WO2020113844A1 - 一种耐腐蚀热冲压零件的制备方法及装置 - Google Patents

一种耐腐蚀热冲压零件的制备方法及装置 Download PDF

Info

Publication number
WO2020113844A1
WO2020113844A1 PCT/CN2019/078414 CN2019078414W WO2020113844A1 WO 2020113844 A1 WO2020113844 A1 WO 2020113844A1 CN 2019078414 W CN2019078414 W CN 2019078414W WO 2020113844 A1 WO2020113844 A1 WO 2020113844A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
hot stamping
blank
preparing
parts
Prior art date
Application number
PCT/CN2019/078414
Other languages
English (en)
French (fr)
Inventor
安健
陈汉杰
李东成
Original Assignee
苏州普热斯勒先进成型技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州普热斯勒先进成型技术有限公司 filed Critical 苏州普热斯勒先进成型技术有限公司
Priority to DE112019003814.1T priority Critical patent/DE112019003814T5/de
Priority to JP2021532412A priority patent/JP7122045B2/ja
Publication of WO2020113844A1 publication Critical patent/WO2020113844A1/zh
Priority to US17/241,714 priority patent/US11441200B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/08Refractory metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the invention relates to the technical field of hot stamping forming, in particular to a method and device for preparing a corrosion-resistant hot stamping part.
  • the hot stamping parts have been painted to improve their own corrosion resistance during the service of the automobile, once the coating layer is damaged, the hot stamping parts are prone to corrosion under the film, which further leads to coating The coating layer peeled off.
  • the cutouts of hot stamping parts and the fastening parts with other parts are also prone to corrosion due to insufficient or uneven coating thickness during painting.
  • galvanized 22MnB5 steel plate or aluminum silicon coated 22MnB5 steel plate with good corrosion resistance instead of uncoated steel plate (also called bare steel plate) for hot forming.
  • the surface of the galvanized steel sheet includes Zn-Al coating or Zn-Fe-Al coating, these two coatings are also called zinc-based coatings, which can provide active or cathodic corrosion protection for steel parts, ensuring that the steel parts are in a corrosive environment.72 Hours or even 96 hours without white rust (white rust refers to the rust of the coating), and red rust (red rust refers to the rust of the steel) takes longer; and the aluminum silicon coating can also provide corrosion protection for steel parts Barrier, therefore, hot stamping parts made of galvanized steel sheet or aluminum silicon coated steel sheet and then processed by coating have double corrosion resistance.
  • the steel sheet blank needs to be heated at high temperature before being placed in the mold to form.
  • galvanized steel sheets or aluminum silicon coated steel sheets will have some problems. Specifically, for galvanized steel sheets, first, zinc is liable to liquefy due to its relatively low melting temperature, and liquid zinc cracks due to metal embrittlement; secondly, during heating and heating, the zinc in the coating layer will evaporate And the oxidation phenomenon leads to the reduction of zinc content, and the adhesion of oxides is poor, which will affect the coating effect of subsequent hot stamping parts.
  • the patent CN107127238A discloses a hot stamping forming method of zinc-plated steel plates or steel strips, which includes the following steps: (1) Production of hot stamping forming steel plates or steel strips, and The steel plate or steel strip for hot stamping forming is coated with zinc or zinc-iron alloy; (2) Heating: the steel plate or steel strip is placed in a continuous annealing furnace, and the steel plate or steel strip is heated at a heating rate greater than 5°C/s The steel belt is heated to a temperature higher than Ac3, and the heat is kept for a set time to make the austenite of the steel plate or steel belt uniform; (3) pre-cooling: after the steel plate or steel belt comes out of the heating furnace, immediately perform pre-cooling and cooling Up to 650°C ⁇ 700°C; (4) blanking: cutting the steel plate or steel strip according to the shape and size of hot stamping parts at the temperature of 650°C ⁇ 700°C; (5) hot stamping and in-mold quenching
  • the deformation resistance of the galvanized sheet is larger when it is warmly formed between 400°C and 650°C, its forming performance is not as good as that at high temperature. Therefore, the mechanical properties of the galvanized steel sheet during temperature forming are poor and the stamping process is easy to crack; In addition, due to the low melting point of metallic zinc, heating the galvanized sheet at a speed greater than 5°C/s can easily lead to the liquefaction and volatilization of the zinc layer, which affects the subsequent coating effect of hot stamping parts.
  • Patent JP Patent No. 6191420 discloses a method for manufacturing hot-pressed steel and hot-pressed steel.
  • the specific process is formed on the galvanized layer by hot plating or electroplating.
  • a dense layer with a high melting point The dense layer can prevent oxidation during the addition process and improve corrosion resistance.
  • the coating has low phosphatization, that is, it cannot react with zinc phosphate and manganese phosphate, which makes it difficult for the body-in-white electrophoresis treatment for the subsequent body.
  • the dense layer with a high melting point on the surface can prevent the volatilization of the zinc layer, it cannot solve the problem that liquid zinc easily liquefies at high temperature. Therefore, there is still a phenomenon that liquid metal is brittle during hot stamping.
  • Patent CN 106282878A discloses a preparation method of galvanized warm-formed high-strength medium-manganese steel parts. It introduces a method of online hot-dip galvanizing and then warm-formed. The specific method is as follows. First, medium-manganese steel is placed in a vacuum heating furnace Heated to 750°C-850°C for austenitization, then cooled down to 500°C in the cooling chamber filled with protective gas, then put the heating billet into the constant temperature zinc bath of 480°C-500°C for hot galvanizing, and finally Dry and send the blank into the mold for warm forming. The method is to perform hot forming with medium manganese steel and then perform warm forming.
  • the purpose is to combine the heating of hot dip galvanizing and warm forming into one heating to save energy and avoid melting of the zinc layer.
  • this process method cannot obtain a high proportion of hot-formed steel 22MnB5 blanks for press forming at temperatures below 500°C.
  • the martensite structure makes the sheet's forming performance far worse than that formed above 650°C. This is because the 22MnB5 material of high-strength steel has a martensite transformation transformation whose Ms point is usually above 420°C, which is not suitable for medium-temperature hot stamping in the temperature range of 480°-500°C.
  • the corrosion potential of the aluminum-iron-silicon alloy is basically the same as the corrosion potential of the steel substrate, therefore, the corrosion resistance of the aluminum-silicon coated steel plate is greatly reduced.
  • the coating will have different degrees of cracks, and when the cracks are severe, it will reach the steel substrate directly. More importantly, when the coated steel sheet is hot stamped, the blank and the coating are in a high-temperature softening state. When the blank is formed by the mold, it is inevitable to rub against the surface of the mold, and the softened coating is easily removed by friction. Therefore, the coated steel sheet also loses its original corrosion resistance after hot pressing. In addition, when doing laser tailor welding of coated plates, it is generally necessary to remove the coating around the weld seam to facilitate welding, but after welding, the weld seam is not protected by coating, and the corrosion resistance of the weld seam is extremely poor .
  • the existing hot stamping heating furnace is usually an aerobic heating furnace (also called an atmosphere furnace) with nitrogen gas as the protective atmosphere, and its oxygen content is generally required to be controlled below 0.5%.
  • an aerobic heating furnace also called an atmosphere furnace
  • nitrogen gas as the protective atmosphere
  • the billet is generally heated for 3-4 minutes. After the heating is completed, the furnace needs to be taken out and fed.
  • oxygen in the atmosphere flows into the atmosphere furnace, resulting in a large increase in oxygen content. Therefore, a large amount of nitrogen needs to be passed for oxygen exhaust.
  • the oxygen content in the atmosphere furnace can generally only be controlled at about 2%, so the general atmosphere protection furnace is difficult to truly prevent oxidation.
  • a large amount of oxide scale generated when the bare steel plate is heated will damage the surface of the mold during molding, thereby destroying the surface quality of the parts and products and affecting the service life of the mold.
  • the coating layer melts and softens the coating when heated, and the coating rubs against the mold during forming, and a large amount of adhesion is formed on the surface of the mold, which is easy to cause scratches on the surface of the part.
  • the coated plate is formed into parts after being heated, and its coating is severely damaged, resulting in corrosion resistance far less than the original plate.
  • the aluminum-silicon coated plate needs to be heated slowly at 500°C-700°C, which extends the heating time and affects the production efficiency.
  • embodiments of the present invention provide a method and device for preparing a corrosion-resistant hot stamping part, which is used to solve at least one of the above problems.
  • the embodiments of the present application disclose: a method for preparing a corrosion-resistant hot stamping part, including the following steps:
  • the part is also subjected to dehydrogenation treatment.
  • the dehydrogenation treatment includes heating the part to a temperature between 140°C and 200°C, and holding the part at this temperature for 10-30 minutes.
  • the oxygen-free heating furnace includes an inert gas protection furnace or a vacuum heating furnace.
  • the vacuum degree of the vacuum heating furnace is between 0.1-500 Pa.
  • the vacuum degree of the vacuum heating furnace is between 0.1-100 Pa.
  • the time for the anaerobic heating furnace to heat and keep the blank is between 60-300s.
  • the billet is heated to 880°C-950°C in an oxidation-free heating furnace.
  • the time for the blank after the heating is moved from the non-oxidation heating furnace into the mold is 5-10 seconds.
  • the temperature at which the blank starts to form in the mold is 650°C-850°C.
  • the mold has a cooling water path, and the cooling water path allows the blank to be cooled at a speed of not less than 30° C./s during forming.
  • the anticorrosive coating includes a zinc coating, a zinc iron alloy coating, a zinc aluminum alloy coating, or a zinc nickel alloy coating.
  • the surface treatment includes electroplating.
  • the surface treatment further includes ultrasonic cleaning or pickling the parts before electroplating the parts.
  • the time for pickling the parts is between 5s and 15s.
  • the parts are first plated with a current density of 5-10A/dm 2 for 0.5-2min, and then 1-3A/dm 2 The current density of the parts is electroplated for 1-15min.
  • an auxiliary anode or a pictographic anode is used in electroplating.
  • steps “putting the austenitized blank into the mold to form parts” and the step “surface treating the parts to form a corrosion-resistant coating on the parts” also include: lasering the parts Cut edges or holes.
  • the embodiment of the present application also discloses a preparation device for corrosion-resistant hot stamping parts, which adopts the preparation method as described in this embodiment, and includes a blanking mechanism, a heating mechanism, a forming mechanism and a surface treatment mechanism, wherein:
  • the blanking mechanism is used to blank the bare steel plate into a desired blank shape
  • the heating mechanism is used to heat the blank after blanking
  • the forming mechanism is used to form the blank after heating to form parts
  • the surface treatment mechanism is used for surface treatment of parts to form a corrosion-resistant coating on the surface of the parts.
  • the present invention has the following advantages:
  • the blank made of blank steel plate is used for heating and forming, there is no need to consider the effect of heating speed on the alloying and melting of the coating of the blank (bare steel plate without coating), so it can be 20°C/s-50°C/s
  • the billet is heated rapidly at the speed of the billet.
  • the coated plate in order to avoid the alloying or melting of the coating of the aluminum coated plate, the coated plate can usually be heated at a speed of 7-10 °C/s. Therefore, this The inventive method can shorten the heating time of the billet by about 60-120s and improve the production efficiency.
  • it will not cause damage to the heating furnace and the mold surface, and the surface of the molded part will not be scratched. hurt.
  • the billet is heated to high temperature in an oxygen-free environment, and will not be oxidized during the heating process.
  • the billet will only be slightly oxidized during the transfer from the furnace to the mold.
  • the thickness of the oxide layer on the surface of the billet is nanometers.
  • the thickness of the oxide layer on the surface of the blank is as high as 30-100 microns.
  • the degree of oxidation of the blank in this embodiment is almost negligible. Therefore, the shot blasting process can be omitted for the parts formed by the blank, to avoid problems such as deformation of the parts caused by shot blasting.
  • Parts formed by the method in this embodiment are subjected to trimming or cutting holes before electroplating.
  • the trimming and cutting holes on the parts are coated. Therefore, the trimming and cutting holes of the parts Excellent corrosion resistance.
  • Low hydrogen embrittlement electroplating process is used for parts (before electroplating, low concentration acid solution is used to pickle the parts for a short time; when electroplating, acid electroplating process is used, the cathode has high electrical efficiency and less hydrogen evolution; in addition, when electroplating, first Adopt high current and short time plating to form a dense layer on the surface of the part, reduce the plating time and reduce the hydrogen entering the part base) and dehydrogenation treatment, which greatly reduces the risk of hydrogen embrittlement of the part.
  • FIG. 1 is a flowchart of a method for preparing a corrosion-resistant hot stamping part according to an embodiment of the present invention.
  • Figure 2 is the surface oxidation effect diagram of the bare steel plate after heating under a vacuum of 10Pa;
  • Figure 3 is a diagram of the oxidation fruit on the surface of the bare steel plate after heating under a vacuum of 100 Pa;
  • Figure 4 is a diagram of the oxidation effect of the surface of the bare steel plate after heating under an atmospheric pressure
  • FIG. 12 is a corrosion diagram of a bare steel plate of Comparative Example 4 after 720h weight loss salt spray test after hot stamping in an embodiment of the present invention
  • FIG. 13 is a corrosion diagram of the aluminum-silicon plate of Comparative Example 4 after hot stamping after 720h weight loss salt spray test in the embodiment of the present invention
  • 16 is a scratch corrosion diagram of an electrophoretic coating after a 720h salt spray experiment of a bare steel plate of Comparative Example 4 in an embodiment of the present invention after hot stamping;
  • 17 is a scratch corrosion diagram of an electrophoretic coating after a 720h salt spray experiment of an aluminum silicon plate of Comparative Example 4 in an embodiment of the present invention after hot stamping;
  • FIG. 19 is a scratch corrosion diagram of the electrophoretic coating of the parts of Case 1 in the embodiment of the present invention after a 720h salt spray experiment;
  • 21 is an example of the present invention, the aluminum silicon plate of Comparative Example 4 after hot stamping after 720h salt spray experiment electrophoresis of substrate scratch corrosion;
  • FIG. 22 is a diagram of substrate scratch corrosion after electrophoresis of a 720h salt spray experiment after hot stamping of the hot-dip galvanized sheet of Comparative Example 4 in the embodiment of the present invention
  • FIG. 23 is a diagram of substrate scratch corrosion after electrophoresis of the parts of Case 1 in the example of the present invention after a 720h salt spray experiment.
  • an embodiment of the present invention provides a method for preparing a corrosion-resistant hot stamping part, including the following steps:
  • Bare steel plate can generally be understood as a steel plate with no coating on the surface.
  • the billet is placed in an oxygen-free heating furnace and heated to AC3 (final temperature at which ferrite transforms to austenite during heating) or more to austenite the billet.
  • the maximum temperature of the billet in the oxygen-free heating furnace is 860°C-1000°C, and the billet is heated to between 880°C-950°C in the oxygen-free heating furnace.
  • the blank material that has been blanked is placed in an oxygen-free heating furnace to be heated to an austenite state and kept warm, so that the austenite in the blank material is homogenized.
  • the oxygen-free heating furnace includes an inert gas protection furnace or a vacuum heating furnace, wherein the vacuum degree of the vacuum heating furnace is between 0.1-500 Pa, preferably, the vacuum degree of the vacuum heating furnace is between 0.1 Pa-100 Pa.
  • the vacuum pump is started to evacuate the furnace for 40 seconds to 120 seconds, so that the vacuum degree in the vacuum heating furnace reaches 0.1-100 Pa, and then, the purity is 99.999% Nitrogen gas is used to inflate the vacuum heating furnace, so that the vacuum heating furnace reaches an atmospheric pressure, and then the heating element in the furnace is energized, so that the heating element heats the blank.
  • the surface temperature of the heating element can be increased to 1200°C-2000°C.
  • the temperature of the surface of the heating element drops, and the billet is insulated to make the austenite uniform.
  • the heating and holding time of the blank is 60-300 seconds.
  • the anaerobic heating furnace is used to heat the billet to a high temperature state, which can greatly reduce the phenomenon of oxidization of the billet.
  • the surface quality of the formed parts is excellent, the shot blasting process can be cancelled, and the surface of the heated parts is almost There is no residual oxide, which greatly reduces the pickling time before parts are electroplated, and greatly reduces the risk of hydrogen embrittlement of parts during electroplating.
  • the austenitized blank is quickly placed into the mold and formed into parts.
  • the time for transferring the blank from the heating furnace to the mold is 5-10 seconds, which reduces the exposure time of the high-temperature blank to the air, prevents the high-temperature blank from being oxidized, and avoids the temperature of the high-temperature blank from dropping significantly.
  • the forming method is hot stamping.
  • the temperature is between 880-950°C, and the temperature at which the blank begins to be molded in the mold is between 650-850°C. Conducive to the steel sheet to obtain excellent formability.
  • the mold has a cooling water path, so that the part is cooled at a speed of not less than 30° C./s when forming, ensuring that the part has excellent mechanical properties.
  • the surface of the part is treated to form a corrosion-resistant coating on the surface of the part.
  • the surface treatment includes electroplating the parts, and the anti-corrosion coating includes an electroplated layer.
  • the anti-corrosion coating includes a zinc coating, a zinc aluminum alloy coating, a zinc iron alloy coating, or a zinc nickel alloy coating Floor.
  • pure zinc has the sacrificial anode protection effect, but the corrosion rate is faster, when the aluminum content is in the range of 3%-10%, the zinc aluminum alloy coating has higher corrosion resistance, and with the increase of the aluminum content
  • the corrosion resistance is generally increasing, but when the mass percentage of aluminum is in the range of 15-25%, the corrosion resistance of the zinc-aluminum alloy coating decreases again.
  • the weight percentage is preferably between 3% and 10%.
  • the corrosion resistance of zinc-iron alloys containing a small amount of iron is improved by several times.
  • the mass percentage of iron is 10%-18%, the binding strength of zinc-iron alloy coatings and steel plates is the best, which is not easy Peeling and cracking off; and for the formed parts, when the iron content in the zinc-iron alloy coating is 0.3%-0.6%, the parts can also obtain an effect of 5 times higher corrosion resistance than the pure zinc coating. Therefore, in the zinc-iron alloy coating, the mass percentage of iron is preferably less than 1% or 10-20%.
  • the parts with zinc-iron alloy coating have iron elements, so the parts have better welding performance in the subsequent welding process.
  • the corrosion resistance of the alloy coating containing nickel ⁇ 10% (mass percentage) is 3-5 times higher than that of the zinc coating, and the zinc nickel alloy coating containing nickel 10%-15% (mass percentage) Corrosion resistance is 6-10 times that of pure zinc coating; zinc-nickel alloy coating has moderate porosity, easy to remove hydrogen, and the coating itself has less hydrogen embrittlement; and the resistance to neutral salt spray after electroplating zinc-nickel alloy More than 720h, the electrophoretic coating process can be omitted. Therefore, in the zinc-nickel alloy coating, the weight percentage of nickel is preferably between 5-15%.
  • ultrasonic or weak acid can be used to clean the parts for 5-10 seconds before plating.
  • the low hydrogen embrittlement plating process is used in the part plating process.
  • the current density of 5-10A/dm 2 is used to punch the part for 0.5min-2min to form a dense thin layer on the surface of the part Electroplating layer to prevent hydrogen atoms from entering the steel substrate, and then electroplating parts with a current density of 1-3A/dm 2 for 5-15min to form an electroplated zinc layer with the required thickness on the surface of the parts.
  • the parts are heated to between 140°C and 200°C, and the parts are insulated at this temperature for 10-30 minutes to dehydrogenate the parts, thereby improving the mechanical properties of the parts.
  • the steps of “putting the austenitized blank into the mold and forming it into parts” and the step of “surface treating the parts to form a corrosion-resistant coating on the parts surface” there are also steps: Laser trimming or hole cutting.
  • the solution of trimming or hole-cutting and then electroplating can save the electroplating solution, and more importantly, it can make the trimming or hole-cutting of parts It can also be electroplated to produce an electroplated layer, which improves the corrosion resistance of the cut edges or holes of parts due to the protection of the electroplated layer.
  • Electroplating of parts using acidic zinc plating process are cleaned with ultrasonic waves for 20s. , Pickling with 5-10% hydrochloric acid for acid pickling for 5-10s, the zinc electroplating process is an acidic plating process, and the acidic potassium chloride with high cathodic polarization efficiency is used for electroplating.
  • the components and contents of the plating solution are: Potassium chloride 200g/L, zinc ion 32g/L, boric acid 27g/L, bath temperature 26°C, PH value 4.5, 8A/dm 2 high current applied 30s after 2s /dm 2 low current normal Electroplating for 8 minutes, the thickness of the formed coating is 5um.
  • the parts are electroplated by alkaline galvanizing process; among them, before electroplating, the parts are washed with hydrochloric acid with a mass concentration of 8% for 10s.
  • the electrogalvanizing process is an alkaline electroplating process, in which the components and their contents in the electroplating solution are 130g/L sodium hydroxide, the zinc ion concentration is 12g/L, the PH value is 9, and the high current 6A/dm 2 plating is used After 60s, normal plating is performed with a small current of 2A/dm 2 for 15min, and the thickness of the formed coating is 8um.
  • Electroplating of parts using alkaline galvanized iron process are cleaned by ultrasonic wave for 20s before electroplating.
  • Each component and its content in the plating solution are zinc sulfate 80g/L, ferric chloride 7g/L, sodium dihydrogen phosphate 36g/L, potassium pyrophosphate 25g/L, PH value 8.5, current density 2.1A/dm 2 ,
  • the thickness of the coating is 6um; in the coating, the mass fraction of iron is 0.3%-0.6%.
  • the bare steel plate, the hot-dip galvanized plate and the aluminum-silicon coated plate were heated in a traditional atmosphere roller hearth furnace with a furnace temperature of 930°C for 4 minutes to austenitize the blank and then hot stamping.
  • the bare steel plate is heated under different vacuum degrees, and the oxidation results of the bare steel plate show that there is basically no oxidation under the vacuum degrees of 10 Pa and 100 Pa, and the bare steel plate is seriously oxidized under normal atmospheric pressure.
  • Figures 5-11 are metallographic diagrams of the cross-sections of the coated steel plates after heating and hot forming.
  • the aluminum-silicon coated plate and the hot-dip galvanized coated plate in Comparative Example 4 had dense raw material coatings, but after heating and hot stamping, the coatings were severely damaged.
  • the bare steel plate is hot-heated and then electro-galvanized, and the coating is dense without damage.
  • the scratch corrosion width experiment shows that before hot forming, the surface scratch width of each part is about 1mm, but after 720h of salt spray corrosion, the corrosion of the bare steel plate and aluminum-silicon coated substrate in Comparative Example 4 The widths are 1.54mm and 3.22mm respectively, and the electro-galvanized parts in Case 1 have no corrosion due to the sacrificial anode protection effect.
  • Table 2 is the mechanical performance results and hydrogen content test results of the thermoforming parts of Case 1 and Comparative Example 4. It can be seen from the table that the tensile strength, yield strength, and elongation of bare-plate hot stamping after electro-galvanizing and bare-plate hot stamping electro-galvanizing after heating and hydrogen removal meet the thermoforming production standards.
  • the electroplated zinc hydrogen content of the bare board after thermoforming is also basically the same as that of the aluminum silicon board.
  • This embodiment also provides a device for preparing a corrosion-resistant hot stamping part, which adopts the method described in this embodiment, and includes a blanking mechanism, a heating mechanism, a forming mechanism, and a surface treatment mechanism, wherein:
  • the blanking mechanism is used to blank the bare steel plate into a desired blank shape
  • the heating mechanism is used to heat the blank after blanking
  • the forming mechanism is used to form the blank after heating to form parts
  • the surface treatment mechanism is used for surface treatment of parts to form a corrosion-resistant coating on the surface of the parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种耐腐蚀热冲压零件的制备方法及装置,该方法包括以下步骤:将裸钢板落料成所需坯料形状;将坯料放入无氧加热炉内进行加热至AC3以上,使坯料奥氏体化;将奥氏体化的坯料放入模具中成型,使之形成零件;对零件进行表面处理,使零件表面形成防腐涂层。

Description

一种耐腐蚀热冲压零件的制备方法及装置
交叉参考相关引用
本申请要求2018年12月06日提交的申请号为2018114859038、名称为“一种耐腐蚀热冲压零件的制备方法及装置”和2019年2月25日提交的申请号为2019101385610、名称为“一种耐腐蚀热冲压零件的制备方法及装置”的中国专利申请的优先权,上述申请参考并入本文。
技术领域
本发明涉及了热冲压成型技术领域,具体的是一种耐腐蚀热冲压零件的制备方法及装置。
背景技术
目前,在汽车的服役过程中,热冲压零件虽然经过涂装处理以提高其自身的耐腐蚀性能,但是,一旦涂装层被破坏后,热冲压零件就很容易产生膜下腐蚀,进一步导致涂装层剥落。另一方面,热冲压零件的切口处以及和其他零件的紧固处由于涂装时涂层厚度不足或不均匀,也容易发生腐蚀。
为了解决上述问题,业内常采用具有良好耐腐蚀性能的镀锌22MnB5钢板或铝硅镀层22MnB5钢板代替无涂层钢板(也称裸钢板)进行热成型。由于镀锌钢板的表面包括Zn-Al镀层或Zn-Fe-Al镀层,这两种镀层也称锌基镀层,锌基镀层可向钢件提供活性或阴极防腐,保证钢件在腐蚀环境下72小时甚至96小时不出现白锈(白锈是指镀层生锈),而出现红锈(红锈是指钢材生锈)所需的时间更长;而铝硅镀层也可以为钢件提供防腐蚀的屏障,因此,采用镀锌钢板或者铝硅镀层钢板制备的热冲压零件再经过涂装处理,则具有双重耐腐蚀能力。
但是,在热冲压过程中,钢板坯料需要经过高温加热后再放入模具中成型,在被加热至高温状态的过程中,镀锌钢板或铝硅镀层钢板会出现一些问题。具体而言,对于镀锌钢板来说,首先,锌由于自身的熔化温度比较低而容易液化,液态锌由于金属脆化而产生破裂;其次,在加热升温过程中,镀层中的锌会存在蒸发和氧化现象而导致锌的含量减少,且氧化物的粘附性能较差,会影响后续热冲压零件的涂装效果。
为解决高温液态金属脆化问题,专利CN107127238 A公开了一种锌系镀覆钢板或钢带的热冲压成型方法,包括如下步骤:(1)生产热冲压成型用的钢板或钢带,并在所述热冲压成型用的钢板或钢带上涂覆锌或锌铁合金;(2)加热:将钢板或钢带放入连续退火的加热炉中,以大于5℃/s的加热速度将钢板或钢带加热到高于Ac3的温度,并保温设定时间,使钢板或钢带奥氏体化均匀;(3)预冷却:钢板或钢带从加热炉中出来后,立即实施预冷却,冷却至650℃~700℃;(4)落料:在650℃~700℃的温度下,根据热冲压零件形状和尺寸切割钢板或钢带;(5)热冲压成型与模内淬火:将落料后的钢板或钢带快速移动到热冲压模具上冲压成型淬火,成型温度范围为400~650℃;热冲压成型完成后,坯料在模具中冷却,在模具中,或从模具取出后冷却至室温,完成马氏体相变。由于在400℃-650℃之间温成型时,镀锌板的变形抗力较大,其成型性能不如在高温下进行成型,因此,镀锌钢板温成型的力学性能较差且冲压过程容易开裂;另外,由于金属锌熔点较低,采用大于5℃/s的速度对镀锌板进行加热易导致锌层的液化及挥发,影响后续热冲压零件的涂装效果。
为解决镀锌层在加热过程容易挥发的问题,专利JP特许第6191420号公开了热压钢 的制造方法和热压钢材,其具体工艺为在镀锌层上再通过热镀或电镀的方式形成一层高熔点的致密层。该致密层能够在加过程中防止氧化,并且提高耐腐蚀性能。但该涂层具有低磷化性,即不能与磷酸锌、磷酸锰反应而导致白车身后续很难进行整车电泳处理。并且虽然通过表面的高熔点的致密层可以阻止锌层的挥发,但是不能够解决液态锌在高温容易液化,因此,仍存在热冲压过程中产生液态金属致脆的现象。
专利CN 106282878A公开了一种镀锌温成形高强度中锰钢件的制备方法,其介绍了一种在线热镀锌然后温成形的方法,具体方法如下,先将中锰钢在真空加热炉中加热到750℃-850℃之间进行奥氏体化,然后在充满保护气体的冷却腔内降温在500℃,再将加热坯料放入480℃-500℃的恒温锌槽进行热镀锌,最后烘干并将坯料送入模具进行温成型。该方法是用中锰钢进行热镀锌后再进行温成型,目的是把热镀锌的加热和温成形的加热合并为一次加热以节省能源并避免锌层的熔化。但是这种工艺方法除了有对异形坯料进行热浸镀在实际生产中操作难度大及质量稳定性不高等缺点以外,对于热成形钢材22MnB5坯料在500℃以下的温度进行冲压成形既无法获得高比例的马氏体组织又使得板料的成型性能远不如650℃以上成型的好。这是因为高强钢22MnB5材料,其马氏体开始相变转变Ms点通常在420℃以上,不适于在480℃-500℃的温度范围内进行中温热冲压成型。
而对于铝硅镀层钢板来说,在加热至Ac3(加热时铁素体转变为奥氏体的终了温度)过程中,铝硅镀层钢板中的铝硅层与钢材基体相互扩散,形成铝铁硅合金,该铝铁硅合金的腐蚀电位与钢材基体的腐蚀电位基本一致,因此,极大降低了铝硅镀层钢板的耐腐蚀性。
另外,无论是镀锌钢板还是铝硅镀层钢板,在经过热冲压后,镀层均会出现不同程度的裂纹,而当裂纹严重时,则会直达钢材基体。更主要的,由于镀层钢板在热冲压时,坯料和镀层都处于高温软化状态,坯料被模具成形时不可避免要与模具表面摩擦,而软化的镀层极易被摩擦去除。因此,镀层钢板经热压后也丧失了原有的耐腐蚀能力。而且在做涂层板的激光拼焊时,一般都需要将焊缝周边的涂层去除掉,以利于焊接,但经过焊接后,焊缝部位无涂层保护,焊缝的耐腐蚀能力极差。
并且,现有的热冲压加热炉通常为通入氮气作为保护气氛的有氧加热炉(也称气氛炉),其氧含量一般要求控制在0.5%以下。在热成形过程中,坯料一般加热时间为3-4min,加热完成后需要进行开炉取料及送料。在开炉门的过程中,大气中的氧涌入气氛炉内,导致氧含量大量增加,因此,需要通入大量氮气进行排氧。在实际的生产过程中,气氛炉内氧含量一般只能控制在2%左右,因此一般的气氛保护炉难以真正的防氧化。
综上所述,现有的热冲压工艺和热冲压零件存在以下问题:
1、裸钢板在加热时产生的大量氧化皮,在成型时对模具表面的破坏,进而破坏零件产品表面质量,同时影响模具使用寿命。
2、裸钢板热压后的喷丸处理容易导致零件变形。
3、镀层板在加热炉中加热时熔化容易污染支撑装置如炉辊,而导致支撑装置受损如炉辊表面结瘤和陶瓷辊断裂。
4、镀层板在加热时导致涂层熔化和软化,在成形时涂层与模具进行摩擦,模具表面形成大量粘着物,容易对零件表面造成划伤。
5、镀层板被加热后再成型成零件,其镀层被严重破坏,导致耐腐蚀性远不及原板材。
6、为避免铝硅涂层的液化,铝硅涂层板需要在500℃-700℃慢速加热,延长了加热时间,影响生产效率。
7、镀锌坯料在直接热成形中为避免产生液态锌而采用低温成形导致低温成形温度窗口太窄(成形温度距马氏体相变起始温度太近,锌熔点与22MnB5的Ms点温度几乎相同), 实际生产中产品机械性能无法稳定。
8、涂层板的激光拼焊时,一般都需要将焊缝周边的涂层去除掉,但经过焊接后,焊缝部位无涂层保护,焊缝的耐腐蚀能力极差。
发明内容
为了克服现有技术中的缺陷,本发明实施例提供了一种耐腐蚀热冲压零件的制备方法及装置,其用于解决上述问题中的至少一种。
本申请实施例公开了:一种耐腐蚀热冲压零件的制备方法,包括以下步骤:
将裸钢板落料成所需坯料形状;
将坯料放入无氧加热炉内进行加热至AC3以上,使坯料奥氏体化;
将奥氏体化的坯料快速放入模具中成型,使之形成零件;
对零件进行表面处理,使零件表面形成防腐涂层。
具体的,在步骤“对零件进行表面处理,使零件表面形成防腐涂层”之后,还对零件进行去氢处理。
具体的,所述去氢处理包括将零件加热至140℃-200℃之间,并在该温度下对零件进行保温10-30min。
具体的,所述无氧加热炉包括惰性气体保护炉或真空加热炉。
具体的,所述真空加热炉的真空度为0.1-500Pa之间。
具体的,所述真空加热炉的真空度为0.1-100Pa之间。
具体的,所述无氧加热炉对坯料进行加热及保温的时间总共为60-300s之间。
具体的,坯料在无氧化加热炉中被加热至880℃-950℃之间。
具体的,加热完成后的坯料从无氧化加热炉移入模具中的时间为5-10秒。
具体的,坯料在模具中开始成型的温度为650℃-850℃。
具体的,所述模具具有冷却水路,所述冷却水路使得坯料在成型时以不低于30℃/s的速度冷却。
具体的,所述防腐涂层包括锌涂层、锌铁合金涂层、锌铝合金涂层或锌镍合金涂层。
具体的,在步骤“对零件进行表面处理,使零件表面形成防腐涂层”中,所述表面处理包括电镀。
具体的,所述表面处理还包括在对零件电镀之前先对零件进行超声波清洗或酸洗。
具体的,对零件进行酸洗的时间为5s-15s之间。
具体的,在步骤“对零件进行表面处理,使零件表面形成防腐涂层”中,先采用5-10A/dm 2的电流密度对零件进行冲镀0.5-2min,再采用1-3A/dm 2的电流密度对零件进行电镀1-15min。
具体的,在步骤“对零件进行表面处理,使零件表面形成防腐涂层”中,在电镀时,采用辅助阳极或象形阳极。
具体的,在步骤“将奥氏体化的坯料放入模具中成型,使之形成零件”和步骤“对零件进行表面处理,使零件表面形成防腐涂层”之间还包括:对零件进行激光切边或切孔。
本申请实施例还公开了一种耐腐蚀热冲压零件的制备装置,其采用如本实施例所述的制备方法,包括落料机构、加热机构、成型机构以及表面处理机构,其中:
所述落料机构用于将裸钢板落料成所需坯料形状;
所述加热机构用于对落料后的坯料进行加热;
所述成型机构用于对加热完成后的坯料进行成型,使之形成零件;
所述表面处理机构用于对零件进行表面处理,使零件表面形成防腐涂层。
与现有技术相比,本发明具有以下优点:
1、由于采用裸钢板落料而成的坯料进行加热及成型,无需考虑加热速度对坯料的镀层(裸钢板无镀层)合金化和熔化的影响,因此,可以20℃/s-50℃/s的速度对坯料进行快速加热,而传统的方法中,为避免铝涂层板的涂层合金化或熔化,通常只能以7-10℃/s的速度对涂层板进行加热,因此,本发明的方法可以将坯料的加热时间缩短约60-120s,提高生产效率,另外,由于坯料表面没有熔融物,因此不会对加热炉和模具表面造成损伤,成型后的零件表面也不会受到划伤。
2、坯料在无氧环境中被加热至高温,加热过程中不会被氧化,坯料只有在从加热炉转移到模具的过程中发生微量氧化,这一过程中坯料表面的氧化层厚度为纳米量级,而传统的有氧加热下,坯料表面氧化层厚度高达30-100微米之间。与传统的加热氧化相比,本实施例中的坯料氧化程度几乎可以忽略不计,因此,坯料成型的零件可以省却喷丸工艺,避免喷丸造成的零件变形等问题。
3、采用先将裸钢板加热并成型零件,再将零件进行表面处理得到耐腐蚀涂层的方案,且由于零件的涂层未经过高温加热,涂层组织的致密性不受影响,保持光滑的致密性,其结构和组分也未发生变化,因此其耐腐蚀性能不受影响,十分优异。
4、采用本实施例中的方法成型的零件,其先经过切边或切孔后再进行电镀,零件上的切边、切孔处均具有镀层,因此,零件的切边、切孔处的防腐蚀性能极佳。
5、对零件采用低氢脆电镀工艺(电镀前,采用低浓度酸液对零件进行短时间酸洗;电镀时,采用酸性电镀工艺,阴极电效效率高,析氢少;另外,电镀时,先采用大电流短时间冲镀,使零件表面形成致密层,并减少电镀时间,减少氢进入零件基体)和去氢处理,极大降低了零件发生氢脆的风险。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中所述耐腐蚀热冲压零件的制备方法的流程图。
图2是裸钢板在10Pa的真空度下加热后其表面氧化效果图;
图3是裸钢板在100Pa的真空度下加热后其表面的氧化果图;
图4是裸钢板在一个大气压下加热后其表面的氧化效果图;
图5是本发明实施例中案例1的零件的锌涂层金相;
图6是本发明实施例中对比例4的铝硅板的涂层金相;
图7是本发明实施例中对比例4的铝硅板加热后的涂层金相;
图8是本发明实施例中对比例4的铝硅板热冲压成形后的涂层金相;
图9是本发明实施例中对比例4的热镀锌板的涂层金相;
图10是本发明实施例中对比例4的热镀锌板加热后的涂层金相;
图11是本发明实施例中对比例4的热镀锌板热冲压后的涂层金相;
图12是本发明实施例中对比例4的裸钢板热冲压后经过720h失重盐雾实验的腐蚀图;
图13是本发明实施例中对比例4的铝硅板热冲压后经过720h失重盐雾实验的腐蚀图;
图14是本发明实施例中对比例4的热镀锌板热冲压后经过720h失重盐雾实验的腐蚀图;
图15是本发明实施例中案例1的零件经过失重720h盐雾实验的腐蚀图;
图16是本发明实施例中对比例4的裸钢板热冲压后经过720h盐雾实验的电泳涂层划痕腐蚀图;
图17是本发明实施例中对比例4的铝硅板热冲压后经过720h盐雾实验的电泳涂层划痕腐蚀图;
图18是本发明实施例中对比例4的热镀锌板热冲压后经过720h盐雾实验的电泳涂层划痕腐蚀图;
图19是本发明实施例中案例1的零件经过720h盐雾实验的电泳涂层划痕腐蚀图;
图20是本发明实施例中对比例4的裸钢板热冲压后经过720h盐雾实验的电泳后基体划痕腐蚀图;
图21是本发明实施例中对比例4的铝硅板热冲压后经过720h盐雾实验的电泳后基体划痕腐蚀图;
图22是本发明实施例中对比例4的热镀锌板热冲压后经过720h盐雾实验的电泳后基体划痕腐蚀图;
图23是本发明实施例中案例1的零件经过720h盐雾实验的电泳后基体划痕腐蚀图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供一种耐腐蚀热冲压零件的制备方法,包括以下步骤:
首先,将22MnB5裸钢板落料成所需坯料形状,具体落料方式包括冷冲压和激光切割。裸钢板一般可以理解为表面没有镀层的钢板。
接着,将坯料放入无氧加热炉内进行加热至AC3(加热时,铁素体转变成奥氏体的终了温度)以上,使坯料奥氏体化。其中,所述无氧加热炉中坯料的最高温度为860℃-1000℃,坯料在无氧加热炉中被加热至880℃-950℃之间。具体地,将落料好的坯料放到无氧加热炉内加热达到奥氏体状态并保温,使坯料中的奥氏体均匀化。所述无氧加热炉包括惰性气体保护炉或真空加热炉,其中,真空加热炉的真空度为0.1-500Pa之间,较佳的,真空加热炉的真空度在0.1Pa-100Pa之间。具体的,当真空加热炉的炉门关闭后,启动真空泵对炉内进行抽真空40秒-120秒,使真空加热炉内的真空度达到0.1-100Pa之间,接着,采用纯度为99.999%的氮气对真空加热炉内进行充气,使真空加热炉内达到一个大气压,而后对炉内加热元件通电,使加热元件对坯料进行加热。在对坯料加热的过程中,为缩短加热时间,可将加热元件表面温度升至1200℃-2000℃。待坯料的温度达到奥氏体化以上温度后,加热元件表面温度下降,对坯料进行保温使之奥氏体均匀化。根据不同坯料的料厚,对坯料加热和保温的时间为60-300秒。采用无氧加热炉对坯料进行加热至高温状态,可以极大程度地减少坯料出现氧化的现象,因此,成型后的零件其表面质量极佳,可取消喷丸工序,且加热过后的零件表面几乎没有残留的氧化物,极大减少了零件电镀之前的酸洗时间,很大程度上减轻了零件在电镀过程中发生氢脆的风险。
接着,采用端拾器将奥氏体化的坯料快速放入模具中成型,使之形成零件。具体的,料片从加热炉转移至模具中的时间为5-10秒,减少高温坯料暴露在空气中的时间,避免 高温坯料被氧化,也避免高温坯料的温度大幅下降。在本实施方式中,该成型方式为热冲压成型,坯料从无氧加热炉中取出时,其温度为880-950℃之间,坯料在模具中开始成型的温度为650-850℃之间,有利于钢板获得优异的成型性能。所述模具具有冷却水路,以使得零件成型时以不低于30℃/s的速度冷却,确保零件具有优异的机械性能。
接着,对零件进行表面处理,使零件的表面形成防腐涂层。具体的,所述表面处理包括对零件进行电镀,所述防腐涂层包括电镀层,进一步的,所述防腐涂层包括锌涂层、锌铝合金涂层、锌铁合金涂层或锌镍合金涂层。其中,由于纯锌具有牺牲阳极保护效果,但腐蚀速率较快,当铝含量在3%-10%范围内时,锌铝合金涂层具有较高的耐腐蚀性,且随着铝含量的增高,耐蚀性总体呈增加的趋势,但是,当铝的质量百分比在15-25%范围内时,锌铝合金涂层耐蚀性又下降,因此,在所述锌铝合金涂层中,铝的重量百分比优选为3%-10%之间。而含少量的铁的锌铁合金与纯锌涂层相比,耐蚀性提高数倍以上,当铁的质量百分比在10%-18%时,锌铁合金涂层与钢板的结合力最好,不易起皮和开裂脱落;而对于成型后的零件,当锌铁合金涂层中铁含量为0.3%-0.6%时,零件亦可以获得比纯锌涂层耐腐蚀提高5倍的效果。因此,所述锌铁合金涂层中,铁的质量百分比优选为小于1%或10-20%之间。另外,具有锌铁合金涂层的零件,由于具有铁元素,因此零件在后续的焊接工序中,焊接性能更优异。经钝化后,含镍<10%(质量百分比)的合金涂层,耐蚀性比镀锌层提高3-5倍,含镍10%-15%(质量百分比)的锌镍合金涂层的耐腐蚀性是纯锌涂层的6-10倍;而锌镍合金涂层有适度的孔隙,易于除氢,涂层本身氢脆性也较小;而且电镀锌镍合金后耐中性盐雾时间超过720h,可省去电泳涂装工艺,因此,所述锌镍合金涂层中,镍的重量百分优选比为5-15%之间。
进一步的,由于超高强钢具有氢脆敏感性,为降低零件电镀过程中产生氢脆的风险,在电镀前,可采用超声波或弱酸对零件进行5-10s的清洗。另外,在零件电镀过程中采用低氢脆电镀工艺,根据镀层厚度的要求,先采用5-10A/dm 2的电流密度对零件冲镀0.5min-2min,使零件的表面形成一层致密的薄层电镀层,以阻止氢原子进入钢材基体,然后采用1-3A/dm 2的电流密度对零件电镀5-15min,使零件的表面形成所需厚度的电镀锌层。待零件完成电镀后,将零件加热至140℃-200℃之间,并在此温度下对零件进行保温10-30min,以对零件进行去氢处理,从而提高零件的机械性能。
进一步的,在步骤“将奥氏体化的坯料放入模具中成型,使之形成零件”和步骤“对零件进行表面处理,使零件表面形成防腐涂层”之间还包括步骤:对零件进行激光切边或切孔。与对零件先电镀再切边或切孔的工序相比,采用先进行切边或切孔再进行电镀的方案,可以节约电镀液,更重要的是,可以使得零件的切边或切孔处也能被电镀,产生电镀层,使零件的切边或切孔处因电镀层的保护而提高耐腐蚀性。
下面以四个具体实施案例详细说明本实施例:
案例1
1.采用厚度为1.4mm的22MnB5裸钢板进行落料,得到所需形状的坯料。
2.将坯料放入真空加热炉中,当真空加热炉的炉门关闭后,开启真空泵对炉膛抽真空80秒,直至真空加热炉的真空度达到100Pa,接着,向真空加热炉内充入99.999%的氮气至炉内气压为一个大气压,然后开启炉内的加热元件,对坯料进行加热。将坯料加热至930℃并在此温度对坯料保温,对坯料进行加热和保温这一过程总共用时140秒。待坯料保温时间结束后,打开炉门取料。
3.将奥氏体化的坯料快速放入具有冷却水的模具内进行热成型,使之形成零件。
4.对零件进行激光切边。
5.采用酸性镀锌工艺对零件进行电镀。其中,在电镀前,采用超声波对零件进行清洗20s。,酸洗采用5-10%的盐酸进行酸洗5-10s,电镀锌工艺为酸性电镀工艺,采用 阴极极化效率高的酸性氯化钾进行电镀,其中镀液的各组分及其含量为氯化钾200g/L,锌离子32g/L,硼酸27g/L,槽液温度26℃,PH值4.5,采用的8A/dm 2的大电流冲镀30s后用2A/dm 2的小电流正常电镀8min,形成的镀层厚度为5um。
6.对电镀后的零件进行去氢处理,具体的,将电镀后的零件加热至160℃,并在此温度对零件保温20min。
案例2
1.采用厚度为1.4mm的22MnB5裸钢板进行落料,得到所需形状的坯料。
2.将坯料放入真空加热炉中,真空加热炉的炉门关闭后,开启真空泵对炉膛抽真空40秒,直至真空加热炉的真空度达到10Pa,接着,向真空加热炉内充入99.999%的氮气至炉内气压为一个大气压,然后开启炉内的加热元件,对坯料进行加热。将坯料加热至930℃并保温,对坯料加热和保温总共用时140秒。待坯料保温时间结束后,开炉门取料。
3.将奥氏体化的坯料放入具有冷却水的模具内进行热成型,使之形成零件。
4.对零件进行激光切边。
5.采用碱性镀锌工艺对零件进行电镀;其中,在电镀之前,采用质量浓度为8%的盐酸对零件进行清洗10s。电镀锌工艺为碱性电镀工艺,其中电镀液中各组分及其含量为氢氧化钠130g/L,锌离子浓度为12g/L,PH值9,采用的6A/dm 2的大电流冲镀60s后用2A/dm 2的小电流正常电镀15min,形成的镀层厚度为8um。
6.对电镀后的零件进行去氢处理,具体的,将电镀后的零件加热至190℃,并在此温度对零件保温15min。
案例3
1.采用厚度为1.4mm的22MnB5裸钢板进行落料,得到所需形状的坯料。
2.将坯料放入真空加热炉中,待真空加热炉的炉门关闭后,开启真空泵对炉膛抽真空90秒,直至真空加热炉的真空度达到50Pa,接着,向真空加热炉内充入99.999%的氮气至炉内气压为一个大气压,然后开启炉内的加热元件,对坯料进行加热。将坯料加热至930℃并保温,对坯料加热和保温总共用时140秒。待坯料保温时间结束后,打开炉门取料。
3.将奥氏体化的坯料快速放入具有冷却水的模具内进行热成型,使之形成零件。
4.对零件进行激光切边。
5.采用碱性镀锌铁工艺对零件进行电镀。其中,在电镀之前,采用超声波对零件进行清洗20s。电镀液中各组分及其含量为硫酸锌80g/L,三氯化铁7g/L,磷酸二氢钠36g/L,焦磷酸钾25g/L,PH值8.5,电流密度2.1A/dm 2,镀层厚度6um;镀层中,铁的质量分数为0.3%-0.6%。
6.对电镀后的零件进行去氢处理,具体的,将电镀后的零件加热至170℃,并在此温度对零件保温25min。
对比例4
分别将裸钢板、热镀锌板、铝硅涂层板在炉内温度为930℃的传统气氛辊底式加热炉内加热4min,使坯料奥氏体化,再进行热冲压成形。
分别将案例1-3的零件及对比例4的热成型后的零件进行金相涂层观察、对零件进行720h盐雾实验及划痕实验,并进行机械性能测试和氢含量测试对比。
如图2至图4所示,在不同真空度下对裸钢板进行加热,裸钢板的氧化结果显示为:在10Pa和100pa的真空度下基本无氧化,在正常大气压下裸钢板氧化严重。
图5-图11是不同涂层的钢板在加热及热成形后的涂层截面金相图。对比例4中的 铝硅涂层板和热镀锌涂层板的原材涂层致密,但经过加热和热冲压成形后,涂层破损严重。而案例1-3中的裸钢板热加热成型后再电镀锌,涂层致密无损坏。
结合图12至图23,以及表一的结果中可以看出,经过720h失重盐雾实验后,对比例4中的裸钢板对应的零件腐蚀最严重,热镀锌板次之,铝硅板腐蚀速率为1.38×10 -4g/mm 2,而案例1-3中的裸钢板成型的零件的腐蚀速率低至5.74×10 -6g/mm 2,其耐腐蚀能力比对比例4中的铝硅板所对应零件的耐腐蚀能力强20倍以上。而划痕腐蚀宽度实验显示,热成型前,各零件的表面划痕宽度均在1mm左右,但经过720h的盐雾腐蚀后,对比例4中的裸钢板和铝硅涂层板基材的腐蚀宽度分别为1.54mm和3.22mm,而案例1中的电镀锌零件由于具有牺牲阳极保护效果,其基材无腐蚀。
表一实例1与对比例4中性盐雾720h实验结果
Figure PCTCN2019078414-appb-000001
表二是案例1与对比例4热成形零件的机械性能结果以及氢含量测试结果。从表中可以看出裸板热冲压后电镀锌以及裸板热冲压后电镀锌加热去氢处理后抗拉强度、屈服强及及延伸率均满足热成形生产标准,。而裸板热成形后电镀锌氢含量也与铝硅板基本一致。
表二实例1与对比例4机械性能结果
Figure PCTCN2019078414-appb-000002
本实施例还提供了一种耐腐蚀热冲压零件的制备装置,其采用本实施例所述的方法,包括落料机构、加热机构、成型机构以及表面处理机构,其中:
所述落料机构用于将裸钢板落料成所需坯料形状;
所述加热机构用于对落料后的坯料进行加热;
所述成型机构用于对加热完成后的坯料进行成型,使之形成零件;
所述表面处理机构用于对零件进行表面处理,使零件表面形成防腐涂层。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (19)

  1. 一种耐腐蚀热冲压零件的制备方法,其特征在于,包括以下步骤:
    将裸钢板落料成所需坯料形状;
    将坯料放入无氧加热炉内进行加热至AC3以上,使坯料奥氏体化;
    将奥氏体化的坯料放入模具中成型,使之形成零件;
    对零件进行表面处理,使零件表面形成防腐涂层。
  2. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,在步骤“对零件进行表面处理,使零件表面形成防腐涂层”之后,还对零件进行去氢处理。
  3. 根据权利要求2所述的耐腐蚀热冲压零件的制备方法,其特征在于,所述去氢处理包括将零件加热至140℃-200℃之间,并在该温度下对零件进行保温10-30min。
  4. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,所述无氧加热炉包括惰性气体保护炉或真空加热炉。
  5. 根据权利要求4所述的耐腐蚀热冲压零件的制备方法,其特征在于,所述真空加热炉的真空度为0.1-500Pa之间。
  6. 根据权利要求5所述的耐腐蚀热冲压零件的制备方法,其特征在于,所述真空加热炉的真空度为0.1-100Pa之间。
  7. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,所述无氧加热炉对坯料进行加热及保温的时间总共为60-300s之间。
  8. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,坯料在无氧化加热炉中被加热至880℃-950℃之间。
  9. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,加热完成后的坯料从无氧化加热炉移入模具中的时间为5-10秒。
  10. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,坯料在模具中开始成型的温度为650℃-850℃。
  11. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,所述模具具有冷却水路,所述冷却水路使得坯料在成型时以不低于30℃/s的速度冷却。
  12. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,所述防腐涂层包括锌涂层、锌铁合金涂层、锌铝合金涂层或锌镍合金涂层。
  13. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,在步骤“对零件进行表面处理,使零件表面形成防腐涂层”中,所述表面处理包括电镀。
  14. 根据权利要求13所述的耐腐蚀热冲压零件的制备方法,其特征在于,所述表面处理还包括在对零件电镀之前先对零件进行超声波清洗或酸洗。
  15. 根据权利要求14所述的耐腐蚀热冲压零件的制备方法,其特征在于,对零件进行酸洗的时间为5s-15s之间。
  16. 根据权利要求13所述的耐腐蚀热冲压零件的制备方法,其特征在于,在步骤“对零件进行表面处理,使零件表面形成防腐涂层”中,先采用5-10A/dm 2的电流密度对零件进行冲镀0.5-2min,再采用1-3A/dm 2的电流密度对零件进行电镀1-15min。
  17. 根据权利要求13所述的耐腐蚀热冲压零件的制备方法,其特征在于,在步骤“对零件进行表面处理,使零件表面形成防腐涂层”中,在电镀时,采用辅助阳极或象形阳极。
  18. 根据权利要求1所述的耐腐蚀热冲压零件的制备方法,其特征在于,在步骤“将奥氏体化的坯料放入模具中成型,使之形成零件”和步骤“对零件进行表面处理,使零件表面形成防腐涂层”之间还包括:对零件进行激光切边或切孔。
  19. 一种耐腐蚀热冲压零件的制备装置,其采用如权利要求1至18任一项所述的制备方法,其特征在于,包括落料机构、加热机构、成型机构以及表面处理机构,其中:
    所述落料机构用于将裸钢板落料成所需坯料形状;
    所述加热机构用于对落料后的坯料进行加热;
    所述成型机构用于对加热完成后的坯料进行成型,使之形成零件;
    所述表面处理机构用于对零件进行表面处理,使零件表面形成防腐涂层。
PCT/CN2019/078414 2018-12-06 2019-03-18 一种耐腐蚀热冲压零件的制备方法及装置 WO2020113844A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019003814.1T DE112019003814T5 (de) 2018-12-06 2019-03-18 Ein Verfahren und eine Vorrichtung zur Herstellung korrosionsbeständiger Heißprägeteile
JP2021532412A JP7122045B2 (ja) 2018-12-06 2019-03-18 耐食性ホットスタンプ部品の製造方法
US17/241,714 US11441200B2 (en) 2018-12-06 2021-04-27 Method and device for preparing corrosion-resistant hot stamping part

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811485903 2018-12-06
CN201811485903.8 2018-12-06
CN201910138561.0 2019-02-25
CN201910138561.0A CN109821951B (zh) 2018-12-06 2019-02-25 一种耐腐蚀热冲压零件的制备方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/241,714 Continuation US11441200B2 (en) 2018-12-06 2021-04-27 Method and device for preparing corrosion-resistant hot stamping part

Publications (1)

Publication Number Publication Date
WO2020113844A1 true WO2020113844A1 (zh) 2020-06-11

Family

ID=66864279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078414 WO2020113844A1 (zh) 2018-12-06 2019-03-18 一种耐腐蚀热冲压零件的制备方法及装置

Country Status (5)

Country Link
US (1) US11441200B2 (zh)
JP (1) JP7122045B2 (zh)
CN (1) CN109821951B (zh)
DE (1) DE112019003814T5 (zh)
WO (1) WO2020113844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381580A (zh) * 2020-10-19 2022-04-22 宝山钢铁股份有限公司 一种高耐蚀耐候钢的罩式退火工艺及制造方法
US11441200B2 (en) 2018-12-06 2022-09-13 Suzhou Pressler Advanced Forming Technologies Co., Ltd. Method and device for preparing corrosion-resistant hot stamping part

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084304A1 (en) * 2019-10-30 2021-05-06 Arcelormittal A press hardening method
WO2021084305A1 (en) * 2019-10-30 2021-05-06 Arcelormittal A press hardening method
CN110773630B (zh) * 2019-11-05 2022-02-11 山东钢铁集团日照有限公司 一种解决不规则坯料导电加热温度不均匀的方法
CN111575597B (zh) * 2020-06-10 2022-03-25 苏州普热斯勒先进成型技术有限公司 一种锰系镀覆钢板及其热成型方法和热成型产品
CN112051144B (zh) * 2020-08-13 2021-05-07 北京航空航天大学 一种硬料态高强铝合金的纯电致塑性辅助热成形工艺
CN111940594A (zh) * 2020-08-23 2020-11-17 枣庄海立美达模具有限公司 一种安全带组件锚片的新型冲压工艺
US11441039B2 (en) * 2020-12-18 2022-09-13 GM Global Technology Operations LLC High temperature coatings to mitigate weld cracking in resistance welding
CN114657613A (zh) * 2020-12-22 2022-06-24 苏州普热斯勒先进成型技术有限公司 冲压零件的制备方法
CN114714045B (zh) * 2021-01-05 2023-07-25 广州汽车集团股份有限公司 一种一体式门环的制备方法
CN113198928A (zh) * 2021-04-25 2021-08-03 安徽工业大学 一种强度2GPa和强塑积达到20GPa%的热冲压成形部件及其制造方法
CN113787129B (zh) * 2021-08-20 2022-07-12 西安飞机工业(集团)有限责任公司 一种提升硬铝合金钣金零件综合力学性能的制备方法
DE102021122383A1 (de) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
CN114790561B (zh) * 2021-12-27 2024-04-02 苏州普热斯勒先进成型技术有限公司 热冲压成型零件的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631880A (zh) * 2007-03-14 2010-01-20 安赛乐米塔尔法国公司 用于在工具中热成形或淬火的具有改善的延展性的钢
CN104831020A (zh) * 2015-04-03 2015-08-12 燕山大学 一种非均匀温度场下冲压淬火成形方法
CN106811783A (zh) * 2017-02-28 2017-06-09 北京汽车股份有限公司 镀锌钢板的加工方法、淬火镀锌装置及加工系统
US20180237878A1 (en) * 2017-02-17 2018-08-23 GM Global Technology Operations LLC Systems, methods and devices for hot forming of steel alloy parts
CN109433959A (zh) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 抗疲劳汽车零件及其制造方法
CN109433960A (zh) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 热冲压高强钢汽车车身覆盖件及其制造方法、制造系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333165A1 (de) * 2003-07-22 2005-02-24 Daimlerchrysler Ag Pressgehärtetes Bauteil und Verfahren zur Herstellung eines pressgehärteten Bauteils
KR100961371B1 (ko) * 2007-12-28 2010-06-07 주식회사 포스코 실러 접착성 및 내식성이 우수한 아연계 합금도금강판과 그제조방법
AT506790B1 (de) * 2008-11-20 2009-12-15 Boehler Edelstahl Gmbh & Co Kg Warmarbeitsstahl-legierung
CN101805821B (zh) * 2010-04-17 2012-03-21 上海交通大学 钢材冲压成形一体化处理方法
JP5902939B2 (ja) * 2011-12-13 2016-04-13 株式会社神戸製鋼所 熱間プレス成形品の製造方法
JP2013185184A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 熱間プレス成形体およびその製造方法
JP6003837B2 (ja) * 2013-07-25 2016-10-05 Jfeスチール株式会社 高強度プレス部品の製造方法
JP6191420B2 (ja) * 2013-12-02 2017-09-06 新日鐵住金株式会社 ホットスタンプ鋼材の製造方法及びホットスタンプ鋼材
CN103878237B (zh) * 2014-03-24 2015-04-15 华中科技大学 一种高强钢热冲压成形零件加工的方法
CN104384283A (zh) * 2014-09-25 2015-03-04 中南林业科技大学 一种22MnB5高强度薄钢板热冲压成形工艺
CN104588473A (zh) * 2014-11-28 2015-05-06 中国科学院金属研究所 高强塑积汽车零件热冲压碳配分一体化工艺
CN107127238B (zh) 2016-02-26 2019-12-27 宝山钢铁股份有限公司 一种锌系镀覆钢板或钢带的热冲压成型方法
JP2017172031A (ja) * 2016-03-24 2017-09-28 加藤 英明 亜鉛ホイスカーの発生を防止したメッキ品およびその製造方法
CN106391850A (zh) * 2016-08-31 2017-02-15 天津圣金特汽车配件有限公司 一种高强度钢板热冲压及模内淬火工艺
CN106282878B (zh) 2016-08-31 2018-09-04 大连理工大学 一种热镀锌温成形高强度中锰钢件的制备方法
CN206266709U (zh) * 2016-12-17 2017-06-20 宜兴市同盛金属带材有限公司 一种高强度耐腐蚀电镀锌钢带
CN106853338A (zh) * 2016-12-30 2017-06-16 海宁英和金属制品有限公司 一种高强度防腐板金
CN108505056A (zh) * 2017-07-18 2018-09-07 万向钱潮股份有限公司 一种高耐腐蚀表面处理方法
CN107475623A (zh) * 2017-08-15 2017-12-15 苏州普热斯勒先进成型技术有限公司 一种热成形高强钢及其加工方法
CN109821951B (zh) 2018-12-06 2020-07-21 苏州普热斯勒先进成型技术有限公司 一种耐腐蚀热冲压零件的制备方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631880A (zh) * 2007-03-14 2010-01-20 安赛乐米塔尔法国公司 用于在工具中热成形或淬火的具有改善的延展性的钢
CN104831020A (zh) * 2015-04-03 2015-08-12 燕山大学 一种非均匀温度场下冲压淬火成形方法
US20180237878A1 (en) * 2017-02-17 2018-08-23 GM Global Technology Operations LLC Systems, methods and devices for hot forming of steel alloy parts
CN106811783A (zh) * 2017-02-28 2017-06-09 北京汽车股份有限公司 镀锌钢板的加工方法、淬火镀锌装置及加工系统
CN109433959A (zh) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 抗疲劳汽车零件及其制造方法
CN109433960A (zh) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 热冲压高强钢汽车车身覆盖件及其制造方法、制造系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441200B2 (en) 2018-12-06 2022-09-13 Suzhou Pressler Advanced Forming Technologies Co., Ltd. Method and device for preparing corrosion-resistant hot stamping part
CN114381580A (zh) * 2020-10-19 2022-04-22 宝山钢铁股份有限公司 一种高耐蚀耐候钢的罩式退火工艺及制造方法
CN114381580B (zh) * 2020-10-19 2023-12-12 宝山钢铁股份有限公司 一种高耐蚀耐候钢的罩式退火工艺及制造方法

Also Published As

Publication number Publication date
US11441200B2 (en) 2022-09-13
US20210254189A1 (en) 2021-08-19
CN109821951B (zh) 2020-07-21
DE112019003814T5 (de) 2021-04-29
CN109821951A (zh) 2019-05-31
JP2022513740A (ja) 2022-02-09
JP7122045B2 (ja) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2020113844A1 (zh) 一种耐腐蚀热冲压零件的制备方法及装置
EP1439240B1 (en) Method for hot-press forming a plated steel product
CN104520464A (zh) 热成形用锌系镀覆钢板
CN101144162A (zh) 热压成型方法,其电镀钢材及其制备方法
CN101082132A (zh) 一种带钢连续热镀锌/铝/铝锌的生产工艺
WO2006006696A1 (ja) 耐食性に優れた高強度焼き入れ成形体およびその製造方法
KR20160055858A (ko) 부식에 대한 보호를 제공하는 금속성 코팅이 제공된 강 부품의 제조 방법
KR20230098326A (ko) Fe계 전기 도금 강판 및 합금화 용융 아연 도금 강판, 그리고 이들의 제조 방법
JP2970445B2 (ja) Si添加高張力鋼材の溶融亜鉛めっき方法
JP2004323944A (ja) 焼入用溶融亜鉛系めっき鋼板とその製造方法及び用途
JP2964911B2 (ja) P添加高張力鋼材の合金化溶融亜鉛めっき方法
JP2014114489A (ja) 溶融亜鉛めっき鋼板の製造方法
JPS5945757B2 (ja) 片面被覆亜鉛メツキ鋼板の製造法
JPH0238549A (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP3931859B2 (ja) 熱間成形用亜鉛系めっき鋼材と熱間成形方法
JPH05106001A (ja) 珪素含有鋼板の溶融亜鉛めつき方法
JPH0797670A (ja) 珪素含有鋼板の溶融亜鉛めっき方法
JP2002194518A (ja) 溶接性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP5644059B2 (ja) 合金化溶融亜鉛めっき鋼板及びその製造方法
JPH07243012A (ja) 表面外観に優れた合金化溶融Znめっき鋼板の製造方法
JP4855290B2 (ja) 溶融亜鉛メッキ鋼板および合金化溶融亜鉛メッキ鋼板の製造方法
JPH02236263A (ja) 低温加熱、還元省略型の亜鉛又は亜鉛系合金の溶融めっき方法
JP3461684B2 (ja) ラミネート溶接缶用鋼板の製造方法
JPH0688184A (ja) 溶融めっき鋼板の製造方法
JPH0211656B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532412

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19894291

Country of ref document: EP

Kind code of ref document: A1