WO2020110253A1 - 正弦波ノイズ除去装置及び正弦波ノイズ除去方法 - Google Patents

正弦波ノイズ除去装置及び正弦波ノイズ除去方法 Download PDF

Info

Publication number
WO2020110253A1
WO2020110253A1 PCT/JP2018/043945 JP2018043945W WO2020110253A1 WO 2020110253 A1 WO2020110253 A1 WO 2020110253A1 JP 2018043945 W JP2018043945 W JP 2018043945W WO 2020110253 A1 WO2020110253 A1 WO 2020110253A1
Authority
WO
WIPO (PCT)
Prior art keywords
sine wave
wave noise
signal
signal value
moving average
Prior art date
Application number
PCT/JP2018/043945
Other languages
English (en)
French (fr)
Inventor
貴司 新井
成光 林
渉 西岡
憲嗣 堀岡
昌士 島田
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to JP2020557475A priority Critical patent/JP7109727B2/ja
Priority to PCT/JP2018/043945 priority patent/WO2020110253A1/ja
Publication of WO2020110253A1 publication Critical patent/WO2020110253A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/032Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure affecting incoming signal, e.g. by averaging; gating undesired signals

Definitions

  • the present invention relates to a sine wave noise removing device and a sine wave noise removing method for removing sine wave noise from a signal having sine wave noise.
  • analog signals such as sensor signals from sensors (temperature sensors, etc.) for detecting the state of the measurement target are used, and it is necessary to take measures against noise superimposed on the analog signals. It has become a thing.
  • One of the noises is a sinusoidal noise derived from an AC power source, etc.
  • Japanese Patent Application Laid-Open No. 2004-242242 discloses a technique related to such a sinusoidal noise.
  • Patent Document 1 acquires a signal value at intervals of a half cycle of noise ((1/2+J) times the cycle (J is an integer)), and obtains a moving average of the acquired signal values. It cancels the sine wave noise.
  • the technique of Patent Document 1 is a simple and effective method as a countermeasure against sinusoidal noise, but since it uses a moving average, a delay occurs due to the time interval of the signal value used for the moving average. For example, when a moving average of two signal values, the current signal value and the signal value one second before, is taken, the value obtained by this corresponds to the value 0.5 seconds before, and therefore 0.5 seconds Is synonymous with the occurrence of a delay. Such a time delay has been an obstacle to high-speed and high-precision processing.
  • the present invention provides a sine wave noise removing device or a sine wave noise removing device that can eliminate a time delay that occurs in a technique of canceling noise by using a moving average for a signal on which sine wave noise is present. It is an object to provide a noise removing method.
  • a sine wave noise removing unit that has a signal value, an approximate expression information acquiring unit that acquires approximate expression information of the signal waveform of the signal, a delay time acquiring unit that acquires a delay time caused by the moving average, and the approximate expression information. Based on the delay time and a signal value change amount calculation unit that calculates a signal value change amount that is a change amount of the signal value corresponding to the delay time, and a signal value obtained by the sine wave noise removal unit.
  • a sine wave noise removing device comprising: a delay compensating unit that adds the signal value change amount.
  • a sine wave characterized by comprising: a sine wave noise removing unit for a signal value; and a delay compensating unit for performing a delay compensating process on the signal value obtained by the sine wave noise removing unit based on the following formula. Wave noise removal device.
  • Equation 1 b n is been n-th signal value acquired by the sine wave noise removing unit (n is an integer), c n is the signal value after delay compensation, m is the number of measurement points pair (an integer).
  • a sine wave noise removing step as a signal value
  • an approximate expression information acquiring step of acquiring approximate expression information of the signal waveform of the signal a delay time acquiring step of acquiring a delay time caused by the moving average, and the approximate expression information.
  • Equation 2 b n is been n-th signal value acquired by the sinusoidal noise removal step (n is an integer), c n is the signal value after delay compensation, m is the number of measurement points pair (an integer).
  • the sine wave noise removing device of the present invention it is possible to eliminate the time delay that occurs in the technique of canceling noise using a moving average for a signal on which sine wave noise is present.
  • Block diagram showing the outline of the configuration of a sine wave noise removal device of an embodiment according to the present invention
  • Explanatory drawing for explaining sine wave noise removal Explanatory diagram for explaining time delay compensation of sine wave noise removal
  • the flowchart which shows the outline of the processing operation of the sine wave noise elimination device
  • FIG. 1 is a block diagram showing the outline of the configuration of the sine wave noise elimination device of the present embodiment.
  • the sine wave noise removing apparatus 1 includes an input unit 11 and an A/D conversion unit 12 that A/D converts an analog signal (for example, a signal from a temperature sensor) input to the input unit 11 and inputs the analog signal to a microcomputer 13.
  • the removal of the sine wave noise cancels the noise by taking a moving average of positive and negative symmetrical points as a pair based on the fact that the sine wave has a positive and negative symmetrical waveform.
  • the measurement point is 2m.
  • the measurement interval of each measurement point is 1/2 m of the period of the sine wave noise, it is possible to obtain a measurement point that is a positive and negative symmetrical pair.
  • FIG. 2 exemplifies the case where sinusoidal noise is added to the signal of 0 output.
  • FIG. 2 shows an example in which two pairs of measurement points are provided in one cycle of sine wave noise, that is, four measurement points are provided in one cycle of sine wave noise. It is 1/4 of the noise period. As can be seen from FIG.
  • the measurement point a n and the measurement point a n-2 , and the measurement point a n-1 and the measurement point a n-3 form a pair, which are 0 when they are added. That is, when the number of pairs is m, the measurement point of 2 m is measured at an interval of 1/2 m of the cycle of the sine wave noise, and when these are added, the sine wave noise is canceled.
  • the signal output is set to 0, but if there is a signal output, the signal output is also added by the addition of the measurement points a n to a n-3.
  • the signal value b n from which the sinusoidal noise is removed can be obtained.
  • the signal value b n from which the sinusoidal noise is removed can be calculated by the following Expression 3.
  • b n is the n-th signal value (n is an integer) from which sinusoidal noise has been removed, and m is the number of pairs of measurement points (an integer). a n is a measurement value at each measurement point.
  • the above-mentioned removal of sinusoidal noise by the moving average causes a delay based on the time interval of the measurement points used for calculating the moving average.
  • the signal value b n obtained by this is the measurement point a n to a n when the signal waveform is a linear function. It corresponds to the signal value at the middle point of n-3 (middle of an -1 and an -2 ). In other words, the result is equal to the delay of 3/8 cycle.
  • FIG. 3 is an explanatory diagram related to this delay and its compensation.
  • a solid line in FIG. 3 is a line as a measured value of a signal (a signal value on which sine wave noise is superimposed), and a dashed-dotted line is a line indicating a signal value after removal of sine wave noise by moving average.
  • the dotted line is a line showing a true signal value.
  • FIG. 3 shows an example in which the number of pairs of measurement points m is 1, that is, there are two measurement points. As described above, when there are two measurement points (the interval between the two measurement points is 1/2 cycle), the delay (hereinafter referred to as “delay time”) is 1/4 cycle.
  • the signal value after removing the sinusoidal noise shown by the alternate long and short dash line has the same result as the delay of 1/4 cycle.
  • This delay is the amount of change (hereinafter, referred to as “signal value change amount”) in which the signal value changes during the delay time (1/4 cycle in this example) with respect to the signal value b n after removing the sine wave noise. ) Can be compensated.
  • the signal value change amount can be calculated by the following Expression 4. Note that "when the signal waveform is a linear function” and includes the case of can be considered a signal waveform as a linear function in the time interval b n-1 and b n.
  • b n is the n-th signal value (n is an integer) from which sinusoidal noise has been removed, and m is the number of pairs of measurement points (an integer).
  • the sine wave noise removing device 1 of the present embodiment obtains a delay-compensated signal value c n by adding a signal value change amount to the signal value b n after the sine wave noise is removed. Based on the above, the signal value c n that delay compensation can be calculated by Equation 5 below.
  • FIG. 4 is a flowchart showing an outline of the processing operation of the sine wave noise elimination device 1 of the present embodiment. Although the description of the processing main body is omitted below, the following processing is executed by the microcomputer 13 to which the signal value A/D converted by the A/D conversion unit 12 is input.
  • step 401 1 is substituted for s and 0 is substituted for n as initialization processing.
  • s is a variable indicating the order of measurement values
  • n is a variable indicating the order of signal values from which sinusoidal noise has been removed.
  • the number of pairs of measurement points for which the moving average process is performed is input to m (may be set by default, or may be determined and input by the user). ).
  • the value of the signal input from the A/D converter 12 is acquired as the measurement value a s .
  • step 403 it is determined whether s is 2 m or more. That is, it is determined whether or not the number of measured points has reached the number of measuring points for performing the moving average process.
  • step 408 waits for 1/2 m interval of the sine wave noise period to elapse. It means waiting for the time corresponding to the interval between the measurement points described above, that is, waiting for the measurement of the next measurement point.
  • s is incremented (step 408: Yes ⁇ step 409), the process returns to step 402, and the value of the signal input from the A/D converter 12 is measured. performs a process of acquiring the value a s.
  • Step 403 Yes ⁇ step 404.
  • step 405 the calculation based on the above-mentioned equation 3 is performed, and this is substituted into b n . That is, the microcomputer 13 "measures the signal having the sinusoidal noise on the signal having the sinusoidal noise on the pair of measurement points at which the sinusoidal noise is canceled out by the measured value. Functioning as a sine wave noise removing unit that uses the moving average of the signal as the signal value of the signal.
  • step 406 it is determined whether or not n is 1. That is, it is determined whether or not there is only one b n , and when n is 1 (b n is one), the process proceeds to step 408 and the above processing is repeated. On the other hand, when n is not 1, it means that there are a plurality of b n , and in this case, the process shifts to step 407, the calculation based on the above-mentioned equation 5 is performed, and this is substituted for c n . That is, the microcomputer 13 functions as "a delay compensating unit that performs a delay compensating process for the signal value obtained by the sine wave noise removing unit based on the equation (5)".
  • the measurement points are measured at intervals of 1 ⁇ 2 m of the sine wave noise period, and the signal value b n after removal of the sine wave noise is calculated.
  • the signal value c n obtained by delay-compensating b n is calculated.
  • the sine wave noise removing apparatus 1 of the present embodiment it is possible to eliminate the time delay that occurs in the technique of canceling noise using a moving average for a signal on which sine wave noise is present. Become. As a result, the sampling frequency becomes extremely high, and it becomes possible to deal with processing that requires high-speed response without delay. For example, in the instantaneous heating control of the pulse heating unit used in the bonding apparatus, it is possible to deal with sampling control of the signal value of the temperature sensor with high accuracy.
  • the signal value change amount is calculated by Equation 4, but the basic concept thereof is “delay time generated in removing sine wave noise by moving average”.
  • the amount of change in the signal value during the period is calculated, and the concept can be applied to a signal having an arbitrary waveform. That is, it is possible to calculate the approximate expression of the signal waveform by acquiring several signal values b n, and to calculate the approximate expression, the value calculated by the moving average, and the moving average.
  • the delay time can be calculated based on the time interval of the measurement points used and the like.
  • the microcomputer 13 is based on the “approximate expression information acquisition unit that acquires the approximate expression information of the signal waveform, the delay time acquisition unit that acquires the delay time caused by the moving average, and the approximate expression information and the delay time.
  • a signal value change amount calculation unit that calculates a signal value change amount that is a change amount of the signal value corresponding to the delay time; and a signal value change amount to the signal value obtained by the sine wave noise removal unit.
  • the signal waveform When the sampling frequency is sufficiently high, when the signal waveform is viewed at the sampling cycle level, the signal waveform can often be regarded as a linear function, and each equation described in the present embodiment (or an expression obtained by appropriately modifying the equation) is used. ) Can be used.
  • the microcomputer is taken as an example of the main body of control processing, but the main body of control is not limited to the microcomputer, and any device capable of executing the above-described processing can be used.
  • each functional unit (sine wave noise removal unit, approximate expression information acquisition unit, delay time acquisition unit, signal value change amount calculation unit, delay compensation unit) is implemented by software on a microcomputer as an example.
  • any or all of the functional units may be mounted in hardware (by a dedicated circuit or the like).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し(S408~S402)、当該測定した測定値の移動平均により、正弦波ノイズを除去した信号値bを算出する正弦波ノイズ除去ステップ(S405)と、所定の計算式(S407)に基づいて、前記正弦波ノイズ除去ステップによって得られた信号値の遅れ補償処理を行った信号値cを算出するステップと、を有することを特徴とする正弦波ノイズ除去方法。

Description

正弦波ノイズ除去装置及び正弦波ノイズ除去方法
 本発明は、正弦波ノイズが乗っている信号に対して、正弦波ノイズを除去する正弦波ノイズ除去装置及び正弦波ノイズ除去方法に関する。
 電気機器等においては、例えば測定対象の状態等を検知するためのセンサ(温度センサ等)からのセンサ信号等のアナログ信号が使用されており、当該アナログ信号に重畳されたノイズへの対策を要するものとなっている。
 ノイズのひとつに交流電源由来等の正弦波ノイズがあり、このような正弦波ノイズへの対策に関する技術が特許文献1で開示されている。
特開昭53-114653号公報
 特許文献1の技術は、ノイズの半周期(周期の(1/2+J)倍(Jは整数))の間隔で信号値を取得し、この取得した信号値の移動平均を求めることにより、正弦波ノイズを相殺するものである。
 特許文献1の技術は、正弦波ノイズ対策としては簡便且つ有効な方法であるが、移動平均を用いるものであるため、移動平均に使用した信号値の時間間隔に基づく遅れが生じてしまう。例えば、現時点の信号値と1秒前の信号値の2点の信号値の移動平均をとった場合、これによって得られる値は0.5秒前の値に相当し、従って、0.5秒の遅れが生じるのと同義となるものである。
 このような時間遅れは、高速で高精度な処理に対する妨げとなるものであった。
 本発明は、上記の点に鑑み、正弦波ノイズが乗っている信号に対して移動平均を用いてノイズをキャンセルする技術において生じる時間遅れを解消することが可能な正弦波ノイズ除去装置若しくは正弦波ノイズ除去方法を提供することを目的とする。
(構成1)
 正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去部と、前記信号の信号波形の近似式情報を取得する近似式情報取得部と、前記移動平均によって生じる遅れ時間を取得する遅れ時間取得部と、前記近似式情報と前記遅れ時間に基づいて、前記遅れ時間に対応する前記信号値の変化量である信号値変化量を算出する信号値変化量算出部と、前記正弦波ノイズ除去部によって得られた信号値に、前記信号値変化量を加算する遅れ補償部と、を備えることを特徴とする正弦波ノイズ除去装置。
(構成2)
 正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去部と、下記の計算式に基づいて、前記正弦波ノイズ除去部によって得られた信号値の遅れ補償処理を行う遅れ補償部と、を備えることを特徴とする正弦波ノイズ除去装置。
Figure JPOXMLDOC01-appb-M000003

 数1において、bは前記正弦波ノイズ除去部によって取得されたn番目の信号値(nは整数)、cは遅れ補償後の信号値、mは測定点のペア数(整数)。
(構成3)
 正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去ステップと、前記信号の信号波形の近似式情報を取得する近似式情報取得ステップと、前記移動平均によって生じる遅れ時間を取得する遅れ時間取得ステップと、前記近似式情報と前記遅れ時間に基づいて、前記遅れ時間に対応する前記信号値の変化量である信号値変化量を算出する信号値変化量算出ステップと、前記正弦波ノイズ除去ステップによって得られた信号値に、前記信号値変化量を加算する遅れ補償ステップと、を備えることを特徴とする正弦波ノイズ除去方法。
(構成4)
 正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去ステップと、下記の計算式に基づいて、前記正弦波ノイズ除去ステップによって得られた信号値の遅れ補償処理を行う遅れ補償ステップと、を備えることを特徴とする正弦波ノイズ除去方法。
Figure JPOXMLDOC01-appb-M000004

 数2において、bは前記正弦波ノイズ除去ステップによって取得されたn番目の信号値(nは整数)、cは遅れ補償後の信号値、mは測定点のペア数(整数)。
 本発明の正弦波ノイズ除去装置によれば、正弦波ノイズが乗っている信号に対して移動平均を用いてノイズをキャンセルする技術において生じる時間遅れを、解消することが可能となる。
本発明に係る実施形態の正弦波ノイズ除去装置の構成の概略を示すブロック図 正弦波ノイズ除去について説明するための説明図 正弦波ノイズ除去の時間遅れ補償について説明するための説明図 正弦波ノイズ除去装置の処理動作の概略を示すフローチャート
 以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。
 図1は本実施形態の正弦波ノイズ除去装置の構成の概略を示すブロック図である。
 正弦波ノイズ除去装置1は、入力部11と、入力部11に入力されるアナログ信号(例えば温度センサからの信号等)を、A/D変換してマイコン13に入力するA/D変換部12と、正弦波ノイズ除去処理や、遅れ補償処理を行うマイコン13と、出力部14と、を備える。
 正弦波ノイズの除去は、正弦波が正負で対称な波形であることに基づいて、正負で対称な点をペアとしてこれの移動平均を取ることによって、ノイズをキャンセルするものである。ペア数をmとした場合、測定点は2mとなる。各測定点の測定間隔を正弦波ノイズの周期の1/2mとすることで、正負で対称なペアとなる測定点を得ることができる。
 図2には、簡単化のため0出力の信号に対して正弦波ノイズが乗っているものを例示した。図2は、正弦波ノイズ1周期の中で2つのペアの測定点、即ち、正弦波ノイズ1周期の中に4つの測定点を設けた例であり、従って、各測定点の間隔は正弦波ノイズ周期の1/4である。
 図2から理解されるように、測定点aと測定点an-2、測定点an-1と測定点an-3がそれぞれペアとなり、これらを加算すると0になる。即ち、ペア数をmとした場合において、2mの測定点を正弦波ノイズの周期の1/2m間隔で測定し、これらを加算すると、正弦波ノイズがキャンセルされる。
 図2では、信号出力を0としているが、信号出力がある場合には、各測定点a~an-3の加算によって信号出力も加算されることになるため、これを測定点の数(ここでは4)で除算する(即ち、移動平均をとる)ことによって、正弦波ノイズが除去された信号値bを得ることができる。
 正弦波ノイズが除去された信号値bは、下記の数3によって算出することができる。
Figure JPOXMLDOC01-appb-M000005

 bは正弦波ノイズ除去がされたn番目の信号値(nは整数)であり、mは測定点のペア数(整数)である。aは各測定点における測定値である。
 上記の移動平均による正弦波ノイズ除去は、移動平均の算出に使用した測定点の時間間隔に基づく遅れが生じてしまう。
 図2の例において、測定点a~an-3に基づいて移動平均を算出した場合、これによって得られる信号値bは、信号波形が一次関数である場合、測定点a~an-3の真ん中の時点(an-1とan-2の真ん中)における信号値に相当する。即ち、3/8周期の遅れが生じているのに等しい結果となる。測定点aとan-2の1つのペアに基づいて移動平均を算出した場合、これによって得られる信号値bは、aとan-2の真ん中における信号値に相当する。即ち、1/4周期の遅れが生じているのに等しい結果となる。
 図3はこの遅れと、その補償に関する説明図である。
 図3における実線は信号の測定値(信号値に正弦波ノイズが重畳されているもの)としてのラインであり、一点鎖線は移動平均による正弦波ノイズ除去後の信号値を示すラインである。これに対し、点線は、真の信号値を示すラインである。
 図3は測定点のペア数mが1、即ち測定点が2つである場合の例である。
 前述のごとく、測定点が2つ(2つの測定点の間隔が1/2周期)である場合、遅れ(以下、「遅れ時間」という)は1/4周期となる。即ち、点線で示した真の信号値に対して、一点鎖線で示した正弦波ノイズ除去後の信号値は、1/4周期の遅れが生じているのに等しい結果となる。
 この遅れは、正弦波ノイズ除去後の信号値bに対して、遅れ時間(ここの例では1/4周期)の間に信号値が変化した変化量(以下、「信号値変化量」という)を加算することによって補償することができる。
 信号値変化量は、信号波形が一次関数である場合には、下記の数4によって算出することができる。なお、“信号波形が一次関数である場合”とは、bn-1とbの時間間隔における信号波形を一次関数とみなし得る場合を含む。
Figure JPOXMLDOC01-appb-M000006

 bは正弦波ノイズが除去されたn番目の信号値(nは整数)であり、mは測定点のペア数(整数)である。
 本実施形態の正弦波ノイズ除去装置1は、正弦波ノイズ除去後の信号値bに対して、信号値変化量を加算することによって、遅れ補償した信号値cを得るものである。
 上記に基づき、遅れ補償した信号値cは、下記の数5によって算出することができる。
Figure JPOXMLDOC01-appb-M000007
 図4は、本実施形態の正弦波ノイズ除去装置1の処理動作の概略を示すフローチャートである。なお、以下では処理主体の記載を省略しているが、下記の処理は、A/D変換部12においてA/D変換された信号値が入力されるマイコン13において実行されるものである。
 ステップ401では、初期化処理として、sに1を代入、nに0を代入する。sは測定値の順番を示す変数、nは正弦波ノイズが除去された信号値の順番を示す変数である。なお、定数として、mに移動平均処理を行う測定点のペア数が入力されている(デフォルトで設定されているものであってもよいし、ユーザによって決定、入力されるものであってもよい)。
 ステップ402では、A/D変換部12から入力される信号の値を、測定値aとして取得する処理を行う。
 続くステップ403では、sが2m以上であるか否かを判別する。即ち、測定済みの測定点の数が移動平均処理を行うための測定点の数に至ったか否かを判別しているものである。
 移動平均処理を行うための測定点の数に至っていない場合には、ステップ408へと移行して、正弦波ノイズ周期の1/2m間隔の経過を待つ。上記で説明した、各測定点の間隔に相当する時間経過を待つもの、即ち、次の測定点の測定時を待っているものである。
 次の測定点の測定時が到来した場合には、sをインクリメントし(ステップ408:Yes→ステップ409)、ステップ402へと戻り、A/D変換部12から入力される信号の値を、測定値aとして取得する処理を行う。
 処理開始当初の、ステップ402、403、408、409の処理の繰り返しにより、測定済みの測定点の数が移動平均処理を行うための測定点の数に至った場合には、nをインクリメントする(ステップ403:Yes→ステップ404)。
 ステップ405では、上述した数3に基づく計算を行い、これをbに代入する。
 即ち、マイコン13は、「正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去部」として機能するものである。
 続くステップ406では、nが1であるか否かを判別する。即ちbが1つしかないか否かを判別しているものであり、nが1(bが1つ)である場合には、ステップ408へ移行して、上記処理を繰り返す。
 一方、nが1でない場合はbが複数あることを意味し、この場合にはステップ407へと移行して、上述した数5に基づく計算を行い、これをcに代入する。
 即ち、マイコン13は、「数5に基づいて、前記正弦波ノイズ除去部によって得られた信号値の遅れ補償処理を行う遅れ補償部」として機能するものである。
 以降、上記説明した処理を繰り返すことによって、正弦波ノイズ周期の1/2m間隔毎に、各測定点の測定が行われて、正弦波ノイズ除去後の信号値bが算出され、当該信号値bに遅れ補償が行われた信号値cが算出されていくものである。
 以上のごとく、本実施形態の正弦波ノイズ除去装置1によれば、正弦波ノイズが乗っている信号に対して移動平均を用いてノイズをキャンセルする技術において生じる時間遅れを解消することが可能となる。これにより、サンプリング周波数が非常に高くなり、高速応答が求められる処理に対しても遅れなく対応することが可能となる。例えば、ボンディング装置に用いられるパルスヒートユニットの瞬間加熱制御における、温度センサの信号値のサンプリング制御等にも高精度で対応することが可能となるものである。
 なお、本実施形態では、信号波形が一次関数とみなせる場合において数4によって信号値変化量を算出するものを例としているが、その基本概念は、移動平均による正弦波ノイズ除去において生じる「遅れ時間」の間に信号値が変化した変化量を求めるものであり、当該概念は、任意の波形の信号に対して適用することが可能である。
 即ち、信号値bを何点か取得することによって、信号波形の近似式を算出することが可能であり、また、当該近似式と、移動平均によって算出された値と、移動平均の算出に使用した測定点の時間間隔等に基づいて、遅れ時間を算出することが可能である。そして、信号波形の近似式に基づいて、遅れ時間の間に信号値が変化する変化量を算出することができ、これを信号値bに加算することによって、遅れ補償した信号値cを算出する処理を、マイコン13において実行できるものである。
 この場合、マイコン13は、「信号波形の近似式情報を取得する近似式情報取得部と、移動平均によって生じる遅れ時間を取得する遅れ時間取得部と、前記近似式情報と前記遅れ時間に基づいて、前記遅れ時間に対応する前記信号値の変化量である信号値変化量を算出する信号値変化量算出部と、前記正弦波ノイズ除去部によって得られた信号値に、前記信号値変化量を加算する遅れ補償部」として機能するものである。
 なお、サンプリング周波数が十分に高い場合には、信号波形をサンプリング周期レベルでみると、信号波形を一次関数とみなせることが多く、本実施形態で説明した各数式(若しくはこれを適宜変形させた式)による算出方法で対応可能である。
 上記説明では、制御処理の主体としてマイコンを例としているが、制御主体をマイコンに限るというものではなく、上記説明した各処理を実行できる任意のデバイスを用いることができる。また、各機能部(正弦波ノイズ除去部、近似式情報取得部、遅れ時間取得部、信号値変化量算出部、遅れ補償部)がマイコン上でソフトウェア的に実装されるものを例としているが、各機能部の何れか若しくは全てをハード的に(専用回路等によって)実装するものであってもよい。
 1...正弦波ノイズ除去装置
  12...A/D変換部
  13...マイコン(正弦波ノイズ除去部、近似式情報取得部、遅れ時間取得部、信号値変化量算出部、遅れ補償部)

Claims (4)

  1.  正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去部と、
     前記信号の信号波形の近似式情報を取得する近似式情報取得部と、
     前記移動平均によって生じる遅れ時間を取得する遅れ時間取得部と、
     前記近似式情報と前記遅れ時間に基づいて、前記遅れ時間に対応する前記信号値の変化量である信号値変化量を算出する信号値変化量算出部と、
     前記正弦波ノイズ除去部によって得られた信号値に、前記信号値変化量を加算する遅れ補償部と、を備えることを特徴とする正弦波ノイズ除去装置。
  2.  正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去部と、
     下記の計算式に基づいて、前記正弦波ノイズ除去部によって得られた信号値の遅れ補償処理を行う遅れ補償部と、を備えることを特徴とする正弦波ノイズ除去装置。
    Figure JPOXMLDOC01-appb-M000001

     数1において、bは前記正弦波ノイズ除去部によって取得されたn番目の信号値(nは整数)、cは遅れ補償後の信号値、mは測定点のペア数(整数)。
  3.  正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去ステップと、
     前記信号の信号波形の近似式情報を取得する近似式情報取得ステップと、
     前記移動平均によって生じる遅れ時間を取得する遅れ時間取得ステップと、
     前記近似式情報と前記遅れ時間に基づいて、前記遅れ時間に対応する前記信号値の変化量である信号値変化量を算出する信号値変化量算出ステップと、
     前記正弦波ノイズ除去ステップによって得られた信号値に、前記信号値変化量を加算する遅れ補償ステップと、を備えることを特徴とする正弦波ノイズ除去方法。
  4.  正弦波ノイズが乗っている信号に対し、前記正弦波ノイズが相互に打ち消される測定点のペアにおいて前記正弦波ノイズが乗っている信号を測定し、当該測定した測定値の移動平均を前記信号の信号値とする正弦波ノイズ除去ステップと、
     下記の計算式に基づいて、前記正弦波ノイズ除去ステップによって得られた信号値の遅れ補償処理を行う遅れ補償ステップと、を備えることを特徴とする正弦波ノイズ除去方法。
    Figure JPOXMLDOC01-appb-M000002

     数2において、bは前記正弦波ノイズ除去ステップによって取得されたn番目の信号値(nは整数)、cは遅れ補償後の信号値、mは測定点のペア数(整数)。
PCT/JP2018/043945 2018-11-29 2018-11-29 正弦波ノイズ除去装置及び正弦波ノイズ除去方法 WO2020110253A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020557475A JP7109727B2 (ja) 2018-11-29 2018-11-29 正弦波ノイズ除去装置及び正弦波ノイズ除去方法
PCT/JP2018/043945 WO2020110253A1 (ja) 2018-11-29 2018-11-29 正弦波ノイズ除去装置及び正弦波ノイズ除去方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043945 WO2020110253A1 (ja) 2018-11-29 2018-11-29 正弦波ノイズ除去装置及び正弦波ノイズ除去方法

Publications (1)

Publication Number Publication Date
WO2020110253A1 true WO2020110253A1 (ja) 2020-06-04

Family

ID=70854167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043945 WO2020110253A1 (ja) 2018-11-29 2018-11-29 正弦波ノイズ除去装置及び正弦波ノイズ除去方法

Country Status (2)

Country Link
JP (1) JP7109727B2 (ja)
WO (1) WO2020110253A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114653A (en) * 1977-03-16 1978-10-06 Yokogawa Hokushin Electric Corp Analog operation unit
WO1994008396A1 (en) * 1992-10-05 1994-04-14 Commonwealth Scientific And Industrial Research Organisation Adaptive filtering of periodic noise
JP2003163603A (ja) * 2001-11-22 2003-06-06 Rkc Instrument Inc ノイズキャンセル装置
JP2008082725A (ja) * 2006-09-26 2008-04-10 Nissan Diesel Motor Co Ltd 水位測定装置
JP2010011719A (ja) * 2008-05-29 2010-01-14 Meidensha Corp モータ制御における電流検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114653A (en) * 1977-03-16 1978-10-06 Yokogawa Hokushin Electric Corp Analog operation unit
WO1994008396A1 (en) * 1992-10-05 1994-04-14 Commonwealth Scientific And Industrial Research Organisation Adaptive filtering of periodic noise
JP2003163603A (ja) * 2001-11-22 2003-06-06 Rkc Instrument Inc ノイズキャンセル装置
JP2008082725A (ja) * 2006-09-26 2008-04-10 Nissan Diesel Motor Co Ltd 水位測定装置
JP2010011719A (ja) * 2008-05-29 2010-01-14 Meidensha Corp モータ制御における電流検出方法

Also Published As

Publication number Publication date
JPWO2020110253A1 (ja) 2021-09-02
JP7109727B2 (ja) 2022-08-01

Similar Documents

Publication Publication Date Title
KR101789900B1 (ko) 부분 방전 계측 장치, 부분 방전 계측 방법, 및 프로그램
JPWO2014196003A1 (ja) 周波数応答測定装置
KR20120059956A (ko) 레졸버의 위치 오차를 적응적으로 보상하기 위한 장치
JP5914643B2 (ja) 超音波伝搬時間法による流体の流量検出方法
WO2020110253A1 (ja) 正弦波ノイズ除去装置及び正弦波ノイズ除去方法
JP6432308B2 (ja) 計測装置及び計測レンジ切換方法
JP5797135B2 (ja) 濾波装置および濾波方法
JP6165651B2 (ja) 医療診断信号検出装置および医療診断信号検出方法
JP5524277B2 (ja) 信号処理装置および信号処理方法
JP5060168B2 (ja) 回転振動位相検出装置及び方法
JP4242346B2 (ja) 変調された信号の包絡線の決定方法
JP4643350B2 (ja) 歪みセンサ信号処理装置
JP4572536B2 (ja) サンプリング式測定装置
JP6483520B2 (ja) 位置検出装置
JP6352117B2 (ja) 濾波装置および濾波方法
RU2439599C1 (ru) Способ определения потокосцепления статора асинхронного двигателя
JP2005214932A (ja) 信号処理装置、この信号処理装置を用いた電圧測定装置及び電流測定装置
JP2005214932A5 (ja)
JP6373765B2 (ja) 濾波装置および濾波方法
JP6273931B2 (ja) 電力変換装置の信号変換装置
Wang et al. High-order bi-orthogonal Fourier transform and its applications in non-stability signal analysis
JPH06281678A (ja) サンプリング式測定装置
KR101948715B1 (ko) 반도체/금속체의 dc 특성 및 전기적 잡음 특성의 동시 측정 시스템 및 방법
JPH0798336A (ja) サンプリング式測定装置
JP5973622B2 (ja) 転がり軸受の異常診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941917

Country of ref document: EP

Kind code of ref document: A1