WO2019184879A1 - 动力电池组的rc网络参数获取方法、装置和电动汽车 - Google Patents

动力电池组的rc网络参数获取方法、装置和电动汽车 Download PDF

Info

Publication number
WO2019184879A1
WO2019184879A1 PCT/CN2019/079554 CN2019079554W WO2019184879A1 WO 2019184879 A1 WO2019184879 A1 WO 2019184879A1 CN 2019079554 W CN2019079554 W CN 2019079554W WO 2019184879 A1 WO2019184879 A1 WO 2019184879A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery pack
power battery
charging
voltage
Prior art date
Application number
PCT/CN2019/079554
Other languages
English (en)
French (fr)
Inventor
邓林旺
吕纯
冯天宇
杨子华
林思岐
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019184879A1 publication Critical patent/WO2019184879A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements

Definitions

  • the present application relates to the field of power battery technologies, and in particular, to an RC network parameter acquisition method for a power battery pack, an RC network parameter acquisition device for a power battery pack, and an electric vehicle.
  • the equivalent circuit model of the battery is established based on the electrochemical principle of the power battery, and the power battery pack is determined.
  • the state space model allows the power battery pack SOC to be estimated by identifying the RC network parameters.
  • the laboratory data does not fully represent the actual vehicle data, because the ambient temperature, charge and discharge rate of the electric vehicle runs very differently from the laboratory parameters.
  • the simple laboratory simulation cannot fully represent the actual vehicle working conditions. As a result, the estimation error of the real vehicle SOC is getting larger and larger.
  • the chemical reaction inside the power battery is a complicated nonlinear process.
  • the power battery pack When the power battery pack is charged and discharged, there is polarization phenomenon; as the number of cycles of the power battery pack increases, a certain degree of aging phenomenon will also occur. And there are individual differences between different battery cells. Therefore, the RC network parameters of the battery will change with the decay of the life of the power battery pack, and these changes also greatly affect the accuracy of the SOC estimation, so simply assign the initial value obtained under a laboratory condition. It does not effectively improve the estimation accuracy of the power battery pack SOC.
  • the present application aims to solve at least one of the technical problems in the above-mentioned techniques to some extent. Therefore, the first object of the present application is to provide a method for acquiring RC network parameters of a power battery pack, which can greatly improve the convenience and accuracy of the estimation of the power battery pack RC network parameters, thereby improving the estimation accuracy of the power battery pack SOC. .
  • a second object of the present application is to also provide an RC network parameter acquisition device for a power battery pack.
  • a third object of the present application is to also propose an electric vehicle.
  • the first aspect of the present application provides a method for acquiring an RC network parameter of a power battery pack, comprising the steps of: acquiring a single unit of the power battery pack when charging the power battery pack in a constant current charging mode a charging curve of the battery, and obtaining a voltage of the single battery; determining, according to the voltage of the single battery and the charging curve, whether the single battery is in a low-voltage platform charging phase; acquiring current charging of the power battery pack Power, and determining a target power according to the current charging power; determining that the charging power of the power battery pack is adjusted to the target power within a preset time when determining that the low-voltage platform is in a charging phase; acquiring the power battery And constituting a voltage response curve of the power battery pack according to the voltage response curve.
  • the charging curve and the voltage of the single battery are obtained during constant current charging to determine whether the single battery is in the charging stage of the low voltage platform, and the single battery is in the During the charging phase of the low-voltage platform, the charging power of the power battery pack is adjusted to the target power within a preset time, during which the voltage response curve of the power battery pack is obtained within a preset time, and the RC of the power battery pack is obtained according to the voltage response curve.
  • the method does not depend on the initial parameters, and also avoids the influence of the aging of the power battery pack, can greatly improve the convenience and accuracy of the power battery pack RC network parameter estimation, thereby improving the power battery pack SOC. Estimate accuracy.
  • An embodiment of the second aspect of the present application provides an RC network parameter obtaining apparatus for a power battery pack, including: a first acquiring module, configured to acquire the power when the power battery pack is charged in a constant current charging mode a charging curve of the single battery of the battery pack; a second obtaining module, configured to acquire a voltage of the single battery when the power battery pack is charged in a constant current charging mode; and a determining module, configured to a voltage of the single battery and the charging curve to determine whether the single battery is in a low voltage platform charging phase; a third obtaining module, configured to acquire a current charging power of the power battery pack; and a determining module, configured to determine, according to the current The charging power determines the target power; the adjusting module is configured to adjust the charging power of the power battery pack to the target power within a preset time when the determining module determines that the charging platform is in the charging phase of the low voltage platform; a module, configured to acquire a voltage response curve of the power battery pack in the preset time; a fifth
  • the charging curve and the voltage of the single battery are obtained during constant current charging to determine whether the single battery is in the charging stage of the low voltage platform, and the single battery is in the During the charging phase of the low-voltage platform, the charging power of the power battery pack is adjusted to the target power within a preset time, during which the voltage response curve of the power battery pack is obtained within a preset time, and the RC of the power battery pack is obtained according to the voltage response curve.
  • the network parameters thereby, the device does not depend on the initial parameters, and also avoids the influence of the aging of the power battery pack, can greatly improve the convenience and accuracy of the power battery pack RC network parameter estimation, thereby improving the power battery pack SOC. Estimate accuracy.
  • the electric vehicle proposed in the embodiment of the third aspect of the present invention includes the RC network parameter obtaining device of the power battery pack proposed in the embodiment of the third aspect of the present application.
  • the convenience and accuracy of the power battery pack RC network parameter estimation can be greatly improved, thereby improving the estimation accuracy of the power battery pack SOC.
  • FIG. 1 is a flowchart of a method for acquiring an RC network parameter of a power battery pack according to an embodiment of the present application
  • FIG. 2 is an equivalent circuit diagram of a first-order RC network of a single cell according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a voltage response curve according to an embodiment of the present application.
  • FIG. 4 is a block diagram showing an RC network parameter acquisition apparatus of a power battery pack according to an embodiment of the present application
  • FIG. 5 is a block schematic diagram of an electric vehicle according to an embodiment of the present application.
  • the electric vehicle of the embodiment of the present application may be a pure electric vehicle or a hybrid vehicle, and the power battery pack includes a plurality of single cells connected in series, and when the power battery pack is charged or the power battery pack is discharged, correspondingly, the plurality of single batteries
  • the body battery can be charged at the same time or discharged at the same time.
  • FIG. 1 is a flow chart of a method for acquiring RC network parameters of a power battery pack according to an embodiment of the present application.
  • the method for acquiring RC network parameters of the power battery pack of the embodiment of the present application includes the following steps:
  • the power battery pack may be a lithium ion battery, and when the power battery pack is subjected to constant current charging, the BMS may have a total voltage, a total current, a SOC, a voltage of the single battery, and Parameters such as temperature and power are collected and recorded.
  • the BMS charging algorithm can be activated to obtain a charging curve of each of the single cells in the power battery pack, that is, a relationship between the voltage V and the capacity Ah.
  • the voltage of the cells is below a predetermined voltage threshold, which may be referred to as a low voltage platform charging phase.
  • the BMS can send a “limit charging power” signal to the OBC (On-Board Charger), and combine the power battery characteristics and the charging power to determine the need.
  • the charged power is reduced, that is, the target power is determined.
  • the target power can be set according to the current charging power.
  • the target power can be P/2, P/3, P/4, ..., 0, and the like.
  • the setting or adjustment of the charging power can be achieved by setting or adjusting the gear position, that is, the charging power described above is P, P/2, P/3, P/4, ... , 0, etc. can have corresponding gear positions.
  • the charging rate is small and the charging power is small, if the charging power decreases less, for example, to half of the current gear position, the rate of change of the cell terminal voltage is small, which is not enough to be recognized by the BMS, thus affecting subsequent estimation.
  • the accuracy of the RC network parameters When the charging power is high and the charging rate is large, the amount of change in the terminal voltage of the single cell caused by the power reduction is large enough to be recognized by the BMS.
  • the battery capacity of the power battery pack can be obtained, if the current charging power is less than the first power threshold, and the battery capacity is greater than the first capacity threshold, the target power is set to 0; if the current charging The power is greater than the second power threshold, and the battery capacity is less than the first capacity threshold, and the target power is set to be half of the current charging power, wherein the second power threshold is greater than or equal to the first power threshold.
  • the charging mode of the power battery may include a slow charging mode and a fast charging mode.
  • the slow charging mode for example, when the charging current is 4 A, the charging magnification is small, and the charging power is small.
  • the target power can be set to 0; in the fast charge mode, when the charging power is high and the charging rate is large, the target power can be set to half of the current charging power.
  • the charging power of the power battery pack is adjusted to the target power within a preset time.
  • the charging power of the power battery pack can be instantaneously lowered to the target power.
  • the constant current charging mode can be restored.
  • the voltage response curve of the power battery pack that is, the curve of the power battery pack voltage can be obtained.
  • the pulse charge and discharge process can be simulated, and the voltage response curve during the pulse charge and discharge process can be obtained.
  • the obtained voltage response curve is as shown in FIG. 2.
  • the RC network parameters of the power battery pack can be obtained in conjunction with the first-order RC network equivalent circuit and voltage response curve of the power battery pack.
  • the first-order RC network equivalent circuit of the power battery pack is shown in FIG. 3.
  • R0 is an ohmic internal resistance
  • R1 is a polarization internal resistance
  • C1 is a polarization capacitance.
  • the fitting voltage V RC1 and the time constant ⁇ 1 may be generated according to the voltage response curve, and the polarization internal resistance R1 and the RC network parameter may be calculated according to the fitting voltage V RC1 and the time constant ⁇ 1 Polarization capacitor C1.
  • Vm is the operating voltage of the power battery pack
  • V RC1 represents the voltage of the RC network, that is, the voltage across R1 and C1, that is, the voltage that needs to be obtained by fitting
  • V RC0 is the voltage of the RC network.
  • I is the current of the RC network
  • I is the sum of the R1 current and the C1 current
  • the OCV is the open circuit voltage of the power battery.
  • ⁇ I is the amount of current change and RO is the ohmic internal resistance in the RC network parameters.
  • the RC network starts to charge, that is, the zero state response, and the initial value V RC0 of the voltage across R1 and C1 is 0, and the voltage during the pulse discharge can be according to the following formula. Fit the response curve:
  • the open circuit voltage OCV-battery state of charge SOC reference curve of the power battery pack may be pre-stored in the BMS, and the SOC of the power battery pack is obtained, and then V RC1 is obtained according to the above formula (1). .
  • the polarization internal resistance R1 can be calculated according to the following formula:
  • the polarization capacitor C1 can be calculated according to the following formula:
  • the charging curve and the voltage of the single battery are obtained during constant current charging to determine whether the single battery is in the charging stage of the low voltage platform, and the single battery is in the During the charging phase of the low-voltage platform, the charging power of the power battery pack is adjusted to the target power within a preset time, during which the voltage response curve of the power battery pack is obtained within a preset time, and the RC of the power battery pack is obtained according to the voltage response curve.
  • the method does not depend on the initial parameters, and also avoids the influence of the aging of the power battery pack, can greatly improve the convenience and accuracy of the power battery pack RC network parameter estimation, thereby improving the power battery pack SOC. Estimate accuracy.
  • the RC network of the power battery pack is restarted.
  • the parameter acquisition method re-acquires a functional relationship curve between R0, R1, C1 and the temperature, charge and discharge rate, SOC, SOH, etc. of the power battery pack and stores them in the BMS register.
  • the RC network parameters under the same working condition can be directly called and referred to for calculating the power battery pack.
  • Related parameters such as SOE (State of Energy).
  • the deviation is recorded and the RC network function curve is corrected according to the actual calculation result, and is used as a calculation basis for the subsequent operation.
  • the present application also provides an RC network parameter acquisition device for a power battery pack.
  • the RC network parameter obtaining apparatus 100 of the power battery pack of the embodiment of the present application includes a first acquiring module, a second acquiring module 20, a determining module 30, a third obtaining module 40, a determining module 50, and an adjusting module. 60.
  • the first obtaining module 10 is configured to obtain a charging curve of the single battery of the power battery pack when charging the power battery pack in the constant current charging mode; and the second acquiring module 20 is configured to use the power in the constant current charging mode.
  • the voltage of the single battery is obtained;
  • the determining module 30 is configured to determine whether the single battery is in the low-voltage platform charging phase according to the voltage and the charging curve of the single battery; and
  • the third obtaining module 40 is configured to obtain the power battery pack.
  • the current charging power; the determining module 50 is configured to determine the target power according to the current charging power; the adjusting module 60 is configured to adjust the charging power of the power battery pack to the target power within a preset time when the determining module 30 determines that the charging stage is in the low-voltage platform.
  • the fourth obtaining module 70 is configured to obtain a voltage response curve of the power battery pack within a preset time; and the fifth obtaining module 80 is configured to obtain an RC network parameter of the power battery pack according to the voltage response curve.
  • the power battery pack may be a lithium ion battery, and when the power battery pack is subjected to constant current charging, the BMS may have a total voltage, a total current, a SOC, a voltage of the single battery, and Parameters such as temperature and power are collected and recorded.
  • the BMS charging algorithm can be activated to obtain a charging curve of each of the single cells in the power battery pack, that is, a relationship between the voltage V and the capacity Ah.
  • the voltage of the single cell is below a predetermined voltage threshold, which may be referred to as a low voltage platform charging phase.
  • the BMS can send a "limit charging power" signal to the adjustment module 60 in the OBC, and combine the power battery characteristics and the charging power to determine the charging power that needs to be reduced. , that is, determine the target power.
  • the target power can be set according to the current charging power.
  • the target power can be P/2, P/3, P/4, ..., 0, and the like.
  • the setting or adjustment of the charging power can be achieved by setting or adjusting the gear position, that is, the charging power described above is P, P/2, P/3, P/4, ... , 0, etc. can have corresponding gear positions.
  • the charging rate is small and the charging power is small, if the charging power decreases less, for example, to half of the current gear position, the rate of change of the cell terminal voltage is small, which is not enough to be recognized by the BMS, thus affecting subsequent estimation.
  • the accuracy of the RC network parameters When the charging power is high and the charging rate is large, the amount of change in the terminal voltage of the single cell caused by the power reduction is large enough to be recognized by the BMS.
  • the determination module 50 can obtain the battery capacity and charging mode of the power battery pack. If the current charging power is less than the first power threshold, and the battery capacity is greater than the first capacity threshold, the determining module 50 sets the target power to 0; if the current charging power is greater than the second power threshold, and the battery capacity is less than the first capacity threshold, then The determining module 50 sets the target power to be half of the current charging power, wherein the second power threshold is greater than or equal to the first power threshold.
  • the charging mode of the power battery may include a slow charging mode and a fast charging mode.
  • the slow charging mode for example, when the charging current is 4 A, the charging magnification is small, and the charging power is small.
  • the target power can be set to 0; in the fast charge mode, when the charging power is high and the charging rate is large, the target power can be set to half of the current charging power.
  • the adjustment module 60 in the OBC can instantaneously adjust the charging power of the power battery pack to the target power when receiving the signal of "limit charging power" transmitted by the BMS.
  • the adjustment module 60 can resume the constant current charging mode. And within a preset time, the fourth obtaining module 70 can obtain a voltage response curve of the power battery pack, that is, a curve of the power battery pack voltage.
  • the pulse charge and discharge process can be simulated, and the voltage response curve during the pulse charge and discharge process can be obtained.
  • the voltage response curve acquired by the fourth acquisition module 70 is as shown in FIG. 2 .
  • the fifth obtaining module 80 can acquire the RC network parameters of the power battery pack in combination with the first-order RC network equivalent circuit and the voltage response curve of the power battery pack.
  • the first-order RC network equivalent circuit of the power battery pack is shown in FIG. 3.
  • R0 is an ohmic internal resistance
  • R1 is a polarization internal resistance
  • C1 is a polarization capacitance.
  • the fifth obtaining module 80 may generate the fitting voltage V RC1 and the time constant ⁇ 1 according to the voltage response curve, and calculate the R1 in the RC network parameter according to the fitting voltage V RC1 and the time constant ⁇ 1 . And C1.
  • Vm is the operating voltage of the power battery pack
  • V RC1 represents the voltage of the RC network, that is, the voltage across R1 and C1, that is, the voltage that needs to be obtained by fitting
  • V RC0 is the voltage of the RC network.
  • I is the current of the RC network
  • I is the sum of the R1 current and the C1 current
  • the OCV is the open circuit voltage of the power battery.
  • ⁇ I is the amount of current change.
  • the RC network starts to charge, that is, the zero state response, and the initial value V RC0 of the voltage across R1 and C1 is 0, and the voltage during the pulse discharge can be according to the following formula. Fit the response curve:
  • the open circuit voltage OCV-battery state of charge SOC reference curve of the power battery pack may be pre-stored in the BMS, and the SOC of the power battery pack is obtained, and then V RC1 is obtained according to the above formula (1). .
  • the fifth obtaining module 80 can calculate R1 according to the following formula:
  • the fifth obtaining module 80 can calculate C1 according to the following formula:
  • the charging curve and the voltage of the single battery are obtained during constant current charging to determine whether the single battery is in the charging stage of the low voltage platform, and the single battery is in the During the charging phase of the low-voltage platform, the charging power of the power battery pack is adjusted to the target power within a preset time, during which the voltage response curve of the power battery pack is obtained within a preset time, and the RC of the power battery pack is obtained according to the voltage response curve.
  • the network parameters thereby, the device does not depend on the initial parameters, and also avoids the influence of the aging of the power battery pack, can greatly improve the convenience and accuracy of the power battery pack RC network parameter estimation, thereby improving the power battery pack SOC. Estimate accuracy.
  • the present application also proposes an electric vehicle.
  • the electric vehicle 1000 of the embodiment of the present application includes the RC network parameter obtaining device 100 of the power battery pack according to the above embodiment of the present application.
  • the specific implementation manner refer to the foregoing embodiment, to avoid redundancy. I will not repeat them here.
  • the convenience and accuracy of the power battery pack RC network parameter estimation can be greatly improved, thereby improving the estimation accuracy of the power battery pack SOC.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种动力电池组的RC网络参数获取方法、装置和电动汽车,该方法包括以下步骤:在以恒流充电模式对动力电池组进行充电时,获取动力电池组的单体电池的充电曲线,并获取单体电池的电压(S1);根据单体电池的电压和充电曲线判断单体电池是否处于低压平台充电阶段(S2);获取动力电池组的当前充电功率,并根据当前充电功率确定目标功率(S3);在判断处于低压平台充电阶段时,将动力电池组的充电功率在预设时间内调整至目标功率(S4);获取动力电池组在预设时间内的电压响应曲线(S5);根据电压响应曲线获取动力电池组的RC网络参数(S6)。

Description

动力电池组的RC网络参数获取方法、装置和电动汽车
相关申请的交叉引用
本申请基于申请号为201810287395.6,申请日为2018年03月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及动力电池技术领域,特别涉及一种动力电池组的RC网络参数获取方法、一种动力电池组的RC网络参数获取装置和一种电动汽车。
背景技术
为了更加准确的估算电动汽车动力电池组SOC(State of Charge,电池荷电状态),可根据锂离子电池工作原理,基于动力电池组电化学原理建立电池的等效电路模型,确定动力电池组的状态空间模型,从而可通过对RC网络参数进行辨识来估算动力电池组SOC。
相关技术中往往通过在实验室对动力电池开路电压和SOC关系开展标定实验,对动力电池组内阻和RC电路参数进行辨识,并将已确定参数的电池模型的输出与动力电池组实际的测量输出写入BMS(Battery Management System,电池管理系统),作为实车RC网络的初始值。
然而,实验室数据并不能完全代表实车数据,因为电动汽车运行的环境温度、充放电倍率与实验室参数有很大出入,单纯的实验室模拟量并不能完全代表实车工况,故会导致实车SOC估算误差越来越大。
另外,动力电池内部的化学反应是一个复杂的非线性过程,动力电池组在充放电时,存在极化现象;随着动力电池组循环次数的增加,也会产生一定程度的老化现象。而且不同的电池单体间存在个体差异。所以电池的RC网络参数会随着动力电池组寿命的衰减呈现一定规律的变化,而这些变化规律也在很大程度上影响SOC估算的精度,所以单纯地赋予一个实验室条件下获得的初始值并不能有效的提高动力电池组SOC的估算精度。
发明内容
本申请旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本申请的第一个目的在于提出一种动力电池组的RC网络参数获取方法,能够大大提高动力电池组RC网络参数估算的方便性和准确性,从而提高动力电池组SOC的估算精度。
本申请的第二个目的在于还提出一种动力电池组的RC网络参数获取装置。
本申请的第三个目的在于还提出一种电动汽车。
本申请第一方面实施例提出了一种动力电池组的RC网络参数获取方法,包括以下步骤:在以恒流充电模式对所述动力电池组进行充电时,获取所述动力电池组的单体电池的充电曲线,并获取所述单体电池的电压;根据所述单体电池的电压和所述充电曲线判断所述单体电池是否处于低压平台充电阶段;获取所述动力电池组的当前充电功率,并根据所述当前充电功率确定目标功率;在判断处于所述低压平台充电阶段时,将所述动力电池组的充电功率在预设时间内调整至所述目标功率;获取所述动力电池组在所述预设时间内的电压响应曲线;根据所述电压响应曲线获取所述动力电池组的RC网络参数。
根据本申请实施例的动力电池组的RC网络参数获取方法,通过在恒流充电时获取单体电池的充电曲线和电压,以判断单体电池是否处于低压平台充电阶段,并在单体电池处于低压平台充电阶段时,将动力电池组的充电功率在预设时间内调整至目标功率,在其间获取动力电池组在预设时间内的电压响应曲线,并根据电压响应曲线获取动力电池组的RC网络参数,由此,该方法不依赖于初始参数,还避免了动力电池组老化带来的影响,能够大大提高动力电池组RC网络参数估算的方便性和准确性,从而提高动力电池组SOC的估算精度。
本申请第二方面实施例提出了一种动力电池组的RC网络参数获取装置,包括:第一获取模块,用于在以恒流充电模式对所述动力电池组进行充电时,获取所述动力电池组的单体电池的充电曲线;第二获取模块,用于在以恒流充电模式对所述动力电池组进行充电时,获取所述单体电池的电压;判断模块,用于根据所述单体电池的电压和所述充电曲线判断所述单体电池是否处于低压平台充电阶段;第三获取模块,用于获取所述动力电池组的当前充电功率;确定模块,用于根据所述当前充电功率确定目标功率;调整模块,用于在所述判断模块判断处于所述低压平台充电阶段时,将所述动力电池组的充电功率在预设时间内调整至所述目标功率;第四获取模块,用于获取所述动力电池组在所述预设时间内的电压响应曲线;第五获取模块,用于根据所述电压响应曲线获取所述动力电池组的RC网络参数。
根据本申请实施例的动力电池组的RC网络参数获取装置,通过在恒流充电时获取单体电池的充电曲线和电压,以判断单体电池是否处于低压平台充电阶段,并在单体电池处于低压平台充电阶段时,将动力电池组的充电功率在预设时间内调整至目标功率,在其间获取动力电池组在预设时间内的电压响应曲线,并根据电压响应曲线获取动力电池组的RC网络参数,由此,该装置不依赖于初始参数,还避免了动力电池组老化带来的影响,能够大大提高动力电池组RC网络参数估算的方便性和准确性,从而提高动力电池组SOC的估算精度。
本申请第三方面实施例提出的电动汽车,包括本申请第三方面实施例提出的动力电池组的RC网络参数获取装置。
根据本申请实施例的电动汽车,能够大大提高动力电池组RC网络参数估算的方便性和准确性,从而提高动力电池组SOC的估算精度。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过对本申请的实践了解到。
附图说明
图1为根据本申请实施例的动力电池组的RC网络参数获取方法的流程图;
图2为根据本申请一个实施例的单体电池的一阶RC网络等效电路图;
图3为根据本申请一个实施例的电压响应曲线示意图;
图4为根据本申请实施例的动力电池组的RC网络参数获取装置的方框示意图;
图5为根据本申请实施例的电动汽车的方框示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图来描述本申请实施例的动力电池组的RC网络参数获取方法、装置和电动汽车。
本申请实施例的电动汽车可为纯电动汽车或混合动力汽车,其动力电池组包括多个串联的单体电池,在动力电池组进行充电或动力电池组进行放电时,对应地,多个单体电池可同时进行充电或同时进行放电。
图1为根据本申请实施例的动力电池组的RC网络参数获取方法的流程图。
如图1所示,本申请实施例的动力电池组的RC网络参数获取方法,包括以下步骤:
S1,在以恒流充电模式对动力电池组进行充电时,获取动力电池组的单体电池的充电曲线,并获取单体电池的电压。
在本申请的一个实施例中,动力电池组可为锂离子电池,在对动力电池组进行恒流充电时,BMS可对动力电池组的总电压、总电流、SOC、单体电池的电压、温度以及电量等参数进行采集和记录。
可启动BMS充电算法以获取动力电池组中每个单体电池的充电曲线,即电压V与容量Ah的关系曲线。
S2,根据单体电池的电压和充电曲线判断单体电池是否处于低压平台充电阶段。
在本申请的一个实施例中,在充电曲线的起始阶段,单体电池的电压低于预设的电压阈 值,该阶段可称为低压平台充电阶段。
S3,获取动力电池组的当前充电功率,并根据当前充电功率确定目标功率。
当BMS检测到单体电池电压均处于低压平台充电阶段时,可由BMS向OBC(On-Board Charger,车载充电器)发送“限制充电功率”的信号,并结合动力电池组特性和充电功率确定需要降至的充电功率,即确定目标功率。目标功率可以当前充电功率为标准来设定,例如当前充电功率为P时,目标功率可为P/2、P/3、P/4、…、0等。在本申请的一个实施例中,充电功率的设定或调节可通过对档位的设定或调节来实现,即上述的充电功率为P、P/2、P/3、P/4、…、0等均可具有对应的档位。
对于特定功率的充电设备来说,电池容量越小,充电倍率越高。当充电倍率较小,充电功率较小时,如果充电功率降幅较小,例如降至当前档位的一半,单体电池端电压的变化率较小,不足以被BMS所识别,故而会影响后续估算RC网络参数的精度。而在充电功率较高、充电倍率较大时,降功率引发的单体电池端电压变化量较大,足以被BMS所识别。
因此,在本申请的一个实施例中,可获取动力电池组的电池容量,如果当前充电功率小于第一功率阈值,且电池容量大于第一容量阈值,则将目标功率定为0;如果当前充电功率大于第二功率阈值,且电池容量小于第一容量阈值,则将目标功率定为当前充电功率的一半,其中,第二功率阈值大于等于第一功率阈值。
在本申请的一个具体实施例中,对动力电池的充电模式可包括慢充模式和快充模式,在慢充模式下,例如充电电流为4A时,充电倍率较小,充电功率较小,此时可将目标功率定为0;在快充模式下,充电功率较高、充电倍率较大时,可将目标功率定为当前充电功率的一半。
S4,在判断处于低压平台充电阶段时,将动力电池组的充电功率在预设时间内调整至目标功率。
OBC在接收到BMS发送的“限制充电功率”的信号时,可瞬间将动力电池组的充电功率下调至目标功率。
S5,获取动力电池组在预设时间内的电压响应曲线。
在预设时间之后,可恢复恒流充电模式。而在预设时间之内,即执行上述步骤S1~S4的过程中,可获取动力电池组的电压响应曲线,即动力电池组电压的变化曲线。
由此,能够模拟脉冲充放电过程,并获取脉冲充放电过程中的电压响应曲线。
在本申请的一个实施例中,所获取的电压响应曲线如图2所示。
S6,根据电压响应曲线获取动力电池组的RC网络参数。
在本申请的一个实施例中,可结合动力电池组的一阶RC网络等效电路和电压响应曲线获取动力电池组的RC网络参数。
其中,动力电池组的一阶RC网络等效电路如图3所示,图3中R0为欧姆内阻,R1为极化内阻,C1为极化电容。
在本申请的一个实施例中,可根据电压响应曲线生成拟合电压V RC1和时间常数τ 1,并根据拟合电压V RC1和时间常数τ 1计算RC网络参数中的极化内阻R1和极化电容C1。
根据图3所示的等效电路,结合基尔霍夫定律可得:
Figure PCTCN2019079554-appb-000001
其中,τ 1=R1C1,Vm为动力电池组的工作电压,V RC1表示RC网络的电压,即R1和C1两端的电压,也即需要通过拟合得到的电压,V RC0为RC网络的电压的初始值,I为RC网络的电流,I为R1电流与C1电流之和,OCV为动力电池组的开路电压。
在图3中,电流加载瞬间的电压变化ΔV1主要是由欧姆内阻引起的,缓变电压ΔV2则由极化电阻、极化电容引起的,根据欧姆定理可得:
Figure PCTCN2019079554-appb-000002
其中,ΔI为电流变化量,RO为所述RC网络参数中的欧姆内阻。
在本申请的一个实施例中,在脉冲放电开始时,RC网络开始充电,即零状态响应,R1和C1两端的电压的初始值V RC0为0,可根据以下公式对脉冲放电过程中的电压响应曲线进行拟合:
Figure PCTCN2019079554-appb-000003
根据公式(3),可得到拟合结果V RC1和τ 1
在本申请的另一个实施例中,还可预存动力电池组的开路电压OCV-电池荷电状态SOC参考曲线于BMS中,并获取动力电池组的SOC,然后根据上述公式(1)得到V RC1
由电容瞬态响应和RC网络基尔霍夫电流定律分别可得:
Figure PCTCN2019079554-appb-000004
当t→0时,I R=0,I C=I,结合公式(3)、(4)可得:
Figure PCTCN2019079554-appb-000005
因此,可根据以下公式计算极化内阻R1:
Figure PCTCN2019079554-appb-000006
其中,可根据以下公式计算极化电容C1:
Figure PCTCN2019079554-appb-000007
根据本申请实施例的动力电池组的RC网络参数获取方法,通过在恒流充电时获取单体电池的充电曲线和电压,以判断单体电池是否处于低压平台充电阶段,并在单体电池处于低压平台充电阶段时,将动力电池组的充电功率在预设时间内调整至目标功率,在其间获取动力电池组在预设时间内的电压响应曲线,并根据电压响应曲线获取动力电池组的RC网络参数,由此,该方法不依赖于初始参数,还避免了动力电池组老化带来的影响,能够大大提高动力电池组RC网络参数估算的方便性和准确性,从而提高动力电池组SOC的估算精度。
根据本申请的一个实施例,当BMS检测到动力电池组的温度、充放电倍率、SOC、SOH(State of Health,电池健康状态)等发生变化时,则重新启动上述的动力电池组的RC网络参数获取方法,重新获取R0、R1、C1与动力电池组的温度、充放电倍率、SOC、SOH等之间的函数关系曲线并存储至BMS寄存器中。
当检测到与此前动力电池组的温度、充放电倍率、SOC、SOH等相同的工况时,则可以直接调用并参考之前存储的同工况下的RC网络参数以用于计算动力电池组的SOE(State of Energy,电池能量状态)等相关参数。
当检测到与此前动力电池组的温度、充放电倍率、SOC、SOH等有任意偏差时,则记录该偏差并根据实际计算结果修正RC网络函数曲线,并作为后续该工况下的计算依据。
最后可根据动力电池组整个寿命周期内的RC网络参数与温度、充放电倍率、SOC、SOH等的多条函数关系曲线,获得RC网络参数在整个电池包寿命周期的变化关系曲线。这将成为后期研究动力电池组寿命以及更新BMS算法策略的重要依据。
对应上述实施例,本申请还提出一种动力电池组的RC网络参数获取装置。
如图4所示,本申请实施例的动力电池组的RC网络参数获取装置100,包括第一获取模块、第二获取模块20、判断模块30、第三获取模块40、确定模块50、调整模块60、第四获取模块70和第五获取模块80。
其中,第一获取模块10用于在以恒流充电模式对动力电池组进行充电时,获取动力电池组的单体电池的充电曲线;第二获取模块20用于在以恒流充电模式对动力电池组进行充电时,获取单体电池的电压;判断模块30用于根据单体电池的电压和充电曲线判断单体电池是否处于低压平台充电阶段;第三获取模块40用于获取动力电池组的当前充电功率;确定模块50用于根据当前充电功率确定目标功率;调整模块60用于在判断模块30判断处于低压平台充电阶段时,将动力电池组的充电功率在预设时间内调整至目标功率;第四获取模 块70用于获取动力电池组在预设时间内的电压响应曲线;第五获取模块80用于根据电压响应曲线获取动力电池组的RC网络参数。
在本申请的一个实施例中,动力电池组可为锂离子电池,在对动力电池组进行恒流充电时,BMS可对动力电池组的总电压、总电流、SOC、单体电池的电压、温度以及电量等参数进行采集和记录。
可启动BMS充电算法以获取动力电池组中每个单体电池的充电曲线,即电压V与容量Ah的关系曲线。
在本申请的一个实施例中,在充电曲线的起始阶段,单体电池的电压低于预设的电压阈值,该阶段可称为低压平台充电阶段。
当BMS检测到单体电池电压均处于低压平台充电阶段时,可由BMS向OBC中的调整模块60发送“限制充电功率”的信号,并结合动力电池组特性和充电功率确定需要降至的充电功率,即确定目标功率。目标功率可以当前充电功率为标准来设定,例如当前充电功率为P时,目标功率可为P/2、P/3、P/4、…、0等。在本申请的一个实施例中,充电功率的设定或调节可通过对档位的设定或调节来实现,即上述的充电功率为P、P/2、P/3、P/4、…、0等均可具有对应的档位。
对于特定功率的充电设备来说,电池容量越小,充电倍率越高。当充电倍率较小,充电功率较小时,如果充电功率降幅较小,例如降至当前档位的一半,单体电池端电压的变化率较小,不足以被BMS所识别,故而会影响后续估算RC网络参数的精度。而在充电功率较高、充电倍率较大时,降功率引发的单体电池端电压变化量较大,足以被BMS所识别。
因此,在本申请的一个实施例中,确定模块50可获取动力电池组的电池容量和充电模式。如果当前充电功率小于第一功率阈值,且电池容量大于第一容量阈值,则确定模块50将目标功率定为0;如果当前充电功率大于第二功率阈值,且电池容量小于第一容量阈值,则确定模块50将目标功率定为当前充电功率的一半,其中,第二功率阈值大于等于第一功率阈值。
在本申请的一个具体实施例中,对动力电池的充电模式可包括慢充模式和快充模式,在慢充模式下,例如充电电流为4A时,充电倍率较小,充电功率较小,此时可将目标功率定为0;在快充模式下,充电功率较高、充电倍率较大时,可将目标功率定为当前充电功率的一半。
OBC中的调整模块60在接收到BMS发送的“限制充电功率”的信号时,可瞬间将动力电池组的充电功率下调至目标功率。
在预设时间之后,调整模块60可恢复恒流充电模式。而在预设时间之内,第四获取模块70可获取动力电池组的电压响应曲线,即动力电池组电压的变化曲线。
由此,能够模拟脉冲充放电过程,并获取脉冲充放电过程中的电压响应曲线。
在本申请的一个实施例中,第四获取模块70所获取的电压响应曲线如图2所示。
在本申请的一个实施例中,第五获取模块80可结合动力电池组的一阶RC网络等效电路和电压响应曲线获取动力电池组的RC网络参数。
其中,动力电池组的一阶RC网络等效电路如图3所示,图3中R0为欧姆内阻,R1为极化内阻,C1为极化电容。
在本申请的一个实施例中,第五获取模块80可根据电压响应曲线生成拟合电压V RC1和时间常数τ 1,并根据拟合电压V RC1和时间常数τ 1计算RC网络参数中的R1和C1。
根据图3所示的等效电路,结合基尔霍夫定律可得:
Figure PCTCN2019079554-appb-000008
其中,τ 1=R1C1,Vm为动力电池组的工作电压,V RC1表示RC网络的电压,即R1和C1两端的电压,也即需要通过拟合得到的电压,V RC0为RC网络的电压的初始值,I为RC网络的电流,I为R1电流与C1电流之和,OCV为动力电池组的开路电压。
在图3中,电流加载瞬间的电压变化ΔV1主要是由欧姆内阻引起的,缓变电压ΔV2则由极化电阻、极化电容引起的,根据欧姆定理可得:
Figure PCTCN2019079554-appb-000009
其中,ΔI为电流变化量。
在本申请的一个实施例中,在脉冲放电开始时,RC网络开始充电,即零状态响应,R1和C1两端的电压的初始值V RC0为0,可根据以下公式对脉冲放电过程中的电压响应曲线进行拟合:
Figure PCTCN2019079554-appb-000010
根据公式(3),可得到拟合结果V RC1和τ 1
在本申请的另一个实施例中,还可预存动力电池组的开路电压OCV-电池荷电状态SOC参考曲线于BMS中,并获取动力电池组的SOC,然后根据上述公式(1)得到V RC1
由电容瞬态响应和RC网络基尔霍夫电流定律分别可得:
Figure PCTCN2019079554-appb-000011
当t→0时,I R=0,I C=I,结合公式(3)、(4)可得:
Figure PCTCN2019079554-appb-000012
因此,第五获取模块80可根据以下公式计算R1:
Figure PCTCN2019079554-appb-000013
其中,第五获取模块80可根据以下公式计算C1:
Figure PCTCN2019079554-appb-000014
根据本申请实施例的动力电池组的RC网络参数获取装置,通过在恒流充电时获取单体电池的充电曲线和电压,以判断单体电池是否处于低压平台充电阶段,并在单体电池处于低压平台充电阶段时,将动力电池组的充电功率在预设时间内调整至目标功率,在其间获取动力电池组在预设时间内的电压响应曲线,并根据电压响应曲线获取动力电池组的RC网络参数,由此,该装置不依赖于初始参数,还避免了动力电池组老化带来的影响,能够大大提高动力电池组RC网络参数估算的方便性和准确性,从而提高动力电池组SOC的估算精度。
对应上述实施例,本申请还提出一种电动汽车。
如图5所示,本申请实施例的电动汽车1000,包括本申请上述实施例提出的动力电池组的RC网络参数获取装置100,其具体的实施方式可参照上述实施例,为避免冗余,在此不再赘述。
根据本申请实施例的电动汽车,能够大大提高动力电池组RC网络参数估算的方便性和准确性,从而提高动力电池组SOC的估算精度。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以 是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种动力电池组的RC网络参数获取方法,其特征在于,所述方法包括以下步骤:
    在以恒流充电模式对所述动力电池组进行充电时,获取所述动力电池组的单体电池的充电曲线,并获取所述单体电池的电压;
    根据所述单体电池的电压和所述充电曲线判断所述单体电池是否处于低压平台充电阶段;
    获取所述动力电池组的当前充电功率,并根据所述当前充电功率确定目标功率;
    在判断处于所述低压平台充电阶段时,将所述动力电池组的充电功率在预设时间内调整至所述目标功率;
    获取所述动力电池组在所述预设时间内的电压响应曲线;
    根据所述电压响应曲线获取所述动力电池组的RC网络参数。
  2. 如权利要求1所述的动力电池组的RC网络参数获取方法,其特征在于,所述根据所述当前充电功率确定目标功率具体包括:
    获取所述动力电池组的电池容量;
    如果所述当前充电功率小于第一功率阈值,且所述电池容量大于第一容量阈值,则将所述目标功率定为0;
    如果所述当前充电功率大于第二功率阈值,且所述电池容量小于所述第一容量阈值,则将所述目标功率定为所述当前充电功率的一半,其中,所述第二功率阈值大于等于所述第一功率阈值。
  3. 如权利要求1或2所述的动力电池组的RC网络参数获取方法,其特征在于,所述根据所述电压响应曲线获取所述动力电池组的RC网络参数具体包括:
    根据所述电压响应曲线生成拟合电压V RC1和时间常数τ 1
    根据所述拟合电压V RC1和所述时间常数τ 1计算所述RC网络参数中的极化内阻R1和极化电容C1。
  4. 如权利要求1-3中任一项所述的动力电池组的RC网络参数获取方法,其特征在于,根据以下公式计算所述极化内阻R1:
    Figure PCTCN2019079554-appb-100001
    其中,I为动力电池组中RC网络的电流。
  5. 如权利要求1-4中任一项所述的动力电池组的RC网络参数获取方法,其特征在于,根据以下公式计算所述极化电容C1:
    Figure PCTCN2019079554-appb-100002
  6. 一种动力电池组的RC网络参数获取装置,其特征在于,包括:
    第一获取模块,用于在以恒流充电模式对所述动力电池组进行充电时,获取所述动力电池组的单体电池的充电曲线;
    第二获取模块,用于在以恒流充电模式对所述动力电池组进行充电时,获取所述单体电池的电压;
    判断模块,用于根据所述单体电池的电压和所述充电曲线判断所述单体电池是否处于低压平台充电阶段;
    第三获取模块,用于获取所述动力电池组的当前充电功率;
    确定模块,用于根据所述当前充电功率确定目标功率;
    调整模块,用于在所述判断模块判断处于所述低压平台充电阶段时,将所述动力电池组的充电功率在预设时间内调整至所述目标功率;
    第四获取模块,用于获取所述动力电池组在所述预设时间内的电压响应曲线;
    第五获取模块,用于根据所述电压响应曲线获取所述动力电池组的RC网络参数。
  7. 如权利要求6所述的动力电池组的RC网络参数获取装置,其特征在于,所述确定模块具体用于获取所述动力电池组的电池容量,并在所述当前充电功率小于第一功率阈值,且所述电池容量大于第一容量阈值时,将所述目标功率定为0,以及在所述当前充电功率大于第二功率阈值,且所述电池容量小于所述第一容量阈值时,将所述目标功率定为所述当前充电功率的一半,其中,所述第二功率阈值大于等于所述第一功率阈值。
  8. 如权利要求6或7所述的动力电池组的RC网络参数获取装置,其特征在于,所述第五获取模块具体用于根据所述电压响应曲线生成拟合电压VRC1和时间常数τ1,并根据所述拟合电压VRC1和所述时间常数τ1计算所述RC网络参数中的极化内阻R1和极化电容C1。
  9. 如权利要求6-8中任一项所述的动力电池组的RC网络参数获取装置,其特征在于,所述第五获取模块根据以下公式计算所述极化内阻R1:
    Figure PCTCN2019079554-appb-100003
    其中,I为动力电池组中RC网络的电流。
  10. 如权利要求6-9中任一项所述的动力电池组的RC网络参数获取装置,其特征在于,所述第五获取模块根据以下公式计算所述极化电容C1:
    Figure PCTCN2019079554-appb-100004
  11. 一种电动汽车,其特征在于,包括如权利要求6-10中任一项所述的动力电池组的RC网络参数获取装置。
PCT/CN2019/079554 2018-03-30 2019-03-25 动力电池组的rc网络参数获取方法、装置和电动汽车 WO2019184879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810287395.6 2018-03-30
CN201810287395.6A CN110333460B (zh) 2018-03-30 2018-03-30 动力电池组的rc网络参数获取方法、装置和电动汽车

Publications (1)

Publication Number Publication Date
WO2019184879A1 true WO2019184879A1 (zh) 2019-10-03

Family

ID=68059258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079554 WO2019184879A1 (zh) 2018-03-30 2019-03-25 动力电池组的rc网络参数获取方法、装置和电动汽车

Country Status (2)

Country Link
CN (1) CN110333460B (zh)
WO (1) WO2019184879A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044813B (zh) * 2019-11-27 2021-04-27 深圳猛犸电动科技有限公司 充电模式的识别方法、装置及终端设备
CN115097331A (zh) * 2020-03-31 2022-09-23 比亚迪股份有限公司 确定电池等效电路模型的参数的方法、装置、存储介质及电子设备
CN114643892A (zh) * 2022-04-11 2022-06-21 广州万城万充新能源科技有限公司 一种基于多模态数据感知的电动车充电功率预测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040130297A1 (en) * 2002-07-17 2004-07-08 Vb Autobatterie Gmbh Method for determining the amount of charge which can still be drawn from an energy storage battery, and an energy storage battery
CN104614676A (zh) * 2015-01-07 2015-05-13 王金全 考虑储能电池脉冲电流响应特性的等效电路模型建模方法
US20150316618A1 (en) * 2014-05-05 2015-11-05 Apple Inc. Methods and apparatus for battery power and energy availability prediction
CN105203969A (zh) * 2015-10-23 2015-12-30 南昌航空大学 基于修正的rc电池模型的荷电状态估计方法
CN105738829A (zh) * 2016-04-08 2016-07-06 深圳市国创动力系统有限公司 动力锂电池的等效电路模型参数识别方法
CN106842060A (zh) * 2017-03-08 2017-06-13 深圳市海云图新能源有限公司 一种基于动态参数的动力电池soc估算方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561380A (en) * 1995-05-08 1996-10-01 Chrysler Corporation Fault detection system for electric automobile traction system having floating ground
JP4394186B2 (ja) * 1998-10-21 2010-01-06 富士重工業株式会社 電気自動車のバッテリ充電装置
CN103675686B (zh) * 2012-09-21 2017-01-18 华北电力大学 电动车辆动力电池充放电工况模拟系统和方法
CN102937704B (zh) * 2012-11-27 2015-03-25 山东省科学院自动化研究所 一种动力电池rc等效模型的辨识方法
CN103197251B (zh) * 2013-02-27 2016-02-03 山东省科学院自动化研究所 一种动力锂电池二阶rc等效模型的辨识方法
KR101466558B1 (ko) * 2013-05-28 2014-11-28 주식회사 와이즈오토모티브 전기 차량용 dc 충전기의 인터페이스 적합성 평가 장치
CN103293485A (zh) * 2013-06-10 2013-09-11 北京工业大学 基于模型的蓄电池荷电状态估计方法
US10288693B2 (en) * 2014-04-21 2019-05-14 GM Global Technology Operations LLC State of charge estimator and methods of making and using the same
JP6183283B2 (ja) * 2014-04-23 2017-08-23 株式会社デンソー 車両用二次電池の等価回路のパラメータ推定装置
CN105277895B (zh) * 2015-09-30 2018-01-26 上海凌翼动力科技有限公司 一种串联电池组功率状态sop的在线估计方法及其应用
CN106443459A (zh) * 2016-09-06 2017-02-22 中国第汽车股份有限公司 一种车用锂离子动力电池荷电状态估算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040130297A1 (en) * 2002-07-17 2004-07-08 Vb Autobatterie Gmbh Method for determining the amount of charge which can still be drawn from an energy storage battery, and an energy storage battery
US20150316618A1 (en) * 2014-05-05 2015-11-05 Apple Inc. Methods and apparatus for battery power and energy availability prediction
CN104614676A (zh) * 2015-01-07 2015-05-13 王金全 考虑储能电池脉冲电流响应特性的等效电路模型建模方法
CN105203969A (zh) * 2015-10-23 2015-12-30 南昌航空大学 基于修正的rc电池模型的荷电状态估计方法
CN105738829A (zh) * 2016-04-08 2016-07-06 深圳市国创动力系统有限公司 动力锂电池的等效电路模型参数识别方法
CN106842060A (zh) * 2017-03-08 2017-06-13 深圳市海云图新能源有限公司 一种基于动态参数的动力电池soc估算方法及系统

Also Published As

Publication number Publication date
CN110333460A (zh) 2019-10-15
CN110333460B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
Yang et al. An online SOC and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency
CN108369258B (zh) 状态估计装置、状态估计方法
JP4692246B2 (ja) 二次電池の入出力可能電力推定装置
JP4872743B2 (ja) 二次電池の状態推定装置
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
TWI384246B (zh) 藉電池電壓變化模式估測開路電壓以估測電池電阻特徵之裝置及方法
Huria et al. Simplified extended kalman filter observer for soc estimation of commercial power-oriented lfp lithium battery cells
JP5672778B2 (ja) バッテリ容量表示装置およびバッテリ容量表示方法
KR101972521B1 (ko) 배터리 셀의 성능 테스트 장치 및 방법
JP5324196B2 (ja) バッテリの劣化推定方法及び装置
CN107991623A (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
CN107894570B (zh) 基于Thevenin模型的电池组SOC的估算方法和装置
JP6509725B2 (ja) バッテリの充電状態の推定
WO2019184879A1 (zh) 动力电池组的rc网络参数获取方法、装置和电动汽车
KR20130105123A (ko) 배터리 상태 추정 장치 및 방법
JP2010508507A (ja) バッテリが平衡状態にないときのそのバッテリの充電状態の判定のための装置及び方法
JP2008232758A (ja) 二次電池の内部状態検出装置及びニューラルネット式状態量推定装置
CN110888070A (zh) 一种电池温度的估计方法、装置、设备及介质
CN112470017B (zh) 电池管理装置、电池管理方法和电池组
EP4152022B1 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
KR20200102927A (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2023040486A1 (zh) 一种新能源汽车电池管理系统sof估算方法
JP5911407B2 (ja) バッテリの健全度算出装置および健全度算出方法
CN113785209A (zh) 用于检测异常电池单体的方法
JP7414697B2 (ja) 電池の劣化判定装置、電池の管理システム、電池搭載機器、電池の劣化判定方法、及び、電池の劣化判定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778031

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19778031

Country of ref document: EP

Kind code of ref document: A1