WO2020116051A1 - 放電電極板 - Google Patents
放電電極板 Download PDFInfo
- Publication number
- WO2020116051A1 WO2020116051A1 PCT/JP2019/042076 JP2019042076W WO2020116051A1 WO 2020116051 A1 WO2020116051 A1 WO 2020116051A1 JP 2019042076 W JP2019042076 W JP 2019042076W WO 2020116051 A1 WO2020116051 A1 WO 2020116051A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- discharge electrode
- discharge
- heat
- glass
- conductive glass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T19/00—Devices providing for corona discharge
Definitions
- the present invention relates to a discharge electrode plate that forms an elongated discharge electrode for corona discharge.
- the surface of the polymer resin has small irregularities, it will change from water repellency to hydrophilic.
- the seaweed lifted from the seawater has a suitable adhesiveness, but when the surface of the polymer resin is slippery, this adhesiveness is not obtained, and the seaweed is not attached to the blinds.
- the surface modification treatment of polymer resin is performed by causing corona discharge in the atmosphere.
- metals for example, stainless steel and tungsten
- the material of the discharge electrode have been used as the material of the discharge electrode.
- the present inventors have found by experiments that conductive glass as a discharge electrode material can smoothly supply electrons for a long period of time even when it is subjected to corona discharge.
- a discharge electrode plate forming an elongated discharge electrode for corona discharge, a heat-resistant plate made of a heat-resistant material, and an elongated or elongated elongated heat-resistant plate formed on the heat-resistant plate.
- the groove is provided with a discharge electrode formed by applying and baking conductive glass, and the discharge electrode is formed of conductive glass having electronic conductivity so as to reduce deterioration due to corona discharge and prolong the life. ing.
- the conductive glass is vanadate glass composed of vanadium, barium, and iron.
- the heat resistant plate is made of heat resistant glass.
- the lead wire is connected to the discharge electrode by soldering.
- the lead wire is soldered to the discharge electrode by ultrasonic soldering.
- the conductive glass is applied and fired to form the discharge electrode, so that the paste containing the powder of the conductive glass is generated, and the generated paste is applied and fired to form the electron conductive discharge electrode. I have to.
- a high frequency voltage in the range of 10 KHz to 30 KHz is applied between the other electrode facing the discharge electrode or between the discharge electrode and the other electrode on the back surface to cause corona discharge around the discharge electrode.
- FIG. 1 shows a configuration example of the discharge electrode plate of the present invention.
- the heat-resistant glass plate 1 holds the discharge electrode 3, and is a heat-resistant plate that can withstand the high temperature caused by corona discharge.
- the hole 2 is a hole for fixing the heat resistant glass plate 1 to a device (not shown).
- the discharge electrode 3 is an electrode for corona discharge, and here is an elongated electrode formed by applying and firing conductive glass.
- the width is about 1 mm to 30 mm, the length is 10 cm, and the length may be as long as it can be realized.
- the soldering 5 is a schematic representation of the soldered lead wire 6.
- the discharge electrode 3 is made of conductive glass
- the lead wire 6 is soldered by ultrasonic soldering. Normal soldering without ultrasonic waves is difficult.
- the lead wire 6 is for soldering to the discharge electrode 3, applying a high frequency voltage, and supplying a power source for corona discharge around the discharge electrode 3.
- FIG. 2 shows a manufacturing process flowchart of the present invention.
- S1 prepares ABL glass paste.
- the ABL glass paste prepared in S1 is screen-printed in a pattern forming the discharge electrode 3 of FIG. 1 and applied to a thickness of about 500 ⁇ m.
- S3 is to dry the ABL glass paste. This is because the ABL glass paste was applied by screen printing to the pattern of the discharge electrode 3 in FIG. 1 in S2, so the ABL glass paste having the applied pattern is dried with hot air at 100° C. for 1 hour.
- S4 is fired. This is done by hot air drying in S3 and then firing at 500 to 600°C.
- the firing may be performed by irradiation with an infrared lamp or put in a firing furnace (see FIG. 8).
- S5 is to attach a lead wire to the electrode.
- the lead wire 6 is ultrasonically soldered to the discharge electrode 3 of FIG. 1 after firing in S4.
- the ABL glass paste is screen-printed on the heat-resistant glass 1 of FIG. 1, dried and fired to form the long-life discharge electrode 3 which is not deteriorated by the electron conductive corona discharge. It was
- FIG. 3 shows a flowchart of the ABL glass paste application method of the present invention. This shows the detailed flowchart of S2, S3, and S4 in FIG. 2 described above.
- ABL glass paste is screen-printed and applied to the substrate. This screen-prints an ABL glass paste so that it may become the pattern of the discharge electrode 3 of FIG.
- S12 is left in a dry atmosphere. This is screen-printed in S11, and then left to stand in a dry atmosphere for 2 to 24 hours to be naturally dried.
- ⁇ S13 is to skip the solvent.
- drying is performed in an electric furnace at 40 to 100° C. for 100 minutes in order to completely evaporate the solvent.
- S14 is fired. This is placed in an electric furnace at 500° C. to 600° C., or irradiated with an infrared lamp and fired (see FIG. 8), and the pattern of the discharge electrode 3 (applied ABL glass paste) is completely conductive glass. Annealing is performed as described above, and the heat-resistant glass 1 is fixed.
- the pattern of the discharge electrode 3 was screen-printed on the heat-resistant glass 1 of FIG. 1 by using the ABL glass paste, and naturally dried, hot air dried, and baked to have a low resistance and a long life without deterioration due to corona discharge. It has become possible to form the discharge electrode 3 of the conductive glass.
- FIG. 4 shows an explanatory view of the ABL glass paste of the present invention. This shows an explanatory view of an ABL glass paste (conductive glass paste) used for screen printing.
- ABL glass paste conductive glass paste
- FIG. 4 an example of components shows an example of components necessary for preparing the ABL glass paste.
- the illustrated components, concentration ranges (% by weight), and remarks are as follows.
- Main material Powder 2-3 ⁇ m ABL glass 2-3 ⁇ m powder ⁇ Diethylene glycol 10-30 Organic material (bond main material particles) Monobutyl acetate ⁇ Terpineol 5 ⁇ 15 Organic solvent (paste concentration adjustment) ⁇ Cellulosic resin 1-10 resin (adhesive to coating material)
- the vanadate glass as an example of the component is a main material, and is made of 60 to 85% by weight of powder having a particle size of about 2 to 3 ⁇ m.
- the following diethylene glycol and monobutyl acetate are organic materials, which bind the main material particles, and are composed of 10 to 30% by weight.
- terpineol is an organic solvent for adjusting the paste concentration, and is composed of 5 to 15% by weight.
- the next cellulosic resin is for adhering to the coating material (here, heat resistant glass 1 in FIG. 1), and is composed of 1 to 10% by weight.
- ABL glass paste can be created by mixing and kneading in the above proportions.
- FIG. 5 shows an explanatory diagram of an example of screen printing conditions of the present invention.
- FIG. 5 shows an outline of printing conditions when screen-printing the pattern of the discharge electrode (conductive glass) 3 on the heat-resistant glass plate 1 of FIG. 1 using the ABL glass paste in S11 of FIG. ..
- items are items when screen printing
- condition examples are conditions when screen printing each item
- remarks describe information such as each item, material required for the condition, and particle size. For example, the following is illustrated.
- the mesh size was a mesh mesh size of 62 ⁇ m.
- the porosity of the mesh was 63%.
- FIG. 6 shows an explanatory diagram of an example of ultrasonic soldering conditions of the present invention.
- FIG. 6 is an explanatory view of a condition example when the lead wire 6 is ultrasonically soldered to the discharge electrode (conductive glass) 3 of FIG.
- items are items for ultrasonic soldering
- example conditions are conditions for ultrasonic soldering of each item.
- the ultrasonic wave output is an ultrasonic wave output at the time of ultrasonic soldering, and here, the ultrasonic wave output is used in the range of 1 to 10 W (preferably about 2 W or less).
- the solder material is a solder material used for ultrasonic soldering, and a tin-zinc based lead-free solder was used here.
- the iron tip temperature is the temperature of the iron tip of the soldering iron to be ultrasonically soldered, and was used in the temperature range of 250°C to 450°C. (The temperature depends on the solder material used, so the optimum iron Determine the destination temperature).
- the ultrasonic frequency used in the experiment was in the range of 20 to 60 KHz.
- Ultrasonic soldering with the above items and conditions made it possible to cleanly ultrasonically solder the lead wire 6 to the discharge electrode (conductive glass) 3 in FIG. In normal soldering without ultrasonic waves, soldering failure occurred and soldering was impossible.
- FIG. 7 shows an explanatory diagram of an example of operating conditions for corona discharge according to the present invention. This is formed by forming the discharge electrode (conductive glass) 3 shown in FIG. 1 described above, a flat plate (not shown) facing the discharge electrode 3 (having a larger area than the discharge electrode 3), or the discharge electrode 3 of the heat-resistant glass plate 1. A high frequency voltage (about 10 KHz to 40 KHz) is applied between a flat plate (having a larger area than the discharge electrode 3) facing the back surface opposite to the surface, and corona discharge is performed so as to cover the discharge electrode 3. An example of operating conditions for the operation is shown (see FIG. 10).
- items are items for corona discharge, and example conditions are conditions for corona discharge for each item.
- the applied voltage is the voltage applied during corona discharge, and was used within the range of 2-10 KV.
- the frequency is a frequency at the time of corona discharge, and when the frequency is 10 KHz or less, atoms in the air such as oxygen and nitrogen collide with the electrode and the probability of sputtering and abrading the electrode increases, Here, it is set to 10 KHz to 40 KHz.
- FIG. 8 shows a sample example of the present invention. This shows an example in which firing conditions, presence/absence of grooves, and resistivity were measured for a sample of the discharge electrode (conductive glass) 3 prepared according to the order of the flow chart in FIG.
- firing conditions are temperature conditions where ABL glass paste is applied and fired, grooves are the presence or absence of grooves on the heat-resistant glass plate 1 of FIG. 1, and resistivity is The resistivity ( ⁇ cm) from the lead wire 6 to the end of the discharge electrode 3.
- the resistance value from the lead wire 6 to the end of the discharge electrode (conductive glass) 3 in FIG. 1 is 200 to 47 ⁇ cm as shown in the figure, and corona discharge It could be generated well.
- the discharge electrode 3 is made of electronically conductive glass, deterioration due to corona discharge is extremely small, and the life can be extended as compared with the conventional stainless discharge electrode.
- the resistivity was slightly different whether the groove for the discharge electrode 3 was provided or not on the heat-resistant glass plate 1 of FIG. 1, but the resistivity was sufficient for corona discharge.
- FIG. 9 shows an explanatory diagram of the difference in crystallinity according to the firing conditions of the present invention.
- FIG. 9A shows an example of an optical micrograph of the surface of the conductive electrode 3 rapidly cooled at 600° C. for 30 minutes
- FIG. 9B shows an optical micrograph of the surface of the naturally cooled conductive electrode 3 at 570° C. for 30 minutes
- FIG. 9C shows an example of an optical micrograph of the surface of the conductive electrode 3 which is naturally cooled at 600° C. for 30 minutes.
- the crystal grains are smallest in (a) of FIG. 9 and are large in the directions of (b) and (c) of FIG. 9.
- the temperature is as high as 600° C., but the high temperature state remains as it is because of the rapid cooling, and the crystal grains are small.
- the temperature rises to 570° C. and 600° C., and the particles are naturally cooled, so that the crystal grains grow during cooling and gradually become larger. It is possible to adjust the size of the crystal particles on the surface of the discharge electrode 3 from small to large by selecting a firing temperature and rapid cooling/natural cooling that are convenient for corona discharge. The optimum firing temperature, quenching or natural cooling may be selected according to the firing.
- FIG. 10 shows an explanatory diagram of the presence or absence of the groove of the present invention. This is a schematic illustration of the presence or absence of grooves in the discharge electrode 3 formed on the heat-resistant glass plate 1 of FIG.
- FIG. 10(a) schematically shows a lateral cross-sectional view of the heat-resistant glass plate 1 of FIG. 1 having a groove
- FIG. 10(b) shows a heat-resistant glass plate of FIG. 1 having no groove
- 1 schematically shows a lateral cross-sectional view of FIG.
- the conductive glass paste shown in FIG. 10 is obtained by directly applying the conductive glass paste on the heat-resistant glass plate 1 having no groove and firing it. Therefore, as shown in the figure, the angle of the corona discharge is wider than that in FIG. 10A, and the corona discharge can be applied to a wide range of the corona discharge treatment target object.
- FIG. 10 is a table in which the features with and without grooving are tabulated and are shown below.
- the groove processing (with) has a discharge directionality in which the irradiation direction of corona discharge is narrow.
- the groove processing (nothing) has no discharge directionality.
- the electrode thickness depends on the groove height when groove processing is available.
- the groove has a semi-circular shape, which is usually 500 ⁇ m or less.
- FIG. 11 shows an explanatory diagram of the electrode material of the present invention. This is a calculation of the initial voltage (V) for corona discharge when various materials are used as the discharge electrode 3 in FIG.
- the electrode material is the material of the discharge electrode for corona discharge
- the initial voltage (V) is the initial voltage at which corona discharge is started, for example, as shown below.
- Electrode material Initial voltage (V) ⁇ Tungsten 5.0-6.0 ⁇ Stainless steel 5.0-6.0 ⁇ ABL glass (electronically conductive glass) 3.7-4.0 Coarse crystals ⁇ ABL glass (electronically conductive glass) 4.5 to 4.8 A little rough crystal ⁇ ABL glass (electronically conductive glass) 4.0-5.0 Fine crystals
- conventional tungsten and stainless steel have an initial voltage of 5 to 6 KV.
- the discharge electrode 3 of ABL glass (electronically conductive glass) of the present invention has a rough crystal of 3.7 to 4.0 KV. A little rough crystal is 4.5 to 4.8 KVV, and a fine crystal is 4.9 to 5.0 KV. In any case, corona discharge is started at a lower initial voltage than conventional metals such as stainless steel, Turned out to keep.
- FIG. 12 shows a structural example of the electrode part of the present invention. This schematically shows a structure in which a hole is opened in the heat-resistant glass plate 1 of FIG. 1 and the lead wire 6 is ultrasonically soldered directly from the hole to the back surface of the discharge electrode (conductive glass) 3. ..
- a hole 9 is a hole opened from the back surface of the heat resistant glass plate 1 toward the back surface of the discharge electrode (conductive glass) 3.
- the discharge electrodes (conductive glass) 3 having grooves (or no grooves) are applied and fired on the heat-resistant glass plate 1, and then the lead wires 6 are formed on the holes 9.
- Ultrasonic soldering 8 is performed on the discharge electrode (conductive glass) 3 through the inside, and the lead wire 6 is connected to the discharge electrode 3.
- the discharge electrode 3 is exposed on the upper surface of the heat-resistant glass plate 1 shown in the figure, and the protrusions are formed when the lead wire 6 is superposed on the end of the discharge electrode 3 in FIG. Discontinuity of corona discharge at the end of the discharge electrode 3 is eliminated, and uniform corona discharge can be realized at the end of the discharge electrode 3.
- composition of a discharge electrode board of the present invention It is an example of composition of a discharge electrode board of the present invention. It is a manufacturing process flowchart of this invention. It is a flow chart of the ABL glass paste application method of the present invention. It is an ABL glass paste explanatory view of the present invention. It is explanatory drawing of the example of screen printing conditions of this invention. It is explanatory drawing of the example of ultrasonic soldering conditions of this invention. It is explanatory drawing of the operating condition example of the corona discharge of this invention. It is a sample specification example of the present invention. It is an explanatory view of a difference in crystallinity by the firing conditions of the present invention. It is an explanatory view of the presence or absence of the groove of the present invention. It is explanatory drawing of the electrode material of this invention. It is a structural example of the electrode part of this invention.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Glass Compositions (AREA)
Abstract
Description
・バナジン酸塩ガラス 60~85 主材:
粉体2~3μm ABLガラス2~3μm粉体
・ジエチレングリコール 10~30 有機材(主材粒子を結合)
モノブチルアセテート
・ターピネオール 5~15 有機溶媒(ペースト濃度調整)
・セルロース系樹脂 1~10 樹脂(塗布材料に接着)
ここで、成分例のバナジン酸塩ガラスは、主材であって、粉体2~3μm程度ものを60から85重量%からなる。次の、ジエチレングリコール、モノブチルアセテートは、有機材であって、主材粒子を結合するものであり、10から30重量%からなる。次の、ターピネオールは、有機溶媒であって、ペースト濃度を調整するものであり、5から15重量%からなる。次の、セルロース系樹脂は、塗布材料(ここでは、図1の耐熱性ガラス1)に接着するためのものであり、1から10重量%からなる。
・スクリーン線径 16μm ペーストの溶剤による腐食の影響の
ない材料
・メッシュ 325本/インチ
・目開き 62μm ペーストの主材であるABLガラス
粒径よりも十分大きいこと
・空間率 63%
ここで、スクリーン線径はスクリーン印刷するときのスクリーンメッシュの線径であって、ここでは16μmを使用した。スクリーンメッシュはABLガラスペーストの溶剤による腐食の影響のない材料であることが必要である。
・超音波出力 1~10W
・半田材料 錫-亜鉛系半田材料
・コテ先温度 250℃以上450℃以下
・超音波周波数 20~60KHz
ここで、超音波出力は超音波半田付けするときの超音波の出力であって、ここでは1~10Wの範囲内(好ましくは2W程度以下とすることが望ましい)で使用した。半田材料は超音波半田付けするときに使用する半田材料であって、ここでは、錫-亜鉛系の鉛フリー半田を使用した。コテ先温度は、超音波半田付けする半田コテのコテ先の温度であって、250℃から450℃の範囲内の温度で使用した(温度は使用する半田材料に依存するので実験で最適なコテ先温度を決める)。超音波周波数は、実験では20~60KHzの範囲内の超音波周波数を使用した。
・印加電圧 2~10KV
・周波数 10~40KHz程度
ここで、印加電圧はコロナ放電するときに印加する電圧であって、2~10KVの範囲内で使用した。また、周波数はコロナ放電させるときの周波数であって、10KHz以下の周波数になると空気中の酸素、窒素などの原子が電極に衝突して電極をスパッタリングして摩耗させてしまう確率が高くなるから、ここでは、10KHz~40KHzとした。
までの抵抗率
(Ω・cm)
(1) 2回焼成(600℃30min急冷+550℃30min) 有 91.4
(2) 2回焼成(600℃30min急冷+550℃30min) 無 75.1
(3) 1回焼成(600℃30min) 有 47.6
(4) 1回焼成(600℃30min) 無 56.4
(5) 1回焼成(570℃30min) 有 103.6
(6) 1回焼成(570℃30min) 無 51.1
(7) 1回焼成600℃30min急冷) 無 192.3
ここで、サンプル(1)の焼成条件は、600℃、30分加熱した後に急冷し、次に550℃、30分加熱した後、自然冷却したサンプルを表す。他も同様である。
・印刷回数 2回 1回
・放電方向性 有 無
・保管性 容易 難しい
・電極厚み 溝高に依存 500μm以下
ここで、溝加工が有は、溝が有る図10の(a)の場合であり、溝加工が無は、溝が無い図10の(b)の場合を表す。印刷回数は導電性ガラスペーストを塗布・焼成する回数を表し、溝加工が有の場合には溝の内部に印刷した導電性ガラスペーストが焼成により大幅に縮小するので2回(必要に応じて3回)の印刷を行う必要がある。溝が無の場合には、縮小しても厚さが減少するのみで特に問題がなく、1回の印刷でよい。
・タングステン 5.0~6.0
・ステンレス 5.0~6.0
・ABLガラス(電子導電性ガラス) 3.7~4.0
粗い結晶
・ABLガラス(電子導電性ガラス) 4.5~4.8
少し粗い結晶
・ABLガラス(電子導電性ガラス) 4.0~5.0
細やかな結晶
ここで、従来のタングステン、ステンレスのイニシアル電圧は5から6KVのイニシアル電圧を持っていた。本願発明のABLガラス(電子導電性ガラス)の放電電極3は、粗い結晶では3.7~4.0KV.少し荒い結晶で4.5から4.8KVV、細やかな結晶で4.9から5.0KVであり、いずれにしても従来のステンレスなどの金属に比して低いイニシアル電圧でコロナ放電を開始させ、維持することが判明した。
2、9:穴
3:放電電極(導電性ガラス、ABLガラス)
31、32:導電性ガラス
5:半田付け(超音波半田付け)
6:リード線
8:超音波半田付け
Claims (7)
- コロナ放電させる細長い放電電極を形成する放電電極板において、
耐熱性材料で作成した耐熱性板と、
前記耐熱性板の上に細長く、あるいは前記耐熱性板の上に形成した細長い溝の中に、導電性ガラスを塗布、焼成して形成する放電電極と、
を備え、
前記放電電極を電子導電性の導電性ガラスで形成してコロナ放電による劣化を低減して長寿命化したことを特徴とする放電電極板。 - 前記導電性ガラスは、バナジウム、バリウム、鉄から構成されるバナジン酸塩ガラスとしたことを特徴とする請求項1に記載の放電電極板。
- 前記耐熱性板は、耐熱ガラスとしたことを特徴とする請求項1から請求項2のいずれかに記載の放電電極板。
- 前記放電電極に半田付けしてリード線を接続したことを特徴とする請求項1から請求項3のいずれかに記載の放電電極板。
- 前記放電電極にリード線の半田付けは、超音波半田付けとしたことを特徴とする請求項1から請求項4に記載の放電電極板。
- 導電性ガラスを塗布、焼成して放電電極を形成は、導電性ガラスの粉末を含むペーストを生成し、この生成したペーストを塗布、焼成して電子導電性の放電電電極を形成したことを特徴とする請求項1から請求項5のいずれかに記載の放電電極板。
- 前記放電電極と対面した他の電極、あるいは前記放電電極と背面した他の電極との間に10KHzから30KHzの範囲内の高周波電圧を印加し、当該放電電極の周りにコロナ放電させることを特徴とする請求項1から請求項6のいずれかに記載の放電電極。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217020487A KR20210099071A (ko) | 2018-12-04 | 2019-10-26 | 방전전극판 |
JP2020559783A JPWO2020116051A1 (ja) | 2018-12-04 | 2019-10-26 | 放電電極板 |
CN201980080491.6A CN113169527A (zh) | 2018-12-04 | 2019-10-26 | 放电电极板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-227143 | 2018-12-04 | ||
JP2018227143 | 2018-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020116051A1 true WO2020116051A1 (ja) | 2020-06-11 |
Family
ID=70974651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/042076 WO2020116051A1 (ja) | 2018-12-04 | 2019-10-26 | 放電電極板 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2020116051A1 (ja) |
KR (1) | KR20210099071A (ja) |
CN (1) | CN113169527A (ja) |
TW (1) | TWI716193B (ja) |
WO (1) | WO2020116051A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03118853A (ja) * | 1989-09-30 | 1991-05-21 | Toshiba Corp | 電気集麈器 |
JPH04282587A (ja) * | 1991-03-08 | 1992-10-07 | Ngk Spark Plug Co Ltd | 沿面コロナ放電素子 |
JPH0675457A (ja) * | 1992-08-28 | 1994-03-18 | Toshiba Corp | 帯電装置 |
JPH08162271A (ja) * | 1994-12-05 | 1996-06-21 | Fuji Electric Co Ltd | 表示パネル接続端子部の半田接続方法 |
JPH09326497A (ja) * | 1996-06-03 | 1997-12-16 | Kanegafuchi Chem Ind Co Ltd | 太陽電池モジュール及びその製造方法 |
JPH09328303A (ja) * | 1996-06-06 | 1997-12-22 | Densouken:Kk | 沿面放電型放電素子 |
JP2003327419A (ja) * | 2002-05-14 | 2003-11-19 | Katayama Seisakusho:Kk | オゾン発生用放電体 |
JP2004175604A (ja) * | 2002-11-26 | 2004-06-24 | Okumine:Kk | オゾン生成素子 |
JP2015139755A (ja) * | 2014-01-29 | 2015-08-03 | 保雄 寺谷 | 空気清浄機 |
WO2018163845A1 (ja) * | 2017-03-10 | 2018-09-13 | 日本碍子株式会社 | 電荷発生素子及び微粒子数検出器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4282587B2 (ja) | 2004-11-16 | 2009-06-24 | 株式会社東芝 | テクスチャ・マッピング装置 |
JP2011065747A (ja) * | 2008-01-15 | 2011-03-31 | Tokai Industry Corp | 除電装置 |
-
2019
- 2019-10-26 WO PCT/JP2019/042076 patent/WO2020116051A1/ja active Application Filing
- 2019-10-26 KR KR1020217020487A patent/KR20210099071A/ko not_active Application Discontinuation
- 2019-10-26 CN CN201980080491.6A patent/CN113169527A/zh active Pending
- 2019-10-26 JP JP2020559783A patent/JPWO2020116051A1/ja active Pending
- 2019-11-15 TW TW108141579A patent/TWI716193B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03118853A (ja) * | 1989-09-30 | 1991-05-21 | Toshiba Corp | 電気集麈器 |
JPH04282587A (ja) * | 1991-03-08 | 1992-10-07 | Ngk Spark Plug Co Ltd | 沿面コロナ放電素子 |
JPH0675457A (ja) * | 1992-08-28 | 1994-03-18 | Toshiba Corp | 帯電装置 |
JPH08162271A (ja) * | 1994-12-05 | 1996-06-21 | Fuji Electric Co Ltd | 表示パネル接続端子部の半田接続方法 |
JPH09326497A (ja) * | 1996-06-03 | 1997-12-16 | Kanegafuchi Chem Ind Co Ltd | 太陽電池モジュール及びその製造方法 |
JPH09328303A (ja) * | 1996-06-06 | 1997-12-22 | Densouken:Kk | 沿面放電型放電素子 |
JP2003327419A (ja) * | 2002-05-14 | 2003-11-19 | Katayama Seisakusho:Kk | オゾン発生用放電体 |
JP2004175604A (ja) * | 2002-11-26 | 2004-06-24 | Okumine:Kk | オゾン生成素子 |
JP2015139755A (ja) * | 2014-01-29 | 2015-08-03 | 保雄 寺谷 | 空気清浄機 |
WO2018163845A1 (ja) * | 2017-03-10 | 2018-09-13 | 日本碍子株式会社 | 電荷発生素子及び微粒子数検出器 |
Also Published As
Publication number | Publication date |
---|---|
TWI716193B (zh) | 2021-01-11 |
TW202028142A (zh) | 2020-08-01 |
CN113169527A (zh) | 2021-07-23 |
JPWO2020116051A1 (ja) | 2021-10-07 |
KR20210099071A (ko) | 2021-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI534838B (zh) | 銅微粒子分散液 | |
JP2013040403A (ja) | 金属粉末、その製造方法、及びその金属粉末からなる内部電極を含む積層セラミックキャパシタ | |
JP2010067558A (ja) | 透明電極膜の改質方法及び透明電極膜付基板の製造方法 | |
WO2020116051A1 (ja) | 放電電極板 | |
CN1010448B (zh) | 用红外线炉制造铜厚膜导体的方法 | |
US9679685B2 (en) | Voltage nonlinear resistive element and method for manufacturing the same | |
WO2021205809A1 (ja) | 放電電極板 | |
US6954350B2 (en) | Ceramic layered product and method for manufacturing the same | |
US3404032A (en) | Method of making film resistor | |
US6723280B2 (en) | Method of suppressing the oxidation characteristics of nickel | |
KR102099983B1 (ko) | Ito 소결체의 제조방법 및 이를 이용한 ito 소결체 | |
US3350596A (en) | Electroluminescent lamp having a high resistivity electrode | |
JP2017082296A (ja) | 金属膜の形成方法 | |
US7208218B2 (en) | Method of suppressing the oxidation characteristics of nickel | |
CN110767448B (zh) | 柔性储能薄膜的制备方法 | |
WO2024047728A1 (ja) | パターン形成方法および焼成装置 | |
JP2007013210A (ja) | セラミックス基板の製造方法 | |
JP2022161592A (ja) | 放電電極装置およびコロナ放電電源装置 | |
JP2005505096A5 (ja) | ||
JP2003016911A (ja) | 電子放出源およびその製造方法 | |
JPH0290489A (ja) | 分散型el素子 | |
DD161137A3 (de) | Verfahren und einrichtung zur ionengestuetzten beschichtung elektrisch isolierender substrate | |
JPH08124706A (ja) | チップ状電子部品およびその製造方法 | |
JPH10275717A (ja) | チップ抵抗器の製造方法 | |
JP2023013674A (ja) | 2層フレキシブル基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19893729 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020559783 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217020487 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19893729 Country of ref document: EP Kind code of ref document: A1 |