WO2020108638A1 - 剩余充电时间估算方法、装置、系统和存储介质 - Google Patents

剩余充电时间估算方法、装置、系统和存储介质 Download PDF

Info

Publication number
WO2020108638A1
WO2020108638A1 PCT/CN2019/122139 CN2019122139W WO2020108638A1 WO 2020108638 A1 WO2020108638 A1 WO 2020108638A1 CN 2019122139 W CN2019122139 W CN 2019122139W WO 2020108638 A1 WO2020108638 A1 WO 2020108638A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
charge
estimation
state
battery
Prior art date
Application number
PCT/CN2019/122139
Other languages
English (en)
French (fr)
Inventor
阮见
李世超
卢艳华
侯贻真
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to US17/043,703 priority Critical patent/US11269011B2/en
Priority to EP19889771.2A priority patent/EP3764114B1/en
Publication of WO2020108638A1 publication Critical patent/WO2020108638A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits

Definitions

  • the present disclosure relates to the technical field of power batteries, and in particular, to a remaining charging time estimation method, device, system, and storage medium.
  • the traditional power battery generally adopts two steps of constant current charging and constant voltage charging during charging.
  • Constant current charging is to charge a certain amount of battery power with a constant current, and the voltage gradually rises. When the voltage reaches the cut-off voltage of the battery, the switching will charge at a constant voltage, and the current gradually decreases.
  • the estimation of the remaining charging time of the traditional power battery is usually based on the ampere-hour integration method, using the required charge capacity and charging current to estimate the time to reach full charge, and using the continuously corrected state of charge value (State of Charge, SOC) or voltage value to adjust the current requested charging current, when the battery temperature is at a low temperature or low SOC will bring a large error in the estimation of the remaining charging time.
  • SOC state of Charge
  • Embodiments of the present disclosure provide a remaining charging time estimation method, device, system, and storage medium, which consider the influence of temperature changes on the battery charging time during the charging process, improve the remaining charging time estimation accuracy, and prevent the estimated remaining charging time from jumping.
  • a method for estimating remaining charging time includes:
  • the smaller value of each estimated time acquired is accumulated to obtain the estimated value of the remaining charging time when the battery is charged to the target state of charge.
  • a remaining charging time estimation device including:
  • the initial value acquisition module is used to acquire the initial state of charge estimation and the initial temperature estimation value, and determine the charging request current value and the corresponding battery temperature change rate corresponding to the initial state of charge estimation and the initial temperature estimation value. ;
  • the first time estimation module is used to determine the state-of-charge estimation interval corresponding to the state-of-charge estimation start value, and estimate the battery to be charged from the state-of-charge estimation start value to the corresponding state-of-charge based on the corresponding charge request current value
  • the second time estimation module is used to determine the temperature estimation interval corresponding to the initial temperature estimation value, and based on the corresponding battery temperature change rate, estimate the battery's change from the temperature estimation initial value to the upper limit of the corresponding temperature estimation interval Second estimated time value;
  • the estimated interval update module is used to determine a new estimated state of charge starting value, a new estimated state of charge interval based on the smaller of the estimated time between the first estimated time value and the second estimated time value, The new temperature estimation starting value and the new temperature estimation interval until the upper limit of the corresponding state of charge estimation interval is the target state of charge, and the smaller estimated time value is the estimated first estimated time value;
  • the estimated time accumulation module is used to accumulate the obtained smaller value of each estimated time to obtain the estimated value of the remaining charging time when the battery is charged to the target state of charge.
  • a remaining charging time estimation system including: a memory and a processor; the memory is used to store a program; the processor is used to read an executable program code stored in the memory to execute the above The remaining charge time estimation method.
  • a computer-readable storage medium that stores instructions, and when the instructions run on a computer, the computer is caused to perform the remaining charging described in the above aspects Time estimation method.
  • the remaining charging time estimation method, device, system, and storage medium in the embodiments of the present disclosure on the basis of calculating the remaining charging time based on the charging request current, the influence of the change in battery temperature on the calculation of the remaining charging time is increased, so that the remaining charging time of the battery The estimation is more accurate, thus solving the problem of inaccurate estimation of the remaining time for the lithium-ion battery system to reach the target SOC during charging.
  • FIG. 1 is a flowchart illustrating a remaining charging time estimation method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram illustrating a remaining charging time estimation device according to an embodiment of the present disclosure
  • FIG. 3 is a structural diagram showing an exemplary hardware architecture of a computing device that can implement a remaining charging time estimation method and apparatus according to an embodiment of the present disclosure.
  • the battery in the embodiment of the present disclosure may be a battery that can take out both the positive electrode and the negative electrode and receive energy-carrying particles, such as a lithium ion battery, etc., which is not limited herein.
  • the battery described in the embodiments of the present disclosure may be a single cell, or a battery module or a battery pack, which is also not limited herein.
  • the remaining charging time estimation method of the embodiments of the present disclosure may be applicable to an electric vehicle that uses a lithium-ion power battery as a power system or a separate lithium-ion power battery system or product or lithium ion Battery energy storage system or product, etc.
  • the battery system after the battery is connected to the charging device, the battery system performs a self-check to detect whether the charging device has been correctly connected and whether the temperature monitoring signal has been collected. When all signals are connected and the output is normal, the charging mode is turned on.
  • the remaining charging time estimation module may obtain the current battery temperature from the battery sampling data and estimate from the SOC
  • the current SOC value is obtained from the module, and the current battery temperature is used as the starting point for temperature estimation, and the current SOC value is used as the starting point for state of charge estimation.
  • the battery management system (BMS) in the embodiments of the present disclosure can use the sampled battery voltage value as an input to estimate the remaining charging time, and use the sampled battery current value and voltage value to estimate SOC, and then according to The correlation between SOC and Open Circuit Voltage (OCV) of the battery converts SOC to OCV to estimate the remaining charging time.
  • BMS Battery management system
  • Embodiments of the present disclosure provide a remaining charging time estimation method, device, system, and storage medium, which can accurately estimate the charging time required from the current SOC to any SOC target value, and can update the calculation result in real time and feed it back to the user.
  • the estimated remaining charging time will not jump and callback, and the remaining charging time slowly decreases with the change of SOC.
  • FIG. 1 is a flowchart illustrating a remaining charging time estimation method according to an embodiment of the present disclosure. As shown in FIG. 1, the method 100 in the embodiment of the present disclosure includes the following steps:
  • Step S110 Acquire a state-of-charge estimation start value and a temperature estimation start value, and determine a charge request current value and a corresponding battery temperature change rate corresponding to the state-of-charge estimation start value and the temperature estimation start value.
  • Step S120 Determine a state-of-charge estimation interval corresponding to the state-of-charge estimation starting value, and estimate the battery to be charged from the state-of-charge estimation starting value to the upper limit of the corresponding state-of-charge estimation interval based on the corresponding charge request current value The first estimated time value required.
  • Step S130 Determine the temperature estimation interval corresponding to the temperature estimation start value, and estimate the second estimated time value required for the battery to change from the temperature estimation start value to the upper limit of the corresponding temperature estimation interval based on the corresponding battery temperature change rate .
  • Step S140 based on the smaller estimated time value of the first estimated time value and the second estimated time value, determine a new starting state of charge estimation value, a new estimating state of charge interval, and a new temperature estimation start The initial value and the new temperature estimation interval until the upper limit of the corresponding state-of-charge estimation interval is the target state of charge, and the smaller estimated time value is the estimated first estimated time value.
  • step S150 the obtained smaller value of each estimated time is accumulated to obtain the estimated value of the remaining charging time when the battery is charged to the target state of charge.
  • the remaining charge time estimation method of the embodiment of the present disclosure on the basis of calculating the remaining charge time based on the charge request current, the influence of the battery temperature change on the calculation of the remaining charge time is increased, so that the estimation of the remaining charge time of the battery is more accurate, thereby solving the The problem of inaccurate estimation of the remaining time for the lithium ion battery system to reach the target SOC during charging.
  • step S110 may specifically include:
  • step S111 according to the first corresponding relationship between the preset charging request current, the battery state of charge and the battery temperature, the state of charge estimated starting value and the temperature estimated starting value are used to determine the corresponding charge request current value.
  • the starting state of charge estimation value may be an SOC value calculated by the BMS system to characterize the state of charge, and the starting temperature estimation value may be obtained from the current temperature value of the battery system collected by the temperature sensor.
  • the first correspondence relationship includes: a correspondence relationship between the charging request current determined by the preset charging request current two-dimensional lookup table and the battery state of charge and battery temperature.
  • a large number of tests and calculations can be performed on the battery system to obtain specific charge request current settings at different battery temperatures and SOCs to construct a charge request corresponding to the battery temperature parameter and the battery state of charge parameter and the charge request current Current value two-dimensional lookup table.
  • Table 1 exemplarily shows an example of parameters of the charge request current value corresponding to the battery temperature and the battery SOC during the battery charging process according to the embodiment of the present disclosure. It should be noted that the correspondence between the battery charge request current, battery temperature, and SOC in the embodiment of the present disclosure is not limited to the example in Table 1.
  • Table 1 above shows the correspondence between the battery charge request current and the battery state of charge and battery temperature.
  • “Temperature” in Table 1 represents the battery temperature
  • “SOC” represents the state of charge of the battery
  • "I request” represents the charging request current.
  • the battery temperature range applicable to the embodiments of the present disclosure may be -30°C to 60°C, and the battery SOC range is 0% to 100%.
  • the correspondence relationship between the battery charge request current, battery state of charge, and battery temperature described in Table 1 includes preset multiple states of charge change intervals, such as 10%-20%, 20%-30%, etc., and It includes multiple temperature change intervals such as -30°C to -20°C, -20°C to -10°C, etc.
  • Step S112 According to the second correspondence between the battery temperature change rate and at least the battery state of charge and the battery temperature, use the state of charge estimated start value and the temperature estimated start value to determine the corresponding battery temperature change rate.
  • the second correspondence includes: the correspondence between the battery temperature change rate determined by the preset first battery temperature change rate lookup table and the battery state of charge and battery temperature, or by the preset The correspondence relationship between the battery temperature change rate determined by the second battery temperature change rate look-up table and the battery state of charge, the battery temperature and the preset heating and cooling power of the charging system.
  • a large number of tests and calculations can be performed on the battery system to obtain specific battery temperature change rate settings under different battery temperatures and SOCs, to construct a battery temperature parameter and a battery state-of-charge parameter corresponding to the battery temperature change rate Charging request current value two-dimensional lookup table.
  • Table 2 exemplarily shows an example of parameters of the battery temperature change rate corresponding to the battery temperature and the battery SOC during the battery charging process according to the embodiment of the present disclosure. It should be noted that the correspondence between the battery temperature change rate and the battery temperature and SOC in the embodiment of the present disclosure is not limited to the examples in Table 2.
  • Table 2 above shows the corresponding relationship between the battery temperature change rate and the battery charge state and battery temperature.
  • “Temperature” in Table 2 represents the battery temperature
  • “SOC” represents the state of charge of the battery
  • “temperature change rate” represents the battery temperature change rate.
  • the corresponding relationship between the battery charge request current, battery state of charge, and battery temperature described in Table 2 includes preset multiple states of charge change intervals, such as 10%-20%, 20%-30%, etc., and It includes multiple temperature change intervals such as -30°C to -20°C, -20°C to -10°C, etc.
  • step S110 may specifically include:
  • step S111 according to the first corresponding relationship between the preset charging request current, the battery state of charge and the battery temperature, the state of charge estimated starting value and the temperature estimated starting value are used to determine the corresponding charge request current value.
  • step S112 the corresponding charging request current value is corrected using the output current value of the charging device, and the corrected actual charging current value corresponding to the starting state of charge estimation value is determined.
  • step S112 may specifically include:
  • Step S112-01 After the battery charging starts, the battery temperature, the battery state of charge, and the actual output current of the charging device corresponding to the monitored battery temperature and the battery state of charge are monitored within a predetermined charging time.
  • Step S112-02 Determine the charging request current value corresponding to the monitored battery temperature and battery state of charge.
  • Step S112-03 calculating the current value proportional relationship between the actual output current of the corresponding charging device and the corresponding charging request current value.
  • Step S112-04 using the current proportional relationship and the state of charge estimated starting value to determine the actual charging current value corresponding to the state of charge estimated starting value.
  • the charging current value of the battery used in the estimation of the charging time is considered to be corrected using the output current of the charging device, and can be calculated according to the charging request current of the BMS at the beginning of charging.
  • extract the output current value of the charging device for a period of time determine the proportional relationship between the output current of the charging device and the charging request current, and use the proportional relationship to correct the charging request current of the BMS to obtain the actual charging current value for Estimate the remaining charging time.
  • step S120 may specifically include:
  • Step S121 In the preset multiple state-of-charge intervals, the state-of-charge interval determined by the state-of-charge estimation start value and the upper limit of the state-of-charge interval to which the state-of-charge estimation start value belongs , As the corresponding state-of-charge estimation interval.
  • step S122 the corresponding charging request current value is corrected using the output current value of the charging device, and the corrected actual charging current value corresponding to the estimated state of charge starting value is determined.
  • step S122 the specific steps of correcting the corresponding charging request current value in step S122 are the same as or equivalent to the specific steps of correcting the charging request current value in the foregoing embodiment, and details are not described herein again.
  • the same or equivalent steps can be used to calculate the actual charging corresponding to the upper limit of the state-of-charge estimation interval by using the output current value of the charging device and the charging request current value determined by the above-mentioned first correspondence relationship Current value.
  • step S123 based on the corresponding actual charging current value, the first estimated time value required to charge the battery from the state-of-charge estimation starting value to the upper limit of the corresponding state-of-charge estimation interval is estimated.
  • the first charge request current value can be determined using the SOC i-1 and the temperature estimation starting value; through the first correspondence The second charging request current value can be determined by using SOC i and the temperature estimation starting value.
  • the first charging request current value is used as the interval from the state of charge estimation starting value SOC i-1 to the corresponding state of charge estimation
  • the upper limit of SOC i corresponds to the charge request current value.
  • the values of the state of charge between the preset multiple states of charge change intervals may not overlap.
  • the upper limit value SOC i of the state-of-charge estimation interval is taken as an SOC boundary value, which is another state-of-charge variation interval The lower limit.
  • the charging request current value in the larger SOC interval among the first charging request current value and the second charging request current value is selected as the state of charge estimation starting value SOC i-1 to the corresponding state of charge estimation The charge request current value corresponding to the upper limit value SOC i of the interval.
  • the actual value corresponding to the upper limit value SOC i of the corresponding state -of- charge estimation interval from the state -of- charge estimation starting value SOC i-1 is calculated Charging current value.
  • step S130 may specifically include:
  • Step S131 In the preset multiple battery temperature change intervals, the temperature interval determined by the temperature estimation start value and the upper limit value of the battery temperature change interval to which the temperature estimation start value belongs is taken as the corresponding temperature estimation interval.
  • Step S132 Use the corresponding battery temperature change rate to estimate the second estimated time value required for the battery to change from the initial temperature estimation value to the upper limit of the corresponding temperature estimation interval.
  • step S140 may specifically include:
  • Step S141 when the smaller estimated time is the first estimated time value.
  • the next state-of-charge interval that belongs to the state-of-charge interval is taken as the new state-of-charge estimation interval, and the starting value of the new state-of-charge estimation interval is the new start-of-charge estimation value.
  • step S142 the temperature value calculated by using the first estimated time value and the corresponding battery temperature change rate is used as the new temperature estimation starting value.
  • the temperature interval determined according to the new initial temperature estimation value and the upper limit value of the battery temperature change interval is taken as the new temperature estimation interval.
  • step S140 may specifically include:
  • Step S143 when the smaller estimated time value is the second estimated time value.
  • the state of charge calculated using the second estimated time value and the corresponding charge request current value will be used as the new state of charge estimation starting value.
  • the state-of-charge interval determined according to the new starting state-of-charge estimation starting value and the upper limit of the associated state-of-charge variation interval is taken as the new state-of-charge estimation interval.
  • step S144 the next battery temperature change interval of the associated battery temperature change interval is taken as the new temperature estimation interval, and the starting value of the new temperature estimation interval is taken as the new temperature estimation starting value.
  • the smaller estimated time value is the estimated first estimated time value
  • the smaller value of each estimated time obtained is accumulated to obtain the estimated value of the remaining charging time when the battery is charged to the target state of charge.
  • the target state of charge may be a preset value, such as 100% or other SOC setting value.
  • the remaining charge estimated time value from the battery charging to the target state of charge can be calculated by the following expression (1).
  • SOC i is the upper limit value of the i- th state -of- charge estimation interval
  • SOC i-1 is the starting state-of-charge estimation value of the i-th state of charge estimation interval
  • I i Is the i-th state of charge estimation interval from the state of charge estimation starting value SOC i-1 to the upper limit of the corresponding state of charge estimation interval SOC i corresponding to the actual charging current value
  • C is the battery capacity
  • T j is The upper limit of the jth temperature estimation interval
  • T j-1 is the starting temperature estimation value of the jth temperature estimation interval
  • Trate j is the upper limit of the temperature estimation interval corresponding to the change from the starting temperature estimation value The rate of temperature change of the battery.
  • SOC 1 is the initial SOC value
  • SOC n is the target SOC value.
  • the two-dimensional lookup table of charging current is combined with the temperature change rate of the battery during the charging process.
  • the optimization algorithm makes the estimation more accurate.
  • step S130 the step of determining the temperature estimation interval corresponding to the temperature estimation starting value may specifically include:
  • step S11 the corresponding charging request current value is corrected using the output current value of the charging device, and the corrected actual charging current value corresponding to the starting state of charge estimation value is determined.
  • Step S12 According to the calculation relation corresponding to the conservation of energy, use the corresponding actual charging current value, battery parameters and charging system parameters to calculate the battery temperature change rate corresponding to the actual charging current value and the corresponding battery charging process at the next moment. Battery temperature value.
  • the calculation relation corresponding to the conservation of energy described in the following expression (2) may be used to calculate the battery temperature change rate corresponding to the actual charging current value and the corresponding battery temperature at the next moment in the battery charging process value.
  • c p_b is the battery equivalent specific heat
  • m b is the battery mass
  • Is the rate of temperature change of the battery system For the internal heat production rate of the battery, It is the external heating and cooling power
  • I is the current
  • U av is the battery open circuit potential
  • E is the battery operating voltage
  • T is the calculated battery temperature, that is, the battery temperature value at the next moment under the battery current temperature and battery current.
  • the current I may take the value of the actual charging current obtained by correcting the charging request current described in the above embodiment.
  • the preset battery open circuit potential change rate look-up table can be queried to determine the battery charge status, temperature estimation starting value, preset battery operating voltage, battery charging device output current, and preset battery open circuit The rate of change of the open circuit potential of the battery corresponding to the potential.
  • the internal heat production rate of the battery Value and external heating and cooling power The value of can be the calibration value of the internal heat production rate of the battery and the calibration value of the external heating and cooling power according to the experiment.
  • step S13 the battery temperature value at the next moment is used as the upper limit value of the corresponding temperature estimation interval, and the corresponding temperature estimation interval is determined according to the temperature estimation starting value and the upper limit value of the corresponding temperature estimation interval.
  • the preset battery parameters may include those described in the above embodiments: battery state of charge, battery temperature, preset battery operating voltage, preset battery open circuit potential, preset battery equivalent specific heat, battery Quality;
  • the preset charging system parameters may include those described in the above embodiments: the output current of the battery charging device, the current current, and the preset external heating and cooling power.
  • the required parameters include but are not limited to the battery's own weight, size, equivalent physical parameters, and reversible thermal calculation model inside the battery system.
  • external heating and cooling methods include but are not limited to liquid working fluid heating and cooling, air cooling, natural cooling, gas heat, resistance heating, etc.
  • the heat exchange forms include heating body heat conduction, radiative heat exchange, convection heat exchange, etc. .
  • the temperature change of the battery system can be calculated according to the energy conservation equation of the battery system.
  • the battery system here can be a battery cell, module or pack system.
  • the calculation method of the battery temperature change rate takes into account the internal heat generation and external heating and cooling of the battery system, plus a large number of tests to supplement the model parameters and the correction of the coefficients, which can more accurately estimate the temperature value of the battery at a later time.
  • the method of estimating the second estimated time value required for the battery to change from the temperature estimation starting value to the upper limit of the corresponding temperature estimation interval in step S130 may further include :
  • an integral operation is performed in the time domain, and according to the integration operation, the second estimated time value required for the battery to change from the temperature estimation starting value to the upper limit of the corresponding temperature estimation interval is estimated .
  • the above step S140 may specifically include:
  • the next state of charge change interval to which the initial state of charge estimate belongs belongs is the new state of charge estimate interval.
  • the starting value of the new state of charge estimate interval starts from the new state of charge estimate. Starting value. as well as
  • the upper limit of the corresponding temperature estimation interval is taken as the upper limit of the new temperature estimation interval, and the temperature value corresponding to the first estimated time value of the battery during the integration operation is taken as the new starting temperature estimation value, Determine the new temperature estimation interval.
  • the smaller estimated time value is the first estimated time value, that is, the time required for the state of charge to reach the upper limit of the state of charge change interval is less than the time required for the battery temperature to reach the upper limit of the temperature estimate interval It takes time.
  • a new state of charge change interval may be determined through a preset state of charge change interval, such as Table 1 described in the above embodiment. as well as
  • the above step S140 may specifically include:
  • the second estimated time value When the estimated time is smaller, the second estimated time value.
  • the upper limit of the corresponding state-of-charge estimation interval is taken as the upper limit of the new state-of-charge estimation interval, and the state of charge calculated using the second estimated time value and the corresponding charge request current value is taken as the new State of charge estimation starting value to determine a new state of charge estimation interval.
  • the next battery temperature change interval of the battery temperature change interval to which the temperature estimation start value belongs is taken as the new temperature estimation interval, and the start value of the new temperature estimation interval is taken as the new The estimated starting value of the temperature.
  • the estimated time value is smaller than the second estimated time value, that is, the time required for the state of charge to reach the upper limit of the state of charge change interval is greater than the time required for the battery temperature to reach the upper limit of the temperature estimated range It takes time.
  • a new battery temperature change interval may be determined by presetting a plurality of battery temperature change intervals, for example, by querying Table 1 described in the above embodiment. as well as
  • the upper limit of the current state-of-charge estimation interval is taken as the upper limit of the new state-of-charge estimation interval, and the state of charge determined using the second estimated time value and battery current is taken as the new state-of-charge estimation interval Starting value.
  • a two-dimensional lookup table of charging current is used to determine the temperature that changes after the battery starts charging based on the parameters of battery energy conservation during charging, battery current size, and system heating and cooling power.
  • the optimization algorithm makes the estimation more accurate.
  • FIG. 2 shows a schematic structural diagram of a remaining charging time estimation device according to an embodiment of the present disclosure.
  • the remaining charging time estimation device 200 includes:
  • the initial value acquisition module 210 is used to acquire the initial state of charge estimate and the initial temperature estimate, and determine the charge request current value and the corresponding battery temperature shift corresponding to the initial state of charge estimate and the initial temperature estimate rate.
  • the first time estimation module 220 is used to determine the state-of-charge estimation interval corresponding to the state-of-charge estimation start value, and estimate that the battery is charged from the state-of-charge estimation start value to the corresponding charge based on the corresponding charge request current value The first estimated time value required for the upper limit of the state estimation interval.
  • the second time estimation module 230 is used to determine the temperature estimation interval corresponding to the initial temperature estimation value, and estimate the change of the battery from the temperature estimation initial value to the upper limit of the corresponding temperature estimation interval based on the corresponding battery temperature change rate A second estimated time value is required.
  • the estimated interval update module 240 is used to determine a new estimated state of charge starting value and a new estimated state of charge based on the smaller of the estimated time between the first estimated time value and the second estimated time value , The new temperature estimation starting value and the new temperature estimation interval, until the upper limit of the corresponding state of charge estimation interval is the target state of charge, and the smaller estimated time value is the estimated first estimated time value .
  • the estimated time accumulation module 250 is used to accumulate the obtained smaller value of each estimated time to obtain the estimated remaining charging time value of the battery charging to the target state of charge.
  • the initial value acquisition module 210 may specifically include:
  • the charge request current determination unit is used to determine the corresponding charge request current according to the preset first relationship between the charge request current, the battery state of charge and the battery temperature, using the state of charge estimated start value and the temperature estimated start value value. as well as
  • the battery temperature change rate determining unit is used to determine the corresponding battery temperature shift according to the battery temperature change rate and at least the second correspondence between the battery state of charge and the battery temperature, using the state of charge estimated start value and the temperature estimated start value rate.
  • the first correspondence relationship includes: a correspondence relationship between the charging request current determined by the preset charging request current two-dimensional lookup table and the battery state of charge and battery temperature.
  • the second correspondence relationship includes: the correspondence relationship between the battery temperature change rate determined by the preset first battery temperature change rate look-up table and the battery state of charge and the battery temperature. or
  • the initial value acquisition module 210 may specifically include:
  • the charge request current determination unit is used to determine the corresponding charge request current according to the preset first relationship between the charge request current, the battery state of charge and the battery temperature, using the state of charge estimated start value and the temperature estimated start value value.
  • the charging request current correction unit is used for correcting the corresponding charging request current value using the output current value of the charging device, and determining the corrected actual charging current value corresponding to the estimated state of charge starting value.
  • the battery temperature change rate estimation unit is used to estimate the first estimated time value required for charging the battery from the state of charge estimation starting value to the upper limit of the corresponding state of charge estimation interval based on the corresponding actual charging current value.
  • the first time estimation module 220 may specifically include:
  • the state-of-charge estimation interval determination unit is used to estimate the initial value through the state-of-charge among the preset multiple state-of-charge intervals, and the upper limit of the state-of-charge interval to which the state-of-charge initial value belongs
  • the state-of-charge interval determined by the value is used as the corresponding state-of-charge estimation interval.
  • the charging request current correction unit is used for correcting the corresponding charging request current value using the output current value of the charging device, and determining the corrected actual charging current value corresponding to the estimated state of charge starting value.
  • the first estimation unit is configured to estimate the first estimated time value required for charging the battery from the state-of-charge estimation starting value to the upper limit of the corresponding state-of-charge estimation interval based on the corresponding actual charging current value.
  • the charging request current correction unit may be specifically used for:
  • the battery temperature, the battery state of charge, and the actual output current of the charging device corresponding to the monitored battery temperature and the battery state of charge are monitored within a predetermined charging time.
  • the actual charging current value corresponding to the state of charge estimation starting value is determined.
  • the second time estimation module 230 may specifically include:
  • the temperature estimation interval determining unit is used to correspond to the temperature interval determined by the temperature estimation start value and the upper limit value of the battery temperature change interval to which the temperature estimation start value belongs in the preset plurality of battery temperature change intervals as the corresponding Temperature estimation interval.
  • the second estimation unit is used to estimate the second estimated time value required for the battery to change from the initial temperature estimation value to the upper limit of the corresponding temperature estimation interval using the corresponding battery temperature change rate.
  • the estimated interval update module 240 may specifically include:
  • the state-of-charge estimation interval update unit is used to update the next state-of-charge interval of the state-of-charge interval to which the initial value of state-of-charge belongs to as a new State-of-charge estimation interval, the initial value of the new state-of-charge estimation interval is the initial value of the new state-of-charge estimation.
  • the temperature estimation interval updating unit is used to use the upper limit of the temperature estimation interval as the upper limit of the new temperature estimation interval, and the temperature value calculated by using the first estimated time value and the corresponding battery temperature change rate as New temperature estimation starting value to determine the new temperature estimation interval.
  • the estimated interval update module 240 may specifically include:
  • the state-of-charge estimation interval updating unit is used to use the upper limit of the corresponding state-of-charge estimation interval as the upper limit of the new state-of-charge estimation interval when the estimated time is smaller than the second estimated time value.
  • the state of charge calculated using the second estimated time value and the corresponding charge request current value is used as a new state of charge estimation starting value to determine a new state of charge estimation interval.
  • the temperature estimation interval update unit is used to take the next battery temperature change interval of the battery temperature change interval to which the temperature estimation start value belongs as the new temperature estimation interval, and the start value of the new temperature estimation interval as the new temperature estimation start Starting value.
  • the two-dimensional lookup table of charging current is combined with the temperature change rate of the battery during the charging process.
  • the optimization algorithm makes the estimation more accurate.
  • the second time estimation module 230 may specifically include:
  • the temperature estimation interval determination unit can also be used to:
  • the output current value of the charging device is used to correct the corresponding charging request current value, and the corrected actual charging current value corresponding to the estimated state of charge starting value is determined.
  • the battery temperature value at the next moment is taken as the upper limit of the corresponding temperature estimation interval, and the corresponding temperature estimation interval is determined according to the temperature estimation starting value and the upper limit value of the corresponding temperature estimation interval.
  • the second estimation unit may specifically be used for:
  • an integral operation is performed in the time domain, and according to the integration operation, the second estimated time value required for the battery to change from the temperature estimation starting value to the upper limit of the corresponding temperature estimation interval is estimated .
  • the estimated interval update module 240 may specifically include:
  • the state-of-charge estimation interval update unit is used to update the next state-of-charge interval of the state-of-charge interval to which the initial value of state-of-charge belongs to as a new State-of-charge estimation interval.
  • the starting value of the new state-of-charge estimation interval is the new start-of-charge state estimation value.
  • the temperature estimation interval updating unit is used to use the upper limit of the corresponding temperature estimation interval as the upper limit of the new temperature estimation interval, and the temperature value corresponding to the first estimated time value of the battery during the integration operation as the new The initial value of temperature estimation to determine the new temperature estimation interval.
  • the estimated interval update module 240 may specifically include:
  • the state-of-charge estimation interval updating unit is used to use the upper limit of the corresponding state-of-charge estimation interval as the upper limit of the new state-of-charge estimation interval when the estimated time is smaller than the second estimated time value.
  • the state of charge calculated using the second estimated time value and the corresponding charge request current value is used as a new state of charge estimation starting value to determine a new state of charge estimation interval.
  • the temperature estimation interval update unit is used to set the next battery temperature variation interval of the battery temperature variation interval to which the temperature estimation start value belongs as a new temperature estimation interval and the new temperature among the preset multiple battery temperature variation intervals
  • the starting value of the estimation interval is used as the new starting value of temperature estimation.
  • the two-dimensional lookup table of the charging current is used to determine the temperature that changes after the battery starts charging according to parameters such as battery energy conservation during charging, battery current size, and system heating and cooling power During the estimation of the remaining charging time, combined with the influence of temperature changes on the calculation of the remaining charging time, the optimization algorithm makes the estimation more accurate.
  • FIG. 3 is a structural diagram illustrating an exemplary hardware architecture of a computing device capable of implementing a remaining charging time estimation method and apparatus according to an embodiment of the present disclosure.
  • the computing device 300 includes an input device 301, an input interface 302, a central processing unit 303, a memory 304, an output interface 305, and an output device 306.
  • the input interface 302, the central processor 303, the memory 304, and the output interface 305 are connected to each other through the bus 310
  • the input device 301 and the output device 306 are connected to the bus 310 through the input interface 302 and the output interface 305, respectively, and then to the computing device 300 Other components connected.
  • the input device 301 receives input information from the outside and transmits the input information to the central processor 303 through the input interface 302; the central processor 303 processes the input information based on computer-executable instructions stored in the memory 304 to generate output Information, the output information is temporarily or permanently stored in the memory 304, and then the output information is transmitted to the output device 306 through the output interface 305; the output device 306 outputs the output information to the outside of the computing device 300 for the user to use.
  • the computing device shown in FIG. 3 can also be implemented to include: a memory storing computer-executable instructions; and a processor that can implement the description in conjunction with FIGS. 1 to 2 when executing the computer-executable instructions The remaining charging time estimation processing method and device.
  • the computing device 300 shown in FIG. 3 may be implemented as a remaining charging time estimation system.
  • the remaining charging time estimation system may include: a memory configured to store a program; a processor configured to run A program stored in the memory to execute the remaining charging time estimation method described in the above embodiment.
  • the process described above with reference to the flowchart may be implemented as a computer software program.
  • embodiments of the present disclosure include a computer program product that includes a computer program tangibly contained on a machine-readable medium, the computer program containing program code for performing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network, and/or installed from a removable storage medium.
  • the computer program product includes one or more computer instructions, which when executed on the computer, cause the computer to execute the method described in the above embodiments.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk), or the like.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located One place, or can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without paying creative labor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开公开了一种剩余充电时间估算方法、装置、系统和存储介质。该方法包括:确定充电请求电流和对应的电池温变速率;估算电池从荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值;估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值;确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,直到对应的荷电状态估算区间的上限值为目标荷电状态,且较小预估时间值为估算得到的第一预估时间值;累加获取的每个预估时间较小值,得到电池充电至目标荷电状态的剩余充电预估时间值。根据本公开实施例提供的方法,可以提高剩余充电时间估算精度。

Description

剩余充电时间估算方法、装置、系统和存储介质
相关申请的交叉引用
本申请要求享有于2018年11月30日提交的名称为“剩余充电时间估算方法、装置、系统和存储介质”的中国专利申请201811455643.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本公开涉及动力电池技术领域,尤其涉及剩余充电时间估算方法、装置、系统和存储介质。
背景技术
传统动力电池一般在充电时采用恒流充电加恒压充电两步进行,恒流充电是以恒定电流充入电池一定电量,电压逐渐上升。当电压达到电池的截止电压时,切换会恒压充电,电流逐渐下降。
传统动力电池的剩余充电时间估算通常是基于安时积分法,用所需充入的电量及充电电流来估算达到满充时的时间,并且在充电过程中利用不断校正的荷电状态值(State of Charge,SOC)或者电压值来调整当前的请求充电电流,当电池温度在低温或者低SOC下会对剩余充电时间的估算带来较大误差。
公开内容
本公开实施例提供一种剩余充电时间估算方法、装置、系统和存储介质,考虑充电过程中温度变化对电池充电时间的影响,提高剩余充电时间估算精度,防止估计的剩余充电时间跳变。
根据本公开实施例的一方面,提供一种剩余充电时间估算方法,包括:
获取荷电状态估算起始值和温度估算起始值,确定与荷电状态估算起始值和温度估算起始值对应的充电请求电流值和对应的电池温变速率;
确定荷电状态估算起始值对应的荷电状态估算区间,基于对应的充电请求电流值,估算电池从荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值;
确定温度估算起始值对应的温度估算区间,基于对应的电池温变速率,估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值;
基于第一预估时间值和第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,直到对应的荷电状态估算区间的上限值为目标荷电状态,且较小预估时间值为估算得到的第一预估时间值;
累加获取的每个预估时间较小值,得到电池充电至目标荷电状态的剩余充电预估时间值。
根据本公开实施例的另一方面,提供一种剩余充电时间估算装置,包括:
初始值获取模块,用于获取荷电状态估算起始值和温度估算起始值,确定与荷电状态估算起始值和温度估算起始值对应的充电请求电流值和对应的电池温变速率;
第一时间预估模块,用于确定荷电状态估算起始值对应的荷电状态估算区间,基于对应的充电请求电流值,估算电池从荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值;
第二时间预估模块,用于确定温度估算起始值对应的温度估算区间,基于对应的电池温变速率,估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值;
预估区间更新模块,用于基于第一预估时间值和第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,直到对应的荷电状态估算区间的上限值为目标荷电状态,且较小预估时间值为估算得到的第一预估 时间值;
预估时间累加模块,用于累加获取的每个预估时间较小值,得到电池充电至目标荷电状态的剩余充电预估时间值。
根据本公开实施例的再一方面,提供一种剩余充电时间估算系统,包括:存储器和处理器;该存储器用于存储程序;该处理器用于读取存储器中存储的可执行程序代码以执行上述的剩余充电时间估算方法。
根据本公开实施例的又一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行上述各方面所述的剩余充电时间估算方法。
根据本公开实施例中的剩余充电时间估算方法、装置、系统和存储介质,在基于充电请求电流计算剩余充电时间的基础上,增加电池温度变化对充电剩余时间计算的影响,使得电池剩余充电时间的估算更准确,从而解决了在充电时对锂离子电池系统达到目标SOC的剩余时间估计不准确的问题。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示出根据本公开实施例的剩余充电时间估算方法的流程图;
图2是示出根据本公开一实施例提供的剩余充电时间估算装置的结构示意图;
图3是示出可以实现根据本公开实施例的剩余充电时间估算方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
下面将详细描述本公开的各个方面的特征和示例性实施例,为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置 为解释本公开,并不被配置为限定本公开。对于本领域技术人员来说,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本公开实施例中的电池可以为正极和负极均能脱出且接收载能粒子的电池,比如锂离子电池等,在此并不限定。从规模而言,本公开实施例中描述的电池可以为电芯单体,也可以是电池模组或电池包,在此同样不做限定。
作为一个示例,当动力电池为锂离子电池时,本公开实施例的剩余充电时间估算方法可以适用于采用锂离子动力电池作为动力系统的电动汽车或单独的锂离子动力电池系统或产品或锂离子电池储能系统或产品等。
在本公开实施例中,当电池与充电设备连接后,电池系统进行自检,检测是否已正确连接充电设备,是否已收齐温度监测信号。当所有信号联通并输出正常时,开启充电模式。
在本公开实施例中,开启充电模式后,在每个剩余充电时间估算阶段,剩余充电时间预估模块(以下可以简称为预估模块)可以从电池采样数据中获取电池当前温度,从SOC估算模块中获取当前SOC值,并以当前电池温度作为温度估算起始点,以当前SOC值作为荷电状态估算起始点。另外,本公开实施例中的电池管理系统(Battery Management System,BMS)可以将采样的电池的电压值作为估算剩余充电时间的输入,将采样的电池的电流值和电压值去估算SOC,再根据SOC与电池开 路电压(Open Circuit Voltage,OCV)之间的相关性,将SOC转换为OCV以估算剩余充电时间。
由于充电过程中可以不断校正的SOC值或者电压值来调整当前的请求充电电流,这种方法没有考虑充电过程中温度变化对电池充电效果的影响,在低温或者低SOC下会带来较大误差。
本公开实施例提供一种剩余充电时间估算方法、装置、系统和存储介质,可以准确估计从当前SOC到任何SOC目标值所需要的充电时间,并可以实时更新计算结果反馈给用户。
并且,由于在计算过程中实时记录电池SOC和电池温度等电池状态,预估的剩余充电时间不会发生跳变和回调,剩余充电时间随着SOC变化缓慢下降。
为了更好的理解本公开,下面将结合附图,详细描述根据本公开实施例的剩余充电时间估算方法、装置、系统和存储介质,应注意,这些实施例并不是用来限制本公开公开的范围。
图1是示出根据本公开实施例的剩余充电时间估算方法的流程图。如图1所示,本公开实施例中的方法100包括以下步骤:
步骤S110,获取荷电状态估算起始值和温度估算起始值,确定与荷电状态估算起始值和温度估算起始值对应的充电请求电流值和对应的电池温变速率。
步骤S120,确定荷电状态估算起始值对应的荷电状态估算区间,基于对应的充电请求电流值,估算电池从荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值。
步骤S130,确定温度估算起始值对应的温度估算区间,基于对应的电池温变速率,估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值。
步骤S140,基于第一预估时间值和第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,直到对应的荷电状态估算区间的上限值为目标荷电状态,且较小预估时间值为估算得到的第一预估时间值。
步骤S150,累加获取的每个预估时间较小值,得到电池充电至目标荷电状态的剩余充电预估时间值。
根据本公开实施例的剩余充电时间估算方法,在基于充电请求电流计算剩余充电时间的基础上,增加电池温度变化对充电剩余时间计算的影响,使得电池剩余充电时间的估算更准确,从而解决了在充电时对锂离子电池系统达到目标SOC的剩余时间估计不准确的问题。
在一个实施例中,步骤S110具体可以包括:
步骤S111,根据预设的充电请求电流与电池荷电状态和电池温度的第一对应关系,利用荷电状态估算起始值和温度估算起始值,确定对应的充电请求电流值。
在一个实施例中,荷电状态估算起始值可以是通过BMS系统计算的表征荷电状态的SOC值,温度估算起始值可以是通过温度传感器采集的电池系统当前温度值获得。
在一个实施例中,第一对应关系包括:通过预设的充电请求电流二维查值表确定的充电请求电流与电池荷电状态和电池温度之间的对应关系。在一些实施例中,可以通过对电池系统进行大量试验和计算获取不同电池温度以及SOC下具体的充电请求电流设定值,构建电池温度参量与电池荷电状态参量与充电请求电流对应的充电请求电流值二维查值表。
作为一个示例,表1示例性地示出了根据本公开实施例的电池充电过程中,与电池温度和电池SOC相对应的充电请求电流值的参数示例。需要说明的是,本公开实施例中的电池的充电请求电流与电池温度和SOC的对应关系并不局限于表1中的示例。
表1
Figure PCTCN2019122139-appb-000001
上述表1示出了电池的充电请求电流与电池荷电状态和电池温度的对 应关系。表1中的“温度”表示电池温度,“SOC”表示电池荷电状态,“I 请求”表示充电请求电流。通过查询例如表1的充电请求电流二维查值表,确定了通过电池温度和电池荷电状态确定的充电请求电流。
继续参考表1,本公开实施例适用的电池温度范围可以为-30℃~60℃,电池SOC范围为0%~100%。并且,表1描述的电池的充电请求电流与电池荷电状态和电池温度的对应关系中,包括预设的多个荷电状态变化区间例如10%-20%、20%-30%等,以及包括多个温度变化区间例如-30℃~-20℃、-20℃~-10℃等。
步骤S112,根据电池温变速率至少与电池荷电状态和电池温度的第二对应关系,利用荷电状态估算起始值和温度估算起始值,确定对应的电池温变速率。
在一个实施例中,第二对应关系包括:通过预设的第一电池温变速率查值表确定的电池温变速率与电池荷电状态和电池温度之间的对应关系,或者通过预设的第二电池温变速率查值表确定的电池温变速率与电池荷电状态、电池温度和预设的充电系统加热散热功率之间的对应关系。
在一些实施例中,可以通过对电池系统进行大量试验和计算获取不同电池温度以及SOC下具体的电池温变速率设定值,构建电池温度参量与电池荷电状态参量与电池温变速率对应的充电请求电流值二维查值表。
作为一个示例,表2示例性地示出了根据本公开实施例的电池充电过程中,与电池温度和电池SOC相对应的电池温变速率的参数示例。需要说明的是,本公开实施例中的电池温变速率与电池温度和SOC的对应关系并不局限于表2中的示例。
表2
Figure PCTCN2019122139-appb-000002
上述表2示出了电池温变速率与电池荷电状态和电池温度的对应关 系。表2中的“温度”表示电池温度,“SOC”表示电池荷电状态,“温变速率”表示电池温变速率。通过查询例如表2的充电请求电流二维查值表,确定通过电池温度和电池荷电状态确定的电池温变速率。
并且,表2描述的电池的充电请求电流与电池荷电状态和电池温度的对应关系中,包括预设的多个荷电状态变化区间例如10%-20%、20%-30%等,以及包括多个温度变化区间例如-30℃~-20℃、-20℃~-10℃等。
在一个实施例中,可以利用充电设备的输出电流值,对充电请求电流值进行校正,得到校正后的与荷电状态估算起始值对应的实际充电电流值。也就是说,在一个实施例中,步骤S110,具体可以包括:
步骤S111,根据预设的充电请求电流与电池荷电状态和电池温度的第一对应关系,利用荷电状态估算起始值和温度估算起始值,确定对应的充电请求电流值。
步骤S112,利用充电设备的输出电流值校正对应的充电请求电流值,确定校正后的与荷电状态估算起始值对应的实际充电电流值。
在一个实施例中,步骤S112具体可以包括:
步骤S112-01,电池充电开始后,在预定充电时间内监测电池温度、电池荷电状态、以及与监测的电池温度和电池荷电状态对应的充电设备实际输出电流。
步骤S112-02,确定与监测的电池温度和电池荷电状态对应的充电请求电流值。
步骤S112-03,计算对应的充电设备实际输出电流和对应的充电请求电流值的电流值比例关系。
步骤S112-04,利用电流比例关系和荷电状态估算起始值,确定荷电状态估算起始值对应的实际充电电流值。
在该实施例中,充电时间估算中使用的电池的充电电流值考虑采用充电设备的输出电流进行校正,在刚开始充电时可以按照BMS的充电请求电流进行计算。在充电过程中提取一段时间充电设备的输出电流值,确定充电设备的输出电流与充电请求电流的比例关系,利用该比例关系校正之后BMS的充电请求电流,得到实际充电电流值,以用于预估剩余充电时 间。
在一个实施例中,步骤S120,具体可以包括:
步骤S121,在预设的多个荷电状态变化区间中,将通过荷电状态估算起始值,和荷电状态估算起始值所属荷电状态变化区间的上限值确定的荷电状态区间,作为对应的荷电状态估算区间。
步骤S122,利用充电设备的输出电流值校正对应的充电请求电流值,确定校正后的与荷电状态估算起始值对应的实际充电电流值。
在一个实施例中,步骤S122中校正对应的充电请求电流值的具体步骤与上述实施例中校正充电请求电流值具体步骤相同或等同,在此不再赘述。
在一个实施例中,可以使用相同或等同的步骤,计算利用充电设备的输出电流值和通过上述第一对应关系确定的充电请求电流值,确定荷电状态估算区间的上限值对应的实际充电电流值。
步骤S123,基于对应的实际充电电流值,估算电池从荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值。
在一个实施例中,通过充电请求电流与电池荷电状态和电池温度的第一对应关系,利用SOC i-1与温度估算起始值可以确定第一充电请求电流值;通过该第一对应关系,利用SOC i与温度估算起始值可以确定第二充电请求电流值。
在一个实施例中,如果第一充电请求电流值和第二充电请求电流值相同,将第一充电请求电流值作为从荷电状态估算起始值SOC i-1到对应的荷电状态估算区间的上限值SOC i对应的充电请求电流值。
在一个实施例中,预设的多个荷电状态变化区间之间的荷电状态的取值可以不重叠。
在另一个实施例中,如果第一充电请求电流值和第二充电请求电流值不相同,即荷电状态估算区间的上限值SOC i作为一个SOC边界值,是另一个荷电状态变化区间的下限值。此时,选择第一充电请求电流值和第二充电请求电流值中,较大SOC区间中的充电请求电流值,作为从荷电状态估算起始值SOC i-1到对应的荷电状态估算区间的上限值SOC i对应的充电请求 电流值。
在该实施例中,利用上述实施例描述的确定实际充电电流值的方法,计算从荷电状态估算起始值SOC i-1到对应的荷电状态估算区间的上限值SOC i对应的实际充电电流值。
在一个实施例中,步骤S130具体可以包括:
步骤S131,在预设的多个电池温度变化区间中,将通过温度估算起始值,和温度估算起始值所属电池温度变化区间的上限值确定的温度区间,作为对应的温度估算区间。
步骤S132,利用对应的电池温变速率,估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值。
在一个实施例中,步骤S140具体可以包括:
步骤S141,当预估时间较小值为第一预估时间值。将所属荷电状态变化区间的下一个荷电状态变化区间作为新的荷电状态估算区间,新的荷电状态估算区间起始值为新的荷电状态估算起始值。以及
步骤S142,将利用第一预估时间值和对应的电池温变速率计算得到的温度值,作为新的温度估算起始值。并将根据新的温度估算起始值和电池温度变化区间的上限值确定的温度区间作为新的温度估算区间。
在一个实施例中,步骤S140具体可以包括:
步骤S143,当预估时间较小值为第二预估时间值。将利用第二预估时间值和对应的充电请求电流值计算得到的荷电状态,作为新的荷电状态估算起始值。并将根据新的荷电状态估算起始值和所属荷电状态变化区间的上限值确定的荷电状态区间作为新的荷电状态估算区间。以及
步骤S144,所属电池温度变化区间的下一个电池温度变化区间作为新的温度估算区间,以及将新的温度估算区间的起始值作为新的温度估算起始值。
在本公开实施例中,当对应的荷电状态估算区间的上限值为目标荷电状态,且较小预估时间值为估算得到的第一预估时间值,表示电池已经充电到目标荷电状态,此时,累加获取的每个预估时间较小值,得到电池充电至目标荷电状态的剩余充电预估时间值。
在一个实施例中,目标荷电状态可以是一个预设值,例如100%或者其他SOC设定值。
在一个实施例中,可以通过下面的表达式(1)计算电池充电至目标荷电状态的剩余充电预估时间值。
Figure PCTCN2019122139-appb-000003
在上述表达式(1)中,SOC i为第i个荷电状态的估算区间的上限值,SOC i-1为i个荷电状态的估算区间的荷电状态估算起始值,I i为第i个荷电状态估算区间从荷电状态估算起始值SOC i-1到对应的荷电状态估算区间的上限值SOC i对应的实际充电电流值,C为电池容量,T j为第j个温度估算区间的上限值,T j-1为第j个温度估算区间的温度估算起始值,Trate j为从温度估算起始值变化到对应的温度估算区间的上限值对应的电池温变速率。作为一个示例,SOC 1为初始SOC值,SOC n为目标SOC值。
在本公开实施例中,将充电电流二维查值表与充电过程电池温变速率结合,在电池剩余充电时间的估算过程中,结合温度变化对充电剩余时间计算的影响,优化算法使得估计更准确。
下面介绍本公开另一个实施例的剩余充电时间估算方法。在一个实施例中,步骤S130中,确定温度估算起始值对应的温度估算区间的步骤,具体可以包括:
步骤S11,利用充电设备的输出电流值校正对应的充电请求电流值,确定校正后的与荷电状态估算起始值对应的实际充电电流值。
步骤S12,根据能量守恒对应的计算关系式,利用对应的实际充电电流值、电池参数和充电系统参数,计算与实际充电电流值对应的电池温变速率和对应的电池充电过程中下一时刻的电池温度值。
在一个实施例中,可以利用下述表达式(2)描述的能量守恒对应的计算关系式,计算与实际充电电流值对应的电池温变速率和对应的电池充电过程中下一时刻的电池温度值。
Figure PCTCN2019122139-appb-000004
在上述表达式(2)中,c p_b为电池等效比热,m b为电池质量,
Figure PCTCN2019122139-appb-000005
为电池系统温度变化率,
Figure PCTCN2019122139-appb-000006
为电池内部产热率,
Figure PCTCN2019122139-appb-000007
为外部加热冷却功率,I为当前电流,U av为电池开路电势,E为电池工作电压,T为计算的电池温度,即电池当前温度和电池当前电流下的下一时刻的电池温度值。
在一个实施例中,当前电流I可以取值上述实施例中描述的对充电请求电流校正,得到的实际充电电流值。
在一个实施例中,可以通过查询预设的电池开路电势变化速率查值表,确定与电池荷电状态、温度估算起始值、预设电池工作电压、电池充电设备输出电流、预设电池开路电势对应的电池开路电势变化速率。
在一个实施例中,电池内部产热率
Figure PCTCN2019122139-appb-000008
的取值和外部加热冷却功率
Figure PCTCN2019122139-appb-000009
的取值,可以是根据实验得到的电池内部产热率标定值和外部加热冷却功率标定值。
步骤S13,将下一时刻的电池温度值作为对应的温度估算区间的上限值,并将根据温度估算起始值和对应的温度估算区间的上限值,确定对应的温度估算区间。
在该实施例中,预设电池参数可以包括上述实施例描述的:电池荷电状态、电池温度,预设的电池工作电压、预设的电池开路电势、预设的电池等效比热、电池质量;预设充电系统参数可以包括上述实施例描述的:电池充电设备输出电流、当前电流、预设的外部加热冷却功率。
在一个实施例中,根据上述表达式(1)计算电池温变速率的过程中,所需参数包括但不局限于电池自身的重量、尺寸、等效物性参数、电池系统内部可逆热计算模型,电池内阻变化模型,电池开路电压模型,采样的电池工作电压,电池的等效导热热阻、电池系统与外部环境的换热系数、外部系统例如电池加热器和电池散热器,供热散热功率及各自工作效率和换热效率等,以上参数或模型均可通过对应的关系式或查表实现。
在一个实施例中,外部加热冷却方式包括但不局限于液体工质加热冷却、气冷,自然冷却,气热,电阻加热等,换热形式包括加热体导热、辐射换热、对流换热等。
在上述实施例中,可以根据电池系统的能量守恒方程,计算电池系统 的温度变化。此处的电池系统可以是一个电池电芯,模组或者Pack系统。该电池温变速率的计算方法中考虑了电池系统的内部产热和外部加热冷却,加上大量试验对模型参数的补充和系数的修正,可以更加精确地预估电池后续时刻的温度值。
在一个实施例中,剩余充电时间估算方法100中,步骤S130中估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值的方法,还可以包括:
基于温度估算起始值和实际充电电流值,在时间域进行积分运算,根据积分运算,估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值。
在该实施例中,利用上述公式(2),利用温度估算起始值、实际充电电流值,电池参数和充电系统参数,在时间域进行积分运算,得到电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值。
在一个实施例中,上述步骤S140,具体可以包括:
当预估时间较小值为第一预估时间值。
将荷电状态估算起始值所属荷电状态变化区间的下一个荷电状态变化区间作为新的荷电状态估算区间,新的荷电状态估算区间的起始值为新的荷电状态估算起始值。以及
将对应的温度估算区间的上限值作为新的温度估算区间的上限值,以及将积分运算过程中的电池在第一预估时间值对应的温度值作为新的温度估算起始值,以确定新的温度估算区间。
在该实施例中,如果预估时间较小值为第一预估时间值,即荷电状态达到荷电状态变化区间的上限值所需时间,小于电池温度达到温度估算区间上限值所需时间。
因此,可以通过预设的荷电状态变化区间,例如上述实施例中描述的表1,确定新的荷电状态变化区间。以及
将当前温度估算区间的上限值作为新的温度估算区间的上限值,并将利用上述公式(2)确定的电池温度从温度估算起始值开始,经过第一预 估时间后的电池温度,作为新的温度估算区间的起始温度。
在一个实施例中,上述步骤S140,具体可以包括:
当预估时间较小值为第二预估时间值。
将对应的荷电状态估算区间的上限值作为新的荷电状态估算区间的上限值,以及利用第二预估时间值和对应的充电请求电流值计算得到的荷电状态,作为新的荷电状态估算起始值,以确定新的荷电状态估算区间。
在预设的多个电池温度变化区间中,将温度估算起始值所属电池温度变化区间的下一个电池温度变化区间作为新的温度估算区间,以及将新的温度估算区间的起始值作为新的温度估算起始值。
在该实施例中,如果预估时间较小值为第二预估时间值,即荷电状态达到荷电状态变化区间的上限值所需时间,大于电池温度达到温度估算区间上限值所需时间。
因此,可以通过预设的多个电池温度变化区间,例如通过查询上述实施例中描述的表1,确定新的电池温度变化区间。以及
将当前荷电状态估算区间的上限值作为新的荷电状态估算区间的上限值,以及将利用第二预估时间值和电池电流确定的荷电状态,作为新的荷电状态估算区间的起始值。
在本公开实施例中,利用充电电流二维查值表,根据充电过程电池能量守恒,电池电流大小以及系统加热散热功率等参数来确定电池开始充电后变化的温度,在电池剩余充电时间的估算过程中,结合温度变化对充电剩余时间计算的影响,优化算法使得估计更准确。
下面结合附图,详细介绍根据本公开实施例的剩余充电时间估算装置。
图2示出了根据本公开一实施例提供的剩余充电时间估算装置的结构示意图。如图2所示,剩余充电时间估算装置200包括:
初始值获取模块210,用于获取荷电状态估算起始值和温度估算起始值,确定与荷电状态估算起始值和温度估算起始值对应的充电请求电流值和对应的电池温变速率。
第一时间预估模块220,用于确定荷电状态估算起始值对应的荷电状 态估算区间,基于对应的充电请求电流值,估算电池从荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值。
第二时间预估模块230,用于确定温度估算起始值对应的温度估算区间,基于对应的电池温变速率,估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值。
预估区间更新模块240,用于基于第一预估时间值和第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,直到对应的荷电状态估算区间的上限值为目标荷电状态,且较小预估时间值为估算得到的第一预估时间值。
预估时间累加模块250,用于累加获取的每个预估时间较小值,得到电池充电至目标荷电状态的剩余充电预估时间值。
在一个实施例中,初始值获取模块210具体可以包括:
充电请求电流确定单元,用于根据预设的充电请求电流与电池荷电状态和电池温度的第一对应关系,利用荷电状态估算起始值和温度估算起始值,确定对应的充电请求电流值。以及
电池温变速率确定单元,用于根据电池温变速率至少与电池荷电状态和电池温度的第二对应关系,利用荷电状态估算起始值和温度估算起始值,确定对应的电池温变速率。
在一个实施例中,第一对应关系包括:通过预设的充电请求电流二维查值表确定的充电请求电流与电池荷电状态和电池温度之间的对应关系。
第二对应关系包括:通过预设的第一电池温变速率查值表确定的电池温变速率与电池荷电状态和电池温度之间的对应关系。或者
通过预设的第二电池温变速率查值表确定的电池温变速率与电池荷电状态、电池温度和预设的充电系统加热散热功率之间的对应关系。
在一个实施例中,初始值获取模块210具体可以包括:
充电请求电流确定单元,用于根据预设的充电请求电流与电池荷电状态和电池温度的第一对应关系,利用荷电状态估算起始值和温度估算起始值,确定对应的充电请求电流值。
充电请求电流校正单元,用于利用充电设备的输出电流值校正对应的充电请求电流值,确定校正后的与荷电状态估算起始值对应的实际充电电流值。
电池温变速率估算单元,用于基于对应的实际充电电流值,估算电池从荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值。
在一个实施例中,第一时间预估模块220,具体可以包括:
荷电状态估算区间确定单元,用于在预设的多个荷电状态变化区间中,将通过荷电状态估算起始值,和荷电状态估算起始值所属荷电状态变化区间的上限值确定的荷电状态区间,作为对应的荷电状态估算区间。
充电请求电流校正单元,用于利用充电设备的输出电流值校正对应的充电请求电流值,确定校正后的与荷电状态估算起始值对应的实际充电电流值。
第一估算单元,用于基于对应的实际充电电流值,估算电池从荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值。
在一个实施例中,充电请求电流校正单元具体可以用于:
电池充电开始后,在预定充电时间内监测电池温度、电池荷电状态、以及与监测的电池温度和电池荷电状态对应的充电设备实际输出电流。
确定与监测的电池温度和电池荷电状态对应的充电请求电流值。
计算对应的充电设备实际输出电流和对应的充电请求电流值的电流值比例关系。
利用电流比例关系和荷电状态估算起始值,确定荷电状态估算起始值对应的实际充电电流值。
在一个实施例中,第二时间预估模块230,具体可以包括:
温度估算区间确定单元,用于在预设的多个电池温度变化区间中,将通过温度估算起始值,和温度估算起始值所属电池温度变化区间的上限值确定的温度区间,作为对应的温度估算区间。
第二估算单元,用于利用对应的电池温变速率,估算电池从温度估算 起始值变化至对应的温度估算区间的上限值所需第二预估时间值。
在一个实施例中,预估区间更新模块240具体可以包括:
荷电状态估算区间更新单元,用于当预估时间较小值为第一预估时间值,将荷电状态估算起始值所属荷电状态变化区间的下一个荷电状态变化区间作为新的荷电状态估算区间,新的荷电状态估算区间起始值为新的荷电状态估算起始值。以及
温度估算区间更新单元,用于将温度估算区间的上限值作为新的温度估算区间的上限值,以及将利用第一预估时间值和对应的电池温变速率计算得到的温度值,作为新的温度估算起始值,以确定新的温度估算区间。
在一个实施例中,预估区间更新模块240具体可以包括:
荷电状态估算区间更新单元,用于当预估时间较小值为第二预估时间值,将对应的荷电状态估算区间的上限值作为新的荷电状态估算区间的上限值。以及
利用第二预估时间值和对应的充电请求电流值计算得到的荷电状态,作为新的荷电状态估算起始值,以确定新的荷电状态估算区间。
温度估算区间更新单元,用于将温度估算起始值所属电池温度变化区间的下一个电池温度变化区间作为新的温度估算区间,以及将新的温度估算区间的起始值作为新的温度估算起始值。
根据本公开实施例的剩余充电时间估算装置,将充电电流二维查值表与充电过程电池温变速率结合,在电池剩余充电时间的估算过程中,结合温度变化对充电剩余时间计算的影响,优化算法使得估计更准确。
在一个实施例中,第二时间预估模块230,具体可以包括:
温度估算区间确定单元,具体还可以用于:
利用充电设备的输出电流值校正对应的充电请求电流值,确定校正后的与荷电状态估算起始值对应的实际充电电流值。
根据能量守恒对应的计算关系式,利用对应的实际充电电流值、电池参数和充电系统参数,计算与实际充电电流值对应的电池温变速率和对应的电池充电过程中下一时刻的电池温度值。
将下一时刻的电池温度值作为对应的温度估算区间的上限值,并将根 据温度估算起始值和对应的温度估算区间的上限值,确定对应的温度估算区间。
在一个实施例中,第二估算单元,具体还可以用于:
基于温度估算起始值和实际充电电流值,在时间域进行积分运算,根据积分运算,估算电池从温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值。
在一个实施例中,预估区间更新模块240具体可以包括:
荷电状态估算区间更新单元,用于当预估时间较小值为第一预估时间值,将荷电状态估算起始值所属荷电状态变化区间的下一个荷电状态变化区间作为新的荷电状态估算区间,新的荷电状态估算区间的起始值为新的荷电状态估算起始值。以及
温度估算区间更新单元,用于将对应的温度估算区间的上限值作为新的温度估算区间的上限值,以及将积分运算过程中的电池在第一预估时间值对应的温度值作为新的温度估算起始值,以确定新的温度估算区间。
在一个实施例中,预估区间更新模块240具体可以包括:
荷电状态估算区间更新单元,用于当预估时间较小值为第二预估时间值,将对应的荷电状态估算区间的上限值作为新的荷电状态估算区间的上限值。以及
利用第二预估时间值和对应的充电请求电流值计算得到的荷电状态,作为新的荷电状态估算起始值,以确定新的荷电状态估算区间。
温度估算区间更新单元,用于在预设的多个电池温度变化区间中,将温度估算起始值所属电池温度变化区间的下一个电池温度变化区间作为新的温度估算区间,以及将新的温度估算区间的起始值作为新的温度估算起始值。
根据本公开实施例的剩余充电时间估算装置,利用充电电流二维查值表,根据充电过程电池能量守恒,电池电流大小以及系统加热散热功率等参数来确定电池开始充电后变化的温度,在电池剩余充电时间的估算过程中,结合温度变化对充电剩余时间计算的影响,优化算法使得估计更准确。
需要明确的是,本公开并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图3是示出能够实现根据本公开实施例的剩余充电时间估算方法和装置的计算设备的示例性硬件架构的结构图。
如图3所示,计算设备300包括输入设备301、输入接口302、中央处理器303、存储器304、输出接口305、以及输出设备306。其中,输入接口302、中央处理器303、存储器304、以及输出接口305通过总线310相互连接,输入设备301和输出设备306分别通过输入接口302和输出接口305与总线310连接,进而与计算设备300的其他组件连接。具体地,输入设备301接收来自外部的输入信息,并通过输入接口302将输入信息传送到中央处理器303;中央处理器303基于存储器304中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器304中,然后通过输出接口305将输出信息传送到输出设备306;输出设备306将输出信息输出到计算设备300的外部供用户使用。
也就是说,图3所示的计算设备也可以被实现为包括:存储有计算机可执行指令的存储器;以及处理器,该处理器在执行计算机可执行指令时可以实现结合图1至图2描述的剩余充电时间估算处理方法和装置。
在一个实施例中,图3所示的计算设备300可以被实现为一种剩余充电时间估算系统,该剩余充电时间估算系统可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施例描述的剩余充电时间估算方法。
根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以从网络上被下载和安装,和/或从可拆卸存储介质被安装。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,当其在计算机上运行时,使得计算机执行上述各个实施例中描述的方法。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使对应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (15)

  1. 一种剩余充电时间估算方法,其中,所述剩余充电时间估算方法包括:
    获取荷电状态估算起始值和温度估算起始值,确定与所述荷电状态估算起始值和所述温度估算起始值对应的充电请求电流值和对应的电池温变速率;
    确定所述荷电状态估算起始值对应的荷电状态估算区间,基于所述对应的充电请求电流值,估算电池从所述荷电状态估算起始值充电至所述对应的荷电状态估算区间的上限值所需第一预估时间值;
    确定所述温度估算起始值对应的温度估算区间,基于所述对应的电池温变速率,估算所述电池从所述温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值;
    基于所述第一预估时间值和所述第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,直到所述对应的荷电状态估算区间的上限值为目标荷电状态,且所述较小预估时间值为估算得到的第一预估时间值;
    累加获取的每个预估时间较小值,得到所述电池充电至所述目标荷电状态的剩余充电预估时间值。
  2. 根据权利要求1所述的剩余充电时间估算方法,其中,所述获取荷电状态估算起始值和温度估算起始值,确定与所述荷电状态估算起始值和所述温度估算起始值对应的充电请求电流值和对应的电池温变速率,包括:
    根据预设的充电请求电流与电池荷电状态和电池温度的第一对应关系,利用所述荷电状态估算起始值和所述温度估算起始值,确定所述对应的充电请求电流值;以及
    根据电池温变速率至少与电池荷电状态和电池温度的第二对应关系,利用所述荷电状态估算起始值和所述温度估算起始值,确定所述对应的电 池温变速率。
  3. 根据权利要求2所述的剩余充电时间估算方法,其中,
    所述第一对应关系包括:通过预设的充电请求电流二维查值表确定的充电请求电流与电池荷电状态和电池温度之间的对应关系;
    所述第二对应关系包括:通过预设的第一电池温变速率查值表确定的电池温变速率与电池荷电状态和电池温度之间的对应关系,或者
    通过预设的第二电池温变速率查值表确定的电池温变速率与电池荷电状态、电池温度和预设的充电系统加热散热功率之间的对应关系。
  4. 根据权利要求1所述的剩余充电时间估算方法,其中,所述确定所述荷电状态估算起始值对应的荷电状态估算区间,基于所述对应的充电请求电流值,估算所述电池从所述荷电状态估算起始值充电至对应的荷电状态估算区间的上限值所需第一预估时间值,包括:
    在预设的多个荷电状态变化区间中,将通过所述荷电状态估算起始值,和所述荷电状态估算起始值所属荷电状态变化区间的上限值确定的荷电状态区间,作为所述对应的荷电状态估算区间;
    利用充电设备的输出电流值校正所述对应的充电请求电流值,确定校正后的与所述荷电状态估算起始值对应的实际充电电流值;
    基于所述对应的实际充电电流值,估算所述电池从所述荷电状态估算起始值充电至所述对应的荷电状态估算区间的上限值所需第一预估时间值。
  5. 根据权利要求4所述的剩余充电时间估算方法,其中,所述利用充电设备的输出电流值校正所述对应的充电请求电流值,确定校正后的与所述荷电状态估算起始值对应的实际充电电流值,包括:
    所述电池充电开始后,在预定充电时间内监测电池温度、电池荷电状态、以及与监测的所述电池温度和所述电池荷电状态对应的充电设备实际输出电流;
    确定与监测的所述电池温度和所述电池荷电状态对应的充电请求电流值;
    计算所述对应的充电设备实际输出电流和所述对应的充电请求电流值 的电流值比例关系;
    利用所述电流比例关系和所述荷电状态估算起始值,确定所述荷电状态估算起始值对应的实际充电电流值。
  6. 根据权利要求1所述的剩余充电时间估算方法,其中,所述确定所述温度估算起始值对应的温度估算区间,基于所述对应的电池温变速率,估算所述电池从所述温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值,包括:
    在预设的多个电池温度变化区间中,将通过所述温度估算起始值,和所述温度估算起始值所属电池温度变化区间的上限值确定的温度区间,作为所述对应的温度估算区间;
    利用所述对应的电池温变速率,估算所述电池从所述温度估算起始值变化至所述对应的温度估算区间的上限值所需第二预估时间值。
  7. 根据权利要求1所述的剩余充电时间估算方法,其中,所述基于所述第一预估时间值和所述第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,包括:
    当所述预估时间较小值为所述第一预估时间值,
    将所述荷电状态估算起始值所属荷电状态变化区间的下一个荷电状态变化区间作为所述新的荷电状态估算区间,所述新的荷电状态估算区间起始值为所述新的荷电状态估算起始值;以及
    将所述温度估算区间的上限值作为新的温度估算区间的上限值,以及将利用所述第一预估时间值和所述对应的电池温变速率计算得到的温度值,作为新的温度估算起始值,以确定所述新的温度估算区间。
  8. 根据权利要求1所述的剩余充电时间估算方法,其中,所述基于所述第一预估时间值和所述第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,包括:
    当所述预估时间较小值为所述第二预估时间值,
    将所述对应的荷电状态估算区间的上限值作为新的荷电状态估算区间 的上限值,以及利用所述第二预估时间值和所述对应的充电请求电流值计算得到的荷电状态,作为新的荷电状态估算起始值,以确定所述新的荷电状态估算区间;
    将所述温度估算起始值所属电池温度变化区间的下一个电池温度变化区间作为所述新的温度估算区间,以及将所述新的温度估算区间的起始值作为新的温度估算起始值。
  9. 根据权利要求1所述的剩余充电时间估算方法,其中,所述确定所述温度估算起始值对应的温度估算区间,包括:
    利用充电设备的输出电流值校正所述对应的充电请求电流值,确定校正后的与所述荷电状态估算起始值对应的实际充电电流值;
    根据所述能量守恒对应的计算关系式,利用所述对应的实际充电电流值、所述电池参数和所述充电系统参数,计算与所述实际充电电流值对应的电池温变速率和对应的电池充电过程中下一时刻的电池温度值;
    将所述下一时刻的电池温度值作为所述对应的温度估算区间的上限值,并将根据所述温度估算起始值和所述对应的温度估算区间的上限值,确定所述对应的温度估算区间。
  10. 根据权利要求9所述的剩余充电时间估算方法,其中,所述剩余充电时间估算方法,还包括:
    基于所述温度估算起始值和所述实际充电电流值,在时间域进行积分运算,根据所述积分运算,估算所述电池从所述温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值。
  11. 根据权利要求10所述的剩余充电时间估算方法,其中,所述基于所述第一预估时间值和所述第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,包括:
    当所述预估时间较小值为所述第一预估时间值,
    将所述荷电状态估算起始值所属荷电状态变化区间的下一个荷电状态变化区间作为所述新的荷电状态估算区间,所述新的荷电状态估算区间的起始值为所述新的荷电状态估算起始值;以及
    将所述对应的温度估算区间的上限值作为所述新的温度估算区间的上限值,以及将所述积分运算过程中所述的电池在所述第一预估时间值对应的温度值作为新的温度估算起始值,以确定所述新的温度估算区间。
  12. 根据权利要求10所述的剩余充电时间估算方法,其中,所述基于所述第一预估时间值和所述第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态估算区间、新的温度估算起始值和新的温度估算区间,包括:
    当所述预估时间较小值为所述第二预估时间值,
    将所述对应的荷电状态估算区间的上限值作为新的荷电状态估算区间的上限值,以及利用所述第二预估时间值和所述对应的充电请求电流值计算得到的荷电状态,作为新的荷电状态估算起始值,以确定所述新的荷电状态估算区间;
    在预设的多个电池温度变化区间中,将所述温度估算起始值所属电池温度变化区间的下一个电池温度变化区间作为所述新的温度估算区间,以及将所述新的温度估算区间的起始值作为新的温度估算起始值。
  13. 一种电池剩余充电时间估算装置,其中,所述电池剩余充电时间估算装置包括:
    初始值获取模块,用于获取荷电状态估算起始值和温度估算起始值,确定与所述荷电状态估算起始值和所述温度估算起始值对应的充电请求电流值和对应的电池温变速率;
    第一时间预估模块,用于确定所述荷电状态估算起始值对应的荷电状态估算区间,基于所述对应的充电请求电流值,估算电池从所述荷电状态估算起始值充电至所述对应的荷电状态估算区间的上限值所需第一预估时间值;
    第二时间预估模块,用于确定所述温度估算起始值对应的温度估算区间,基于所述对应的电池温变速率,估算所述电池从所述温度估算起始值变化至对应的温度估算区间的上限值所需第二预估时间值;
    预估区间更新模块,用于基于所述第一预估时间值和所述第二预估时间值中的预估时间较小值,确定新的荷电状态估算起始值、新的荷电状态 估算区间、新的温度估算起始值和新的温度估算区间,直到所述对应的荷电状态估算区间的上限值为目标荷电状态,且所述较小预估时间值为估算得到的第一预估时间值;
    预估时间累加模块,用于累加获取的每个预估时间较小值,得到所述电池充电至所述目标荷电状态的剩余充电预估时间值。
  14. 一种剩余充电时间估算系统,其中,包括存储器和处理器;
    所述存储器用于储存有可执行程序代码;
    所述处理器用于读取所述存储器中存储的可执行程序代码以执行权利要求1至12任一项所述的剩余充电时间估算方法。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-12任意一项所述的剩余充电时间估算方法。
PCT/CN2019/122139 2018-11-30 2019-11-29 剩余充电时间估算方法、装置、系统和存储介质 WO2020108638A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/043,703 US11269011B2 (en) 2018-11-30 2019-11-29 Method, device, system for estimating remaining charging time and storage medium
EP19889771.2A EP3764114B1 (en) 2018-11-30 2019-11-29 Method, device, system for estimating remaining charging time and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811455643.XA CN111257752B (zh) 2018-11-30 2018-11-30 剩余充电时间估算方法、装置、系统和存储介质
CN201811455643.X 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020108638A1 true WO2020108638A1 (zh) 2020-06-04

Family

ID=70854693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122139 WO2020108638A1 (zh) 2018-11-30 2019-11-29 剩余充电时间估算方法、装置、系统和存储介质

Country Status (4)

Country Link
US (1) US11269011B2 (zh)
EP (1) EP3764114B1 (zh)
CN (1) CN111257752B (zh)
WO (1) WO2020108638A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112035777A (zh) * 2020-09-01 2020-12-04 蜂巢能源科技有限公司 电池充电剩余时间计算方法、装置及车辆
CN114475353A (zh) * 2022-01-20 2022-05-13 上海汽车集团股份有限公司 动力电池充电时间预估方法、装置、电子设备及存储介质
US11349327B2 (en) * 2019-05-15 2022-05-31 Sk Innovation Co., Ltd. Apparatus and control method for battery management system

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547955B (zh) * 2020-04-23 2023-06-16 宁德时代新能源科技股份有限公司 电池的充电控制方法、装置、电池管理系统和介质
CN111806296A (zh) * 2020-06-15 2020-10-23 汉腾汽车有限公司 一种电动汽车充电剩余时间估算方法
CN112590600B (zh) * 2020-12-21 2022-07-12 上汽通用五菱汽车股份有限公司 一种快充桩充电请求电流的自适应调整方法
CN115149593A (zh) * 2021-03-29 2022-10-04 北京小米移动软件有限公司 预测充电剩余时间的方法、装置及存储介质
EP4092433B1 (en) * 2021-03-31 2024-05-01 Contemporary Amperex Technology Co., Limited Battery remaining charging time estimation method and apparatus, and battery management system
CN113085656B (zh) * 2021-04-25 2022-07-15 北京新能源汽车股份有限公司 一种基于用户习惯大数据的衰减智能预控方法和装置
CN113147507B (zh) * 2021-04-25 2022-03-25 北京新能源汽车股份有限公司 剩余充电时长的估算方法、装置及电动汽车
CN113391221B (zh) * 2021-04-27 2023-05-12 合众新能源汽车股份有限公司 一种充电剩余时间估算方法及系统
CN113406498A (zh) * 2021-06-18 2021-09-17 广汽本田汽车有限公司 汽车电池充电时长的预估方法、系统、装置及存储介质
CN113504479B (zh) * 2021-06-24 2024-01-30 浙江吉利控股集团有限公司 基于云的电池充电剩余时间的估算方法、系统和存储介质
CN113484779B (zh) * 2021-06-28 2023-09-01 浙江吉利控股集团有限公司 一种电池剩余充电时间估算方法及装置
CN113777509B (zh) * 2021-08-31 2023-03-10 北汽福田汽车股份有限公司 车辆的剩余充电时间估算方法、装置及车辆
CN113682200B (zh) * 2021-09-30 2023-05-26 重庆长安新能源汽车科技有限公司 一种动力电池剩余充电时间估算方法、装置及电动汽车
CN114047448A (zh) * 2021-10-25 2022-02-15 安徽锐能科技有限公司 自适应充电剩余时间估算方法、装置、系统及存储介质
CN114019386B (zh) * 2021-11-03 2022-12-06 四川野马汽车股份有限公司 一种电动汽车充电剩余时间的估算方法及系统
CN114217233A (zh) * 2021-12-01 2022-03-22 广州小鹏汽车科技有限公司 一种车辆剩余充电时间估算方法及装置、车辆、存储介质
EP4199174A1 (en) * 2021-12-17 2023-06-21 Airbus SAS Electrical energy storage system and a vehicle comprising such an electrical energy storage system
CN114243136B (zh) * 2021-12-27 2024-06-04 厦门金龙汽车新能源科技有限公司 一种锂电池的充电优化方法
CN114407727A (zh) * 2022-01-24 2022-04-29 四川野马汽车股份有限公司 一种电动汽车充电剩余时间的估算方法及系统
CN114879045A (zh) * 2022-03-29 2022-08-09 中国第一汽车股份有限公司 一种验证充电剩余时间测试方法、装置、终端及存储介质
CN114865752B (zh) * 2022-07-05 2022-09-30 广东采日能源科技有限公司 一种储能设备的充放电控制方法及控制装置
CN116359764A (zh) * 2022-12-07 2023-06-30 湖北亿纬动力有限公司 电池剩余充电时间计算方法、装置、电子设备及存储介质
CN116278960B (zh) * 2023-03-01 2024-03-19 合众新能源汽车股份有限公司 一种电动汽车充电时间预测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707234A (zh) * 2012-05-04 2012-10-03 惠州市亿能电子有限公司 电池组剩余充电时间估算方法
WO2018105881A1 (ko) * 2016-12-05 2018-06-14 주식회사 엘지화학 배터리 관리 장치 및 방법
CN108445400A (zh) * 2018-02-09 2018-08-24 惠州市亿能电子有限公司 一种电池组剩余充电时间估算方法
CN108646190A (zh) * 2018-05-08 2018-10-12 宁德时代新能源科技股份有限公司 电池剩余充电时间估算方法、装置和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650424B2 (ja) * 2010-03-30 2015-01-07 古河電池株式会社 リチウムイオン電池の保管方法
CN103675706B (zh) * 2013-12-13 2016-04-13 桂林电子科技大学 一种动力电池电荷量估算方法
CN104977545B (zh) * 2015-08-03 2017-12-19 电子科技大学 一种动力电池的荷电状态估计方法及系统
JP6791702B2 (ja) * 2016-09-30 2020-11-25 ビークルエナジージャパン株式会社 二次電池モジュール
CN107193779A (zh) * 2017-05-02 2017-09-22 努比亚技术有限公司 剩余充电时长计算方法、终端及计算机可读存储介质
CN107192960A (zh) 2017-06-26 2017-09-22 北京普莱德新能源电池科技有限公司 一种对电池的剩余充电时间进行估算的方法及装置
CN107179512B (zh) * 2017-07-12 2020-06-19 万帮充电设备有限公司 预测电池寿命的方法及装置
CN107991623B (zh) * 2017-11-27 2020-05-08 山东大学 一种考虑温度和老化程度的电池安时积分soc估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707234A (zh) * 2012-05-04 2012-10-03 惠州市亿能电子有限公司 电池组剩余充电时间估算方法
WO2018105881A1 (ko) * 2016-12-05 2018-06-14 주식회사 엘지화학 배터리 관리 장치 및 방법
CN108445400A (zh) * 2018-02-09 2018-08-24 惠州市亿能电子有限公司 一种电池组剩余充电时间估算方法
CN108646190A (zh) * 2018-05-08 2018-10-12 宁德时代新能源科技股份有限公司 电池剩余充电时间估算方法、装置和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764114A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349327B2 (en) * 2019-05-15 2022-05-31 Sk Innovation Co., Ltd. Apparatus and control method for battery management system
CN112035777A (zh) * 2020-09-01 2020-12-04 蜂巢能源科技有限公司 电池充电剩余时间计算方法、装置及车辆
CN112035777B (zh) * 2020-09-01 2023-06-09 蜂巢能源科技有限公司 电池充电剩余时间计算方法、装置及车辆
CN114475353A (zh) * 2022-01-20 2022-05-13 上海汽车集团股份有限公司 动力电池充电时间预估方法、装置、电子设备及存储介质
CN114475353B (zh) * 2022-01-20 2023-11-10 上海汽车集团股份有限公司 动力电池充电时间预估方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
US11269011B2 (en) 2022-03-08
EP3764114A4 (en) 2021-07-28
CN111257752A (zh) 2020-06-09
EP3764114A1 (en) 2021-01-13
CN111257752B (zh) 2021-02-26
EP3764114B1 (en) 2022-05-11
US20210325466A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020108638A1 (zh) 剩余充电时间估算方法、装置、系统和存储介质
WO2020259008A1 (zh) 电池的荷电状态修正方法、装置、系统和存储介质
CN107991623B (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
WO2020259096A1 (zh) 电池的许用功率估算方法、装置、系统和存储介质
JP6153528B2 (ja) 電池監視のためのシステムおよび方法
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
KR102036876B1 (ko) 배터리의 soc 추정방법 및 장치
CN109921111B (zh) 一种锂离子电池内部温度估测方法及系统
WO2015106691A1 (zh) 一种混合动力车用动力电池soc估算方法
WO2019144646A1 (zh) 电池的电量状态估算方法、装置及电子设备
WO2015188610A1 (zh) 电池荷电状态估算方法和装置
JP2014228534A (ja) バッテリ管理システムおよびその駆動方法
WO2020259007A1 (zh) 电池的剩余可用能量估算方法、装置、系统和存储介质
CN109061497B (zh) 一种电池剩余电量计量系统及方法
CN105223487B (zh) 一种锂离子电池的多状态解耦估计方法
AU2016201173A1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
CN110596604B (zh) 一种基于安时积分法的锂电池soc估计方法
WO2023116519A1 (zh) 电池soc的估算方法及相关装置
WO2023197939A1 (zh) Ocv-soc标定及估算方法、装置、介质和车辆
CN109061498B (zh) 一种电池剩余电量计量芯片及计量方法
WO2019184879A1 (zh) 动力电池组的rc网络参数获取方法、装置和电动汽车
CN108983109B (zh) 用于电池的电流估算芯片、估算方法及剩余电量计量系统
JP7414697B2 (ja) 電池の劣化判定装置、電池の管理システム、電池搭載機器、電池の劣化判定方法、及び、電池の劣化判定プログラム
CN113125978A (zh) 一种电动自行车用锂电池soc测量方法
WO2023184870A1 (zh) 动力电池的热管理方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19889771.2

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019889771

Country of ref document: EP

Effective date: 20201005

NENP Non-entry into the national phase

Ref country code: DE