WO2020110259A1 - 回転電機の駆動装置 - Google Patents

回転電機の駆動装置 Download PDF

Info

Publication number
WO2020110259A1
WO2020110259A1 PCT/JP2018/044007 JP2018044007W WO2020110259A1 WO 2020110259 A1 WO2020110259 A1 WO 2020110259A1 JP 2018044007 W JP2018044007 W JP 2018044007W WO 2020110259 A1 WO2020110259 A1 WO 2020110259A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
rotating electric
switching signal
power conversion
power
Prior art date
Application number
PCT/JP2018/044007
Other languages
English (en)
French (fr)
Inventor
秀昭 川元
知也 立花
又彦 池田
金原 義彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/296,319 priority Critical patent/US11881804B2/en
Priority to PCT/JP2018/044007 priority patent/WO2020110259A1/ja
Priority to DE112018008175.3T priority patent/DE112018008175T5/de
Priority to CN201880099693.0A priority patent/CN113165525B/zh
Priority to JP2020557480A priority patent/JP7123165B2/ja
Publication of WO2020110259A1 publication Critical patent/WO2020110259A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a drive device for a rotary electric machine, and particularly to a drive device for a rotary electric machine driven by electric power supplied from a storage battery.
  • Patent Document 1 when there is a request for heat conversion of drive power of a rotating electric machine, the power conversion efficiency of the DC/AC inverter circuit is intentionally controlled by controlling the frequency of the switching signal output to the DC/AC inverter circuit.
  • the invention is described in the following.
  • Patent Document 1 when the power conversion efficiency of the DC/AC inverter circuit decreases, the amount of discharge of the storage battery increases, resulting in an increase in the temperature of the storage battery.
  • Patent Document 1 the frequency of the switching signal output to the DC/AC inverter circuit is controlled based on the number of pulses per unit cycle of the electrical angle of the rotating electric machine. In this case, when the vehicle is stopped, the unit cycle of the electrical angle of the rotating electric machine becomes infinite. Therefore, when charging the storage battery when the vehicle is stopped, it is not possible to raise the temperature of the storage battery using the technique of Patent Document 1.
  • the present invention is to solve the above problems, and an object of the present invention is to provide a drive device for a rotating electric machine that can raise the temperature of a storage battery even when the rotating electric machine is not rotating. To do.
  • a drive device for a rotary electric machine includes a power converter that converts DC power supplied from a storage battery into AC power and supplies the AC power to a rotary electric machine, and a switching signal to the power converter.
  • a power converter that converts DC power supplied from a storage battery into AC power and supplies the AC power to a rotary electric machine
  • a switching signal to the power converter When the storage battery is charged, if the temperature of the storage battery input from the outside is lower than the set temperature suitable for charging, the switching signal of the power converter is changed to the normal drive state of the rotating electric machine.
  • a control unit that is set to be different from the switching signal in.
  • the temperature of the storage battery can be raised even when the rotating electric machine is not rotating.
  • FIG. 1 is a block diagram showing a configuration of a vehicle and a charging facility equipped with a drive device for a rotary electric machine according to Embodiment 1 of the present invention. It is an example of the current phase of each phase of the rotary electric machine of FIG. It is the figure which extracted the maximum value and minimum value of the electric current amount in each phase. It is the figure which extracted the difference of the maximum value and minimum value of the electric current amount in each phase. It is a figure which shows the amount of heat generation of the coil of each phase in a rotary electric machine in phase 30 degrees. It is a figure which shows the amount of heat generation of the coil of each phase in a rotary electric machine in phase 0 degree.
  • FIG. 7 is a configuration diagram showing a case where each function of the control unit according to the first to sixth embodiments of the present invention is realized by a processing circuit which is dedicated hardware.
  • FIG. 7 is a configuration diagram showing a case where each function of the control unit according to the first to sixth embodiments of the present invention is realized by a processing circuit including a processor and a memory.
  • FIG. 1 is a block diagram showing a configuration of a vehicle and a charging facility equipped with a drive device for a rotary electric machine according to Embodiment 1 of the present invention.
  • the vehicle 1 includes a rotating electric machine 2, a drive device 3, a storage battery 4, and a charger 5. Further, outside the vehicle 1, a charging facility 6 capable of supplying AC power when the storage battery 4 of the vehicle 1 is charged is installed.
  • the rotating electric machine 2 is driven by the three-phase AC power supplied from the drive device 3 when the vehicle 1 is in the power mode. Further, when the vehicle 1 is regenerated, the rotating electrical machine 2 outputs the three-phase AC power generated by itself to the drive device 3.
  • the drive device 3 includes a power conversion unit 7 and a control unit 8.
  • the drive device 3 controls the transfer of electric power between the rotary electric machine 2 and the storage battery 4.
  • the power conversion unit 7 includes a DC/DC converter circuit 7a and a DC/AC inverter circuit 7b.
  • the DC/DC converter circuit 7a and the DC/AC inverter circuit 7b operate based on the switching signal input from the control unit 8.
  • the power conversion unit 7 converts the DC power supplied from the storage battery 4 into three-phase AC power and supplies it to the rotary electric machine 2 when the vehicle 1 is in the power mode. Further, when the vehicle 1 is regenerated, the power conversion unit 7 converts the three-phase AC power generated by the rotating electric machine 2 into DC power and supplies the DC power to the storage battery 4.
  • the control unit 8 controls the operation of the power conversion unit 7. Specifically, the control unit 8 controls the operation of the power conversion unit 7 by the switching signal output to the DC/DC converter circuit 7a and the DC/AC inverter circuit 7b of the power conversion unit 7.
  • the storage battery 4 supplies the electric power stored by the storage battery 4 to the rotary electric machine 2 via the power conversion unit 7 of the drive device 3 when the vehicle 1 is in the power mode.
  • the storage battery 4 charges the electric power generated by the rotating electric machine 2 and converted by the electric power conversion unit 7 of the drive device 3. Further, the storage battery 4 charges the electric power supplied from the charging facility 6 and converted by the charger 5 when charging from the charging facility 6 when the vehicle 1 is stopped.
  • the charger 5 converts the AC power supplied from the charging facility 6 into DC power and supplies it to the storage battery 4 when charging the storage battery 4 of the vehicle 1 from the charging facility 6.
  • an angle sensor 9 that detects an electrical angle of the rotary electric machine 2 is attached to the rotary electric machine 2.
  • the electrical angle of the rotary electric machine 2 detected by the angle sensor 9 is input to the control unit 8 of the drive device 3.
  • the rotating electric machine 2 is provided with a current sensor 10 for detecting the current value of the three-phase AC power between the rotating electric machine 2 and the power converter 7.
  • the current value detected by the current sensor 10 is input to the control unit 8 of the drive device 3.
  • a temperature sensor 11 that detects the temperature of the storage battery 4 is attached to the storage battery 4. The temperature of the storage battery 4 detected by the temperature sensor 11 is input to the control unit 8 of the drive device 3.
  • the control unit 8 of the drive device 3 determines, based on the electrical angle of the rotary electric machine 2 detected by the angle sensor 9 and the current value between the rotary electric machine 2 and the power conversion unit 7 detected by the current sensor 10, the rotary electric machine. 2 controls the driving state.
  • control unit 8 of the drive device 3 controls the drive state of the rotary electric machine 2 by controlling the converter switching signal and the inverter switching signal output to the power conversion unit 7.
  • control unit 8 of the drive device 3 controls the drive state of the rotary electric machine 2 so that the rotation speed and the torque required by the vehicle 1 are achieved when the vehicle 1 is in the power mode. Further, the control unit 8 of the drive device 3 controls the drive state of the rotating electric machine 2 so as to output the electric power charged in the storage battery 4 when the vehicle 1 is regenerated.
  • control unit 8 of the drive device 3 controls the converter switching signal and the inverter switching signal so that the power loss in the rotary electric machine 2 and the power conversion unit 7 is reduced.
  • the control unit 8 of the drive device 3 determines the frequencies of the converter switching signal and the inverter switching signal, and other parameters, in consideration of the trade-off between the power conversion efficiency of the power conversion unit 7 and the controllability.
  • the rotary electric machine 2 in the state in which the power conversion efficiency of the power conversion unit 7 is maximized.
  • the drive state is defined as the "normal drive state”.
  • the temperature of the storage battery 4 is charged by discharging the storage battery 4. It is necessary to raise the temperature to the appropriate setting temperature.
  • control unit 8 of the drive device 3 causes the rotating electric machine 2 and the power conversion unit 7 to consume the power of the storage battery 4 and raise the temperature of the storage battery 4 by performing the control described below.
  • the control unit 8 of the drive device 3 sets the frequencies of the converter switching signal and the inverter switching signal output to the power conversion unit 7 to a frequency different from the normal driving state of the rotating electrical machine 2 when the vehicle 1 is running as described above. At this time, the frequencies of the converter switching signal and the inverter switching signal are fixed periods that do not depend on the rotation period of the electrical angle of the rotary electric machine 2.
  • the frequencies of the converter switching signal and the inverter switching signal output to the power converter 7 are determined by the power conversion efficiency of the rotary electric machine 2 and the power converter 7. Is controlled to be maintained at the highest level.
  • the frequencies of the converter switching signal and the inverter switching signal output to the power conversion unit 7 are set to frequencies different from the normal driving state of the rotary electric machine 2, the power conversion efficiency of the rotary electric machine 2 and the power conversion unit 7 will decrease.
  • the electric power conversion efficiency of the rotary electric machine 2 and the electric power conversion unit 7 decreases, so that the discharge amount of the storage battery 4 increases.
  • the temperature of the storage battery 4 can be raised to the set temperature suitable for charging.
  • the frequencies of the converter switching signal and the inverter switching signal are fixed cycles that do not depend on the rotation cycle of the electrical angle of the rotary electric machine 2. Therefore, this control can be performed even when the vehicle 1 is stopped.
  • the control unit when the temperature of the storage battery is lower than the set temperature suitable for the charging, the control unit performs power conversion.
  • the switching signal output to the unit is set to be different from the switching signal in the normal driving state of the rotating electric machine. Accordingly, the temperature of the storage battery can be raised even when the rotating electric machine is not rotating.
  • Embodiment 2 Next, a drive device for a rotary electric machine according to Embodiment 2 of the present invention will be described.
  • the configuration of the drive device is the same, and only the content of the control for increasing the temperature of the storage battery performed by the control unit is different. Therefore, in the following second to fifth embodiments, only the details of the control for raising the temperature of the storage battery, which is a difference from the first embodiment, will be described in detail.
  • the control unit 8 of the drive device 3 sets the frequencies of the converter switching signal and the inverter switching signal to a predetermined maximum frequency when increasing the temperature of the storage battery 4.
  • the power loss of the power converter 7 is proportional to the frequency of the switching signal. Therefore, if the frequency of the switching signal is increased, the power conversion efficiency of the power conversion unit 7 decreases. As the power conversion efficiency of the power conversion unit 7 decreases, the discharge amount of the storage battery 4 increases. As a result, the temperature of the storage battery 4 can be raised to the set temperature suitable for charging.
  • the predetermined highest frequency is the highest frequency in the temperature range that the power conversion unit 7 can withstand, considering the heat resistance characteristics of the power conversion unit 7.
  • Embodiment 3 In control unit 8 of drive device 3 according to the third embodiment, the boosted voltage of DC/DC converter circuit 7a included in power conversion unit 7 maximizes the sum of power loss of rotating electric machine 2 and power conversion unit 7.
  • the duty ratio of the converter switching signal is set so that the boosted voltage is obtained.
  • the power loss of the rotary electric machine 2 is inversely proportional to the boosted voltage of the DC/DC converter circuit 7a. However, when the boosted voltage of the DC/DC converter circuit 7a becomes a certain value or more, the power loss of the rotary electric machine 2 does not further decrease.
  • the power loss of the DC/AC inverter circuit 7b is proportional to the boosted voltage of the DC/DC converter circuit 7a.
  • the power loss of the DC/DC converter circuit 7a itself has a different tendency with respect to the boosted voltage depending on the circuit configuration.
  • control unit 8 of the drive device 3 is configured so that the boosted voltage of the DC/DC converter circuit 7a is the same as the rotating electric machine 2, the DC/DC converter circuit 7a, and the DC/AC inverter circuit.
  • the duty ratio of the converter switching signal is set so that the sum of the power losses of 7b becomes the maximum boosted voltage.
  • the electric power loss of the rotary electric machine 2 and the electric power conversion unit 7 increases, so that the discharge amount of the storage battery 4 increases. As a result, the temperature of the storage battery 4 can be raised to the set temperature suitable for charging.
  • control unit 8 of the drive device 3 sets the inverter switching signal so that the heat generation amounts of the adjacent coils in the rotary electric machine 2 do not increase at the same time.
  • control unit 8 of the drive device 3 determines that the electrical angle of the rotary electric machine 2 detected by the angle sensor 9 has the minimum difference between the maximum value and the minimum value of the current amount of each phase of the rotary electric machine 2.
  • the inverter switching signal is set so as to match the phase.
  • the current has a plus or minus value.
  • the current amount is the magnitude of the current, that is, the absolute value of the current.
  • FIG. 2 shows an example of the current phase of each phase of the rotary electric machine 2.
  • FIG. 3 is a diagram in which the maximum value and the minimum value of the current amount in each phase are extracted from FIG. 2.
  • FIG. 4 is a diagram in which the difference between the maximum value and the minimum value of the current amount in each phase is extracted from FIG.
  • the phase when the phase is 0 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees, the difference between the maximum value and the minimum value of the current amount of each phase becomes the minimum. Further, when the phases are 30, 90, 150, 210, 270, and 330 degrees, the difference between the maximum value and the minimum value of the current amount of each phase becomes the maximum.
  • FIG. 5 shows the heat generation amount of each phase coil in the rotary electric machine 2 at a phase of 30 degrees.
  • the heat generation amount of the W-phase coil 2a is large
  • the heat generation amount of the U-phase coil 2b is also large
  • the heat generation amount of the V-phase coil 2b is zero.
  • the phase is 30 degrees
  • the heat generation amounts of the adjacent coils in the rotary electric machine 2 simultaneously increase.
  • FIG. 6 shows the amount of heat generated by the coils of each phase of the rotary electric machine 2 at phase 0 degrees.
  • the heat generation amount of the W-phase coil 2a is medium
  • the heat generation amount of the U-phase coil 2b is large
  • the heat generation amount of the V-phase coil 2c is medium.
  • the heat generation amounts of the adjacent coils in the rotary electric machine 2 do not simultaneously increase.
  • the control unit 8 of the drive device 3 determines that the electrical angle of the rotary electric machine 2 detected by the angle sensor 9 has the smallest difference between the maximum value and the minimum value of the current amount of each phase of the rotary electric machine 2.
  • the inverter switching signal is set so as to match the phase.
  • Embodiment 5 The control unit 8 of the drive device 3 according to the fifth embodiment selects one from one or a plurality of preset angles determined in advance based on the electrical angle of the rotary electric machine 2 detected by the angle sensor 9. To do. The control unit 8 of the drive device 3 sets the inverter switching signal based on the selected one set angle.
  • the plurality of set angles are 0 degree, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees shown in FIG.
  • the control unit 8 of the drive device 3 selects the set angle closest to the electrical angle of the rotary electric machine 2 detected by the angle sensor 9 from these six set angles.
  • the value of the electrical angle detected by the angle sensor 9 may fluctuate due to the influence of noise or the like even though the rotating electric machine 2 is not actually rotating. If the inverter switching signal is set based on this swaying electrical angle, torque is generated in the rotary electric machine 2 and the rotary electric machine 2 vibrates. In the fifth embodiment, it is possible to prevent the inverter switching signal from being set based on the shaken electrical angle.
  • FIG. 7 is a block diagram showing a configuration of vehicle 601 equipped with drive device 603 of rotating electric machine 2 according to Embodiment 6 of the present invention and charging equipment 6. The description of the same or similar configuration as that of the first embodiment will be omitted, and only the configuration unique to the sixth embodiment will be described in detail.
  • the control unit 608 of the driving device 603 performs the same control as in the above-described fourth embodiment. That is, the control unit 608 causes the electrical angle of the rotary electric machine 2 detected by the angle sensor 9 to match the phase in which the difference between the maximum value and the minimum value of the current amount of each phase of the rotary electric machine 2 is the minimum. , Set the inverter switching signal.
  • the temperature sensor 612 is attached to the rotary electric machine 2 only for any one of the U phase, the V phase, and the W phase.
  • the phase to which the temperature sensor 612 is attached is the phase in which the current amount is maximum in the phase in which the control unit 608 of the drive device 603 attempts to match the electrical angles of the rotary electric machine 2, that is, the target phase.
  • the control unit 608 of the drive device 603 protects the rotary electric machine 2 so that three-phase AC power is not supplied to the rotary electric machine 2. To This is because the temperature of each phase of the rotary electric machine 2 is proportional to the amount of current, so if the temperature of the U phase in which the maximum amount of current flows can be detected, the temperatures of the other phases are surely lower than that. Is.
  • the rotary electric machine can be reliably protected only by attaching the temperature sensor to the phase corresponding to the target phase of the electrical angle in the rotary electric machine.
  • each function in the control units 8 and 608 according to the first to sixth embodiments described above is realized by a processing circuit.
  • the processing circuit that realizes each function may be dedicated hardware or a processor that executes a program stored in the memory.
  • FIG. 8 is a configuration diagram showing a case where each function of the control units 8 and 608 according to Embodiments 1 to 5 and 6 of the present invention is realized by a processing circuit 1000 which is dedicated hardware.
  • FIG. 9 is a configuration diagram showing a case where each function of the control units 8 and 608 according to the first to fifth and sixth embodiments of the present invention is realized by the processing circuit 2000 including the processor 2001 and the memory 2002. ..
  • the processing circuit 1000 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array). ), or a combination of these.
  • the functions of the respective units of the control units 8 and 608 may be realized by the individual processing circuits 1000, or the functions of the respective units may be collectively realized by the processing circuit 1000.
  • the processing circuit is the processor 2001
  • the functions of the respective units of the control units 8 and 608 are realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are described as programs and stored in the memory 2002.
  • the processor 2001 realizes the function of each unit by reading and executing the program stored in the memory 2002. That is, the control units 8 and 608 include a memory 2002 for storing a program that will result in the above-mentioned respective controls being executed by the processing circuit 2000.
  • the memory 2002 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Any Memory), or an EEPROM (Electrically Organized Memory). Volatile or volatile semiconductor memory is applicable. Further, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc. also correspond to the memory 2002.
  • the processing circuit can realize the function of each unit described above by hardware, software, firmware, or a combination thereof.
  • 1,601 vehicle 2 rotating electric machine, 3,603 drive device, 4 storage battery, 7 power conversion unit, 7a DC/DC converter circuit, 7b DC/AC inverter circuit, 8,608 control unit.

Abstract

回転電機の駆動装置は、蓄電池から供給される直流電力を交流電力に変換して回転電機に供給する電力変換部と、電力変換部にスイッチング信号を出力する制御部とを備えている。制御部は、蓄電池の充電時に、外部から入力される蓄電池の温度が充電に適した設定温度よりも低い場合には、電力変換部のスイッチング信号を、回転電機の通常駆動状態におけるスイッチング信号とは異なるように設定する。

Description

回転電機の駆動装置
 本発明は、回転電機の駆動装置に係り、特に蓄電池から供給される電力によって駆動される回転電機の駆動装置に関する。
 電気自動車等の回転電機を搭載する車両では、回転電機に電力を供給する蓄電池への充電を行う必要がある。この際、蓄電池の温度が充電に適した温度よりも低い場合には、充電開始に先って蓄電池を放電させることによって、蓄電池の温度を充電に適した温度まで上昇させる必要がある。
 特許文献1には、回転電機の駆動電力の熱変換要求がある場合に、DC/ACインバータ回路に出力するスイッチング信号の周波数を制御することによって、DC/ACインバータ回路の電力変換効率を意図的に低下させる発明が記載されている。特許文献1では、DC/ACインバータ回路の電力変換効率が低下すると、蓄電池の放電量が増加するため、結果的に蓄電池の温度が上昇する。
特開2018-098857号公報
 特許文献1では、回転電機の電気角の単位周期あたりのパルス数に基づいて、DC/ACインバータ回路に出力するスイッチング信号の周波数を制御している。この場合、車両の停止時には、回転電機の電気角の単位周期は無限長となる。したがって、車両の停止時に蓄電池への充電を行う場合には、特許文献1の技術を用いて蓄電池の温度を上昇させることはできない。
 本発明は、上記のような課題を解決するためのものであり、回転電機が回転していない状態においても蓄電池の温度を上昇させることができる、回転電機の駆動装置を提供することを目的とする。
 上記の課題を解決するために、本発明に係る回転電機の駆動装置は、蓄電池から供給される直流電力を交流電力に変換して回転電機に供給する電力変換部と、電力変換部にスイッチング信号を出力する制御部であって、蓄電池の充電時に、外部から入力される蓄電池の温度が充電に適した設定温度よりも低い場合には、電力変換部のスイッチング信号を、回転電機の通常駆動状態におけるスイッチング信号とは異なるように設定する、制御部とを備える。
 本発明に係る回転電機の駆動装置によれば、回転電機が回転していない状態においても蓄電池の温度を上昇させることができる。
本発明の実施の形態1に係る回転電機の駆動装置を搭載した車両および充電設備の構成を示すブロック図である。 図1の回転電機の各相の電流位相の一例である。 各相における電流量の最大値と最小値とを抽出した図である。 各相における電流量の最大値と最小値との差を抽出した図である。 位相30度における回転電機内の各相のコイルの発熱量を示す図である。 位相0度における回転電機内の各相のコイルの発熱量を示す図である。 本発明の実施の形態6に係る回転電機の駆動装置を搭載した車両および充電設備の構成を示すブロック図である。 本発明の実施の形態1~6に係る制御部の各機能を専用のハードウェアである処理回路で実現する場合を示した構成図である。 本発明の実施の形態1~6に係る制御部の各機能をプロセッサおよびメモリを備えた処理回路より実現する場合を示した構成図である。
 以下、添付図面を参照して、本願が開示する回転電機の駆動装置の実施の形態について、本発明に係る回転電機の駆動装置を車両に適用した場合を例にとって、詳細に説明する。ただし、以下に示す実施の形態は一例であり、これらの実施の形態によって、本発明が限定されるものではない。
 実施の形態1.
 図1は、本発明の実施の形態1に係る回転電機の駆動装置を搭載した車両および充電設備の構成を示すブロック図である。
 (車両1の構成)
 車両1は、回転電機2と、駆動装置3と、蓄電池4と、充電器5とを備えている。また、車両1の外部には、車両1の蓄電池4への充電を行う際に交流電力を供給可能な充電設備6が設置されている。
 回転電機2は、車両1の力行時には、駆動装置3から供給される三相交流電力によって駆動される。また、回転電機2は、車両1の回生時には、自身が発電した三相交流電力を駆動装置3に出力する。
 駆動装置3は、電力変換部7と、制御部8とを備えている。駆動装置3は、回転電機2と蓄電池4との間の電力の授受を制御する。
 電力変換部7は、DC/DCコンバータ回路7aおよびDC/ACインバータ回路7bを含んでいる。DC/DCコンバータ回路7aおよびDC/ACインバータ回路7bは、制御部8から入力されるスイッチング信号に基づいて動作する。
 電力変換部7は、車両1の力行時には、蓄電池4から供給される直流電力を三相交流電力に変換して回転電機2に供給する。また、電力変換部7は、車両1の回生時には、回転電機2によって発電された三相交流電力を直流電力に変換して蓄電池4に供給する。
 制御部8は、電力変換部7の動作を制御する。詳細には、制御部8は、電力変換部7のDC/DCコンバータ回路7aおよびDC/ACインバータ回路7bに出力するスイッチング信号によって、電力変換部7の動作を制御する。
 蓄電池4は、車両1の力行時には、自身が蓄える電力を駆動装置3の電力変換部7を介して回転電機2に供給する。蓄電池4は、車両1の回生時には、回転電機2で発電されて駆動装置3の電力変換部7によって変換された電力を充電する。また、蓄電池4は、車両1の停止時における充電設備6からの充電時には、充電設備6から供給されて充電器5によって変換された電力を充電する。
 充電器5は、充電設備6から車両1の蓄電池4への充電時に、充電設備6から供給される交流電力を直流電力に変換して蓄電池4に供給する。
 また、回転電機2には、回転電機2の電気角を検出する角度センサ9が取り付けられている。角度センサ9によって検出された回転電機2の電気角は、駆動装置3の制御部8に入力される。
 また、回転電機2には、回転電機2と電力変換部7との間の三相交流電力の電流値を検出する電流センサ10が取り付けられている。電流センサ10によって検出された電流値は、駆動装置3の制御部8に入力される。
 また、蓄電池4には、蓄電池4の温度を検出する温度センサ11が取り付けられている。温度センサ11によって検出された蓄電池4の温度は、駆動装置3の制御部8に入力される。
 (車両1の走行時における駆動装置3の動作)
 次に、車両1の走行時における駆動装置3の動作について説明する。なお、車両1の走行時には、車両1と充電設備2とは接続されていない。
 駆動装置3の制御部8は、角度センサ9によって検出される回転電機2の電気角および電流センサ10によって検出される回転電機2と電力変換部7との間の電流値に基づいて、回転電機2の駆動状態を制御する。
 詳細には、駆動装置3の制御部8は、電力変換部7に出力するコンバータスイッチング信号およびインバータスイッチング信号を制御することによって、回転電機2の駆動状態を制御する。
 より詳細には、駆動装置3の制御部8は、車両1の力行時には、車両1の要求する回転数およびトルクとなるように、回転電機2の駆動状態を制御する。また、駆動装置3の制御部8は、車両1の回生時には、蓄電池4に充電される電力を出力するように、回転電機2の駆動状態を制御する。
 さらに、駆動装置3の制御部8は、回転電機2および電力変換部7における電力損失が少なくなるように、コンバータスイッチング信号およびインバータスイッチング信号を制御する。
 具体的には、電力変換部7における電力損失を少なくするためには、電力変換部7の変換効率が最大限高くなるように制御する必要がある。一般に、電力変換部7の電力変換効率を高くするためには、コンバータスイッチング信号およびインバータスイッチング信号の周波数を下げるとよい。
 ただし、コンバータスイッチング信号およびインバータスイッチング信号の周波数が下がると、電力変換部7の制御性も低下する。そのため、駆動装置3の制御部8は、電力変換部7の電力変換効率と制御性とのトレードオフを考慮しながら、コンバータスイッチング信号およびインバータスイッチング信号の周波数、およびその他のパラメータを決定する。
 これ以降の説明において、上記のように電力変換部7の電力変換効率と制御性とのトレードオフを考慮した上で、電力変換部7の電力変換効率を最大限高くした状態における回転電機2の駆動状態を「通常駆動状態」と定義する。
 (車両1の充電時における駆動装置3の動作)
 次に、充電設備6から車両1の蓄電池4への充電時における駆動装置3の動作について説明する。なお、この際、車両1は停止しており、車両1と充電設備6とが接続されている。
 先述したように、充電設備6から蓄電池4への充電の際に、蓄電池4の温度が充電に適した設定温度よりも低い場合には、蓄電池4を放電させることによって、蓄電池4の温度を充電に適した設定温度まで上昇させる必要がある。
 この目的のために、駆動装置3の制御部8は、次に述べる制御を実施することによって、回転電機2および電力変換部7において蓄電池4の電力を消費させ、蓄電池4の温度を上昇させる。
 (蓄電池4の温度を上昇させる制御)
 駆動装置3の制御部8は、電力変換部7に出力するコンバータスイッチング信号およびインバータスイッチング信号の周波数を、上述した車両1の走行時における回転電機2の通常駆動状態とは異なる周波数に設定する。この際、コンバータスイッチング信号およびインバータスイッチング信号の周波数は、回転電機2の電気角の回転周期に依存しない固定周期とする。
 上述したように、車両1の走行時における回転電機2の通常駆動状態では、電力変換部7に出力するコンバータスイッチング信号およびインバータスイッチング信号の周波数は、回転電機2および電力変換部7の電力変換効率が最大限高い状態に維持されるように制御されている。
 電力変換部7に出力するコンバータスイッチング信号およびインバータスイッチング信号の周波数を、回転電機2の通常駆動状態とは異なる周波数に設定すると、回転電機2および電力変換部7の電力変換効率が低下する。
 回転電機2および電力変換部7の電力変換効率が低下することによって、蓄電池4の放電量が増加する。これにより、蓄電池4の温度を充電に適した設定温度まで高めることができる。この際、コンバータスイッチング信号およびインバータスイッチング信号の周波数は、回転電機2の電気角の回転周期に依存しない固定周期である。そのため、この制御は、車両1の停車時においても実施可能である。
 以上説明したように、本発明の実施の形態1に係る回転電機の駆動装置において、制御部は、蓄電池の充電時に、蓄電池の温度が充電に適した設定温度よりも低い場合には、電力変換部に出力するスイッチング信号を、回転電機の通常駆動状態におけるスイッチング信号とは異なるように設定する。これにより、回転電機が回転していない状態においても蓄電池の温度を上昇させることができる。
 実施の形態2.
 次に、本発明の実施の形態2に係る回転電機の駆動装置について説明する。なお、以降の実施の形態2~5と実施の形態1とでは、駆動装置の構成は同一であり、制御部によって実施される蓄電池の温度を上昇させる制御の内容のみが異なる。そのため、以降の実施の形態2~5では、実施の形態1との相違点である蓄電池の温度を上昇させる制御の内容についてのみ詳細に説明する。
 実施の形態2に係る駆動装置3の制御部8は、蓄電池4の温度を上昇させる際には、コンバータスイッチング信号およびインバータスイッチング信号の周波数を、予め決定された最高周波数に設定する。
 一般に、電力変換部7の電力損失は、スイッチング信号の周波数に比例する。そのため、スイッチング信号の周波数を高くすると、電力変換部7の電力変換効率は低下する。電力変換部7の電力変換効率が低下することによって、蓄電池4の放電量が増加する。これにより、蓄電池4の温度を充電に適した設定温度まで高めることができる。
 ただし、スイッチング信号の周波数を高くすると、電力変換部7における発熱量も増大する。そのため、予め決定された最高周波数とは、電力変換部7の耐熱特性を考慮して、電力変換部7が耐えられる温度範囲内における最高周波数である。
 実施の形態3.
 実施の形態3に係る駆動装置3の制御部8は、電力変換部7に含まれるDC/DCコンバータ回路7aの昇圧電圧が、回転電機2および電力変換部7の電力損失の和が最大となる昇圧電圧となるように、コンバータスイッチング信号のデューティ比を設定する。
 一般に、回転電機2の電力損失は、DC/DCコンバータ回路7aの昇圧電圧に反比例する。ただし、DC/DCコンバータ回路7aの昇圧電圧が一定値以上になると、回転電機2の電力損失はそれ以上低下しない。
 また、一般に、DC/ACインバータ回路7bの電力損失は、DC/DCコンバータ回路7aの昇圧電圧に比例する。なお、DC/DCコンバータ回路7a自体の電力損失は、回路構成に依存して、昇圧電圧に対する傾向が異なる。
 上記の事項を考慮して、実施の形態3に係る駆動装置3の制御部8は、DC/DCコンバータ回路7aの昇圧電圧が、回転電機2並びにDC/DCコンバータ回路7aおよびDC/ACインバータ回路7bの各電力損失の和が最大となる昇圧電圧となるように、コンバータスイッチング信号のデューティ比を設定する。
 回転電機2および電力変換部7の電力損失が大きくなることによって、蓄電池4の放電量が増加する。これにより、蓄電池4の温度を充電に適した設定温度まで高めることができる。
 実施の形態4.
 実施の形態4に係る駆動装置3の制御部8は、回転電機2内の隣接するコイル同士の発熱量が同時に大きくならないように、インバータスイッチング信号を設定する。
 この目的のために、駆動装置3の制御部8は、角度センサ9によって検出される回転電機2の電気角が、回転電機2の各相の電流量の最大値と最小値との差が最小となる位相と一致するように、インバータスイッチング信号を設定する。
 なお、以降の説明において、電流とは、プラスまたはマイナスの値を有するものである。また、電流量とは、電流の大きさ、すなわち電流の絶対値をとったものである。
 図2は、回転電機2の各相の電流位相の一例である。また、図3は、図2から、各相における電流量の最大値と最小値とを抽出した図である。また、図4は、図3から、各相における電流量の最大値と最小値との差を抽出した図である。
 図4から見て取れるように、位相が0度、60度、120度、180度、240度、300度の時に、各相の電流量の最大値と最小値との差が最小になる。また、位相が30度、90度、150度、210度、270度、330度の時に、各相の電流量の最大値と最小値との差が最大になる。
 図5は、位相30度における、回転電機2内の各相のコイルの発熱量を示している。図5において、W相のコイル2aの発熱量は大であり、U相のコイル2bの発熱量も大であり、V相のコイル2bの発熱量はゼロである。この図から見て取れるように、位相30度では、回転電機2内の隣接するコイル同士の発熱量が同時に大きくなる。
 図6は、位相0度における、回転電機2の各相のコイルの発熱量を示している。図6において、W相のコイル2aの発熱量は中程度であり、U相のコイル2bの発熱量は大であり、V相のコイル2cの発熱量は中程度である。この図から見て取れるように、位相0度では、回転電機2内の隣接するコイル同士の発熱量が同時に大きくなることがない。
 実施の形態4では、駆動装置3の制御部8は、角度センサ9によって検出される回転電機2の電気角が、回転電機2の各相の電流量の最大値と最小値との差が最小となる位相と一致するように、インバータスイッチング信号を設定する。これにより、回転電機2内の隣接するコイル同士の発熱量が同時に大きくなることがないため、回転電機2の耐熱特性が低い場合にも対応することができる。
 実施の形態5.
 実施の形態5に係る駆動装置3の制御部8は、角度センサ9によって検出される回転電機2の電気角に基づいて、予め決定された1つまたは複数の設定角度の中から1つを選択する。駆動装置3の制御部8は、選択された1つの設定角度に基づいて、インバータスイッチング信号を設定する。
 例えば、複数の設定角度とは、図2に示される0度、60度、120度、180度、240度、300度である。駆動装置3の制御部8は、これら6個の設定角度の中から、角度センサ9によって検出される回転電機2の電気角に最も近い設定角度を選択する。
 一般に、回転電機2が実際には回転していないにも関わらず、角度センサ9によって検出される電気角の値がノイズ等の影響によって揺れてしまう場合がある。この揺れた電気角に基づいてインバータスイッチング信号を設定してしまうと、回転電機2にトルクが発生して、回転電機2が振動してしまう。実施の形態5では、揺れた電気角に基づいて、インバータスイッチング信号を設定してしまうことを防ぐことができる。
 実施の形態6.
 次に、本発明の実施の形態6に係る回転電機の駆動装置について説明する。
 図7は、本発明の実施の形態6に係る回転電機2の駆動装置603を搭載した車両601および充電設備6の構成を示すブロック図である。なお、実施の形態1と同一または同様の構成については説明を省略し、実施の形態6に特有の構成についてのみ、詳細に説明する。
 駆動装置603の制御部608は、上述した実施の形態4と同様の制御を行う。すなわち、制御部608は、角度センサ9によって検出される回転電機2の電気角が、回転電機2の各相の電流量の最大値と最小値との差が最小となる位相と一致するように、インバータスイッチング信号を設定する。
 また、回転電機2には、U相、V相、W相の中のいずれか1相にのみ、温度センサ612が取り付けられる。この温度センサ612が取り付けられる相は、駆動装置603の制御部608が回転電機2の電気角を一致させようとする位相、すなわち目標位相において、電流量が最大となる相である。
 例えば、駆動装置603の制御部608が、回転電機2の電気角を目標位相0度に一致させるように制御を行う場合を考える。この場合、図2を参照すると、位相0度で電流量が最大となるのは、U相である。そのため、温度センサ612は、回転電機2のU相に取り付けられる。
 駆動装置603の制御部608は、温度センサ612によって検出される温度が予め決定される設定温度よりも高くなると、回転電機2を保護するために、回転電機2に三相交流電力が供給されないようにする。これは、回転電機2の各相の温度は電流量に比例するため、最大の電流量が流れるU相の温度を検出することができれば、他の相の温度はそれよりも低いことが確実だからである。
 以上説明したように、本発明の実施の形態6では、回転電機における電気角の目標位相に対応する相に温度センサを取り付けるだけで、回転電機を確実に保護することができる。
 また、上述した実施の形態1~6に係る制御部8、608における各機能は、処理回路によって実現される。各機能を実現する処理回路は、専用のハードウェアであってもよく、メモリに格納されるプログラムを実行するプロセッサであってもよい。図8は、本発明の実施の形態1~5、6に係る制御部8、608の各機能を専用のハードウェアである処理回路1000で実現する場合を示した構成図である。また、図9は、本発明の実施の形態1~5、6に係る制御部8、608の各機能をプロセッサ2001およびメモリ2002を備えた処理回路2000により実現する場合を示した構成図である。
 処理回路が専用のハードウェアである場合、処理回路1000は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御部8、608の各部の機能それぞれを個別の処理回路1000で実現してもよいし、各部の機能をまとめて処理回路1000で実現してもよい。
 一方、処理回路がプロセッサ2001の場合、制御部8、608の各部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ2002に格納される。プロセッサ2001は、メモリ2002に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、制御部8、608は、処理回路2000により実行されるときに、上述した各制御が結果的に実行されることになるプログラムを格納するためのメモリ2002を備える。
 これらのプログラムは、上述した各部の手順あるいは方法をコンピュータに実行させるものであるともいえる。ここで、メモリ2002とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリが該当する。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ2002に該当する。
 なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各部の機能を実現することができる。
 1,601 車両、2 回転電機、3,603 駆動装置、4 蓄電池、7 電力変換部、7a DC/DCコンバータ回路、7b DC/ACインバータ回路、8,608 制御部。

Claims (7)

  1.  蓄電池から供給される直流電力を交流電力に変換して回転電機に供給する電力変換部と、
     前記電力変換部にスイッチング信号を出力する制御部であって、前記蓄電池の充電時に、外部から入力される前記蓄電池の温度が充電に適した設定温度よりも低い場合には、前記電力変換部のスイッチング信号を、前記回転電機の通常駆動状態におけるスイッチング信号とは異なるように設定する、制御部と
    を備える、回転電機の駆動装置。
  2.  前記制御部は、前記電力変換部のスイッチング信号の周波数を、前記回転電機の通常駆動状態におけるスイッチング信号の周波数とは異なるように設定する、請求項1に記載の回転電機の駆動装置。
  3.  前記制御部は、前記電力変換部のスイッチング信号の周波数を、予め決定された最高周波数に設定する、請求項2に記載の回転電機の駆動装置。
  4.  前記電力変換部は、DC/DCコンバータ回路を含み、
     前記制御部は、前記DC/DCコンバータ回路の昇圧電圧が、前記回転電機および前記電力変換部の電力損失の和が最大となる昇圧電圧となるように、前記DC/DCコンバータ回路のスイッチング信号のデューティ比を設定する、請求項1に記載の回転電機の駆動装置。
  5.  前記電力変換部は、DC/ACインバータ回路を含み、
     前記制御部は、外部から入力される前記回転電機の電気角が、前記回転電機の各相の電流量の最大値と最小値との差が最小となる位相と一致するように、前記DC/ACインバータ回路のスイッチング信号を設定する、請求項1に記載の回転電機の駆動装置。
  6.  前記制御部は、外部から入力される前記回転電機における前記電気角の目標位相に対応する相の温度が予め決定される設定温度よりも高くなると、前記回転電機に三相交流電力が供給されないようにする、請求項5に記載の回転電機の駆動装置。
  7.  前記電力変換部は、DC/ACインバータ回路を含み、
     前記制御部は、外部から入力される前記回転電機の電気角に基づいて、予め決定された1つまたは複数の設定角度の中から1つを選択し、該選択された1つの設定角度に基づいて、前記DC/ACインバータ回路のスイッチング信号を設定する、請求項1に記載の回転電機の駆動装置。
PCT/JP2018/044007 2018-11-29 2018-11-29 回転電機の駆動装置 WO2020110259A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/296,319 US11881804B2 (en) 2018-11-29 2018-11-29 Rotating electric machine drive device
PCT/JP2018/044007 WO2020110259A1 (ja) 2018-11-29 2018-11-29 回転電機の駆動装置
DE112018008175.3T DE112018008175T5 (de) 2018-11-29 2018-11-29 Rotierende elektrische Maschinentreibervorrichtung
CN201880099693.0A CN113165525B (zh) 2018-11-29 2018-11-29 旋转电机的驱动装置
JP2020557480A JP7123165B2 (ja) 2018-11-29 2018-11-29 回転電機の駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044007 WO2020110259A1 (ja) 2018-11-29 2018-11-29 回転電機の駆動装置

Publications (1)

Publication Number Publication Date
WO2020110259A1 true WO2020110259A1 (ja) 2020-06-04

Family

ID=70854179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044007 WO2020110259A1 (ja) 2018-11-29 2018-11-29 回転電機の駆動装置

Country Status (5)

Country Link
US (1) US11881804B2 (ja)
JP (1) JP7123165B2 (ja)
CN (1) CN113165525B (ja)
DE (1) DE112018008175T5 (ja)
WO (1) WO2020110259A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104178A (ja) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd 電源装置及び電動車輌
JP2015149853A (ja) * 2014-02-07 2015-08-20 トヨタ自動車株式会社 モータジェネレータの駆動制御装置
JP2015214188A (ja) * 2014-05-08 2015-12-03 トヨタ自動車株式会社 ハイブリッド車両の動力制御システム
JP2018098857A (ja) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 駆動装置および自動車

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486321B1 (ko) * 2001-02-14 2005-04-29 도요다 지도샤 가부시끼가이샤 동력 출력장치 및 이것을 탑재하는 차량, 동력 출력장치의 제어방법 및 기억매체, 구동장치 및 이것을 탑재하는 차량, 구동장치의 제어방법 및 기억매체
JP2004208409A (ja) * 2002-12-25 2004-07-22 Denso Corp 車両用動力制御装置
JP2008295291A (ja) * 2007-04-27 2008-12-04 Sanyo Electric Co Ltd 電源装置及び電動車輌
JP2010057228A (ja) * 2008-08-27 2010-03-11 Hitachi Ltd モータ制御装置
US8653772B2 (en) * 2009-06-02 2014-02-18 Toyota Jidosha Kabushiki Kaisha Control device for voltage conversion device, vehicle incorporating the same, and control method for voltage conversion device
JP4840481B2 (ja) * 2009-07-08 2011-12-21 トヨタ自動車株式会社 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
US9419549B2 (en) * 2014-11-14 2016-08-16 GM Global Technology Operations LLC Method and apparatus for controlling an electric machine in a six-step mode
JP2016141356A (ja) * 2015-02-05 2016-08-08 株式会社オートネットワーク技術研究所 自動車用電源装置及び自動車用電源装置の制御方法
JP6950746B2 (ja) * 2017-11-16 2021-10-13 株式会社村田製作所 電源システム
CN110962631B (zh) * 2018-12-29 2020-11-17 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104178A (ja) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd 電源装置及び電動車輌
JP2015149853A (ja) * 2014-02-07 2015-08-20 トヨタ自動車株式会社 モータジェネレータの駆動制御装置
JP2015214188A (ja) * 2014-05-08 2015-12-03 トヨタ自動車株式会社 ハイブリッド車両の動力制御システム
JP2018098857A (ja) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 駆動装置および自動車

Also Published As

Publication number Publication date
JP7123165B2 (ja) 2022-08-22
DE112018008175T5 (de) 2021-08-26
CN113165525B (zh) 2024-02-23
US20220045643A1 (en) 2022-02-10
CN113165525A (zh) 2021-07-23
JPWO2020110259A1 (ja) 2021-09-30
US11881804B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP3797361B2 (ja) モータ駆動制御装置
US7102903B2 (en) Drive apparatus, control method for the drive apparatus, storage medium storing a program controlling the drive apparatus, and power output apparatus
CN104518725B (zh) 电力转换设备及电力转换系统
JPWO2002065628A1 (ja) 動力出力装置およびこれを搭載する車輌、動力出力装置の制御方法および記憶媒体並びにプログラム、駆動装置およびこれを搭載する車輌、駆動装置の制御方法および記憶媒体並びにプログラム
US11146194B2 (en) Electromechanical power transmission chain, and an electric system, a method and a computer program for controlling the same to stabilize dc input voltage of a converter driving an electric machine and determining a torque reference of the electric machine
JP6896159B2 (ja) 交流回転機装置
JP2009232604A (ja) 回転電機制御システム
JP6197690B2 (ja) モータ制御システム
WO2020110259A1 (ja) 回転電機の駆動装置
JP5545646B2 (ja) モータ駆動制御装置
JP5181570B2 (ja) モータ駆動装置、集積回路装置およびモータ装置
JP6671402B2 (ja) 車両用電源装置
JP5694046B2 (ja) 制御装置
JP2022096905A (ja) 回転電機の制御装置
US8829834B2 (en) Motor driving control apparatus and method, and motor using the same
CN113678363A (zh) 电机驱动控制装置以及电机的驱动控制方法
WO2019163110A1 (ja) モータ駆動装置
JP4983939B2 (ja) 同期電動機の駆動装置
CN111869097B (zh) 驱动装置、电动车辆以及驱动装置的控制方法
JP7021846B2 (ja) 制御装置
JP2017225215A (ja) 電力変換器の制御装置、電力変換システム、圧縮機駆動システム、フライホイール発電システム、及び、電力変換器の制御方法
JP2021090260A (ja) 電力変換装置
JP5574771B2 (ja) 電動機制御装置、および、これを用いた電動機システム
JP2021044970A (ja) 過電流検出装置、及びモータ制御装置
JP2019213246A (ja) 回転電機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557480

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18941517

Country of ref document: EP

Kind code of ref document: A1