WO2020118716A1 - 一种超声水热修复废旧三元电池正极材料的方法 - Google Patents

一种超声水热修复废旧三元电池正极材料的方法 Download PDF

Info

Publication number
WO2020118716A1
WO2020118716A1 PCT/CN2018/121303 CN2018121303W WO2020118716A1 WO 2020118716 A1 WO2020118716 A1 WO 2020118716A1 CN 2018121303 W CN2018121303 W CN 2018121303W WO 2020118716 A1 WO2020118716 A1 WO 2020118716A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
positive electrode
temperature
lithium
ternary battery
Prior art date
Application number
PCT/CN2018/121303
Other languages
English (en)
French (fr)
Inventor
张哲鸣
吴正斌
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2018/121303 priority Critical patent/WO2020118716A1/zh
Publication of WO2020118716A1 publication Critical patent/WO2020118716A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of harmless treatment and recycling of electrode materials, and in particular relates to a method for ultrasonic hydrothermal repair of anode materials of waste ternary batteries.
  • lithium-ion batteries Since the commercialization of lithium-ion batteries, they have been widely used in portable electronic devices such as mobile phones, notebook computers, cameras, and electric vehicles due to their advantages of high working voltage, high energy density, long cycle life, convenient portability, and good safety performance. Application, a large number of lithium-ion batteries will be produced every year, and a large number of scrapped batteries will be produced every year.
  • waste lithium battery recycling technology adopted by individual enterprises is relatively backward, low in efficiency, and easy to produce secondary pollution.
  • the recycling object is single, and the comprehensive utilization rate of the residual value of the battery is low.
  • the recycling technology also mostly stays in the laboratory stage, which has the problems of lagging industrialization or poor practicability.
  • the recovery of nickel cobalt manganate Li (NiCoMn) O 2 as the anode material of ternary batteries mainly adopts wet recovery technology, and the main purpose is to finally recover the valuable metals in the battery through acid-soluble alkaline leaching.
  • This process A large amount of acid-base reagents are required during the treatment process, the environment is seriously polluted and the reaction time is long, and it is highly corrosive to the reaction equipment. Therefore, the search for an efficient and environmentally friendly treatment process for the recycling of waste ternary batteries is the development direction of waste lithium battery resource technology, and it is also the need to build a resource-saving and environment-friendly society.
  • the present invention provides an ultrasonic hydrothermal method for repairing the anode material of used ternary batteries.
  • the purpose of the present invention is to provide simple process operation, easy process control, low energy consumption, environmental friendliness, no secondary pollutants, and the repaired positive electrode material can be reused to produce lithium ion batteries.
  • the method proposed by the present invention for ultrasonic hydrothermal repair of the anode material of a waste ternary battery includes the following steps:
  • step (2) The positive electrode sheet obtained in step (1) is calcined at a temperature above 300°C. After the temperature is lowered to room temperature, the positive electrode sheet is mechanically vibrated to make the ternary battery cathode material fall off from the current collector aluminum foil to obtain a black ternary battery cathode material powder;
  • the mixed solution is filtered to obtain a ternary battery positive electrode material paste, which is washed with deionized water and dried to obtain a ternary positive electrode material.
  • the calcination time of step (2) is 1-10 hours.
  • the calcination time temperature in step (2) is 300-450°C.
  • the lithium-containing solution is one or more solutions among lithium nitrate, lithium chloride, lithium hydroxide, and lithium sulfate solutions.
  • the concentration of the lithium-containing solution is 0.1 to 2 mol/L.
  • step (3) the power of the ultrasonic radiation is controlled to be 500-1000W.
  • the reaction temperature in the ultrasonic reactor in step (3) is 50-120°C.
  • the time of ultrasonic radiation in step (3) is 5-15 hours.
  • the drying temperature in step (4) is 70-90°C, and the drying time is 5 to 10 hours
  • the volume of the mixed solution in step (3) is 50% to 75% of the volume of the reactor.
  • the ternary cathode material obtained by the invention is subjected to inductively coupled plasma emission spectroscopy (ICP-AES) element analysis. After repair, the content of lithium ions in the ternary cathode material is significantly increased, and the electrochemical performance of the ternary battery cathode material is improved.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • ternary cathode materials It is easier to obtain ternary cathode materials from waste batteries by calcination pretreatment, and at the same time, some organic substances attached to the surface of the ternary battery cathode materials can be effectively removed during the process, and the ternary cathode materials are repaired by hydrothermal means, obviously The lithium ion content in the anode material structure of the failed ternary battery is increased, and the electrochemical performance of the ternary battery cathode material is improved. Therefore, the repaired ternary cathode material can be directly used as the cathode material for the production of lithium ion batteries.
  • the invention can effectively recycle the discarded ternary battery and obtain good environmental benefits and considerable economic benefits.
  • step (2) Put the positive electrode sheet obtained in step (1) into a muffle furnace, calcine it at 400°C for 5 hours, take it out when the temperature drops to room temperature, and mechanically vibrate the positive electrode sheet to make the lithium nickel cobalt manganate fall off from the current collector aluminum foil To obtain black nickel cobalt manganate powder;
  • ternary cathode material obtained by filtration is dried in an environment of 80°C for 7.5 hours, and finally ternary cathode material lithium nickel cobalt manganate Li(NiCoMn)O 2 is obtained .
  • step (2) Put the positive electrode sheet obtained in step (1) into a muffle furnace, calcine it at 300°C for 8 hours, take it out when the temperature drops to room temperature, and mechanically vibrate the positive electrode sheet to make the lithium nickel cobalt manganate fall off from the current collector aluminum foil To obtain black nickel cobalt manganate powder;
  • ternary cathode material obtained by filtration is dried in an environment of 80°C for 7.5 hours, and finally ternary cathode material lithium nickel cobalt manganate Li(NiCoMn)O 2 is obtained .
  • step (2) Put the positive electrode sheet obtained in step (1) into a muffle furnace, calcine it at 450°C for 3 hours, take it out after the temperature drops to room temperature, and mechanically vibrate the positive electrode sheet to make the lithium nickel cobalt manganate fall off from the current collector aluminum foil To obtain black nickel cobalt manganate powder;
  • ternary cathode material obtained by filtration is dried in an environment of 80°C for 7.5 hours, and finally ternary cathode material lithium nickel cobalt manganate Li(NiCoMn)O 2 is obtained .
  • step (2) Put the positive electrode sheet obtained in step (1) into a muffle furnace, calcine it at 320°C for 8 hours, take it out after the temperature drops to room temperature, and mechanically vibrate the positive electrode sheet to make the lithium nickel cobalt manganate fall off from the current collector aluminum foil To obtain black nickel cobalt manganate powder;
  • ternary cathode material obtained by filtration is dried in an environment of 80°C for 7 hours, and finally ternary cathode material lithium nickel cobalt manganate Li(NiCoMn)O 2 is obtained .
  • Example 1 The elemental analysis of Example 1 verified that the obtained nickel-cobalt-manganese ternary cathode material was subjected to inductively coupled plasma emission spectroscopy (ICP-AES) elemental analysis, and the lithium ion content was increased from 4.02% before repair to 7.86 after repair %, the lithium ion content is significantly increased, thereby improving the electrochemical performance of the nickel-cobalt-manganese lithium ternary cathode material.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • Example 2 Elemental analysis and verification of Example 2, the obtained nickel-cobalt-manganese ternary cathode material was subjected to inductively coupled plasma emission spectroscopy (ICP-AES) elemental analysis, and the lithium ion content was increased from 5.14% before repair to 7.96 after repair %, the lithium ion content is significantly increased, thereby improving the electrochemical performance of the nickel-cobalt-manganese lithium ternary cathode material.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • Example 3 The elemental analysis of Example 3 verified that the obtained nickel-cobalt-manganese ternary cathode material was subjected to inductively coupled plasma emission spectroscopy (ICP-AES) elemental analysis, and the lithium ion content was increased from 4.73% before repair to 8.16 after repair %, the lithium ion content is significantly increased, thereby improving the electrochemical performance of the nickel-cobalt-manganese lithium ternary cathode material.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • Example 4 Elemental analysis and verification of Example 4 The obtained nickel-cobalt-manganese ternary cathode material was subjected to inductively coupled plasma emission spectroscopy (ICP-AES) elemental analysis, and the lithium ion content was increased from 4.13% before repair to 8.21% after repair , Lithium ion content is significantly increased, thereby improving the electrochemical performance of nickel-cobalt-manganese lithium ternary cathode materials.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • the nickel nickel cobalt manganate ternary cathode material of Example 1 was subjected to an electrochemical experiment.
  • the specific discharge capacity at 0.1C for the first time was up to 145.7mAh/g, and the discharge cycle was 100 times at 1C.
  • the discharge capacity reached 99.3% of the initial capacity. High rate charge-discharge cycle performance.
  • the nickel nickel cobalt manganate ternary cathode material of Example 2 was subjected to electrochemical experiments.
  • the specific discharge capacity at the first discharge of 0.1C was up to 144.3 mAh/g, and the discharge cycle was 100 times at 1 C.
  • the discharge capacity reached 98.7% of the initial capacity. High rate charge-discharge cycle performance.
  • the nickel nickel cobalt manganate ternary cathode material of Example 3 was subjected to electrochemical experiments.
  • the specific discharge capacity at 0.1C for the first time was up to 146.1mAh/g, and the discharge cycle was 100 times at 1C.
  • the discharge capacity reached 99.1% of the initial capacity. High rate charge-discharge cycle performance.
  • the nickel nickel cobalt manganate ternary cathode material of Example 4 was subjected to an electrochemical experiment.
  • the specific discharge capacity at 0.1C was up to 146.3mAh/g, and the discharge cycle was 100 times at 1C.
  • the discharge capacity reached 99.2% of the initial capacity. High rate charge-discharge cycle performance.

Abstract

一种超声水热修复废旧三元电池正极材料的方法,包括如下步骤:(1)选取废弃的三元电池,对其进行放电处理后拆解得到正极片;(2)将步骤(1)所得正极片在300℃以上条件下煅烧,待温度降至室温,机械振动正极片,使三元电池正极材料从集流体铝箔上脱落,得到黑色三元电池正极材料粉末;(3)将三元电池正极材料粉末和含锂溶液混合,然后将混合液倒入超声波反应釜中并密封,在超声波反应釜中恒温加热,温度为40℃以上,并对超声波反应釜施加超声辐射,至反应完全,自然冷却;(4)待超声波反应釜冷却后,过滤混合溶液获得三元电池正极材料膏体,并使用去离子水洗涤,干燥后得到三元正极材料。

Description

一种超声水热修复废旧三元电池正极材料的方法 技术领域
本发明属于电极材料的无害化处理和循环再利用技术领域,具体涉及一种超声水热修复废旧三元电池正极材料的方法。
背景技术
锂离子电池实现商业化以来,因其具有工作电压高、能量密度高、循环寿命长、携带方便、安全性能好等优点,在移动电话、笔记本电脑、照相机等便携式电子设备和电动汽车领域得到广泛的应用,因此每年会生产出大量锂离子电池,相应的每年就会产生大量报废电池。
虽然已有一些企业开始关注废锂电池的资源化利用,但我国还尚未建立全国性的废旧电池回收处理体系。个别企业所采用的废锂电池回收技术相对落后、效率低、易产生二次污染,回收对象单一,电池残值综合利用率低下。在废锂电池资源化的研究中,资源化技术也多停留在实验室阶段,存在产业化滞后或可实践性较差的问题。
目前,对三元电池正极材料镍钴锰酸锂Li(NiCoMn)O 2的回收主要采用湿法回收技术,主要目的是通过酸溶碱浸的方式最终回收到电池中的有价金属,该工艺处理过程中需要大量酸碱试剂,环境污染严重且反应时间长,对反应设备腐蚀性强。因此寻找高效且环境友好的处理工艺对废三元电池回收利用,是废锂电池资源化技术发展的方向,更是建设资源节约型环境友好社会的需求。
发明内容
为了克服上述现有技术的不足,本发明提供了一种超声水热修复废旧三元电池正极材料的方法。本发明的目的在于提供工艺操作简单,过程容易控制,能耗较低,对环境友好,不产生二次污染物,同时修复后的正极材料可重新用来生产锂离子电池。
本发明提出的一种超声水热修复废旧三元电池正极材料的方法,包括如下步骤:
(1)选取废弃的三元电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片在300℃以上条件下煅烧,待温度降至室温,机械振动正极片,使三元电池正极材料从集流体铝箔上脱落,得到黑色三元电池正极材料粉末;
(3)将三元电池正极材料粉末和含锂溶液混合,然后将混合液倒入超声波反应釜中并密封,在超声波反应釜中恒温加热,温度为40℃以上,并对超声波反应釜施加超声辐射,至反应完全,自然冷却;
(4)待超声波反应釜冷却后,过滤混合溶液获得三元电池正极材料膏体,并使用去离子水洗涤,干燥后得到三元正极材料。
本发明的技术方案中,步骤(2)的煅烧时间为1-10小时。
本发明的技术方案中,步骤(2)的煅烧时间温度为300-450℃。
本发明的技术方案中,所述含锂溶液为硝酸锂、氯化锂、氢氧化锂、硫酸锂溶液中的一种或几种溶液。
在本发明的技术方案中,含锂溶液的浓度为0.1~2mol/L。
在本发明的技术方案中,在步骤(3)中控制超声波辐射的功率为500-1000W。
在本发明的技术方案中,在步骤(3)中超声波反应釜中的反应温度为50-120℃。
在本发明的技术方案中,在步骤(3)中超声辐射的时间为5~15h。
本发明的技术方案中,步骤(4)中干燥的温度70-90℃,干燥时间为5~10小时
本发明中,步骤(3)中所述混合液体积为反应器体积的50%~75%。
本发明获得的三元正极材料进行电感耦合等离子体发射光谱(ICP-AES)元素分析,修复后三元正极材料中锂离子的含量明显提高,改善了三元电池正极材料的电化学性能。
有益效果
采用煅烧预处理的方法可较容易从废弃电池中获得三元正极材料,同时在此过程中可有效去除部分附在三元电池正极材料表面的有机物,通过水热方式修复三元正极材料,明显增加了失效三元电池正极材料结构中锂离子的含量,并使三元电池正极材料的电化学性能得到提升,因此修复后的三元正极材料可以直接作为生产锂离子电池的正极材料。
本发明能有效地回收利用废弃的三元电池,并获得良好的环境效益和可观的经济效益。
具体实施方式
实施例1三元电池正极材料的修复
(1)选取废弃的三元电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在400℃下煅烧5小时,待温度降至室温取出,机械振动正极片,使镍钴锰酸锂从集流体铝箔上脱落,得到黑色镍钴锰酸锂粉末;
(3)将6克镍钴锰酸锂粉末和浓度为1mol/L的硝酸锂、0.8mol/L的氯化锂溶液混合,然后将混合液倒入超声波反应釜中,混合液体积为反应器体积的65%。迅速密封超声反应釜,控制超声波发生器功率为750W,在超声波反应釜中恒温加热,反应温度为80℃,对超声波反应釜施加超声辐射,超声8h后,自然冷却;
(4)待超声波反应釜冷却到室温时,过滤混合溶液获得镍钴锰酸锂膏体,并使用去离子水洗涤5次;
(5)将过滤获得的三元正极材料,在80℃环境中干燥7.5小时,最后得到三元正极材料镍钴锰酸锂Li(NiCoMn)O 2
实施例2三元电池正极材料的修复
(1)选取废弃的三元电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在300℃下煅烧8小时,待温度降至室温取出,机械振动正极片,使镍钴锰酸锂从集流体铝箔上脱落,得到黑色镍钴锰酸锂粉末;
(3)将2克镍钴锰酸锂粉末和浓度为0.2mol/L的硝酸锂、0.1mol/L的氯化锂溶液混合,然后将混合液倒入超声波反应釜中,混合液体积为反应器体积的55%。迅速密封超声反应釜,控制超声波发生器功率为1000W,在超声波反应釜中恒温加热,反应温度为100℃,对超声波反应釜施加超声辐射,超声10h后,自然冷却;
(4)待超声波反应釜冷却到室温时,过滤混合溶液获得镍钴锰酸锂膏体,并使用去离子水洗涤5次;
(5)将过滤获得的三元正极材料,在80℃环境中干燥7.5小时,最后得到三元正极材料镍钴锰酸锂Li(NiCoMn)O 2
实施例3三元电池正极材料的修复
(1)选取废弃的三元电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在450℃下煅烧3小时,待温度降至室温取出,机械振动正极片,使镍钴锰酸锂从集流体铝箔上脱落,得到黑色镍钴锰酸锂粉末;
(3)将2克镍钴锰酸锂粉末和浓度为1.2mol/L的氢氧化锂、0.2mol/L的硫酸锂溶液混合,然后将混合液倒入超声波反应釜中,混合液体积为反应器体积的75%。迅速密封超声反应釜,控制超声波发生器功率为500W,在超声波反应釜中恒温加热,反应温度为120℃,对超声波反应釜施加超声辐射,超声15h后,自然冷却;
(4)待超声波反应釜冷却到室温时,过滤混合溶液获得镍钴锰酸锂膏体,并使用去离子水洗涤5次;
(5)将过滤获得的三元正极材料,在80℃环境中干燥7.5小时,最后得到三元正极材料镍钴锰酸锂Li(NiCoMn)O 2
实施例4三元电池正极材料的修复
(1)选取废弃的三元电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在320℃下煅烧8小时,待温度降至室温取出,机械振动正极片,使镍钴锰酸锂从集流体铝箔上脱落,得到黑色镍钴锰酸锂粉末;
(3)将2克镍钴锰酸锂粉末和浓度为0.3mol/L的氢氧化锂、1.0mol/L的硫酸锂溶液混合,然后将混合液倒入超声波反应釜中,混合液体积为反应器体积的50%。迅速密封超声反应釜,控制超声波发生器功率为800W,在超声波反应釜中恒温加热,反应温度为60℃,对超声波反应釜施加超声辐射,超声12h后,自然冷却;
(4)待超声波反应釜冷却到室温时,过滤混合溶液获得镍钴锰酸锂膏体,并使用去离子水洗涤5次;
(5)将过滤获得的三元正极材料,在80℃环境中干燥7小时,最后得到三元正极材料镍钴锰酸锂Li(NiCoMn)O 2
实施例5元素分析验证
实施例1的元素分析验证,将获得的镍钴锰酸锂三元正极材料进行电感耦合等离子体发射光谱(ICP-AES)元素分析,锂离子含量从修复前的4.02%提高到修复后的7.86%,锂离子含量明显提高,从而改善了镍钴锰酸锂三元正极材料的电化学性能。
实施例2的元素分析验证,将获得的镍钴锰酸锂三元正极材料进行电感耦合等离子体发射光谱(ICP-AES)元素分析,锂离子含量从修复前的5.14%提高到修复后的7.96%,锂离子含量明显提高,从而改善了镍钴锰酸锂三元正极材料的电化学性能。
实施例3的元素分析验证,将获得的镍钴锰酸锂三元正极材料进行电感耦合等离子体发射光谱(ICP-AES)元素分析,锂离子含量从修复前的4.73%提高到修复后的8.16%,锂离子含量明显提高,从而改善了镍钴锰酸锂三元正极材料的电化学性能。
实施例4的元素分析验证将获得的镍钴锰酸锂三元正极材料进行电感耦合等离子体发射光谱(ICP-AES)元素分析,锂离子含量从修复前的4.13%提高到修复后的8.21%,锂离子含量明显提高,从而改善了镍钴锰酸锂三元正极材料的电化学性能。
实施例6电化学实验验证
实施例1的镍钴锰酸锂三元正极材料进行电化学实验,0.1C首次放电比容量可达145.7mAh/g,1C下放电循环100次,放电容量达到初始容量的99.3%,具有良好的高倍率充放电循环性能。
实施例2的镍钴锰酸锂三元正极材料进行电化学实验,0.1C首次放电比容量可达144.3mAh/g,1C下放电循环100次,放电容量达到初始容量的98.7%,具有良好的高倍率充放电循环性能。
实施例3的镍钴锰酸锂三元正极材料进行电化学实验,0.1C首次放电比容量可达146.1mAh/g,1C下放电循环100次,放电容量达到初始容量的99.1%,具有良好的高倍率充放电循环性能。
实施例4的镍钴锰酸锂三元正极材料进行电化学实验,0.1C首次放电比容量可达146.3mAh/g,1C下放电循环100次,放电容量达到初始容量的99.2%,具有良好的高倍率充放电循环性能。

Claims (10)

  1. 一种超声水热修复废旧三元电池正极材料的方法,其包括如下步骤:
    (1)选取废弃的三元电池,对其进行放电处理后拆解得到正极片;
    (2)将步骤(1)所得正极片在300℃以上条件下煅烧,待温度降至室温,机械振动正极片,使三元电池正极材料从集流体铝箔上脱落,得到黑色三元电池正极材料粉末;
    (3)将三元电池正极材料粉末和含锂溶液混合,然后将混合液倒入超声波反应釜中并密封,在超声波反应釜中恒温加热,温度为40℃以上,并对超声波反应釜施加超声辐射,至反应完全,自然冷却;
    (4)待超声波反应釜冷却后,过滤混合溶液获得三元电池正极材料膏体,并使用去离子水洗涤,干燥后得到三元正极材料。
  2. 根据权利要求1所述的方法,步骤(2)的煅烧时间为1-10小时。
  3. 根据权利要求1-2任一项所述的方法,步骤(2)的煅烧时间温度为300-450℃。
  4. 根据权利要求1-3任一项所述的方法,所述含锂溶液为硝酸锂、氯化锂、氢氧化锂、硫酸锂溶液中的一种或几种溶液。
  5. 根据权利要求1-4任一项所述的方法,含锂溶液的浓度为0.1~2mol/L。
  6. 根据权利要求1-5任一项所述的方法,在步骤(3)中控制超声波辐射的功率为500-1000W。
  7. 根据权利要求1-6任一项所述的方法,在步骤(3)中超声波反应釜中的反应温度为50-120℃。
  8. 根据权利要求1-7任一项所述的方法,在步骤(3)中超声辐射的时间为5~15h。
  9. 根据权利要求1-8任一项所述的方法,步骤(4)中干燥的温度70-90℃,干燥时间为5~10小时。
  10. 根据权利要求1-9任一项所述的方法,步骤(3)中所述混合液体积为反应器体积的 50%~75%。
PCT/CN2018/121303 2018-12-14 2018-12-14 一种超声水热修复废旧三元电池正极材料的方法 WO2020118716A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121303 WO2020118716A1 (zh) 2018-12-14 2018-12-14 一种超声水热修复废旧三元电池正极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121303 WO2020118716A1 (zh) 2018-12-14 2018-12-14 一种超声水热修复废旧三元电池正极材料的方法

Publications (1)

Publication Number Publication Date
WO2020118716A1 true WO2020118716A1 (zh) 2020-06-18

Family

ID=71075576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121303 WO2020118716A1 (zh) 2018-12-14 2018-12-14 一种超声水热修复废旧三元电池正极材料的方法

Country Status (1)

Country Link
WO (1) WO2020118716A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769340A (zh) * 2020-07-10 2020-10-13 南昌航空大学 一种废旧锂电池中正极活性物质和铝箔的分离方法
CN112993242A (zh) * 2021-05-11 2021-06-18 蜂巢能源科技有限公司 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007106A (ja) * 2011-06-27 2013-01-10 Shin Kobe Electric Mach Co Ltd 金属鉛の回収方法
CN103073071A (zh) * 2013-01-23 2013-05-01 同济大学 一种超声场强化失效锂离子电池中钴酸锂材料水热修复的方法
CN103915661A (zh) * 2013-01-09 2014-07-09 中国科学院过程工程研究所 一种直接回收并修复锂离子电池正极材料的方法
CN105428747A (zh) * 2015-12-30 2016-03-23 深圳先进技术研究院 一种锂电池的钴酸锂材料的修复回收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007106A (ja) * 2011-06-27 2013-01-10 Shin Kobe Electric Mach Co Ltd 金属鉛の回収方法
CN103915661A (zh) * 2013-01-09 2014-07-09 中国科学院过程工程研究所 一种直接回收并修复锂离子电池正极材料的方法
CN103073071A (zh) * 2013-01-23 2013-05-01 同济大学 一种超声场强化失效锂离子电池中钴酸锂材料水热修复的方法
CN105428747A (zh) * 2015-12-30 2016-03-23 深圳先进技术研究院 一种锂电池的钴酸锂材料的修复回收方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769340A (zh) * 2020-07-10 2020-10-13 南昌航空大学 一种废旧锂电池中正极活性物质和铝箔的分离方法
CN112993242A (zh) * 2021-05-11 2021-06-18 蜂巢能源科技有限公司 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法
CN112993242B (zh) * 2021-05-11 2021-10-12 蜂巢能源科技有限公司 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法

Similar Documents

Publication Publication Date Title
CN105428745B (zh) 一种废旧锂离子动力电池无害化综合回收利用方法
CN108199107B (zh) 一种以等离子体技术回收三元电池正极材料的方法
CN101818251B (zh) 从废锂离子电池中回收钴和锂的方法
CN102676827B (zh) 从镍钴锰酸锂电池中回收有价金属的方法及正极材料
CN109546254B (zh) 一种废旧镍钴锰酸锂离子电池正极材料的处理方法
CN108417923A (zh) 一种退役磷酸铁锂电池正极材料的回收再利用方法
CN103151519A (zh) 一种超声场强化下氧化剂辅助修复失效钴酸锂材料方法
CN104485493B (zh) 废锂离子电池中钴酸锂正极活性材料的修复再生方法
CN111320157A (zh) 一种基于水热反应修复磷酸铁锂材料的方法
CN107994286A (zh) 一种汽车废旧动力电池正极材料的回收及再生的工艺方法
CN102738539A (zh) 从废旧磷酸亚铁锂电池正极片回收磷酸亚铁锂材料的方法和装置
CN105428747A (zh) 一种锂电池的钴酸锂材料的修复回收方法
CN110526301B (zh) 一种对锂电池正极失效钴酸锂结构馈补重制的方法
CN110098441B (zh) 废旧电池中钴酸锂正极材料的修复再生方法
CN112939096A (zh) 一种废旧锂离子电池三元正极材料的直接修复方法
Zhang et al. Renovation of LiCoO 2 crystal structure from spent lithium ion batteries by ultrasonic hydrothermal reaction
CN104466292A (zh) 从钴酸锂正极材料的废锂离子电池中回收钴锂金属的方法
CN106992328B (zh) 废旧磷酸铁锂正极材料在铁镍电池中资源化再利用的方法
CN111261969B (zh) 一种磷酸铁锂废旧电池正极材料回收再生方法
CN107919507A (zh) 从废旧锂电池中回收磷酸铁锂的方法
CN104183888A (zh) 一种废旧磷酸铁锂动力电池绿色回收处理的方法
CN111326814A (zh) 一种超声水热修复废旧三元电池正极材料的方法
CN112707447A (zh) 一种从废旧钴酸锂电池中回收再生正极材料的方法
CN111009699A (zh) 一种锰酸锂废旧电池的回收再生方法
CN105070970A (zh) 混合废碱性电池制备锂离子电池正极材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943196

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18943196

Country of ref document: EP

Kind code of ref document: A1