WO2020118695A1 - 一种微波合成钴酸锂材料的方法 - Google Patents

一种微波合成钴酸锂材料的方法 Download PDF

Info

Publication number
WO2020118695A1
WO2020118695A1 PCT/CN2018/121245 CN2018121245W WO2020118695A1 WO 2020118695 A1 WO2020118695 A1 WO 2020118695A1 CN 2018121245 W CN2018121245 W CN 2018121245W WO 2020118695 A1 WO2020118695 A1 WO 2020118695A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ball milling
lithium cobaltate
microwave
positive electrode
Prior art date
Application number
PCT/CN2018/121245
Other languages
English (en)
French (fr)
Inventor
张哲鸣
吴正斌
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2018/121245 priority Critical patent/WO2020118695A1/zh
Publication of WO2020118695A1 publication Critical patent/WO2020118695A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the field of electrochemistry, and in particular relates to a method for synthesizing lithium cobalt oxide in a used battery by microwave method.
  • lithium cobalt oxide batteries Since the commercialization of lithium ion batteries, lithium cobalt oxide batteries have many advantages, such as high operating voltage, high energy density, long cycle life, convenient portability, and good safety performance. They are used in portable electronic devices such as mobile phones, notebook computers, and cameras. Equipment and electric vehicles are widely used, so a large number of lithium-ion batteries are produced every year, and a large number of scrapped batteries are produced every year.
  • waste lithium battery recycling technology adopted by individual enterprises is relatively backward, low in efficiency, and easy to produce secondary pollution.
  • the recycling object is single, and the comprehensive utilization rate of the residual value of the battery is low.
  • the recycling technology also mostly stays in the laboratory stage, which has the problems of lagging industrialization or poor practicability.
  • the present invention provides a method for repairing the cathode material of used lithium cobalt oxide batteries by using microwaves.
  • the purpose of the present invention is to provide simple process operation, easy process control, low energy consumption, environmental friendliness, no secondary pollutants, and at the same time, the repaired lithium cobalt oxide material can be reused to produce lithium ion batteries.
  • step (2) Put the positive electrode sheet obtained in step (1) into a muffle furnace, calcine it at 300-500°C for 1-10 hours, take it out after the temperature drops to room temperature, mechanically vibrate the positive electrode sheet to make lithium cobalt oxide from the current collector aluminum foil Shedding off to obtain black lithium cobalt oxide powder;
  • the lithium source in step (3) is selected from one or more of lithium hydroxide, lithium carbonate, lithium sulfate, lithium oxide, and lithium acetate.
  • the carbon source in step (3) is selected from at least one of sucrose, glucose, cellulose, citric acid and starch.
  • the mass ratio of the lithium cobaltate powder and the carbon source in step (3) is 1:0.1-1:1.
  • the number of times of repeating the ball milling and microwave treatment steps in step (3) is more than one, preferably 1, 2, 3, 4, 5 times.
  • the first ball milling time in step (3) is 0.5 to 3 hours
  • the rotation speed is 200 to 400 r/min
  • the second ball milling time is 0.5 to 2 hours
  • the rotation speed is 100 to 500 r/min
  • the mass ratio of the lithium cobaltate powder and the lithium source in step (3) is 1:1 to 1:20.
  • the size of the synthesized lithium cobaltate material is 6-20 ⁇ m, preferably 8-12 ⁇ m.
  • the microwave method is used to repair the lithium cobalt oxide material in the used battery, which can significantly increase the content of lithium ions in the structure of the failed lithium cobalt oxide and improve the electrochemical performance of the lithium cobalt oxide.
  • the repaired lithium cobalt oxide material can be directly used for production Cathode material for lithium ion batteries.
  • the invention can effectively recycle the used lithium cobalt oxide battery and obtain good environmental benefits and considerable economic benefits.
  • Example 1 Microwave synthesis of lithium cobaltate material using waste batteries
  • step (2) Put the positive electrode sheet obtained in step (1) into a muffle furnace, calcine it at 450°C for 1 hour, take it out after the temperature drops to room temperature, and mechanically vibrate the positive electrode sheet to make lithium cobalt oxide fall off from the aluminum foil of the current collector to obtain Black lithium cobalt oxide powder;
  • step (2) Put the positive electrode sheet obtained in step (1) into a muffle furnace, calcine it at 450°C for 1 hour, take it out after the temperature drops to room temperature, and mechanically vibrate the positive electrode sheet to make lithium cobalt oxide fall off from the aluminum foil of the current collector to obtain Black lithium cobalt oxide powder;
  • step (2) Put the positive electrode sheet obtained in step (1) into a muffle furnace, calcine it at 450°C for 1 hour, take it out after the temperature drops to room temperature, and mechanically vibrate the positive electrode sheet to make lithium cobalt oxide fall off from the aluminum foil of the current collector to obtain Black lithium cobalt oxide powder;
  • the experimental scheme is the same as the example, except that in step (3), the continuous microwave heating is performed only once, the continuous heating time is 10 minutes, and the microwave power is 750W.
  • the size distribution of the synthesized lithium cobalt oxide particles is relatively wide, and the size of the lithium cobalt oxide particles in 8-10 ⁇ m accounts for only 20%.
  • the lithium cobaltate of Example 1 was subjected to an electrochemical experiment.
  • the specific discharge capacity at 0.1C was up to 140.5mAh/g, and the discharge cycle was 100 times at 1C.
  • the discharge capacity reached 98.7% of the initial capacity. It has good high-rate charge-discharge cycle performance. .
  • the lithium cobaltate of Example 2 was subjected to an electrochemical experiment.
  • the specific discharge capacity at 0.1C was up to 139.8mAh/g.
  • the discharge cycle was 100 times at 1C, and the discharge capacity reached 98.6% of the initial capacity. It has good high-rate charge-discharge cycle performance. .
  • the lithium cobaltate of Example 3 was subjected to an electrochemical experiment.
  • the specific discharge capacity at 0.1C was up to 139.5mAh/g, and the discharge cycle was 100 times at 1C.
  • the discharge capacity reached 98.2% of the initial capacity. It has good high-rate charge-discharge cycle performance. .
  • the lithium cobaltate of Example 4 was subjected to an electrochemical experiment.
  • the specific discharge capacity at 0.1C was up to 135.3mAh/g, and the discharge cycle was 100 times at 1C.
  • the discharge capacity reached 93.2% of the initial capacity. It has good high-rate charge-discharge cycle performance. .
  • the lithium cobaltate material has a higher crystallinity and is better than the continuous microwave effect. It may be due to the binder etc. in the early stage. It has been removed during the pretreatment process and did not participate in the re-synthesis of lithium cobaltate.
  • the sample of the present invention was also subjected to inductively coupled plasma emission spectroscopy (ICP-AES) element analysis. After repair, the lithium ion content in the lithium cobalt oxide material was significantly increased. After charging and discharging tests, it was found that the electrochemical performance of the lithium cobalt oxide was obvious. improve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种利用微波修复废旧钴酸锂电池正极材料的方法,具体步骤如下:(1)选取废旧的钴酸锂电池,对其进行放电处理后拆解得到正极片;(2)将步骤(1)所得正极片在300-500℃下煅烧1-10小时,待温度降至室温取出,机械振动正极片,使钴酸锂从集流体铝箔上脱落,得到黑色钴酸锂粉末;(3)将钴酸锂粉末,锂源和碳源混合后进行球磨,然后放入微波装置中,持续加热时间为10-60秒,然后停止20-60秒,并重复球磨和微波处理步骤至得到钴酸锂材料。上述方法操作简单,过程容易控制,能耗较低,对环境友好,不产生二次污染物,同时修复后的钴酸锂材料可重新用来生产锂离子电池。

Description

一种微波合成钴酸锂材料的方法 技术领域
本发明涉及电化学领域,具体涉及一种微波方法处理废旧电池合成钴酸锂的方法。
背景技术
锂离子电池实现商业化以来,钴酸锂电池由于具有诸多优点,如工作电压高、能量密度高、循环寿命长、携带方便、安全性能好等优点,在移动电话、笔记本电脑、照相机等便携式电子设备和电动汽车领域得到广泛的应用,因此每年会生产出大量锂离子电池,相应的每年就会产生大量报废电池。
虽然已有一些企业开始关注废锂电池的资源化利用,但我国还尚未建立全国性的废旧电池回收处理体系。个别企业所采用的废锂电池回收技术相对落后、效率低、易产生二次污染,回收对象单一,电池残值综合利用率低下。在废锂电池资源化的研究中,资源化技术也多停留在实验室阶段,存在产业化滞后或可实践性较差的问题。
发明内容
为了克服上述现有技术的不足,本发明提供了一种利用微波修复废旧钴酸锂电池正极材料的方法。本发明的目的在于提供工艺操作简单,过程容易控制,能耗较低,对环境友好,不产生二次污染物,同时修复后的钴酸锂材料可重新用来生产锂离子电池。
本发明提出的一种利用微波修复废旧钴酸锂电池正极材料的方法,具体步骤如下:
(1)选取废旧的钴酸锂电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在300-500℃下煅烧1-10小时,待温度降至室温取出,机械振动正极片,使钴酸锂从集流体铝箔上脱落,得到黑色钴酸锂粉末;
(3)将5-20克钴酸锂粉末和锂源以及碳源按比例混合后进行球磨,然后放入微波装置中,控制微波功率为500W-1000W,持续加热时间为10-60S,然后停止20-60S,取出后进行搅拌,并重复球磨和微波处理步骤至得到钴酸锂材料。
在本发明的技术方案中,步骤(3)所述锂源选自氢氧化锂、碳酸锂、硫酸锂、氧化锂、乙酸锂中的一种或几种。
在本发明的技术方案中,步骤(3)所述碳源选自蔗糖、葡萄糖、纤维素、柠檬酸和淀粉中的至少一种。
在本发明的技术方案中,步骤(3)所述钴酸锂粉末和碳源的质量比为1:0.1~1:1。
在本发明的技术方案中,步骤(3)中重复球磨和微波处理步骤的次数为1次以上,优选为1次,2次,3次,4次,5次。
在本发明的技术方案中,步骤(3)中所述第一次球磨时间为0.5~3小时,转速为200~400r/min,球磨后再过200~600目筛。
在本发明的技术方案中,第二次球磨时间为0.5~2小时,转速为100~500r/min,球磨后再过300~600目筛。
在本发明的技术方案中,步骤(3)中所述钴酸锂粉末和锂源的质量比为1:1~1:20。
在本发明的技术方案中,合成得到的钴酸锂材料的尺寸为6-20μm,优选为8-12μm。
有益效果
采用微波的方法对废旧电池中的钴酸锂材料进行修复,可明显增加失效钴酸锂结构中锂离子的含量,提高钴酸锂的电化学性能,修复后的钴酸锂材料可直接作为生产锂离子电池的正极材料。本发明能有效地回收利用废旧的钴酸锂电池,并获得良好的环境效益和可观的经济效益。
具体实施方式
实施例1:利用废旧电池微波合成钴酸锂材料
(1)选取废旧的钴酸锂电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在450℃下煅烧1小时,待温度降至室温取出,机械振动正极片,使钴酸锂从集流体铝箔上脱落,得到黑色钴酸锂粉末;
(3)将30g钴酸锂粉末和600g碳酸锂,以及3.5g蔗糖,混合后进行第一次球磨0.5小时,转速为400r/min,球磨后再过200目筛;然后放入微波装置中,控制微波功率为750W,持续加热时间为90S,然后停止30S,取出后进行搅拌,再次进行第二次球磨2小时,转速为500r/min,球磨后再过300目筛;球磨后再微波加热90S,取出自然冷却,得到钴酸锂材料。合成的钴酸锂颗粒的尺寸较为稳定在10μm左右。
实施例2利用废旧电池微波合成钴酸锂材料
(1)选取废旧的钴酸锂电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在450℃下煅烧1小时,待温度降至室温取出,机械振动正极片,使钴酸锂从集流体铝箔上脱落,得到黑色钴酸锂粉末;
(3)将30g钴酸锂粉末和30g乙酸锂以及3.8g蔗糖,混合后进行第一次球磨0.5小时,转速为400r/min,球磨后再过200目筛;然后放入微波装置中,控制微波功率为750W,持 续加热时间为90S,然后停止30S,取出后进行搅拌,再次进行第二次球磨2小时,转速为500r/min,球磨后再过300目筛;球磨后再微波加热90S,取出自然冷却,得到钴酸锂材料。合成的钴酸锂颗粒的尺寸较为稳定在10μm左右。
实施例3利用废旧电池微波合成钴酸锂材料
(1)选取废旧的钴酸锂电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在450℃下煅烧1小时,待温度降至室温取出,机械振动正极片,使钴酸锂从集流体铝箔上脱落,得到黑色钴酸锂粉末;
(3)将30g钴酸锂粉末和300g乙酸锂以及3.8g葡萄糖,混合后进行第一次球磨0.5小时,转速为400r/min,球磨后再过200目筛;然后放入微波装置中,控制微波功率为750W,持续加热时间为90S,然后停止30S,取出后进行搅拌,再次进行第二次球磨2小时,转速为500r/min,球磨后再过300目筛;球磨后再微波加热90S,取出自然冷却,得到钴酸锂材料。合成的钴酸锂颗粒的尺寸较为稳定在10μm左右。
实施例4利用废旧电池长时间微波合成钴酸锂材料
实验方案与实施例相同,除了步骤(3)中仅进行一次微波持续加热,持续加热的时间为10分钟,微波功率为750W。合成的钴酸锂颗粒的尺寸分布较宽,钴酸锂颗粒的尺寸在8-10μm的仅占20%。
实施例5电化学实验验证
实施例1的钴酸锂进行电化学实验,0.1C首次放电比容量可达140.5mAh/g,1C下放电循环100次,放电容量达到初始容量的98.7%,具有良好的高倍率充放电循环性能。
实施例2的钴酸锂进行电化学实验,0.1C首次放电比容量可达139.8mAh/g,1C下放电循环100次,放电容量达到初始容量的98.6%,具有良好的高倍率充放电循环性能。
实施例3的钴酸锂进行电化学实验,0.1C首次放电比容量可达139.5mAh/g,1C下放电循环100次,放电容量达到初始容量的98.2%,具有良好的高倍率充放电循环性能。
实施例4的钴酸锂进行电化学实验,0.1C首次放电比容量可达135.3mAh/g,1C下放电循环100次,放电容量达到初始容量的93.2%,具有良好的高倍率充放电循环性能。
实施例6XRD实验
通过XRD实验结果,可以验证微波的间歇作用有助于钴酸锂的晶体生长,钴酸锂材料具有较高的结晶度,比持续微波作用效果更好,可能是由于粘结剂等在前期的预处理过程中已经被去除,没有参与到重新合成钴酸锂中。本发明的样品还进行了电感耦合等离子体发射光谱(ICP-AES)元素分析,修复后钴酸锂材料中锂离子的含量明显提高,经充放电测试,发现 钴酸锂的电化学性能得到明显提高。

Claims (10)

  1. 一种利用微波修复废旧钴酸锂电池正极材料的方法,具体步骤如下:
    (1)选取废旧的钴酸锂电池,对其进行放电处理后拆解得到正极片;
    (2)将步骤(1)所得正极片在300-500℃下煅烧1-10小时,待温度降至室温取出,机械振动正极片,使钴酸锂从集流体铝箔上脱落,得到黑色钴酸锂粉末;
    (3)将钴酸锂粉末,锂源以及碳源混合后进行球磨,然后放入微波装置中,持续微波处理10-60秒,然后停止20-60秒,并重复球磨和微波处理步骤至得到钴酸锂材料。
  2. 根据权利要求1的方法,其中,步骤(3)中重复球磨和微波处理步骤的次数为1次以上,优选为1次,2次,3次,4次,5次。
  3. 根据权利要求1的方法,其中,步骤(3)所述锂源选自氢氧化锂、碳酸锂、硫酸锂、氧化锂、乙酸锂中的一种或几种。
  4. 根据权利要求1的方法,其中,根据权利要求3的方法,其中,步骤(3)中所述钴酸锂粉末和锂源的质量比为1:1~1:20。
  5. 根据权利要求1的方法,其中,步骤(3)中重复球磨和微波处理步骤的次数为2次。
  6. 根据权利要求1的方法,其中,步骤(3)为将钴酸锂粉末和锂源混合后进行球磨,然后放入微波装置中,控制微波功率为500W-1000W,持续加热时间为10-60秒,然后停止20-60秒,取出后进行搅拌,并重复球磨和微波处理步骤至得到钴酸锂材料。
  7. 根据权利要求5或6的方法,其中,步骤(3)中所述第一次球磨时间为0.5~3小时,转速为200~400r/min,球磨后再过200~600目筛。
  8. 根据权利要求5或6的方法,其中,步骤(3)中第二次球磨时间为0.5~2小时,转速为100~500r/min,球磨后再过300~600目筛。
  9. 根据权利要求1的方法,其中,步骤(3)所述碳源选自蔗糖、葡萄糖、纤维素、柠檬酸和淀粉中的至少一种。
  10. 根据权利要求1的方法,其中,步骤(3)所述钴酸锂粉末和碳源的质量比为1:0.1~1:1。
PCT/CN2018/121245 2018-12-14 2018-12-14 一种微波合成钴酸锂材料的方法 WO2020118695A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121245 WO2020118695A1 (zh) 2018-12-14 2018-12-14 一种微波合成钴酸锂材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121245 WO2020118695A1 (zh) 2018-12-14 2018-12-14 一种微波合成钴酸锂材料的方法

Publications (1)

Publication Number Publication Date
WO2020118695A1 true WO2020118695A1 (zh) 2020-06-18

Family

ID=71076728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121245 WO2020118695A1 (zh) 2018-12-14 2018-12-14 一种微波合成钴酸锂材料的方法

Country Status (1)

Country Link
WO (1) WO2020118695A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113428905A (zh) * 2021-07-09 2021-09-24 合肥工业大学 一种回收利用废旧钴酸锂电池的方法
CN116683082A (zh) * 2023-07-13 2023-09-01 山东产研绿洲环境产业技术研究院有限公司 一种废旧锂电池微波辅助火法-湿法联合工艺回收方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359163A (zh) * 2001-12-28 2002-07-17 东北大学 用微波技术合成锂离子蓄电池材料的方法
CN101397131A (zh) * 2008-11-04 2009-04-01 辽宁石油化工大学 一种合成掺杂型磷酸亚铁锂的方法
CN101555004A (zh) * 2009-05-15 2009-10-14 中山大学 交替微波快速制备磷酸铁锂的方法
CN103151519A (zh) * 2013-02-22 2013-06-12 同济大学 一种超声场强化下氧化剂辅助修复失效钴酸锂材料方法
CN104934593A (zh) * 2015-05-22 2015-09-23 郑州德朗能微波技术有限公司 一种微波烧结制备LiNi1/3Co1/3Mn1/3O2材料的方法和装置
CN107978816A (zh) * 2017-12-28 2018-05-01 中南大学 一种再生修复废旧锂离子电池正极材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359163A (zh) * 2001-12-28 2002-07-17 东北大学 用微波技术合成锂离子蓄电池材料的方法
CN101397131A (zh) * 2008-11-04 2009-04-01 辽宁石油化工大学 一种合成掺杂型磷酸亚铁锂的方法
CN101555004A (zh) * 2009-05-15 2009-10-14 中山大学 交替微波快速制备磷酸铁锂的方法
CN103151519A (zh) * 2013-02-22 2013-06-12 同济大学 一种超声场强化下氧化剂辅助修复失效钴酸锂材料方法
CN104934593A (zh) * 2015-05-22 2015-09-23 郑州德朗能微波技术有限公司 一种微波烧结制备LiNi1/3Co1/3Mn1/3O2材料的方法和装置
CN107978816A (zh) * 2017-12-28 2018-05-01 中南大学 一种再生修复废旧锂离子电池正极材料的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113428905A (zh) * 2021-07-09 2021-09-24 合肥工业大学 一种回收利用废旧钴酸锂电池的方法
CN113428905B (zh) * 2021-07-09 2023-11-28 合肥工业大学 一种回收利用废旧钴酸锂电池的方法
CN116683082A (zh) * 2023-07-13 2023-09-01 山东产研绿洲环境产业技术研究院有限公司 一种废旧锂电池微波辅助火法-湿法联合工艺回收方法
CN116683082B (zh) * 2023-07-13 2023-11-14 山东产研绿洲环境产业技术研究院有限公司 一种废旧锂电池微波辅助火法-湿法联合工艺回收方法

Similar Documents

Publication Publication Date Title
CN108258224B (zh) 一种表面包覆金属氧化物的三元正极材料及其制备方法
CN104953199B (zh) 利用锂离子电池正极废料合成的金属掺杂镍钴锰酸锂及其制备方法和用途
CN103413924B (zh) 一种La1-xCaxCoO3包覆锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料及其制备方法
CN113072052B (zh) 一种废磷酸铁锂补锂修复方法和应用
CN104362408B (zh) 一种磷酸铁锂电池制造环节磷酸铁锂废料的回收再利用方法
CN109904446B (zh) 一种再生正极材料及其制备方法与包含该再生正极材料的锂离子电池
CN104022266A (zh) 一种硅基负极复合材料及其制备方法
CN102738539A (zh) 从废旧磷酸亚铁锂电池正极片回收磷酸亚铁锂材料的方法和装置
CN110526301B (zh) 一种对锂电池正极失效钴酸锂结构馈补重制的方法
CN105428639A (zh) 一种镍钴锰酸锂正极材料及其制备方法
CN105070970A (zh) 混合废碱性电池制备锂离子电池正极材料的方法
CN111326814A (zh) 一种超声水热修复废旧三元电池正极材料的方法
CN112707447A (zh) 一种从废旧钴酸锂电池中回收再生正极材料的方法
Liu et al. Pyrometallurgically regenerated LiMn2O4 cathode scrap material and its electrochemical properties
WO2020118695A1 (zh) 一种微波合成钴酸锂材料的方法
CN110534721B (zh) 一种性能衰退的三元正极材料的修复方法以及获得的三元正极材料
CN113764766A (zh) 一种废旧锂离子电池负极石墨的回收利用方法
CN103633392A (zh) 一种由废旧动力电池定向循环制备镍锰氢氧化物的方法
CN103746109A (zh) 一种液相法包覆锂离子电池正极材料锰酸锂的方法
Fei et al. Efficient direct regeneration of spent LiCoO2 cathode materials by oxidative hydrothermal solution
CN110620217A (zh) 一种锌掺杂磷酸铁锂/碳复合材料及制备方法
CN107445210B (zh) 一种高容量铁基锂离子电池正极材料α-LiFeO2的制备方法
CN117096486A (zh) 一种废旧锂离子电池正极材料的修复再生方法
WO2020118716A1 (zh) 一种超声水热修复废旧三元电池正极材料的方法
WO2024093095A1 (zh) 碱金属离子电池正极材料修复再生方法、正极材料及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02-11-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18943126

Country of ref document: EP

Kind code of ref document: A1