フタロシアニン誘導体の化学構造、つまり、フタロシアニン骨格のα位側鎖の有無および軸配位子の構造の違いにより、近赤外光電変換膜の吸収特性に差異が生じることが分かった。また、実施例10から実施例18のように、フタロシアニン骨格のα位にチオール基を有するフタロシアニン誘導体を含む組成物を用いると当該組成物を含む近赤外光電変換膜は、近赤外光に対して感度を有する波長が長波長化されることが確認できた。
 また、実施例11と実施例15から実施例18との比較より、フタロシアニン骨格のα位にチオール基を有し、更に軸配位子としてフッ素原子または含フッ素基で置換された置換基を有するフタロシアニン誘導体を含む組成物を用いると、当該組成物を含む近赤外光電変換膜は、近赤外光に対して感度を有する波長がさらに長波長化されることが確認できた。
 また、図7Bから図11Bに示すように、実施例10から実施例14の近赤外光電変換膜は、それぞれイオン化ポテンシャルが5.25eV、5.10eV、5.10eV、5.25eV、および5.30eVであった。また、図12Bから図15Bに示すように、実施例15から18の近赤外光電変換膜は、それぞれイオン化ポテンシャルが5.15eV、5.20eV、5.32eV、5.37eVであった。したがって、近赤外光電変換膜に実施例1から実施例9のフタロシアニン誘導体を含む組成物を用いると、イオン化ポテンシャル5.1eV以上の近赤外光電変換膜が得られることが確認できた。つまり、実施例1から実施例9のフタロシアニン誘導体を含む組成物は、HOMO準位が深くなることによりイオン化ポテンシャルの数値が大きくなることから、光電変換素子に用いた場合に暗電流を低減することができる。
 また、実施例11と実施例15から実施例18との比較より、フタロシアニン骨格のα位にチオール基を有し、更に軸配位子としてフッ素原子または含フッ素基で置換された置換基を有する化合物を含むことにより、近赤外光電変換膜は、さらにHOMO準位が深くなり、イオン化ポテンシャルの数値がさらに大きくなることが分かった。これにより、実施例15から実施例18のフタロシアニン誘導体を含む組成物は、光電変換素子に用いた場合に暗電流をさらに低減することができる。
 図16に示すように、実施例19の近赤外光電変換素子は、近赤外光領域における外部量子効率が820nm付近の波長で最も高く、39%程度であった。
 図17に示すように、実施例20の近赤外光電変換素子は、近赤外光領域における外部量子効率が880nm付近の波長で最も高く、30%程度であった。
 図18に示すように、実施例21の近赤外光電変換素子は、近赤外光領域における外部量子効率が880nm付近の波長で最も高く、22%程度であった。
 図19に示すように、実施例22の近赤外光電変換素子は、近赤外光領域における外部量子効率が820nm付近の波長で最も高く、62%程度であった。
 図20に示すように、実施例23の近赤外光電変換素子は、近赤外光領域における外部量子効率が860nm付近の波長で最も高く、19%程度であった。
 図21に示すように、実施例24の近赤外光電変換素子は、近赤外光領域における外部量子効率が880nm付近の波長で最も高く、31%程度であった。
 図22に示すように、実施例25の近赤外光電変換素子は、外近赤外光領域における部量子効率が900nm付近の波長で最も高く、39%程度であった。
 図23に示すように、実施例26の近赤外光電変換素子は、近赤外光領域における外部量子効率が920nm付近の波長で最も高く、5%程度であった。
 図24に示すように、実施例27の近赤外光電変換素子は、近赤外光領域における外部量子効率が920nm付近の波長で最も高く、4%程度であった。
 これらの材料の化学構造および外部量子効率の結果から、実施例1から実施例9で得られたフタロシアニン骨格のα位に側鎖を有するフタロシアニン誘導体を近赤外光電変換膜の材料に用いると、820nm以上の長波長域で外部量子効率のピークが得られることが分かった。
 以上のように、実施例10から実施例18の近赤外光電変換膜、ならびに、実施例19から実施例27の近赤外光電変換素子に関して、近赤外光に対する光吸収特性、光電変換効率を評価した。
 また、実施例1では、R11からR13がそれぞれ炭素数4のブチル基であるフタロシアニン誘導体を合成したが、以下の手法にて、実施例1のR11からR13と炭素数が異なるフタロシアニン誘導体を得ることができる。例えば、実施例1のステップ(3)に示す(S-Pent)Si(OSiBuPc(化合物(A-4))の合成において用いた(nBu)SiOH(トリブチルシラノール)を、(nDec)SiOH(トリデシルシラノール)に置き換えてもよい。これにより、実施例1のR11からR13のアルキル基が炭素数10のデシル基に置き換えられたフタロシアニン誘導体を得ることができる。なお、本願発明者らは、本開示におけるフタロシアニン誘導体と類似の構造を有するスズナフタロシアニン化合物において、本開示の上記一般式(1)のRからR14に相当する置換基がデシル基である化合物の合成が可能であることを確認している。詳細は、本出願人による未公開の特許出願である特願2017-090808号に記載されている。
 以下、本開示の概念に含まれる具体的な化合物を列挙する。これらの化合物1から21のHOMOエネルギー準位およびLUMOエネルギー準位をGaussian09による計算により求めた。Gaussian09による計算はB3LYPを用いたDFT法により行い、基底関数は3-21Gとした。結果を表1、表2、表3、および表4に示す。
 なお、上記実施例1、実施例2、実施例4、実施例6、実施例7、実施例8、および実施例9において、HOMOエネルギー準位を実測した化合物1、化合物2、化合物6、化合物11、化合物12、化合物13、および化合物14については、実測値(実施例10、実施例11、実施例13、実施例15、実施例16、実施例17および実施例18における実測値)も示す。
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
 表1に示す化合物1から化合物5は、上記一般式(1)で表されるフタロシアニン誘導体の中心金属MがSiであり、α位側鎖がS-Pentである化合物である。表2に示す化合物6から化合物10は、上記一般式(1)で表されるフタロシアニン誘導体の中心金属MがSiであり、α位側鎖がS-Etである化合物である。
 また、表3に示す化合物11から化合物15は、上記一般式(1)で表されるフタロシアニン誘導体の中心金属MがSiまたはSnであり、α位側鎖がS-Pentである化合物である。表4に示す化合物16から化合物21は、上記一般式(1)で表されるフタロシアニン誘導体の中心金属MがSiであり、α位側鎖がS-Etである化合物である。
 表1から表4に示すように、化合物1、化合物2、化合物6、化合物11、化合物12、化合物13、および化合物14は、それぞれHOMOの実測値と計算値とは一致していない。しかしながら、これらのHOMOの実測値と計算値との間には、一定の関係性が見られる。つまり、HOMOの実測値が低い(深い)と、計算値も低く(深く)なり、HOMOの実測値が高い(浅い)と、計算値も高く(浅く)なる。例えば、化合物1および化合物6のように、HOMOの実測値が深ければ、それらのHOMOの計算値も深くなり、化合物2のように、HOMOの実測値が浅ければ、計算値も浅くなる。
 化合物2、化合物3および化合物5のHOMOの計算値は同じであり、化合物1、化合物4、化合物6、化合物7、化合物9および化合物10のHOMOの計算値はほぼ同じであり、化合物8のHOMOの計算値は若干深い。よって、実施例1、実施例2および実施例4で実際に合成した化合物1、化合物2および化合物6と同様に、化合物3から化合物5、および化合物10においてもHOMO準位が深い光電変換材料になると考えられる。そのため、これらの化合物を用いて光電変換膜を作成した場合、得られる光電変換膜は、暗電流を低減することが可能である。
 また、化合物11から14のように軸配位子へのフッ素原子の導入数を増やしていく場合、HOMOの実測値が深くなり、計算値としても深くなることが分かった。これは、化合物15から21においても、軸配位子へのフッ素原子の導入数を増やすにつれ、HOMOの計算値が深くなっていることからもわかる。
 よって、実施例6から9で実際に合成した化合物11から14と同様に、化合物15から化合物21においても、より深いHOMO準位を有する光電変換材料になると考えられる。そのため、軸配位子へフッ素原子を導入した化合物を用いて光電変換膜を作成した場合、得られる光電変換膜は、暗電流をさらに低減することが可能である。
 以下に、表1、表2、表3、および表4に示す化合物3から化合物5、化合物7から化合物10、および化合物15から21の合成方法について説明する。なお、化合物1、化合物2、化合物6、化合物11、化合物12、化合物13、および化合物14の合成方法については、実施例1、実施例2、実施例4、実施例6、実施例7、実施例8、および実施例9で述べた通りであるため、ここでの説明を省略する。
 まず、化合物3および化合物8の合成方法について説明する。なお、化合物3および化合物8の合成は、特開平4-53713号公報(特許文献5)に記載の合成方法にならい行うことができる。
 (化合物3の合成)
 以下に説明する方法に従い、下記構造式で表される化合物3を合成することができる。
Figure JPOXMLDOC01-appb-C000101
 アルゴン置換された200mL反応容器に、上記ステップ(2)で得られる(S-Pent)SiPc(OH)(化合物(A-3))0.3gと、クロロジフェニルホスフィン3.0gとを加え、トリブチルアミン3.0g、脱水ピリジン20mLに溶解させ、110℃で2時間攪拌する。UV-visスペクトルにより反応が進行したことを確認した後、反応溶液を室温まで冷却し、メタノール60mLで希釈しろ過する。次いで、ろ液を留去し、希塩酸30mLを加え、析出した固体をろ取する。得られた固体を水洗し、減圧下乾燥することで、ホスフィン部分の酸化を防ぎ、目的の化合物3を得ることができる。
 (化合物8の合成)
 以下に説明する方法に従い、下記構造式で表される化合物8を合成することができる。
Figure JPOXMLDOC01-appb-C000102
 アルゴン置換された200mL反応容器に、上記ステップ(10)で得られる(S-Et)SiPc(OH)(化合物(A-12))0.3gと、クロロジフェニルホスフィン3.0gとを加え、トリブチルアミン3.0g、脱水ピリジン20mLに溶解させ、110℃で2時間攪拌する。UV-visスペクトルより反応が進行したことを確認した後、反応溶液を室温まで冷却し、メタノール60mLで希釈しろ過する。次いで、ろ液を留去し、希塩酸30mLを加え、析出した固体をろ取する。得られた固体を水洗し、減圧下乾燥することで、ホスフィン部分の酸化を防ぎ、目的の化合物8を得ることができる。
 続いて、化合物4および化合物9の合成方法について説明する。なお、化合物4および化合物9の合成は、Jian-Yong et. al., “Switching the photo-induced energy and electron-transfer processes in BODIPY-phthalocyanine conjugates”, Chemical Communications,Royal Society of Chemistry, 2009年, pp.1517-1519(非特許文献6)に記載の合成方法にならい行うことができる。
 (化合物4の合成)
 以下に説明する方法に従い、下記構造式で表される化合物4を合成することができる。
Figure JPOXMLDOC01-appb-C000103
 アルゴン置換された200mL反応容器に、上記ステップ(2)で得られる(S-Pent)SiPc(OH)(化合物(A-3))0.3gと、フェノール3.0gとを加え、脱水トルエン10mL、脱水ピリジン10mLに溶解させ、加熱還流下で3時間攪拌する。反応の終了をTLCにより確認した後、反応溶液をエバポレーターで濃縮し、粗生成物を得る。得られた粗生成物をアルミナカラムクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=2/1(v/v))で2回精製した後、溶媒を留去し、目的の化合物4を得ることができる。
 (化合物9の合成)
 以下に説明する方法に従い、下記構造式で表される化合物9を合成することができる。
Figure JPOXMLDOC01-appb-C000104
 アルゴン置換された200mL反応容器に、上記ステップ(10)で得られる(S-Et)SiPc(OH)(化合物(A-12))0.3gと、フェノール3.0gとを加え、脱水トルエン10mL、脱水ピリジン10mLに溶解させ、加熱還流下で3時間攪拌する。反応の終了をTLCにより確認した後、反応溶液をエバポレーターで濃縮し粗生成物を得る。得られた粗生成物をアルミナカラムクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=2/1(v/v))で2回精製した後、溶媒を留去し、目的の化合物9を得ることができる。
 続いて、化合物5および化合物10の合成方法について説明する。化合物5および化合物10の合成は、本出願人による未公開の特許出願である特願2018-024367号に記載の合成方法にならい行われる。
 (化合物5の合成)
 以下に説明する方法に従い、下記構造式で表される化合物5を合成することができる。
Figure JPOXMLDOC01-appb-C000105
 アルゴン置換された200mL反応容器に、上記ステップ(2)で得られる(S-Pent)SiPc(OH)(化合物(A-3))0.5gと2-エチル-1-ヘキサノール1.1gとを加え、1,2,4-トリメチルベンゼン50mLに溶解させ、200℃で3時間攪拌する。反応溶液を室温まで冷却した後、10℃で30分間冷却し、ろ過して不溶成分を取り除く。次いで、ろ液を減圧下濃縮し、10℃で30分間冷却する。次いで、得られた残渣をアルミナカラムクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=2/1(v/v))で2回精製した後、溶媒を留去し、目的の化合物5を得ることができる。
 (化合物10の合成)
 以下に説明する方法に従い、下記構造式で表される化合物10を合成することができる。
Figure JPOXMLDOC01-appb-C000106
 アルゴン置換された200mL反応容器に、上記ステップ(10)で得られる(S-Pent)SiPc(OH)(化合物(A-12))0.5gと2-エチル-1-ヘキサノール1.1gとを加え、1,2,4-トリメチルベンゼン50mLに溶解させ、200℃で3時間攪拌する。反応溶液を室温まで冷却した後、10℃で30分間冷却し、ろ過して不溶成分を取り除く。次いで、ろ液を減圧下濃縮し、10℃で30分間冷却する。次いで、アルミナカラムクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=2/1(v/v))で2回精製した後、溶媒を留去し、目的の化合物10を得ることができる。
 続いて、化合物7の合成方法について説明する。なお、化合物7の合成は、実施例2のステップ(4)に記載の合成方法にならって行うことができる。
 (化合物7の合成)
 以下に説明する方法に従い、下記構造式で表される化合物7を合成することができる。
Figure JPOXMLDOC01-appb-C000107
 上記ステップ(2)で得られる(S-Pent)SiPc(OH)(化合物(A-3))0.3gの代わりに、上記ステップ(10)で得られる(S-Et)SiPc(OH)(化合物(A-12))0.3gを使用し、実施例2のステップ(4)に記載の合成方法により目的の化合物7を得ることができる。
 続いて、化合物15、化合物16、および化合物19の合成方法について説明する。
 (化合物15の合成)
 以下に説明する方法に従い、下記構造式で表される化合物15を合成することができる。
Figure JPOXMLDOC01-appb-C000108
 アルゴン置換された200mL反応容器に、上記ステップ(6)で得られる(S-Pent)SnPcCl(化合物(A-7))0.3gと、Si(CHCHCFCFOH3.0gとを加え、ナトリウムメトキシド0.5g、脱水トルエン20mLに溶解させ、110℃で8時間攪拌する。反応溶液を室温まで冷却した後、水10mlを加え、分液漏斗にて有機層を分取する。分取した有機層の溶媒をできるだけ留去した後、メタノールを加え、固体を析出させる。析出した固体をメタノール100mlで洗浄し、減圧下60℃で3時間加熱乾燥させることで目的の化合物15を得ることができる。
 (化合物19の合成)
 以下に説明する方法に従い、下記構造式で表される化合物19を合成することができる。
Figure JPOXMLDOC01-appb-C000109
 アルゴン置換された10mL反応容器に、上記ステップ(10)で得られる(S-Et)SiPc(OH)(化合物(A-12))50mgとSi(CHCHCFCFOH0.5gとを加え、脱水トルエン1.5mLに溶解させ、5時間加熱還流する。反応溶液を室温まで冷却した後、エバポレーターで濃縮し、粗生成物を得る。得られる粗生成物に対しメタノール(~5mL)を加え、室温で1日静置する。生じた沈殿物をろ取し、メタノールで洗浄した後、減圧下乾燥して目的の化合物19を得ることができる。
 (化合物16の合成)
 以下に説明する方法に従い、下記構造式で表される化合物16を合成することができる。
Figure JPOXMLDOC01-appb-C000110
 アルゴン置換された10mL反応容器に、上記ステップ(10)で得られる(SEt)SiPc(OH)(化合物(A-12))150mgと、Cl-PO(PhF 500mgとを加え、さらに、トリブチルアミン0.5mLおよび脱水ピリジン4mLを加え、130℃で12時間攪拌させる。反応溶液を室温まで冷却し、クロロホルム、蒸留水を加えて、分液漏斗にて有機層を分取する。分取した有機層の溶媒を留去させ濃縮する。
 得られた濃縮物を中性アルミナカラムクロマトグラフィーで精製する。精製物溶液を濃縮後、ヘプタン洗浄を行うことで目的の化合物16を得ることができる。
 続いて、化合物18および化合物20の合成方法について説明する。なお、化合物18および化合物20の合成は、Jian-Yong et. al., “Switching the photo-induced energy and electron-transfer processes in BODIPY-phthalocyanine conjugates”, Chemical Communications,Royal Society of Chemistry, 2009年, pp.1517-1519(非特許文献6)に記載の合成方法にならい行うことができる。
 (化合物18の合成)
 以下に説明する方法に従い、下記構造式で表される化合物18を合成することができる。
Figure JPOXMLDOC01-appb-C000111
 アルゴン置換された200mL反応容器に、上記ステップ(2)で得られる(S-Pent)SiPc(OH)(化合物(A-3))0.3gと、4-フルオロフェノール3.0gとを加え、さらに脱水トルエン10mLおよび脱水ピリジン10mLを加え、加熱還流下で3時間攪拌する。反応の終了をTLCにより確認した後、反応溶液をエバポレーターで濃縮し、粗生成物を得る。得られた粗生成物をアルミナカラムクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=2/1(v/v))で二回精製した後、溶媒を留去し、目的の化合物18を得ることができる。
 (化合物20の合成)
 以下に説明する方法に従い、下記構造式で表される化合物20を合成することができる。
Figure JPOXMLDOC01-appb-C000112
 アルゴン置換された200mL反応容器に、上記ステップ(10)で得られる(S-Et)SiPc(OH)(化合物(A-12))0.3gと、4-トリフルオロメチルフェノール4.0gとを加え、さらに、脱水トルエン10mLおよび脱水ピリジン10mLを加え、加熱還流下で3時間攪拌する。反応の終了をTLCにより確認した後、反応溶液をエバポレーターで濃縮し粗生成物を得る。得られた粗生成物をアルミナカラムクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=2/1(v/v))で二回精製した後、溶媒を留去し、目的の化合物20を得ることができる。
 続いて、化合物17の合成方法について説明する。化合物17の合成は、本出願人による未公開の特許出願である特願2018-024367号に記載の合成方法にならい行われる。
 (化合物17の合成)
 以下に説明する方法に従い、下記構造式で表される化合物17を合成することができる。
Figure JPOXMLDOC01-appb-C000113
 アルゴン置換された200mL反応容器に、上記ステップ(10)で得られる(S-Et)SiPc(OH)(化合物(A-12))0.3gとCFCFCHCHOH3.0gとを加え、1,2,4-トリメチルベンゼン50mLに溶解させ、200℃で3時間攪拌する。反応溶液を室温まで冷却した後、10℃で30分間冷却し、ろ過して不溶成分を取り除く。次いで、ろ液を減圧下濃縮し、10℃で30分間冷却する。次いで、得られた残渣をアルミナカラムクロマトグラフィー(展開溶媒:ヘキサン/クロロホルム=2/1(v/v))で二回精製した後、溶媒を留去し、目的の化合物17を得ることができる。
 続いて、化合物21の合成方法について説明する。
 (化合物21の合成)
 以下に説明する方法に従い、下記構造式で表される化合物21を合成することができる。
Figure JPOXMLDOC01-appb-C000114
 アルゴン置換された10mL反応容器に、上記ステップ(10)で得られる(SEt)SiPc(OH)(化合物(A-12))150mgと、Bis(2-(5,6,7,8-tetraFluoroNaphtyl)-phosphinic Chloride 700mgとを加え、さらに、トリブチルアミン0.5mLおよび脱水ピリジン4mLを加え、130℃で12時間攪拌させる。反応溶液を室温まで冷却し、クロロホルム、蒸留水を加えて、分液漏斗にて有機層を分取する。分取した有機層の溶媒を留去させ濃縮する。
 得られた濃縮物を中性アルミナカラムクロマトグラフィーで精製する。精製物溶液を濃縮後、ヘプタン洗浄を行うことで目的の化合物21を得ることができる。
 以上、本開示に係る組成物、光電変換素子および撮像装置について、実施の形態および実施例に基づいて説明したが、本開示は、これらの実施の形態および実施例に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態および実施例に施したもの、並びに実施の形態および実施例における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 なお、本開示に係る組成物および光電変換素子は、光によって発生する電荷をエネルギーとして取り出すことにより、太陽電池に利用してもよい。
 また、本開示に係る組成物は、近赤外光カット素材としてフィルム、シート、ガラス、建材等に利用してもよい。また、赤外線吸収剤としてインク、樹脂、ガラス等に混合して使用してもよい。
 本開示に係る組成物、光電変換素子および撮像素子は、イメージセンサなどに適用可能であり、特に、近赤外光領域において高い光吸収特性を有するイメージセンサに好適である。
 1 支持基板
 2 下部電極
 3 近赤外光電変換膜
 3A 光電変換層
 4 上部電極
 5 電子ブロッキング層
 6 正孔ブロッキング層
 7 p型半導体層
 8 n型半導体層
 10A、10B 近赤外光電変換素子
 10C 光電変換部
 20 水平信号読出し回路
 21 増幅トランジスタ
 22 リセットトランジスタ
 23 アドレストランジスタ
 21G、22G、23G ゲート電極
 21D、21S、22D、22S、23S 不純物領域
 21X、22X、23X ゲート絶縁層
 24 画素
 25 垂直走査回路
 26 対向電極信号線
 27 垂直信号線
 28 負荷回路
 29 カラム信号処理回路
 31 電源配線
 32 差動増幅器
 33 フィードバック線
 34 電荷蓄積ノード
 35 電荷検出回路
 36 アドレス信号線
 37 リセット信号線
 40 半導体基板
 41 素子分離領域
 50 層間絶縁層
 51、53、54 コンタクトプラグ
 52 配線
 60 カラーフィルタ
 61 マイクロレンズ
 100 撮像装置

Claims (13)

  1.  下記一般式(1)で表されるフタロシアニン誘導体を含む、
     組成物。
    Figure JPOXMLDOC01-appb-C000001
     但し、RからRは、それぞれ独立して、アルキル基またはアリール基であり、Mは4価の金属であり、RおよびR10の各々は下記一般式(2)から(5)で表される置換基のうちのいずれか1つである。また、R11からR13は、それぞれ独立してアルキル基であり、R14からR18は、それぞれ独立して、アルキル基またはアリール基である。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
  2.  前記一般式(1)において、RからRは炭素数5以下のアルキル基である、
     請求項1に記載の組成物。
  3.  前記一般式(1)において、MはSiまたはSnである、
     請求項1または請求項2に記載の組成物。
  4.  前記フタロシアニン誘導体は、下記一般式(6)から(11)で表される化合物のうちのいずれか1つである、
     請求項1から請求項3のいずれか一項に記載の組成物。
     但し、Arはアリール基であり、Xは炭素数10以下のアルキル基である。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
  5.  前記一般式(1)において、
     RおよびR10からなる群から選択される少なくとも1つに含まれる少なくとも1つの水素原子が、フッ素原子または含フッ素基で置換されている、
     請求項1から請求項3のいずれか一項に記載の組成物。
  6.  前記一般式(1)において、
     RおよびR10は、前記一般式(5)であり、
     前記一般式(5)においてR17およびR18は、それぞれ独立してアリール基であり、
     R17およびR18からなる群から選択される少なくとも1つに含まれる少なくとも1つの水素原子が、フッ素原子または含フッ素基で置換されている、
     請求項5に記載の組成物。
  7.  前記一般式(5)においてR17およびR18は、それぞれ独立してフェニル基であり、
     R17およびR18からなる群から選択される少なくとも1つに含まれる少なくとも一つの水素原子が、フッ素原子またはトリフルオロメチル基で置換されている、
     請求項6に記載の組成物。
  8.  前記フタロシアニン誘導体は、下記構造式(12)から(15)で表される化合物のうちのいずれか1つである、
     請求項5から請求項7のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
  9.  一対の電極と、
     前記一対の電極の間に設けられ、請求項1から請求項8のいずれか一項に記載の組成物を含み、近赤外光領域において光吸収特性を有する光電変換膜と、
     を備える、
     光電変換素子。
  10.  前記光電変換膜のイオン化ポテンシャルは5.1eV以上である、
     請求項9に記載の光電変換素子。
  11.  前記光電変換膜における前記組成物の濃度は5重量%以上かつ25重量%以下である、
     請求項9または請求項10に記載の光電変換素子。
  12.  前記光電変換膜の吸収スペクトルは、803nm以上の波長範囲において吸収ピークを含む、
     請求項9から請求項11のいずれか一項に記載の光電変換素子。
  13.  基板と、
     前記基板表面に設けられた電荷検出回路、前記基板上に設けられた光電変換部、および前記電荷検出回路と前記光電変換部とに電気的に接続された電荷蓄積ノードを含む画素と、
     を備え、
     前記光電変換部は請求項9から請求項12のいずれか一項に記載の光電変換素子を含む、
     撮像装置。
PCT/JP2019/009322 2018-03-29 2019-03-08 組成物、光電変換素子および撮像装置 WO2019188118A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980009718.8A CN111655701B (zh) 2018-03-29 2019-03-08 组合物、光电转换元件及摄像装置
US17/013,780 US11447639B2 (en) 2018-03-29 2020-09-07 Composition, photoelectric conversion element, and imaging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018066166 2018-03-29
JP2018-066166 2018-03-29
JP2018215834A JP6767695B2 (ja) 2018-03-29 2018-11-16 組成物、近赤外光電変換素子および撮像装置
JP2018-215834 2018-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/013,780 Continuation US11447639B2 (en) 2018-03-29 2020-09-07 Composition, photoelectric conversion element, and imaging device

Publications (1)

Publication Number Publication Date
WO2019188118A1 true WO2019188118A1 (ja) 2019-10-03

Family

ID=68060353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009322 WO2019188118A1 (ja) 2018-03-29 2019-03-08 組成物、光電変換素子および撮像装置

Country Status (1)

Country Link
WO (1) WO2019188118A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377840A (ja) * 1989-08-18 1991-04-03 Mitsui Toatsu Chem Inc アシロキシシリコンフタロシアニンおよびそれを用いた情報記録材料
JPH03100066A (ja) * 1989-09-13 1991-04-25 Mitsui Toatsu Chem Inc アシロキシスズフタロシアニンおよびそれを用いた情報記録材料
JPH05124354A (ja) * 1991-11-01 1993-05-21 Toyo Ink Mfg Co Ltd Cdまたはcd−rom対応の追記型光デイスク
JPH0656839A (ja) * 1992-02-27 1994-03-01 Ciba Geigy Ag キレート錯体及びその製法
WO1996010620A1 (en) * 1994-09-30 1996-04-11 Eastman Chemical Company Method for tagging petroleum products
JPH1036830A (ja) * 1996-07-22 1998-02-10 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
US20070010645A1 (en) * 2005-07-05 2007-01-11 Silverbrook Research Pty Ltd Red-shifted water dispersible IR dyes
JP2015222339A (ja) * 2014-05-23 2015-12-10 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2016225456A (ja) * 2015-05-29 2016-12-28 パナソニックIpマネジメント株式会社 撮像装置および光電変換膜の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377840A (ja) * 1989-08-18 1991-04-03 Mitsui Toatsu Chem Inc アシロキシシリコンフタロシアニンおよびそれを用いた情報記録材料
JPH03100066A (ja) * 1989-09-13 1991-04-25 Mitsui Toatsu Chem Inc アシロキシスズフタロシアニンおよびそれを用いた情報記録材料
JPH05124354A (ja) * 1991-11-01 1993-05-21 Toyo Ink Mfg Co Ltd Cdまたはcd−rom対応の追記型光デイスク
JPH0656839A (ja) * 1992-02-27 1994-03-01 Ciba Geigy Ag キレート錯体及びその製法
WO1996010620A1 (en) * 1994-09-30 1996-04-11 Eastman Chemical Company Method for tagging petroleum products
JPH1036830A (ja) * 1996-07-22 1998-02-10 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
US20070010645A1 (en) * 2005-07-05 2007-01-11 Silverbrook Research Pty Ltd Red-shifted water dispersible IR dyes
JP2015222339A (ja) * 2014-05-23 2015-12-10 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2016225456A (ja) * 2015-05-29 2016-12-28 パナソニックIpマネジメント株式会社 撮像装置および光電変換膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KHENE, S. ET AL.: "Synthesis, electrochemical characterization of tetra-and octa-substituted dodecyl-mercapto tin phthalocyanines in solution and as self-assembled monolayers", ELECTROCHIMICA ACTA, vol. 54, no. 2, 2008, pages 183 - 191, XP025536093, doi:10.1016/j.electacta.2008.08.018 *

Similar Documents

Publication Publication Date Title
US10297766B2 (en) Composition containing naphthalocyanine derivative, photoelectric conversion element containing the same, and imaging device
EP2752418B1 (en) Polycyclic aromatic compound
Ortiz Triarylamine-BODIPY derivatives: A promising building block as hole transporting materials for efficient perovskite solar cells
JP6339561B2 (ja) 光起電力のためのジピリン系材料、極性媒体中で対称性破壊性分子内電荷移動が可能な化合物およびこれを含む有機光起電力デバイス
EP3396717A1 (en) Photoelectric conversion film, photoelectric conversion element, and imaging device
CN109384801B (zh) 光电转换材料以及光电转换元件
Zhang et al. Star-shaped carbazole-based BODIPY derivatives with improved hole transportation and near-infrared absorption for small-molecule organic solar cells with high open-circuit voltages
US11818450B2 (en) Camera system
US11447639B2 (en) Composition, photoelectric conversion element, and imaging device
Xia et al. Low-cost star-shaped hole-transporting materials with isotropic properties and its application in perovskite solar cells
Simón Marqués et al. Indeno [1, 2-b] thiophene End-capped Perylene Diimide: Should the 1, 6-Regioisomers be systematically considered as a byproduct?
WO2019188118A1 (ja) 組成物、光電変換素子および撮像装置
Xu et al. Dimeric dithiafulvene sensitizers involving a 1, 3, 4-oxadiazole as auxiliary acceptor and pyridine as electron-withdrawing anchoring group for efficient dye sensitized solar cells
JP2019137654A (ja) 組成物、近赤外光電変換素子および撮像装置
Wang et al. Soluble hexamethyl-substituted subphthalocyanine as a dopant-free hole transport material for planar perovskite solar cells
JP7486103B2 (ja) 組成物、光電変換素子および撮像装置
WO2021049298A1 (ja) 組成物、光電変換素子および撮像装置
Sivakumar et al. Synthesis and Characterization of Diketopyrrolopyrrole‐based D‐π‐A‐π‐D Small Molecules for Organic Solar Cell Applications
WO2020100466A1 (ja) 組成物、光電変換素子および撮像装置
WO2022202188A1 (ja) 光電変換素子および撮像装置
Wang et al. Fluorene-Modified Zinc Porphyrin as Low-Cost Hole-Transporting Material for Efficient Perovskite Solar Cells
WO2022172531A1 (ja) 撮像装置
WO2022158268A1 (ja) 光電流増倍素子および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777997

Country of ref document: EP

Kind code of ref document: A1