WO2020111025A1 - セルロースナノファイバー含有塗工層を備える紙 - Google Patents

セルロースナノファイバー含有塗工層を備える紙 Download PDF

Info

Publication number
WO2020111025A1
WO2020111025A1 PCT/JP2019/046064 JP2019046064W WO2020111025A1 WO 2020111025 A1 WO2020111025 A1 WO 2020111025A1 JP 2019046064 W JP2019046064 W JP 2019046064W WO 2020111025 A1 WO2020111025 A1 WO 2020111025A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
coating layer
cellulose
starch
cnf
Prior art date
Application number
PCT/JP2019/046064
Other languages
English (en)
French (fr)
Inventor
詩織 柿木
遼 外岡
清 畠山
吉松 丈博
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to AU2019390849A priority Critical patent/AU2019390849A1/en
Priority to CN201980070599.7A priority patent/CN113039325A/zh
Priority to JP2020557716A priority patent/JP7425743B2/ja
Publication of WO2020111025A1 publication Critical patent/WO2020111025A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/34Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/52Cellulose; Derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/54Starch

Definitions

  • the present invention relates to paper provided with a coating layer containing cellulose nanofibers.
  • Patent Document 1 discloses a printing paper obtained by coating or impregnating paper with a paper-making additive composed of cellulose nanofibers.
  • the paper of Patent Document 1 has excellent air permeation resistance, ink receptivity, and strike-through prevention.
  • Patent Document 1 does not describe these properties and workability.
  • an object of the present invention is to provide a paper having high printing gloss and surface strength.
  • a paper having a base paper and a coating layer Paper in which the coating layer contains starch and cellulose nanofibers.
  • the coating layer is a clear coating layer, The paper according to (1) or (2), wherein the weight ratio of the thermochemically modified starch and the cellulose nanofibers is 350:1 to 67:1.
  • thermochemically modified starch is selected from the group consisting of ammonium persulfate modified starch, urea/acid modified starch, and combinations thereof.
  • the cellulose nanofiber is an anion-modified cellulose nanofiber.
  • the cellulose nanofibers have a B-type viscosity (60 rpm, 20° C.) of 500 to 7,000 mPa ⁇ s when formed into an aqueous dispersion having a concentration of 1% (w/v), (1) to (9)
  • the paper described in any of.
  • the present invention can provide a paper having high print gloss and surface strength.
  • the paper of the present invention has a coating layer containing starch and CNF on one or both sides of the base paper.
  • the paper of the invention comprises a clear coating layer containing starch and CNF
  • the paper of the invention comprises a pigment coating layer containing starch and CNF.
  • “X to Y” includes the extreme values X and Y.
  • Paper with a clear coating layer containing starch and CNF (first aspect)
  • Cellulose Nanofibers Cellulose nanofibers (also referred to as “CNF”) are single microfibrils of cellulose obtained by defibrating a cellulosic raw material, and have an average fiber diameter of less than 500 nm.
  • the CNF is preferably chemically modified.
  • the chemically modified CNF can be produced by chemically modifying a cellulosic material to prepare chemically modified cellulose and mechanically defibrating it.
  • the cellulose based raw material is not particularly limited, and examples thereof include those derived from plants, animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (acetobacter)), and microbial products.
  • plant-derived materials include wood, bamboo, hemp, jute, kenaf, agricultural land waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp ( LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, waste paper, etc.).
  • the cellulose raw material may be any or a combination of these, but is preferably plant- or microorganism-derived cellulose fiber, more preferably plant-derived cellulose fiber.
  • Chemical modification means introducing a functional group into the cellulosic raw material, and preferably introducing an anionic group.
  • anionic group include acid groups such as a carboxyl group, a carboxyl group-containing group, a phosphoric acid group, and a phosphoric acid group-containing group.
  • carboxyl group-containing group include -R-COOH (R is an alkylene group having 1 to 3 carbon atoms) and -OR-COOH (R is an alkylene group having 1 to 3 carbon atoms).
  • the phosphoric acid group-containing group include a polyphosphoric acid group, a phosphorous acid group, a phosphonic acid group, and a polyphosphonic acid group.
  • these acid groups may be introduced in the form of a salt (for example, a carboxylate group (—COOM, M is a metal atom)).
  • a salt for example, a carboxylate group (—COOM, M is a metal atom
  • the chemical modification is preferably oxidation or etherification.
  • Oxidized cellulose is obtained by oxidizing the cellulose raw material.
  • the oxidation method is not particularly limited, as an example, the cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a substance selected from the group consisting of bromide, iodide and a mixture thereof. There is a method of doing. According to this method, the primary hydroxyl group at the C6 position of the glucopyranose ring on the surface of cellulose is selectively oxidized to generate a group selected from the group consisting of aldehyde groups, carboxyl groups and carboxylate groups.
  • the concentration of the cellulose raw material during the reaction is not particularly limited, but is preferably 5% by weight or less.
  • An N-oxyl compound is a compound capable of generating a nitroxy radical.
  • the nitroxyl radical include 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl
  • any compound can be used as long as it is a compound that promotes the desired oxidation reaction.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material. For example, 0.01 mmol or more is preferable, and 0.02 mmol or more is more preferable with respect to 1 g of absolutely dried cellulose.
  • the upper limit is preferably 10 mmol or less, more preferably 1 mmol or less, and further preferably 0.5 mmol or less. Therefore, the amount of the N-oxyl compound used is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, still more preferably 0.02 to 0.5 mmol, per 1 g of absolutely dry cellulose.
  • Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water, such as sodium bromide.
  • iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected within a range that can accelerate the oxidation reaction.
  • the total amount of bromide and iodide is preferably 0.1 mmol or more, and more preferably 0.5 mmol or more, with respect to 1 g of absolutely dried cellulose.
  • the upper limit of the amount is preferably 100 mmol or less, more preferably 10 mmol or less, still more preferably 5 mmol or less. Therefore, the total amount of bromide and iodide is preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, still more preferably 0.5 to 5 mmol, per 1 g of absolutely dried
  • the oxidizing agent is not particularly limited, but examples thereof include halogen, hypohalous acid, halogenous acid, perhalogenic acid, salts thereof, halogen oxides, peroxides and the like. Of these, hypohalous acid or a salt thereof is preferable, hypochlorous acid or a salt thereof is more preferable, and sodium hypochlorite is further preferable, because it is inexpensive and has a low environmental load.
  • the amount of the oxidizing agent used is preferably 0.5 mmol or more, more preferably 1 mmol or more, still more preferably 3 mmol or more, with respect to 1 g of absolutely dried cellulose.
  • the upper limit of the amount is preferably 500 mmol or less, more preferably 50 mmol or less, and further preferably 25 mmol or less. Therefore, the amount of the oxidizing agent used is preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and particularly preferably 3 to 10 mmol, relative to 1 g of absolutely dry cellulose.
  • the amount of the oxidizing agent used is preferably 1 mol or more per 1 mol of the N-oxyl compound, and the upper limit is preferably 40 mol. Therefore, the amount of the oxidizing agent used is preferably 1 to 40 mol per 1 mol of the N-oxyl compound.
  • the conditions such as pH and temperature during the oxidation reaction are not particularly limited, and generally the oxidation reaction proceeds efficiently even under relatively mild conditions.
  • the reaction temperature is preferably 4°C or higher, more preferably 15°C or higher.
  • the upper limit of the temperature is preferably 40°C or lower, more preferably 30°C or lower. Therefore, the reaction temperature is preferably 4 to 40° C., and may be about 15 to 30° C., that is, room temperature.
  • the pH of the reaction solution is preferably 8 or higher, more preferably 10 or higher.
  • the upper limit of pH is preferably 12 or less, more preferably 11 or less. Therefore, the pH of the reaction solution is preferably 8 to 12, more preferably about 10 to 11.
  • a carboxyl group is generated in cellulose as the oxidation reaction progresses, so that the pH of the reaction solution tends to decrease. Therefore, in order to allow the oxidation reaction to proceed efficiently, it is preferable to maintain the pH of the reaction solution within the above range by adding an alkaline solution such as an aqueous solution of sodium hydroxide. Water is preferable as the reaction medium for the oxidation because it is easy to handle and side reactions are unlikely to occur.
  • the reaction time in oxidation can be appropriately set according to the degree of progress of oxidation, and is usually 0.5 hours or more, and the upper limit thereof is usually 6 hours or less, preferably 4 hours or less. Therefore, the reaction time in the oxidation is usually 0.5 to 6 hours, for example 0.5 to 4 hours.
  • the oxidation may be carried out in two or more steps. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first step reaction again under the same or different reaction conditions, the reaction efficiency due to the salt by-produced in the first step reaction is not affected. Can be well oxidized.
  • ozone oxidation Another example of the carboxylation (oxidation) method is ozone oxidation.
  • This oxidation reaction oxidizes at least the 2-position and 6-position hydroxyl groups of the glucopyranose ring constituting the cellulose, and also causes the decomposition of the cellulose chain.
  • Ozone treatment is usually performed by bringing a gas containing ozone into contact with a cellulose raw material.
  • the ozone concentration in the gas is preferably 50 g/m 3 or more.
  • the upper limit is preferably 250 g/m 3 or less, more preferably 220 g/m 3 or less. Therefore, the ozone concentration in the gas is preferably 50 to 250 g/m 3 , and more preferably 50 to 220 g/m 3 .
  • the amount of ozone added is preferably 0.1% by weight or more, and more preferably 5% by weight or more, based on 100% by weight of the solid content of the cellulose raw material.
  • the upper limit of the amount of ozone added is usually 30% by weight or less. Therefore, the amount of ozone added is preferably 0.1 to 30% by weight, and more preferably 5 to 30% by weight, based on 100% by weight of the solid content of the cellulose raw material.
  • the ozone treatment temperature is usually 0° C. or higher, preferably 20° C. or higher, and the upper limit is usually 50° C. or lower. Therefore, the ozone treatment temperature is preferably 0 to 50°C, more preferably 20 to 50°C.
  • the ozone treatment time is usually 1 minute or longer, preferably 30 minutes or longer, and the upper limit is usually 360 minutes or shorter. Therefore, the ozone treatment time is usually about 1 to 360 minutes, preferably about 30 to 360 minutes.
  • the conditions of the ozone treatment are within the above range, it is possible to prevent the cellulose from being excessively oxidized and decomposed, and the yield of the oxidized cellulose becomes good.
  • the ozone-treated cellulose may be subjected to an additional oxidization treatment using an oxidant.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, but examples thereof include chlorine dioxide, chlorine-based compounds such as sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
  • Examples of the method of additional oxidation treatment include a method in which these oxidizing agents are dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and the cellulose raw material is dipped in the oxidizing agent solution.
  • the amounts of carboxyl group, carboxylate group and aldehyde group contained in the oxidized cellulose nanofibers can be adjusted by controlling the oxidizing conditions such as the addition amount of the oxidizing agent and the reaction time.
  • the amount of carboxyl groups in the oxidized cellulose thus measured is preferably 0.1 mmol/g or more, more preferably 0.5 mmol/g or more, and even more preferably 0.8 mmol/g or more with respect to the absolute dry weight.
  • the upper limit of the amount is preferably 3.0 mmol/g or less, more preferably 2.5 mmol/g or less, and further preferably 2.0 mmol/g or less. Therefore, the amount is preferably 0.1 to 3.0 mmol/g, more preferably 0.5 to 2.5 mmol/g, and further preferably 0.8 to 2.0 mmol/g.
  • Etherification includes carboxymethyl (ether), methyl (ether), ethyl (ether), cyanoethyl (ether), hydroxyethyl (ether), hydroxypropyl (ether), ethyl hydroxyethyl (ether) And hydroxypropylmethyl (ether) conversion.
  • the method of carboxymethylation will be described below as an example.
  • the degree of carboxymethyl substitution per anhydroglucose unit in carboxymethylated cellulose or CNF obtained by carboxymethylation is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.10 or more.
  • the upper limit of the degree of substitution is preferably 0.50 or less, more preferably 0.40 or less, still more preferably 0.35 or less. Therefore, the carboxymethyl group substitution degree is preferably 0.01 to 0.50, more preferably 0.05 to 0.40, and further preferably 0.10 to 0.30.
  • the carboxymethylation method is not particularly limited, and examples thereof include a method in which a cellulose raw material as a bottoming raw material is mercerized and then etherified.
  • a solvent is usually used in the reaction.
  • the solvent include water, alcohol (for example, lower alcohol), and a mixed solvent thereof.
  • the lower alcohol include methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, and tertiary butanol.
  • the lower limit thereof is usually 60% by weight or more and the upper limit thereof is 95% by weight or less, preferably 60 to 95% by weight.
  • the amount of the solvent is usually 3 times the weight of the cellulose raw material.
  • the upper limit of the amount is not particularly limited, but is 20 times by weight. Therefore, the amount of the solvent is preferably 3 to 20 times by weight.
  • Mercerization is usually performed by mixing bottoming raw material and mercerizing agent.
  • the mercerizing agent include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the amount of the mercerization agent used is preferably 0.5 times or more, more preferably 1.0 times or more, and even more preferably 1.5 times or more, per anhydroglucose residue of the bottoming raw material.
  • the upper limit of the amount is usually 20 times mol or less, preferably 10 times mol or less, and more preferably 5 times mol or less. Therefore, the amount of the mercerizing agent used is preferably 0.5 to 20 times by mole, more preferably 1.0 to 10 times by mole, and even more preferably 1.5 to 5 times by mole.
  • the reaction temperature for mercerization is usually 0°C or higher, preferably 10°C or higher, and the upper limit is usually 70°C or lower, preferably 60°C or lower. Therefore, the reaction temperature is usually 0 to 70°C, preferably 10 to 60°C.
  • the reaction time is usually 15 minutes or longer, preferably 30 minutes or longer.
  • the upper limit of the time is usually 8 hours or less, preferably 7 hours or less. Therefore, the reaction time is usually 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • the etherification reaction is usually performed by adding a carboxymethylating agent to the reaction system after mercerization.
  • the carboxymethylating agent include sodium monochloroacetate.
  • the amount of the carboxymethylating agent added is usually preferably 0.05 times or more, more preferably 0.5 times or more, even more preferably 0.8 times or more, per glucose residue of the cellulose raw material.
  • the upper limit of the amount is usually 10.0 times or less, preferably 5 times or less, more preferably 3 times or less, and therefore the amount is preferably 0.05 to 10.0 times by mole,
  • the amount is preferably 0.5 to 5, and more preferably 0.8 to 3 times mol.
  • the reaction temperature is usually 30°C or higher, preferably 40°C or higher, and the upper limit is usually 90°C or lower, preferably 80°C or lower. Therefore, the reaction temperature is usually 30 to 90°C, preferably 40 to 80°C.
  • the reaction time is usually 30 minutes or longer, preferably 1 hour or longer, and the upper limit thereof is usually 10 hours or shorter, preferably 4 hours or shorter. Therefore, the reaction time is usually 30 minutes to 10 hours, preferably 1 hour to 4 hours.
  • the reaction solution may be stirred during the carboxymethylation reaction if necessary.
  • the carboxymethyl substitution degree of glucose unit of carboxymethyl cellulose is measured by the following method, for example. That is, 1) About 2.0 g of carboxymethylated cellulose (absolutely dry) is precisely weighed and placed in a 300 mL Erlenmeyer flask with a stopper. 2) Add 100 mL of a liquid containing 100 mL of special grade concentrated nitric acid to 1000 mL of nitric acid methanol, and shake for 3 hours to convert carboxymethyl cellulose salt (carboxymethylated cellulose) into hydrogen-type carboxymethylated cellulose.
  • Mechanical defibration CNF is obtained by mechanically defibrating chemically modified cellulose.
  • the defibration treatment may be performed once or plural times. It is preferable to subject the mixture containing the chemically modified cellulose and the dispersion medium to the defibration treatment. Water is preferred as the dispersion medium.
  • the apparatus used for defibration is not particularly limited, and examples thereof include high-speed rotation type, colloid mill type, high pressure type, roll mill type, ultrasonic type, and other types of devices, and high pressure or ultra high pressure homogenizers are preferable, and wet high pressure is used. Alternatively, an ultrahigh pressure homogenizer is more preferable.
  • the device is preferably capable of applying a strong shearing force to the chemically modified cellulose.
  • the pressure that can be applied by the device is preferably 50 MPa or more, more preferably 100 MPa or more, and further preferably 140 MPa or more.
  • the apparatus is preferably a wet high pressure or ultra high pressure homogenizer. Thereby, defibration can be efficiently performed.
  • the solid content concentration of the modified cellulose in the dispersion liquid is usually preferably 0.1% by weight or more, more preferably 0.2% by weight or more, It is more preferably 0.3% by weight or more.
  • the upper limit of the concentration is usually preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 10% by weight or less. This makes it possible to maintain fluidity.
  • the average fiber diameter of CNF is usually about 2 nm or more and less than 500 nm in terms of length-weighted average fiber diameter, but is preferably 2 to 100 nm.
  • the upper limit is more preferably 50 nm or less.
  • the average fiber length is preferably 50 to 2000 nm in terms of length-weighted average fiber length.
  • an atomic force microscope (AFM) or a transmission electron microscope (TEM) is used for the length-weighted average fiber diameter and the length-weighted average fiber length. It is obtained by observing each fiber.
  • the average aspect ratio of nanofibers is usually 10 or more.
  • the upper limit is not particularly limited, but is usually 1000 or less.
  • the amount of carboxyl groups in CNF and the degree of substitution per glucose unit are preferably the same as those of chemically modified cellulose.
  • a B-type viscosity of 500 to 7,000 mPa ⁇ s when an aqueous dispersion having a concentration of 1% (w/v) (that is, an aqueous dispersion containing 1 g of CNF (dry weight) in 100 mL of water) is used. It is preferable to use CNF which gives (60 rpm, 20° C.). It is an index for specifying characteristics such as the amount of functional groups, average fiber length, and average fiber diameter of the B-type viscosity CNF, and is appropriately adjusted according to the application.
  • the B type viscosity of an aqueous dispersion of CNF can be measured by a known method. For example, it can be measured using a Toki Sangyo Co., Ltd. VISCOMETER TV-10 viscometer. The temperature at the time of measurement is 20° C., and the rotation speed of the rotor is 60 rpm.
  • the CNF aqueous dispersion of the present invention has thixotropic properties, and has the property that the viscosity decreases by stirring and applying shear stress, and the viscosity increases and gels in a stationary state, so it was sufficiently stirred. It is preferable to measure the B-type viscosity in the state.
  • Starch Starch is a polymer of D-glucose, preferably a mixture of amylose and amylopectin.
  • the starch also includes a polymer compound derived from starch.
  • the polymer include those obtained by modifying, modifying, and processing starch, and among them, thermochemically modified starch is preferable.
  • thermochemically modified starch include starch that is gelatinized and oxidized instantaneously by heating in the presence of an oxidizing agent. Such a thermochemically modified starch is characterized by having a small amount of functional groups. Of these, ammonium persulfate-modified starch using ammonium persulfate as an oxidizing agent is preferable.
  • thermochemically modified starches include urea/acid modified starches modified with urea and acid.
  • the urea/acid-modified starch is produced, for example, by the method described in JP2004-238523A.
  • the ammonium persulfate modified starch and the urea/acid modified starch may be used in combination.
  • Base paper is a base layer of paper and contains pulp as a main component.
  • the pulp material of the base paper is not particularly limited, and mechanical pulp such as ground pulp (GP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), deinked pulp (DIP), softwood kraft pulp (NKP), softwood Chemical pulp such as kraft pulp (LKP) can be used.
  • GP ground pulp
  • TMP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • DIP deinked pulp
  • KP softwood kraft pulp
  • LBP softwood Chemical pulp
  • the filler includes heavy calcium carbonate, light calcium carbonate, clay, silica, light calcium carbonate-silica composite, kaolin, calcined kaolin, deramie kaolin, magnesium carbonate, barium carbonate, barium sulfate, and hydroxide.
  • Alumina, calcium hydroxide, magnesium hydroxide, zinc hydroxide, zinc oxide, titanium oxide, inorganic filler such as amorphous silica produced by neutralizing sodium silicate with mineral acid, urea-formalin resin, melamine-based Examples include organic fillers such as resins, polystyrene resins, and phenol resins. These may be used alone or in combination.
  • organic fillers such as resins, polystyrene resins, and phenol resins. These may be used alone or in combination.
  • calcium carbonate and light calcium carbonate which are typical fillers in neutral papermaking and alkaline papermaking and have high opacity, are preferable.
  • the content of the filler in the base paper is preferably 5 to 25% by weight, more preferably 6 to 20% by weight, based on the weight of the base paper. In the present invention, the decrease in paper strength is suppressed even if the ash content in the paper is high, so the content of the filler in the base paper is more preferably 10% by weight or
  • bulking agents dry paper strength improvers, wet paper strength improvers, drainage improvers, dyes, neutral sizing agents, etc. may be used as internal additives.
  • the base paper is manufactured by a known papermaking method.
  • a Fourdrinier paper machine a gap former type paper machine, a hybrid former type paper machine, an on-top former type paper machine, a round net paper machine, etc. can be used, but the invention is not limited thereto.
  • the base paper may be single layer or multi-layer.
  • the base paper may include the CNF.
  • some of the plurality of paper layers may contain CNF, and all the layers may contain CNF.
  • the base paper contains CNF, the content thereof is preferably 0.0001% by weight or more, more preferably 0.0003% by weight or more, and further preferably 0.001% by weight or more, based on the pulp weight of the entire base paper.
  • the starch:CNF (weight ratio) in the clear coating layer is preferably 1000:1 to 20:1, more preferably 350:1 to 67:1, and further preferably 300. :1 to 67:1.
  • weight ratio is in this range, the film forming property of the clear coating layer mainly composed of starch is improved, and as a result, high ink mileage, printing gloss and surface strength can be achieved.
  • the coating amount of the clear coating layer is preferably 0.01 to 3.0 g/m 2 and more preferably 0.1 to 2.0 g/m 2 in terms of solid content on one side.
  • a coater coating machine
  • a clear coating liquid containing starch as a main component is used as a base paper. It can be formed by coating on top.
  • the clear coating liquid when coating with a gate roll coater, has a B-type viscosity (30° C., 60 rpm) of 5 to 450 mPa ⁇ s at a solid content concentration of 5 wt% from the viewpoint of coating suitability. Is preferable, and more preferably 10 to 300 mPa ⁇ s.
  • the B-type viscosity of the clear coating liquid is less than 5 mPa ⁇ s, the viscosity is too low to secure the coating amount, and if it exceeds 450 mPa ⁇ s, boiling occurs. Operability may deteriorate.
  • the solid content concentration of the clear coating liquid is adjusted so that the above concentration can be achieved, but it is preferably 2 to 14% by weight.
  • the amount of CNF derived from the clear coating layer is preferably 1.0 ⁇ 10 ⁇ 5 to 0.1 g/m 2 , more preferably 1.0 ⁇ 10 ⁇ 4 to 5.0 ⁇ 10 ⁇ 2 g per side. /M 2 .
  • the paper in this embodiment may have a pigment coating layer.
  • the pigment coating layer is a layer containing a white pigment as a main component.
  • white pigments commonly used pigments such as calcium carbonate, kaolin, clay, calcined kaolin, amorphous silica, zinc oxide, aluminum oxide, satin white, aluminum silicate, magnesium silicate, magnesium carbonate, titanium oxide and plastic pigments.
  • the calcium carbonate include light calcium carbonate and heavy calcium carbonate.
  • the pigment coating layer contains an adhesive.
  • the adhesive include proteins such as the starch, casein, soybean protein, and synthetic protein, polyvinyl alcohol, cellulose derivatives such as carboxymethyl cellulose and methyl cellulose, styrene-butadiene copolymer, and conjugated diene of methyl methacrylate-butadiene copolymer.
  • examples thereof include polymer latexes, acrylic polymer latexes, vinyl polymer latexes such as ethylene-vinyl acetate copolymers, and the like. These can be used alone or in combination of two or more, and it is preferable to use a starch-based adhesive and a styrene-butadiene copolymer together.
  • the pigment coating layer may contain various auxiliary agents such as a dispersant, a thickener, an antifoaming agent, a colorant, an antistatic agent and an antiseptic agent, which are used in the general paper manufacturing field, and contain CNF. You may.
  • the amount of CNF is preferably 1 ⁇ 10 ⁇ 3 to 1 part by weight with respect to 100 parts by weight of the pigment. Within the above range, it is possible to obtain a pigment coating liquid having appropriate water retention without significantly increasing the viscosity of the coating liquid.
  • the pigment coating layer in this aspect may be the pigment coating layer described in the second aspect.
  • the pigment coating layer can be provided by coating the coating liquid on one side or both sides of the base paper by a known method. From the viewpoint of coating suitability, the solid content concentration in the coating liquid is preferably about 30 to 70% by weight.
  • the pigment coating layer may be one layer, two layers, or three or more layers.
  • the coating amount of the pigment coating layer may be appropriately adjusted depending on the application, but in the case of a coated paper for printing, the total amount per one side is 5 g/m 2 or more, and preferably 10 g/m 2 or more. ..
  • the upper limit is preferably 30 g/m 2 or less, and more preferably 25 g/m 2 or less.
  • the paper in this embodiment further has a pigment coating layer, it is possible to obtain a pigment-coated paper excellent in surface strength and printing glossiness in addition to high ink mileage.
  • the paper of this embodiment is characterized by having high ink mileage, printing gloss, and surface strength and being easy to manufacture.
  • the basis weight of the paper of this embodiment measured according to JIS P 8124, is usually about 20 to 500 g/m 2 , and preferably 30 to 250 g/m 2 .
  • the paper according to this embodiment has a step of applying a clear coating solution containing CNF on the base paper prepared by a known method. It is preferably manufactured. Specifically, the paper of this aspect is preferably manufactured by a method including the following steps. Step 1: Step of preparing a clear coating solution containing starch and CNF Step 2: Step of forming a clear coating layer on the base paper by using the clear coating solution
  • step 1 The starch and CNF used in step 1 are as described above.
  • the method for preparing the coating liquid and its characteristics are also as described above.
  • the coating in step 2 can also be performed as described above.
  • the paper of this embodiment may be manufactured by a method including the following step 3 in addition to the above-mentioned steps 1 and 2.
  • Step 3 a step of forming a pigment coating layer containing a pigment and an adhesive on a clear coating layer containing starch and CNF
  • the starch and CNF used as the pigment coating liquid in the second embodiment You may use the pigment coating liquid which has.
  • Paper provided with a pigment coating layer containing starch and CNF (second aspect) (1) CNF, Starch, Base Paper
  • CNF, starch, and base paper described in the first embodiment can be used.
  • the paper of this embodiment has a pigment coating layer containing starch and CNF on one or both sides of the base paper.
  • the pigment coating layer is a layer containing a white pigment as a main component.
  • the white pigment the one described in the first embodiment can be used.
  • the weight ratio of starch:CNF in the pigment coating layer is not limited, but is preferably 300:1 to 2:1. When the weight ratio is within this range, the film forming property of the pigment coating layer is improved, and as a result, high printing gloss and surface strength can be achieved. From this viewpoint, the weight ratio is more preferably 200:1 to 5:1.
  • the pigment coating layer may contain an adhesive other than starch.
  • the adhesive is as described in the first aspect.
  • the pigment coating layer may contain various auxiliaries such as a dispersant, a thickener, an antifoaming agent, a colorant, an antistatic agent and a preservative, which are used in the general paper manufacturing field.
  • auxiliaries such as a dispersant, a thickener, an antifoaming agent, a colorant, an antistatic agent and a preservative, which are used in the general paper manufacturing field.
  • the pigment coating layer can be provided by coating the coating liquid on one side or both sides of the base paper by a known method. From the viewpoint of coating suitability, the solid content concentration in the coating liquid is preferably about 30 to 70% by weight.
  • the pigment coating layer may be one layer, two layers, or three or more layers.
  • the coating amount of the pigment coating layer may be appropriately adjusted depending on the application, but in the case of a coated paper for printing, the total amount per one side is 1 g/m 2 or more, preferably 5 g/m 2 or more. ..
  • the upper limit is preferably 30 g/m 2 or less, and more preferably 20 g/m 2 or less.
  • the amount of CNF derived from the pigment coating layer is preferably 1.0 ⁇ 10 ⁇ 5 to 0.1 g/m 2 , more preferably 1.0 ⁇ 10 ⁇ 4 to 5.0 ⁇ 10 ⁇ 2 g per one side. /M 2 .
  • the paper of this embodiment may have a clear coating layer on one or both sides of the base paper.
  • the clear coating layer is formed from a clear coating liquid containing a water-soluble polymer such as various starch, polyacrylamide, polyvinyl alcohol, etc. as a main component.
  • the clear coating layer may be the clear coating layer containing starch and CNF described in the first embodiment. Since the clear coating layer has high film forming properties, high ink mileage, printing gloss, and surface strength can be achieved.
  • the coating amount of the clear coating layer in this embodiment is preferably 0.01 to 3.0 g/m 2 and more preferably 0.1 to 2.0 g/m 2 in terms of solid content on one side.
  • For clear coating for example, use a size press, gate roll coater, pre-metering size press, curtain coater, spray coater, or other coater (coating machine) to coat the clear coating liquid on the base paper. Can be formed with.
  • the clear coating liquid has a B-type viscosity (30° C., 60 rpm) of 5 to 450 mPa ⁇ s at a solid content concentration of 5 wt% from the viewpoint of coating suitability. Is preferable, and more preferably 10 to 300 mPa ⁇ s.
  • the B-type viscosity of the clear coating liquid is less than 5 mPa ⁇ s, the viscosity is too low to secure the coating amount, and if it exceeds 450 mPa ⁇ s, boiling occurs. Operability may deteriorate.
  • the solid content concentration of the clear coating liquid is adjusted so that the above concentration can be achieved, but it is preferably 2 to 14% by weight. Further, the clear coating layer in this aspect may be the clear coating layer described in the first aspect.
  • the basis weight of the paper of this aspect measured according to JIS P 8124 is usually about 10 to 500 g/m 2 , and preferably 30 to 300 g/m 2 .
  • the paper of this embodiment has a step of applying a pigment coating solution containing CNF on a base paper prepared by a known method. It is preferably manufactured. Specifically, the paper of this aspect is preferably manufactured by a method including the following steps. Step 1: Step of preparing a pigment coating solution containing pigment, starch and CNF Step 2: Step of forming a pigment coating layer on the base paper by using the pigment coating solution
  • step 1 The starch and CNF used in step 1 are as described above.
  • the method for preparing the coating liquid and its characteristics are also as described above.
  • the coating in step 2 can also be performed as described above.
  • the paper of this embodiment may be manufactured by a method including the following step 3 in addition to the above-mentioned steps 1 and 2.
  • Step 3 Step of Forming Clear Coating Layer on Base Paper Before Step 2
  • the clear coating solution containing starch and CNF used in the first embodiment may be used as the clear coating solution. ..
  • Example A1 ⁇ CNF> Bleached unbeaten kraft pulp (85% whiteness: manufactured by Nippon Paper Industries Co., Ltd.) derived from coniferous wood is mixed with TEMPO (manufactured by Sigma Aldrich) (39 mg) (0.05 mmol based on 1 g of dried cellulose). 514 mg of sodium bromide (1.0 mmol per 1 g of absolutely dried cellulose) was added to 500 mL of an aqueous solution, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous solution of sodium hypochlorite was added to the reaction system so that sodium hypochlorite was 5.5 mmol/g, and the oxidation reaction was started at room temperature.
  • TEMPO manufactured by Sigma Aldrich
  • Table 1 shows the B-type viscosity at 30° C. and 60 rpm when the solid content concentration of the clear coating liquid 1 is 5% by weight.
  • ⁇ Paper> 0.5 wt% sulfuric acid band, 0.77 wt% cationic starch, and 0.05 wt% paper strength agent were added to LBKP (manufactured by Nippon Paper Industries Co., Ltd., cf360 ml).
  • LBKP manufactured by Nippon Paper Industries Co., Ltd., cf360 ml.
  • a base paper was manufactured by a paper machine using the obtained pulp slurry.
  • the clear coating liquid 1 was applied to both sides of the base paper with a gate roll coater so that the solid content was 1.2 g/m 2 on one side, and the clear coating paper was dried by a conventional method. Obtained.
  • the paper was evaluated by the method described below. The results are shown in Table 1.
  • Example A1 A clear coated paper was produced in the same manner as in Example A1 except that CNF was not used.
  • Example A2 ⁇ Base paper> 0.7% by weight sulfuric acid band, 0.30% by weight cationic starch, and 0.06% by weight paper strength agent were added to LBKP (manufactured by Nippon Paper Industries Co., Ltd., c.s.f. 420 ml). To prepare a pulp slurry having a solid content concentration of 0.7% by weight. Using the obtained pulp slurry, a base paper having a basis weight of 34.5 g/m 2 was manufactured by a paper machine.
  • ⁇ Pigment coating liquid 1> To 100 parts by weight of heavy calcium carbonate, 2.0 parts by weight of latex and 6.7 parts by weight of oxidized starch were added as an adhesive to prepare a pigment coating solution having a solid content of 60% by weight.
  • ⁇ Pigment coated paper> A clear coating solution 1 similar to that used in Example A1 except that the weight ratio of starch:CNF was 60:1 was applied to the above-mentioned base paper with a gate roll coater so that the solid content was 0.2 g/m 2 per side.
  • the pigment coating liquid 1 was coated on both sides and dried by a conventional method.
  • the pigment coated paper was evaluated by the method described below. The results are shown in Table 1.
  • Example A3 A pigment-coated paper was produced in the same manner as in Example A2, except that the weight ratio of starch:CNF in the clear coating liquid 1 was changed as shown in Table 1.
  • Example A2 A pigment-coated paper was produced in the same manner as in Example A2 except that CNF was not used.
  • Example A4 A pigment-coated paper was produced in the same manner as in Example A2, except that the weight ratio of starch:CNF in the clear coating liquid 1 was changed as shown in Table 1.
  • Example A5 To the raw starch (unmodified starch), 0.1% by weight of ammonium persulfate was added as an oxidizing agent to prepare a starch slurry having a solid content of 25% by weight. This starch slurry was cooked at 150° C. using a jet cooker and subjected to thermochemical modification treatment, and after cooling, an aqueous sodium hydroxide solution was added to adjust the pH to 7, and water was further added to obtain a solid content concentration of 12% by weight. To obtain an ammonium persulfate-modified starch aqueous solution.
  • ⁇ Clear coating liquid 2> The aqueous solution of ammonium persulfate-modified starch prepared as described above was added to the aqueous dispersion of CNF prepared as described above to prepare a clear coating solution 2 having a starch:CNF weight ratio of 67:1.
  • Table 1 shows the B-type viscosity at 30° C. and 60 rpm when the solid content concentration of the clear coating liquid 2 is 5% by weight.
  • a pigment-coated paper was produced in the same manner as in Example A2, except that the clear coating liquid 2 was used instead of the clear coating liquid 1.
  • Examples A6 and A7 Pigment-coated papers were produced in the same manner as in Example A5, except that the weight ratio of starch:CNF in the clear coating liquid 2 was changed as shown in Table 1.
  • Example 1 Pigment-coated papers were produced in the same manner as in Example A2, except that the weight ratio of starch:CNF in the clear coating liquid 1 was changed as shown in Table 1.
  • the clear coated paper of the present invention had high ink gloss in addition to high printing gloss.
  • examples A1 to A3 and A5 to A12 using CNF which gives a dispersion having a specific viscosity workability during production was also good.
  • the pigment-coated paper obtained by further providing the pigment-coated layer on the clear-coated paper of the present invention had good printing gloss and surface strength in addition to high ink mileage.
  • Ink mileage is the number of copies that can be printed per unit ink amount.
  • the amount of ink on the paper surface per unit area required to obtain the same print density was defined as the coloring property, and this was evaluated as a simple index for ink mileage.
  • Good ink mileage means good color development with a small amount of ink on the paper surface.
  • solid printing is performed using the fürbau test printing machine (IGT), and after assuming that sheet-fed printing, the print density of the printed matter is measured with a spectrophotometer after the lapse of one night, and the total density is measured.
  • the weight difference between before and after printing of the removable print disk was defined as the amount of ink on the paper surface.
  • the amount of ink applied to the print disc By changing the amount of ink applied to the print disc, the relationship between the amount of ink on the paper surface and the print density was obtained, and the amount of ink on the paper surface required to obtain a predetermined density was calculated from the relational expression.
  • the printing pressure during measurement was 700 N, and the printing speed was 2.0 m/s.
  • Gate roll coater coating suitability (workability during manufacturing) The occurrence of boiling when the clear coating liquid was applied to the base paper with a gate roll coater was visually evaluated according to the following four stages. The following evaluation is preferably "A" or "B". A: Boiling did not occur, coating suitability (workability during manufacturing) was good B: Boiling occurred slightly, but coating suitability (workability during manufacturing) was generally good C: Boiling occurred, Coating suitability (workability during manufacturing) is slightly reduced D: Boiling occurs frequently and coating suitability (workability during manufacturing) is significantly reduced
  • Example B1 ⁇ CNF> Bleached unbeaten kraft pulp (85% whiteness: manufactured by Nippon Paper Industries Co., Ltd.) derived from coniferous wood is mixed with TEMPO (manufactured by Sigma Aldrich) (39 mg) (0.05 mmol based on 1 g of dried cellulose). 514 mg of sodium bromide (1.0 mmol per 1 g of absolutely dried cellulose) was added to 500 mL of an aqueous solution, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous solution of sodium hypochlorite was added to the reaction system so that sodium hypochlorite was 5.5 mmol/g, and the oxidation reaction was started at room temperature.
  • TEMPO manufactured by Sigma Aldrich
  • ⁇ Clear coating liquid 3> A clear coating liquid 3 containing 30% by weight of oxidized starch (SK20 manufactured by Nippon Corn Starch Co., Ltd.) was produced.
  • Pigment coating liquid 2 To 100.0 parts by weight of heavy calcium carbonate, 2.0 parts by weight of latex as an adhesive, 6.7 parts by weight of oxidized starch, and 0.2 parts by weight of CNF produced as described above were added to obtain a solid content of 60% by weight. Pigment Coating Liquid 2 was prepared.
  • ⁇ Base paper> 0.7% by weight sulfuric acid band, 0.30% by weight cationic starch, and 0.06% by weight paper strength agent were added to LBKP (manufactured by Nippon Paper Industries Co., Ltd., c.s.f. 420 ml).
  • LBKP manufactured by Nippon Paper Industries Co., Ltd., c.s.f. 420 ml.
  • a pulp slurry having a solid content concentration of 0.7% by weight.
  • a base paper having a basis weight of 34.5 g/m 2 was manufactured by a paper machine.
  • the clear coating liquid 3 was applied to both sides of the base paper so that the solid content was 0.2 g/m 2 per side, dried by a conventional method, and a clear coating layer was provided.
  • Pigment coating liquid 2 was coated on both sides and dried by a conventional method to obtain a pigment coated paper.
  • the paper was evaluated by the method described above. The results are shown in Table 2.
  • Example B2 Oxidized starch (SK20, manufactured by Nippon Corn Starch Co., Ltd.) was added to the CNF aqueous dispersion prepared as described above to prepare a clear coating solution 4 having a starch:CNF weight ratio of 30:1.
  • the B-type viscosity at 30° C. and 60 rpm when the solid content concentration of the clear coating liquid 4 was 5% by weight was 130 mPa ⁇ s.
  • a pigment-coated paper was obtained in the same manner as in Example B1 except that the clear coating liquid 4 was used.
  • Example B1 A pigment-coated paper was produced in the same manner as in Example B1 except that CNF was not used.
  • the pigment coated paper of the present invention had good printing gloss and surface strength in addition to high ink mileage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)

Abstract

原紙および塗工層を備える紙であって、前記塗工層が澱粉とセルロースナノファイバーを含む紙を提供する。前記澱粉は、好ましくは熱化学変性澱粉、より好ましくは過硫酸アンモニウム変性澱粉または尿素・酸変性澱粉である。

Description

セルロースナノファイバー含有塗工層を備える紙
 本発明は、セルロースナノファイバー含有塗工層を備える紙に関する。
 セルロースナノファイバーは新素材として期待されており種々の検討がなされている。例えば、特許文献1にはセルロースナノファイバーからなる製紙用添加剤を紙に塗工または含浸した印刷用紙が開示されている。特許文献1の紙は優れた透気抵抗、インキ着肉性、裏抜け防止性を備える。
特開2009-263850号公報
 紙には、印刷光沢、表面強度の特性が求められるが、特許文献1にはこれらの特性および作業性にかかる記載はない。かかる事情を鑑み、本発明は高い印刷光沢、および表面強度を備える紙を提供することを課題とする。
 前記課題は以下の本発明によって解決される。
(1)原紙および塗工層を備える紙であって、
 前記塗工層が澱粉とセルロースナノファイバーを含む紙。
(2)前記澱粉が熱化学変性澱粉である、(1)に記載の紙。
(3)前記塗工層がクリア塗工層であって、
 前記熱化学変性澱粉とセルロースナノファイバーの重量比が350:1~67:1である、(1)または(2)に記載の紙。
(4)前記クリア塗工層の上にさらに顔料塗工層を備える、(3)に記載の紙。
(5)前記塗工層が顔料塗工層である、(1)または(2)に記載の紙。
(6)前記熱化学変性澱粉が、過硫酸アンモニウム変性澱粉、尿素・酸変性澱粉、およびこれらの組合せからなる群より選択される、(2)~(5)のいずれかに記載の紙。
(7)前記セルロースナノファイバーがアニオン変性セルロースナノファイバーである、(1)~(6)のいずれかに記載の紙。
(8)前記セルロースナノファイバーが0.1~3.0mmol/gのカルボキシル基を有する、(1)~(7)のいずれかに記載の紙。
(9)前記セルロースナノファイバーが0.01~0.50のグルコース単位のカルボキシメチル置換度を有する、(1)~(8)のいずれかに記載の紙。
(10)前記セルロースナノファイバーが、濃度1%(w/v)の水分散液としたときに500~7000mPa・sのB型粘度(60rpm、20℃)を有する、(1)~(9)のいずれかに記載の紙。
 本発明によって、高い印刷光沢、および表面強度を備える紙を提供できる。
 以下、本発明を詳細に説明する。本発明の紙は、原紙の片面または両面に澱粉とCNFを含有する塗工層を備える。一態様において本発明の紙は澱粉とCNFを含有するクリア塗工層を備え、別態様において本発明の紙は澱粉とCNFを含有する顔料塗工層を備える。また本発明において「X~Y」はその端値であるXおよびYを含む。
1.澱粉とCNFを含有するクリア塗工層を備える紙(第1の態様)
(1)セルロースナノファイバー
 セルロースナノファイバー(「CNF」ともいう)とはセルロース系原料を解繊することにより得られるセルロースのシングルミクロフィブリルであり、500nm未満の平均繊維径を有する。
 CNFは化学変性されていることが好ましい。化学変性CNFは、セルロース系原料を化学変性して化学変性セルロースを調製し、これを機械的に解繊することで製造できる。
 1)セルロース系原料
 セルロース系原料は、特に限定されないが、例えば、植物、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物に由来するものが挙げられる。植物由来のものとしては、例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)が挙げられる。セルロース原料は、これらのいずれかまたは組合せであってもよいが、好ましくは植物または微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。
 2)化学変性
 化学変性とはセルロース系原料に官能基を導入することをいい、アニオン性基を導入することが好ましい。アニオン性基としてはカルボキシル基、カルボキシル基含有基、リン酸基、リン酸基含有基等の酸基が挙げられる。カルボキシル基含有基としては、-R-COOH(Rは炭素数が1~3のアルキレン基)、-O-R-COOH(Rは炭素数が1~3のアルキレン基)が挙げられる。リン酸基含有基としては、ポリリン酸基、亜リン酸基、ホスホン酸基、ポリホスホン酸基等が挙げられる。これらの酸基は反応条件によっては、塩の形態(例えばカルボキシレート基(-COOM、Mは金属原子))で導入されることもある。化学変性は、酸化またはエーテル化が好ましい。以下、これらについて詳細に説明する。
 [酸化]
 セルロース原料を酸化することによって酸化セルロースが得られる。酸化方法は特に限定されないが、一例として、N-オキシル化合物と、臭化物、ヨウ化物およびこれらの混合物からなる群より選択される物質との存在下で、酸化剤を用いて水中でセルロース原料を酸化する方法が挙げられる。この方法によれば、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、アルデヒド基、カルボキシル基、およびカルボキシレート基からなる群より選ばれる基が生じる。反応時のセルロース原料の濃度は特に限定されないが、5重量%以下が好ましい。
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物である。ニトロキシルラジカルとしては例えば、2,2,6,6-テトラメチルピペリジン1-オキシル(TEMPO)が挙げられる。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロースに対して、0.01mmol以上が好ましく、0.02mmol以上がより好ましい。上限は、10mmol以下が好ましく、1mmol以下がより好ましく、0.5mmol以下がさらに好ましい。従って、N-オキシル化合物の使用量は絶乾1gのセルロースに対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.02~0.5mmolがさらに好ましい。
 臭化物とは臭素を含む化合物であり、例えば、水中で解離してイオン化可能な臭化アルカリ金属、例えば臭化ナトリウム等が挙げられる。また、ヨウ化物とはヨウ素を含む化合物であり、例えば、ヨウ化アルカリ金属が挙げられる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は絶乾1gのセルロースに対して、0.1mmol以上が好ましく、0.5mmol以上がより好ましい。当該量の上限は、100mmol以下が好ましく、10mmol以下がより好ましく、5mmol以下がさらに好ましい。従って、臭化物およびヨウ化物の合計量は絶乾1gのセルロースに対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。
 酸化剤としては、特に限定されないが例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸、これらの塩、ハロゲン酸化物、過酸化物などが挙げられる。中でも、安価で環境負荷が少ないことから、次亜ハロゲン酸またはその塩が好ましく、次亜塩素酸またはその塩がより好ましく、次亜塩素酸ナトリウムがさらに好ましい。酸化剤の使用量は、絶乾1gのセルロースに対して、0.5mmol以上が好ましく、1mmol以上がより好ましく、3mmol以上がさらに好ましい。当該量の上限は、500mmol以下が好ましく、50mmol以下がより好ましく、25mmol以下がさらに好ましい。従って、酸化剤の使用量は絶乾1gのセルロースに対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolが特に好ましい。N-オキシル化合物を用いる場合、酸化剤の使用量はN-オキシル化合物1molに対して1mol以上が好ましく、上限は40molが好ましい。従って、酸化剤の使用量はN-オキシル化合物1molに対して1~40molが好ましい。
 酸化反応時のpH、温度等の条件は特に限定されず、一般に、比較的温和な条件であっても酸化反応は効率よく進行する。反応温度は4℃以上が好ましく、15℃以上がより好ましい。当該温度の上限は40℃以下が好ましく、30℃以下がより好ましい。従って、反応温度は4~40℃が好ましく、15~30℃程度、すなわち室温であってもよい。反応液のpHは、8以上が好ましく、10以上がより好ましい。pHの上限は、12以下が好ましく、11以下がより好ましい。従って、反応液のpHは、好ましくは8~12、より好ましくは10~11程度である。通常、酸化反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHは低下する傾向にある。そのため、酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを上記の範囲に維持することが好ましい。酸化の際の反応媒体は、取扱いの容易さや、副反応が生じにくいこと等の理由から、水が好ましい。
 酸化における反応時間は、酸化の進行程度に従って適宜設定することができ、通常は0.5時間以上であり、その上限は通常は6時間以下、好ましくは4時間以下である。従って、酸化における反応時間は通常0.5~6時間、例えば0.5~4時間程度である。酸化は、2段階以上の反応に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。
 カルボキシル化(酸化)方法の別の例として、オゾン酸化が挙げられる。この酸化反応により、セルロースを構成するグルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾン処理は通常、オゾンを含む気体とセルロース原料とを接触させることにより行われる。気体中のオゾン濃度は、50g/m以上であることが好ましい。上限は、250g/m以下であることが好ましく、220g/m以下であることがより好ましい。従って、気体中のオゾン濃度は、50~250g/mであることが好ましく、50~220g/mであることがより好ましい。オゾン添加量は、セルロース原料の固形分100重量%に対し、0.1重量%以上であることが好ましく、5重量%以上であることがより好ましい。オゾン添加量の上限は、通常30重量%以下である。従って、オゾン添加量は、セルロース原料の固形分100重量%に対し、0.1~30重量%であることが好ましく、5~30重量%であることがより好ましい。オゾン処理温度は、通常0℃以上であり、好ましくは20℃以上であり、上限は通常50℃以下である。従って、オゾン処理温度は、0~50℃であることが好ましく、20~50℃であることがより好ましい。オゾン処理時間は、通常は1分以上であり、好ましくは30分以上であり、上限は通常360分以下である。従って、オゾン処理時間は、通常は1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件が上述の範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となる。
 オゾン処理されたセルロースに対しさらに、酸化剤を用いて追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが例えば、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。追酸化処理の方法としては例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、酸化剤溶液中にセルロース原料を浸漬させる方法が挙げられる。酸化セルロースナノファイバーに含まれるカルボキシル基、カルボキシレート基、アルデヒド基の量は、酸化剤の添加量、反応時間等の酸化条件をコントロールすることで調整できる。
 カルボキシル基量の測定方法の一例を以下に説明する。酸化セルロースの0.5重量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量〔mmol/g酸化セルロース〕=a〔mL〕×0.05/酸化セルロース重量〔g〕
 このようにして測定した酸化セルロース中のカルボキシル基の量は、絶乾重量に対して、0.1mmol/g以上が好ましく、0.5mmol/g以上がより好ましく、0.8mmol/g以上がさらに好ましい。当該量の上限は、3.0mmol/g以下が好ましく、2.5mmol/g以下がより好ましく、2.0mmol/g以下がさらに好ましい。従って、当該量は0.1~3.0mmol/gが好ましく、0.5~2.5mmol/gがより好ましく、0.8~2.0mmol/gがさらに好ましい。
 [エーテル化]
 エーテル化としては、カルボキシメチル(エーテル)化、メチル(エーテル)化、エチル(エーテル)化、シアノエチル(エーテル)化、ヒドロキシエチル(エーテル)化、ヒドロキシプロピル(エーテル)化、エチルヒドロキシエチル(エーテル)化、ヒドロキシプロピルメチル(エーテル)化などが挙げられる。この中から一例としてカルボキシメチル化の方法を以下に説明する。
 カルボキシメチル化により得られるカルボキシメチル化セルロースまたはCNF中の無水グルコース単位当たりのカルボキシメチル置換度は、0.01以上が好ましく、0.05以上がより好ましく、0.10以上がさらに好ましい。当該置換度の上限は、0.50以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましい。従って、カルボキシメチル基置換度は、0.01~0.50が好ましく、0.05~0.40がより好ましく、0.10~0.30がさらに好ましい。
 カルボキシメチル化方法は特に限定されないが、例えば、発底原料としてのセルロース原料をマーセル化し、その後エーテル化する方法が挙げられる。当該反応には、通常、溶媒が使用される。溶媒としては例えば、水、アルコール(例えば低級アルコール)およびこれらの混合溶媒が挙げられる。低級アルコールとしては例えば、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノールが挙げられる。混合溶媒における低級アルコールの混合割合は通常その下限は60重量%以上、その上限は95重量%以下であり、60~95重量%であることが好ましい。溶媒の量は、セルロース原料に対し通常は3重量倍である。当該量の上限は特に限定されないが20重量倍である。従って、溶媒の量は3~20重量倍であることが好ましい。
 マーセル化は通常、発底原料とマーセル化剤を混合して行う。マーセル化剤としては例えば、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属が挙げられる。マーセル化剤の使用量は、発底原料の無水グルコース残基当たり0.5倍モル以上が好ましく、1.0モル以上がより好ましく、1.5倍モル以上がさらに好ましい。当該量の上限は、通常20倍モル以下であり、10倍モル以下が好ましく、5倍モル以下がより好ましい。従って、マーセル化剤の使用量0.5~20倍モルが好ましく、1.0~10倍モルがより好ましく、1.5~5倍モルがさらに好ましい。
 マーセル化の反応温度は、通常0℃以上であり、好ましくは10℃以上であり、上限は通常70℃以下、好ましくは60℃以下である。従って、反応温度は通常0~70℃、好ましくは10~60℃である。反応時間は、通常15分以上、好ましくは30分以上である。当該時間の上限は、通常8時間以下、好ましくは7時間以下である。従って、反応時間は、通常は15分~8時間、好ましくは30分~7時間である。
 エーテル化反応は通常、カルボキシメチル化剤をマーセル化後に反応系に追加して行う。カルボキシメチル化剤としては例えば、モノクロロ酢酸ナトリウムが挙げられる。カルボキシメチル化剤の添加量は、セルロース原料のグルコース残基当たり通常は0.05倍モル以上が好ましく、0.5倍モル以上がより好ましく、0.8倍モル以上がさらに好ましい。当該量の上限は、通常10.0倍モル以下であり、5モル以下が好ましく、3倍モル以下がより好ましい、従って、当該量は好ましくは0.05~10.0倍モルであり、より好ましくは0.5~5であり、さらに好ましくは0.8~3倍モルである。反応温度は通常30℃以上、好ましくは40℃以上であり、上限は通常90℃以下、好ましくは80℃以下である。従って反応温度は通常30~90℃、好ましくは40~80℃である。反応時間は、通常30分以上であり、好ましくは1時間以上であり、その上限は、通常は10時間以下、好ましくは4時間以下である。従って反応時間は、通常は30分~10時間であり、好ましくは1時間~4時間である。カルボキシメチル化反応の間必要に応じて、反応液を撹拌してもよい。
 カルボキシメチル化セルロースのグルコース単位当たりのカルボキシメチル置換度の測定は例えば、次の方法による。すなわち、1)カルボキシメチル化セルロース(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。2)硝酸メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(カルボキシメチル化セルロース)を水素型カルボキシメチル化セルロースにする。3)水素型カルボキシメチル化セルロース(絶乾)を1.5~2.0g精秤し、300mL容共栓付き三角フラスコに入れる。4)80%メタノール15mLで水素型カルボキシメチル化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。5)指示薬として、フェノールフタレインを用いて、0.1NのHSOで過剰のNaOHを逆滴定する。6)カルボキシメチル置換度(DS)を、次式によって算出する:
 A=[(100×F’-(0.1NのHSO)(mL)×F)×0.1]/(水素型カルボキシメチル化セルロースの絶乾質量(g))
 DS=0.162×A/(1-0.058×A)
A:水素型カルボキシメチル化セルロースの1gの中和に要する1NのNaOH量(mL)
F:0.1NのHSOのファクター
F’:0.1NのNaOHのファクター
 3)機械解繊
 化学変性セルロースを機械的に解繊してCNFを得る。解繊処理は1回行ってもよいし、複数回行ってもよい。化学変性セルロースと分散媒を含む混合物を解繊処理に供することが好ましい。分散媒としては水が好ましい。解繊に用いる装置は特に限定されないが、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などのタイプの装置が挙げられ、高圧または超高圧ホモジナイザーが好ましく、湿式の高圧または超高圧ホモジナイザーがより好ましい。装置は、化学変性セルロースに強力なせん断力を印加できることが好ましい。装置が印加できる圧力は、50MPa以上が好ましく、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。装置は湿式の高圧または超高圧ホモジナイザーが好ましい。これにより、解繊を効率的に行うことができる。
 解繊を化学変性パルプの分散液に対して実施する場合、分散液中の変性セルロースの固形分濃度は、通常は0.1重量%以上が好ましく、0.2重量%以上がより好ましく、0.3重量%以上がさらに好ましい。これにより、変性セルロースの量に対する液量が適量となり効率的になる。当該濃度の上限は通常は20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下がさらに好ましい。これにより流動性を保持することができる。
 4)特性
 CNFの平均繊維径は、長さ加重平均繊維径にして通常2nm以上500nm未満程度であるが、好ましくは2~100nmである。その上限はさらに好ましくは50nm以下である。平均繊維長は長さ加重平均繊維長にして50~2000nmが好ましい。長さ加重平均繊維径および長さ加重平均繊維長(以下、単に「平均繊維径」、「平均繊維長」ともいう)は、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察して求められる。ナノファイバーの平均アスペクト比は、通常10以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出できる。
  平均アスペクト比=平均繊維長/平均繊維径
 CNFにおけるカルボキシル基量およびグルコース単位当たりの置換度は、化学変性セルロースのものと同じであることが好ましい。
 本態様においては、濃度1%(w/v)の水分散液(すなわち、100mLの水中に1gのCNF(乾燥重量)を含む水分散液)としたときに500~7000mPa・sのB型粘度(60rpm、20℃)を与えるCNFを用いることが好ましい。当該B型粘度CNFの官能基量、平均繊維長、平均繊維径等の特性を特定する指標であり、用途に合わせて適宜調整される。
 CNFの水分散液のB型粘度は、公知の手法により測定することができる。例えば、東機産業社のVISCOMETER TV-10粘度計を用いて測定することができる。測定時の温度は20℃であり、ロータの回転数は60rpmである。本発明のCNFの水分散液は、チキソトロピー性を有し、撹拌しせん断応力を与えることで粘度が低下し、静置状態では粘度が上昇しゲル化するという特性を持つため、十分に撹拌した状態でB型粘度を測定することが好ましい。
(2)澱粉
 澱粉とは、D-グルコースの重合体であり、好ましくはアミロースとアミロペクチンとからなる混合物である。本態様において澱粉とは澱粉由来の高分子化合物も含む。当該高分子としては、澱粉を変性、修飾、加工などしたものが挙げられ、中でも熱化学変性澱粉が好ましい。熱化学変性澱粉としては、酸化剤の存在下で加熱して瞬間的に糊化および酸化した澱粉が挙げられる。このような熱化学変性澱粉は官能基量が少ないという特徴を有する。中でも酸化剤として過硫酸アンモニウムを用いた過硫酸アンモニウム変性澱粉が好ましい。この他に熱化学変性澱粉として、尿素と酸によって変性された尿素・酸変性澱粉が挙げられる。尿素・酸変性澱粉は、例えば特開2004-238523号公報に記載の方法によって製造される。本態様においては、過硫酸アンモニウム変性澱粉と尿素・酸変性澱粉を併用してもよい。
(3)原紙
 原紙とは紙のベースとなる層でありパルプを主成分として含む。原紙のパルプ原料は特に限定されず、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプ、脱墨パルプ(DIP)、針葉樹クラフトパルプ(NKP)、針葉樹クラフトパルプ(LKP)等の化学パルプ等を使用できる。脱墨(古紙)パルプとしては、上質紙、中質紙、下級紙、新聞紙、チラシ、雑誌などの選別古紙やこれらが混合している無選別古紙由来のものを使用できる。
 原紙には公知の填料を添加できるが、板紙等の不透明度や白色度を求められない用途や、古紙などの持ち込み灰分の多い原料を使用する場合は填料を添加しなくてもよい。填料を添加する場合、填料としては、重質炭酸カルシム、軽質炭酸カルシウム、クレー、シリカ、軽質炭酸カルシウム-シリカ複合物、カオリン、焼成カオリン、デラミカオリン、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、酸化亜鉛、酸化チタン、ケイ酸ナトリウムの鉱酸による中和で製造される非晶質シリカ等の無機填料や、尿素-ホルマリン樹脂、メラミン系樹脂、ポリスチレン樹脂、フェノール樹脂などの有機填料が挙げられる。これらは、単独で使用してもよいし併用してもよい。この中でも、中性抄紙やアルカリ抄紙における代表的な填料であり、高い不透明度が得られる炭酸カルシウムや軽質炭酸カルシウムが好ましい。原紙中の填料の含有率は、原紙重量に対して、5~25重量%が好ましく、6~20重量%がより好ましい。本発明においては紙中灰分が高くても紙力の低下が抑制されるため、原紙中の填料の含有率は10重量%以上であることがより好ましい。
 内添薬品として、嵩高剤、乾燥紙力向上剤、湿潤紙力向上剤、濾水性向上剤、染料、中性サイズ剤等を必要に応じて使用してもよい。
 原紙は、公知の抄紙方法で製造される。例えば、長網抄紙機、ギャップフォーマー型抄紙機、ハイブリッドフォーマー型抄紙機、オントップフォーマー型抄紙機、丸網抄紙機等を用いて行うことができるが、これらに限定されない。
 原紙は単層でも多層でもよい。原紙は前記CNFを含んでいてもよい。多層原紙の場合は、複数の紙層のうち一部の層がCNFを含んでいてもよく、全層がCNFを含んでいてもよい。原紙がCNFを含む場合、その含有量は原紙全体のパルプ重量に対して0.0001重量%以上が好ましく、0.0003重量%以上がより好ましく、0.001重量%以上がさらに好ましい。
(4)クリア塗工層
 クリア塗工層における澱粉:CNF(重量比)は、好ましくは1000:1~20:1であり、より好ましくは350:1~67:1であり、さらに好ましくは300:1~67:1である。重量比がこの範囲にあることで澱粉を主体とするクリア塗工層の製膜性が向上し、その結果、高いインキマイレージ、印刷光沢、および表面強度を達成できる。
 クリア塗工層の塗工量は、片面あたり固形分で0.01~3.0g/mが好ましく、0.1~2.0g/mがより好ましい。クリア塗工は、例えば、サイズプレス、ゲートロールコータ、プレメタリングサイズプレス、カーテンコータ、スプレーコータなどのコータ(塗工機)を使用して、澱粉を主成分とするクリア塗工液を原紙上に塗工することで形成できる。一例としてゲートロールコータで塗工する場合、クリア塗工液は、塗工適性の観点から固形分濃度5重量%の時のB型粘度(30℃、60rpm)が5~450mPa・sであることが好ましく、10~300mPa・sであることがより好ましい。ゲートロールコータで塗工する場合、クリア塗工液のB型粘度が5mPa・s未満であると粘度が低すぎて塗工量の確保が難しく、450mPa・s超であるとボイリングが発生して操業性が悪化することがある。クリア塗工液の固形分濃度は、前記濃度を達成できるように調整されるが、好ましくは2~14重量%である。
 クリア塗工層に由来するCNFの量は、片面当たり好ましくは1.0×10-5~0.1g/m、より好ましくは1.0×10-4~5.0×10-2g/mである。
(4)顔料塗工層
 本態様における紙は顔料塗工層を備えていてもよい。顔料塗工層とは白色顔料を主成分として含む層である。白色顔料としては、炭酸カルシウム、カオリン、クレー、焼成カオリン、無定形シリカ、酸化亜鉛、酸化アルミニウム、サチンホワイト、珪酸アルミニウム、珪酸マグネシウム、炭酸マグネシウム、酸化チタン、プラスチックピグメント等の通常使用されている顔料が挙げられ、炭酸カルシウムとしては軽質炭酸カルシウムや重質炭酸カルシウムが挙げられる。
 顔料塗工層は接着剤を含む。当該接着剤としては、前記澱粉、カゼイン、大豆蛋白、合成蛋白等の蛋白質類、ポリビニルアルコール、カルボキシメチルセルロースやメチルセルロース等のセルロース誘導体、スチレン-ブタジエン共重合体、メチルメタクリレート-ブタジエン共重合体の共役ジエン系重合体ラテックス、アクリル系重合体ラテックス、エチレン-酢酸ビニル共重合体等のビニル系重合体ラテックス等が挙げられる。これらは単独、あるいは2種以上併用して用いることができ、澱粉系接着剤とスチレン-ブタジエン共重合体を併用することが好ましい。
 顔料塗工層は、一般の紙製造分野で使用される分散剤、増粘剤、消泡剤、着色剤、帯電防止剤、防腐剤等の各種助剤を含んでいてもよく、CNFを含有してもよい。この場合のCNFの量は、顔料100重量部に対して1×10-3~1重量部が好ましい。前記範囲の場合、塗工液の粘度を大幅に増大することなく、適度な保水性を持った顔料塗工液を得ることができる。また、本態様における顔料塗工層は、第2の態様で説明する顔料塗工層であってもよい。
 顔料塗工層は、塗工液を公知の方法で原紙の片面あるいは両面に塗工して設けることができる。塗工液中の固形分濃度は、塗工適性の観点から、30~70重量%程度が好ましい。顔料塗工層は1層でもよく、2層でもよく、3層以上でもよい。顔料塗工層の塗工量は、用途によって適宜調整してよいが、印刷用塗工紙とする場合は片面あたりトータルで5g/m以上であり、10g/m以上であることが好ましい。上限は、30g/m以下であることが好ましく、25g/m以下であることが好ましい。
 本態様における紙がさらに顔料塗工層を有する場合、高いインキマイレージに加え、表面強度、印刷光沢度に優れた顔料塗工紙を得ることができる。
(5)特性
 本態様の紙は、高いインキマイレージ、印刷光沢、および表面強度を備え、かつ製造が容易であるという特徴を備える。本態様の紙のJIS P 8124に準じて測定した坪量は、通常20~500g/m程度であり、好ましくは30~250g/mである。
(6)澱粉とCNFを含有するクリア塗工層を備える紙の製造方法
 本態様の紙は、公知の方法で調製した原紙の上に、CNFを含むクリア塗工液を塗工する工程を経て製造されることが好ましい。具体的には、本態様の紙は以下の工程を備える方法で製造されることが好ましい。
 工程1:澱粉とCNFを含むクリア塗工液を調製する工程
 工程2:原紙の上に前記クリア塗工液を用いてクリア塗工層を形成する工程
 工程1で用いる澱粉とCNFは、前述のとおりである。塗工液の調製方法およびその特性も前述のとおりである。工程2における塗工も前述のとおりに実施できる。
 本態様の紙は、前述の工程1、工程2に加え以下の工程3を備える方法で製造されてもよい。
 工程3:澱粉とCNFを含有するクリア塗工層の上に、顔料および接着剤を含有する顔料塗工層を形成する工程
 工程3において、顔料塗工液として第2の態様で用いる澱粉とCNFを有する顔料塗工液を用いてもよい。
2.澱粉とCNFを含有する顔料塗工層を備える紙(第2の態様)
(1)CNF、澱粉、原紙
 本態様においては、CNF、澱粉、原紙として第1の態様で説明したものを使用できる。
(2)顔料塗工層
 本態様の紙は原紙の片面または両面に澱粉とCNFを含有する顔料塗工層を備える。顔料塗工層とは白色顔料を主成分として含む層である。白色顔料としては第1の態様で説明したものを使用できる。顔料塗工層における澱粉:CNFの重量比は限定されないが、好ましくは300:1~2:1である。重量比がこの範囲にあると顔料塗工層の製膜性が向上し、その結果、高い印刷光沢、および表面強度を達成できる。この観点から前記重量比はより好ましくは200:1~5:1である。
 顔料塗工層は澱粉以外の接着剤を含んでもよい。当該接着剤は第1の態様で説明したとおりである。
 顔料塗工層は、一般の紙製造分野で使用される分散剤、増粘剤、消泡剤、着色剤、帯電防止剤、防腐剤等の各種助剤を含んでいてもよい。
 顔料塗工層は、塗工液を公知の方法で原紙の片面あるいは両面に塗工して設けることができる。塗工液中の固形分濃度は、塗工適性の観点から、30~70重量%程度が好ましい。顔料塗工層は1層でもよく、2層でもよく、3層以上でもよい。顔料塗工層の塗工量は、用途によって適宜調整してよいが、印刷用塗工紙とする場合は片面あたりトータルで1g/m以上であり、5g/m以上であることが好ましい。上限は、30g/m以下であることが好ましく、20g/m以下であることが好ましい。顔料塗工層に由来するCNFの量は、片面当たり好ましくは1.0×10-5~0.1g/m、より好ましくは1.0×10-4~5.0×10-2g/mである。
(3)クリア塗工層
 本態様の紙は、原紙の片面または両面に、クリア塗工層を備えてもよい。クリア塗工を施すことにより、原紙の表面強度や平滑性を向上させることができる。クリア塗工層は、各種澱粉、ポリアクリルアミド、ポリビニルアルコール、などの水溶性高分子等を主成分とするクリア塗布液から形成される。クリア塗工層は、第1の態様で説明した澱粉とCNFを含有するクリア塗工層であってもよい。当該クリア塗工層は高い製膜性を有するので、高いインキマイレージ、印刷光沢、および表面強度を達成できる。
 本態様におけるクリア塗工層の塗工量は、片面あたり固形分で0.01~3.0g/mが好ましく、0.1~2.0g/mがより好ましい。クリア塗工は、例えば、サイズプレス、ゲートロールコータ、プレメタリングサイズプレス、カーテンコータ、スプレーコータなどのコータ(塗工機)を使用して、クリア塗工液を原紙上に塗工することで形成できる。一例としてゲートロールコータで塗工する場合、クリア塗工液は、塗工適性の観点から固形分濃度5重量%の時のB型粘度(30℃、60rpm)が5~450mPa・sであることが好ましく、10~300mPa・sであることがより好ましい。ゲートロールコータで塗工する場合、クリア塗工液のB型粘度が5mPa・s未満であると粘度が低すぎて塗工量の確保が難しく、450mPa・s超であるとボイリングが発生して操業性が悪化することがある。クリア塗工液の固形分濃度は、前記濃度を達成できるように調整されるが、好ましくは2~14重量%である。また、本態様におけるクリア塗工層は、第1の態様で説明したクリア塗工層であってもよい。
(4)特性
 本態様の紙のJIS P 8124に準じて測定した坪量は、通常10~500g/m程度であり、好ましくは30~300g/mである。
(5)澱粉とCNFを含有する顔料塗工層を備える紙の製造方法
 本態様の紙は、公知の方法で調製した原紙の上に、CNFを含む顔料塗工液を塗工する工程を経て製造されることが好ましい。具体的には、本態様の紙は以下の工程を備える方法で製造されることが好ましい。
 工程1:顔料と澱粉とCNFを含む顔料塗工液を調製する工程
 工程2:原紙の上に前記顔料塗工液を用いて顔料塗工層を形成する工程
 工程1で用いる澱粉とCNFは、前述のとおりである。塗工液の調製方法およびその特性も前述のとおりである。工程2における塗工も前述のとおりに実施できる。
 本態様の紙は、前述の工程1、工程2に加え以下の工程3を備える方法で製造されてもよい。
 工程3:工程2の前に、原紙の上にクリア塗工層を形成する工程
 工程3において、クリア塗工液として第1の態様で用いる澱粉とCNFを有するクリア塗工液を用いてもよい。
[実施例A1]
 <CNF>
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%:日本製紙株式会社製)5.00g(絶乾)をTEMPO(Sigma Aldrich社製)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を次亜塩素酸ナトリウムが5.5mmol/gになるように添加し、室温にて酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗して酸化パルプ(カルボキシル化セルロース)を得た。パルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.5mmol/gであった。これを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、150Mpa)で3回処理して、CNFの水分散液を得た。CNFの平均繊維径は3nm、アスペクト比は250であった。
<クリア塗工液1>
 前述のとおりに製造したCNFの水分散液に酸化澱粉(日本コーンスターチ社製、SK20)を添加して、澱粉:CNFの重量比が30:1であるクリア塗工液1を製造した。当該クリア塗工液1の固形分濃度5重量%の時の30℃、60rpmにおけるB型粘度を表1に示す。
<紙>
 LBKP(日本製紙株式会社製、c.s.f.360ml)に対し、0.5重量%の硫酸バンド、0.77重量%のカチオン化澱粉、0.05重量%の紙力剤を添加して固形分濃度0.7重量%のパルプスラリーを調製した。得られたパルプスラリーを用い、抄紙機によって原紙を製造した。当該原紙の上に、前記クリア塗工液1を片面あたり固形分で1.2g/mとなるようにゲートロールコータで原紙の両面に塗工し、定法によって乾燥し、クリア塗工紙を得た。当該紙を後述する方法で評価した。結果を表1に示す。
[比較例A1]
 CNFを用いなかった以外は、実施例A1と同様にしてクリア塗工紙を製造した。
[実施例A2]
<原紙>
 LBKP(日本製紙株式会社製、c.s.f.420ml)に対し、0.7重量%の硫酸バンド、0.30重量%のカチオン化澱粉、0.06重量%の紙力剤を添加して固形分濃度0.7重量%のパルプスラリーを調製した。得られたパルプスラリーを用い、抄紙機によって坪量34.5g/mの原紙を製造した。
<顔料塗工液1>
 重質炭酸カルシウム100重量部に対し、接着剤としてラテックス2.0重量部、酸化澱粉6.7重量部を添加して、固形分60重量%の顔料塗工液を調製した。
 <顔料塗工紙>
 澱粉:CNFの重量比を60:1とした以外は実施例A1と同様のクリア塗工液1を、前記原紙に片面あたり固形分で0.2g/mとなるようにゲートロールコータで原紙の両面に塗工し、定法によって乾燥し、クリア塗工層を設け、さらに、前記顔料塗工液1を両面に塗工し、定法によって乾燥した。当該顔料塗工紙を後述する方法で評価した。結果を表1に示す。
[実施例A3]
 クリア塗工液1中の澱粉:CNFの重量比を表1に示すように変更した以外は、実施例A2と同様にして顔料塗工紙を製造した。
[比較例A2]
 CNFを用いなかった以外は、実施例A2と同様にして顔料塗工紙を製造した。
[実施例A4]
 クリア塗工液1中の澱粉:CNFの重量比を表1に示すように変更した以外は、実施例A2と同様にして顔料塗工紙を製造した。
[実施例A5]
 生澱粉(未変性の澱粉)に対し、酸化剤として0.1重量%の過硫酸アンモニウムを添加して固形分濃度25重量%の澱粉スラリーを調製した。ジェットクッカーを用いてこの澱粉スラリーを150℃で蒸煮すると共に熱化学変性処理を行い、冷却後に水酸化ナトリウム水溶液を添加してpH7に調整し、更に水を添加して、固形分濃度12重量%の過硫酸アンモニウム変性澱粉水溶液を得た。
<クリア塗工液2>
 前述のとおりに製造したCNFの水分散液に、前述のとおりに製造した過硫酸アンモニウム変性澱粉水溶液を添加して、澱粉:CNFの重量比が67:1であるクリア塗工液2を製造した。当該クリア塗工液2の固形分濃度5重量%の時の30℃、60rpmにおけるB型粘度を表1に示す。
 クリア塗工液1に替えてクリア塗工液2を使用した以外は、実施例A2と同様にして顔料塗工紙を製造した。
[実施例A6、A7]
 クリア塗工液2中の澱粉:CNFの重量比を表1に示すように変更した以外は、実施例A5と同様にして、それぞれ顔料塗工紙を製造した。
[実施例A8~A12]
 クリア塗工液1中の澱粉:CNFの重量比を表1に示すように変更した以外は、実施例A2と同様にして、それぞれ顔料塗工紙を製造した。
[比較例A3]
 CNFを用いなかった以外は、実施例A5と同様にして顔料塗工紙を製造した。
[比較例A4]
 CNFを用いなかった以外は、実施例A8と同様にして顔料塗工紙を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のクリア塗工紙は、高い印刷光沢度に加え、高いインキマイレージを有していた。特に、特定の粘度を有する分散液を与えるCNFを用いた実施例A1~A3、A5~A12においては製造時の作業性も良好であった。また、本発明のクリア塗工紙にさらに顔料塗工層を設けた顔料塗工紙は、高いインキマイレージに加え、良好な印刷光沢、表面強度を有していた。
<評価方法>
 1)坪量
 JIS P8124に従った。
 2)印刷光沢度
 ローランド社製オフセット枚葉印刷機(4色)にてオフセット枚葉用インキ(東洋インキ(株)製 NEX-M)を用い、印刷速度8000枚/hrでベタ部のインキ着肉濃度が藍1.60、紅1.50となる様に藍紅(CM)の順に印刷した。得られた印刷物の藍紅(CM)ベタ印刷部の光沢度を、JIS P-8142に基づいて測定した。
 3)ピッキング評価
 ローランド社製オフセット枚葉印刷機を用い、インキとして東洋インキ(株)製 レオエコーY藍を用い、8000sphの速度で藍ベタを印刷した。10枚印刷する間に発生したF面およびW面のピッキングの個数を測定した。
 4)インキマイレージ
 インキマイレージとは単位インキ量当たりで印刷できる部数である。同じ印刷濃度を得るのに必要な単位面積当たりの紙面上インキ量を発色性とし、これをインキマイレージの簡便な指標として評価した。
 インキマイレージが良好であるとは、少ない紙面上インキ量で発色性が良好であることを意味する。具体的には、プリューフバウ試験印刷機(IGT)を用いてベタ印刷を行い、枚葉印刷を想定して印刷後一晩経過後に印刷物の印刷濃度を分光測色計にて測定して全濃度を読み取った。また、脱着式プリントディスクの印刷前と印刷後の重量差を紙面上インキ量とした。プリントディスクに塗布するインキ量を変更して、紙面上インキ量と印刷濃度の関係を求め、その関係式から所定の濃度を得るのに必要な紙面インキ量を算出した。測定時の印圧は700N、印刷速度は2.0m/sであった。
 5)ゲートロールコータ塗工適性(製造時の作業性)
 原紙にゲートロールコータでクリア塗工液を塗工した際のボイリングの発生を、下記4段階により目視で評価した。下記評価が「A」、「B」であると好ましい。
 A:ボイリングは発生せず、塗工適性(製造時の作業性)が良好
 B:ボイリングがわずかに発生したが、塗工適性(製造時の作業性)は概ね良好
 C:ボイリングが発生し、塗工適性(製造時の作業性)が若干低下
 D:ボイリングが多発し、塗工適性(製造時の作業性)が大幅に低下
[実施例B1]
 <CNF>
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%:日本製紙株式会社製)5.00g(絶乾)をTEMPO(Sigma Aldrich社製)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を次亜塩素酸ナトリウムが5.5mmol/gになるように添加し、室温にて酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗して酸化パルプ(カルボキシル化セルロース)を得た。パルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.5mmol/gであった。これを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、150Mpa)で3回処理して、CNFの水分散液を得た。CNFの平均繊維径は3nm、アスペクト比は250であった。
<クリア塗工液3>
 酸化澱粉(日本コーンスターチ社製、SK20)を30重量%含むクリア塗工液3を製造した。
<顔料塗工液2>
 重質炭酸カルシウム100.0重量部に対し、接着剤としてラテックス2.0重量部、酸化澱粉6.7重量部、前記のとおり製造したCNF0.2重量部を添加して、固形分60重量%の顔料塗工液2を調製した。
<原紙>
 LBKP(日本製紙株式会社製、c.s.f.420ml)に対し、0.7重量%の硫酸バンド、0.30重量%のカチオン化澱粉、0.06重量%の紙力剤を添加して固形分濃度0.7重量%のパルプスラリーを調製した。得られたパルプスラリーを用い、抄紙機によって坪量34.5g/mの原紙を製造した。当該原紙の上に、前記クリア塗工液3を片面あたり固形分で0.2g/mとなるように原紙の両面に塗工し、定法によって乾燥し、クリア塗工層を設け、さらに、顔料塗工液2を両面に塗工し、定法によって乾燥し、顔料塗工紙を得た。当該紙を前述した方法で評価した。結果を表2に示す。
[実施例B2]
 前述のとおりに製造したCNFの水分散液に酸化澱粉(日本コーンスターチ社製、SK20)を添加して、澱粉:CNFの重量比が30:1であるクリア塗工液4を製造した。当該クリア塗工液4の固形分濃度5重量%の時の30℃、60rpmにおけるB型粘度は130mPa・sであった。当該クリア塗工液4を用いた以外は実施例B1と同様にして顔料塗工紙を得た。
[比較例B1]
 CNFを用いなかった以外は、実施例B1と同様にして顔料塗工紙を製造た。
Figure JPOXMLDOC01-appb-T000003
 本発明の顔料塗工紙は、高いインキマイレージに加え、良好な印刷光沢、表面強度を有していた。

Claims (10)

  1.  原紙および塗工層を備える紙であって、
     前記塗工層が澱粉とセルロースナノファイバーを含む紙。
  2.  前記澱粉が熱化学変性澱粉である、請求項1に記載の紙。
  3.  前記塗工層がクリア塗工層であって、
     前記熱化学変性澱粉とセルロースナノファイバーの重量比が350:1~67:1である、請求項1または2に記載の紙。
  4.  前記クリア塗工層の上にさらに顔料塗工層を備える、請求項3に記載の紙。
  5.  前記塗工層が顔料塗工層である、請求項1または2に記載の紙。
  6.  前記熱化学変性澱粉が、過硫酸アンモニウム変性澱粉、尿素・酸変性澱粉、およびこれらの組合せからなる群より選択される、請求項2~5のいずれかに記載の紙。
  7.  前記セルロースナノファイバーがアニオン変性セルロースナノファイバーである、請求項1~6のいずれかに記載の紙。
  8.  前記セルロースナノファイバーが0.1~3.0mmol/gのカルボキシル基を有する、請求項1~7のいずれかに記載の紙。
  9.  前記セルロースナノファイバーが0.01~0.50のグルコース単位のカルボキシメチル置換度を有する、請求項1~8のいずれかに記載の紙。
  10.  前記セルロースナノファイバーが、濃度1%(w/v)の水分散液としたときに500~7000mPa・sのB型粘度(60rpm、20℃)を有する、請求項1~9のいずれかに記載の紙。
PCT/JP2019/046064 2018-11-26 2019-11-26 セルロースナノファイバー含有塗工層を備える紙 WO2020111025A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2019390849A AU2019390849A1 (en) 2018-11-26 2019-11-26 Paper comprising cellulose-nanofiber-containing coating layer
CN201980070599.7A CN113039325A (zh) 2018-11-26 2019-11-26 具备含有纤维素纳米纤维的涂层的纸
JP2020557716A JP7425743B2 (ja) 2018-11-26 2019-11-26 セルロースナノファイバー含有塗工層を備える紙

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-220246 2018-11-26
JP2018-220251 2018-11-26
JP2018220246 2018-11-26
JP2018220251 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020111025A1 true WO2020111025A1 (ja) 2020-06-04

Family

ID=70853035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046064 WO2020111025A1 (ja) 2018-11-26 2019-11-26 セルロースナノファイバー含有塗工層を備える紙

Country Status (5)

Country Link
JP (1) JP7425743B2 (ja)
CN (1) CN113039325A (ja)
AU (1) AU2019390849A1 (ja)
TW (1) TW202028567A (ja)
WO (1) WO2020111025A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201114A1 (ja) * 2020-03-31 2021-10-07 日本製紙株式会社 繊維含有クリア塗工層を備える紙
CN114232382A (zh) * 2021-11-16 2022-03-25 苏州美盈森环保科技有限公司 一种可印刷的保水性涂料、制备方法及应用
WO2023103093A1 (zh) * 2021-12-10 2023-06-15 衢州市华顺钙业有限公司 一种含羧甲基改性纤维素纳米纤维的水性涂料制备方法及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220227998A1 (en) * 2019-07-03 2022-07-21 Nippon Paper Industries Co., Ltd. Mixed suspension
TWI793603B (zh) * 2021-05-12 2023-02-21 英屬維京群島商白因子國際股份有限公司 一種纖維的改性方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194691A (ja) * 2000-12-19 2002-07-10 Toppan Printing Co Ltd 改質微細フィブリル化セルロースおよびその製造方法、ならびに改質微細フィブリル化セルロースを添加した紙シート、および改質微細フィブリル化セルロースを用いた塗工紙
WO2010113505A1 (ja) * 2009-03-31 2010-10-07 株式会社ニコン 圧電アクチュエータ及びレンズ鏡筒
CN106522024A (zh) * 2015-09-09 2017-03-22 金东纸业(江苏)股份有限公司 底涂涂料、面涂涂料、背涂涂料、表面施胶剂及单面铜版纸
JP2018003215A (ja) * 2016-07-06 2018-01-11 北越紀州製紙株式会社 塗工紙

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267222B1 (en) * 2008-03-31 2018-05-16 Nippon Paper Industries Co., Ltd. Additive for papermaking and paper containing the same
WO2010113805A1 (ja) 2009-03-31 2010-10-07 日本製紙株式会社 塗工紙

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194691A (ja) * 2000-12-19 2002-07-10 Toppan Printing Co Ltd 改質微細フィブリル化セルロースおよびその製造方法、ならびに改質微細フィブリル化セルロースを添加した紙シート、および改質微細フィブリル化セルロースを用いた塗工紙
WO2010113505A1 (ja) * 2009-03-31 2010-10-07 株式会社ニコン 圧電アクチュエータ及びレンズ鏡筒
CN106522024A (zh) * 2015-09-09 2017-03-22 金东纸业(江苏)股份有限公司 底涂涂料、面涂涂料、背涂涂料、表面施胶剂及单面铜版纸
JP2018003215A (ja) * 2016-07-06 2018-01-11 北越紀州製紙株式会社 塗工紙

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201114A1 (ja) * 2020-03-31 2021-10-07 日本製紙株式会社 繊維含有クリア塗工層を備える紙
CN114232382A (zh) * 2021-11-16 2022-03-25 苏州美盈森环保科技有限公司 一种可印刷的保水性涂料、制备方法及应用
WO2023103093A1 (zh) * 2021-12-10 2023-06-15 衢州市华顺钙业有限公司 一种含羧甲基改性纤维素纳米纤维的水性涂料制备方法及应用

Also Published As

Publication number Publication date
TW202028567A (zh) 2020-08-01
CN113039325A (zh) 2021-06-25
AU2019390849A1 (en) 2021-07-01
JP7425743B2 (ja) 2024-01-31
JPWO2020111025A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7425743B2 (ja) セルロースナノファイバー含有塗工層を備える紙
JP5541876B2 (ja) グラビア印刷用塗工紙
WO2010113805A1 (ja) 塗工紙
JP6827146B2 (ja) 酸化ミクロフィブリルセルロース繊維およびその組成物
JP6827147B2 (ja) 酸化ミクロフィブリルセルロース繊維およびその組成物
JPWO2019132001A1 (ja) セルロースナノファイバーを含有する紙
JP7239561B2 (ja) ミクロフィブリルセルロース繊維を含有する紙
JP6948941B2 (ja) セルロースナノファイバーを含有する紙または板紙
JP2021161597A (ja) セルロースナノファイバー含有クリア塗工層を備える紙
JP2019173254A (ja) セルロースナノファイバーを含有する紙または板紙
JP2019173255A (ja) セルロースナノファイバーを含有する紙または板紙
JP2020165036A (ja) セルロースナノファイバーを含有する紙または板紙
JP7080404B2 (ja) セルロースナノファイバーを含有する紙
JP3852470B2 (ja) 紙の製造方法
JP2021105224A (ja) セルロースナノファイバーを含有する紙
WO2016158231A1 (ja) クリア塗工紙
WO2023032838A1 (ja) 抗ウイルス性印刷用紙
JP2020165037A (ja) ミクロフィブリレイテッドセルロースを含有する紙または板紙
JP2023034719A (ja) 用紙
JP2023085234A (ja) 古紙パルプを含有する抗ウイルス性印刷用紙

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019390849

Country of ref document: AU

Date of ref document: 20191126

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19889373

Country of ref document: EP

Kind code of ref document: A1