WO2020259008A1 - 电池的荷电状态修正方法、装置、系统和存储介质 - Google Patents

电池的荷电状态修正方法、装置、系统和存储介质 Download PDF

Info

Publication number
WO2020259008A1
WO2020259008A1 PCT/CN2020/084708 CN2020084708W WO2020259008A1 WO 2020259008 A1 WO2020259008 A1 WO 2020259008A1 CN 2020084708 W CN2020084708 W CN 2020084708W WO 2020259008 A1 WO2020259008 A1 WO 2020259008A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
charge
value
current
circuit voltage
Prior art date
Application number
PCT/CN2020/084708
Other languages
English (en)
French (fr)
Inventor
杜明树
李世超
汤慎之
阮见
卢艳华
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020207031026A priority Critical patent/KR102476166B1/ko
Priority to JP2020560456A priority patent/JP7047131B2/ja
Publication of WO2020259008A1 publication Critical patent/WO2020259008A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, in particular to a method, device, system and storage medium for correcting the state of charge of a battery.
  • the state of charge (SOC) of the battery is used to reflect the state of the remaining capacity of the battery, and the SOC is also important for battery capabilities such as balance control technology, rapid charge and discharge management, and safe operation. parameter. Therefore, accurate SOC estimation plays an important role in the realization of battery management system power indication, remaining mileage, overcharge and overdischarge protection, battery equalization, charging control, and battery health prediction.
  • the commonly used SOC correction method such as the open circuit voltage method
  • OCV open circuit voltage
  • the OCV curve that characterizes the correspondence between OCV and SOC is affected by historical operating conditions. Changes in the OCV curve will cause large errors in the open circuit voltage method and reduce the accuracy of correcting SOC. Sex.
  • the embodiments of the present application provide a method, device, system and storage medium for correcting the state of charge of a battery, which can correct the state of charge of a battery with hysteresis characteristics and improve the accuracy of estimating the state of charge value of the battery.
  • a state-of-charge correction method including:
  • the open circuit voltage measurement value in the hysteresis voltage range meets:
  • the open circuit voltage value corresponding to the state of charge value in the state of charge is different from the open circuit voltage value corresponding to the state of charge value in the discharge state;
  • the state of charge correction target value is determined, and the current state of charge of the battery is corrected.
  • a state of charge correction device including:
  • the voltage measurement value judgment module is used to determine the current open circuit voltage measurement value of the battery, and determine whether the current open circuit voltage measurement value is in the hysteresis voltage interval, and the open circuit voltage measurement value in the hysteresis voltage interval meets:
  • the open circuit voltage value corresponding to the state of charge value in the state of charge is different from the open circuit voltage value corresponding to the state of charge value in the discharge state;
  • the state of charge determination module is used to determine the charge state value corresponding to the current open circuit voltage measurement value in the charging state and the discharge charge corresponding to the current open circuit voltage measurement value in the discharge state when the current open circuit voltage measurement value is in the hysteresis voltage range Electrical state value
  • the state-of-charge correction module is used to determine the state-of-charge correction target value based on the state-of-charge credible interval formed by the state-of-charge value and the state-of-charge value to correct the current state of charge of the battery.
  • a state of charge correction system including: a memory and a processor; the memory is used for storing a program; the processor is used for reading the executable program code stored in the memory to execute the foregoing The state of charge correction method.
  • a computer-readable storage medium stores instructions.
  • the computer executes the state-of-charge corrections of the above aspects. method.
  • the state of charge correction method of the embodiment of the present application can obtain a more accurate state of charge of the battery.
  • Figure 1 shows a schematic diagram of the OCV hysteresis characteristic curve of the battery
  • FIG. 2 shows a schematic flowchart of a method for correcting the state of charge of a battery according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of the mesh triangle of the Preisach model in an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a training process of a Preisach model in an embodiment of the present application
  • FIG. 5 shows a schematic diagram of a training process of a Preisach model in another embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a device for correcting a state of charge of a battery according to an embodiment of the present application
  • FIG. 7 shows a structural diagram of an exemplary hardware architecture of a computing device that can implement the method and apparatus for correcting the state of charge according to the embodiments of the present application.
  • the battery in the embodiment of the present application may be a battery in which both the positive electrode and the negative electrode can detach and receive energy-carrying particles, which is not limited herein.
  • the battery can be, but not limited to, a lithium iron phosphate system battery or a silicon-added battery.
  • the lithium iron phosphate system battery is a lithium ion battery containing lithium iron phosphate as the positive electrode active material
  • the silicon-added system battery is a negative electrode active Lithium-ion battery containing silicon.
  • the battery can be a single battery cell, a battery module or a battery pack, which is not specifically limited in the embodiments of the present application.
  • the hysteresis characteristic refers to the open circuit voltage and discharge voltage corresponding to the same state of charge after the battery is charged and discharged with the same current.
  • the phenomenon of different open circuit voltages. This phenomenon is called the hysteresis characteristic of the battery. Therefore, the hysteresis characteristic can describe the characteristics of the battery's OCV curve affected by historical operating conditions.
  • the OCV curve is used to describe the correspondence between the OCV and SOC of the battery.
  • the OCV curve may include a charge OCV curve and a discharge OCV curve.
  • the charging OCV curve can be used to describe the corresponding relationship between the OCV and SOC of the battery in the charged state
  • the discharging OCV curve can be used to describe the corresponding relationship between the OCV and SOC of the battery in the discharged state.
  • the OCV curve of the battery is not affected by the historical operating conditions, that is, the OCV of the battery is only related to the current temperature and SOC, and the SOC can be obtained after the battery is left standing to reach a stable state. But for the battery with hysteresis characteristics, the change of the OCV curve will cause the error of the open circuit voltage method to be larger, which reduces the applicability of the open circuit voltage method.
  • the corrected current state of charge value it can be calculated by the state of charge calculation device using a preset state of charge calculation method. Therefore, the embodiment of the present application does not limit the calculation method of the state of charge.
  • the embodiments of the present application provide a method, device, device, and computer-readable storage medium for modifying the state of charge of a battery, which can modify the state of charge value of a battery with hysteresis characteristics, and improve the estimation of the state of charge value of the battery. accuracy.
  • Figure 1 shows a schematic diagram of the OCV hysteresis characteristic curve of the battery.
  • the OCV interval of the battery can be divided into a hysteresis voltage interval and a non-hysteresis voltage interval.
  • the charge OCV curve and the discharge OCV curve do not overlap, while in the non-hysteresis voltage interval, the charge OCV curve and the discharge OCV curve overlap. Therefore, in the description of the following embodiments, the curve in which the charge OCV curve and the discharge OCV curve in the non-hysteresis voltage interval overlap are referred to as a non-hysteresis OCV-SOC curve.
  • the non-hysteretic OCV-SOC curve is used to describe the correspondence between the OCV and SOC of the battery in the non-hysteretic voltage range under the charged state, and the OCV of the battery in the non-hysteretic voltage range under the discharged state Correspondence with SOC.
  • FIG. 2 shows a schematic flowchart of a method for correcting a state of charge of a battery according to an embodiment of the present application.
  • the state-of-charge correction method 100 may include:
  • Step S110 Determine the current measured value of the open circuit voltage of the battery, and determine whether the current measured value of the open circuit voltage is in the hysteresis voltage interval, and the measured value of the open circuit voltage in the hysteresis voltage interval satisfies:
  • the open circuit voltage value corresponding to the state of charge value in the state of charge is different from the value of the state of charge in the discharge state.
  • the open circuit voltage value of the non-hysteresis voltage interval may satisfy: when the state of charge value in the battery charging state and the state of charge value in the discharge state are equal, the state of charge value in the state of charge corresponds to the open circuit The voltage value is equal to the open circuit voltage value corresponding to the state of charge value in the discharge state.
  • Step S120 when the current measured value of open circuit voltage is in the hysteresis voltage range, determine the charge state value corresponding to the current measured value of open circuit voltage in the charging state, and the discharge state value corresponding to the current measured value of open circuit voltage in the discharging state.
  • Step S130 Determine the state of charge correction target value based on the state of charge credible interval formed by the state of charge value and the state of discharge value, and correct the current state of charge of the battery.
  • the state of charge value corresponding to the current measured value of the open circuit voltage in the charging state can be used, as well as in the discharging state.
  • the discharge state value corresponding to the current open-circuit voltage measurement value is determined to determine the state-of-charge correction target value to correct the current state of charge to obtain a more accurate state of charge of the battery.
  • the step of determining the current measured value of the open circuit voltage of the battery in step S110 may include:
  • the battery resting time and the temperature distribution during resting determine whether the battery meets the sufficient resting condition.
  • the current voltage value of the battery is recorded as the current open circuit voltage measurement value of the battery.
  • the lower limit of the resting time can be, for example, 1 hour, that is, the resting time is greater than or equal to 1 hour;
  • the lower limit of the resting time can be, for example, 2 hours;
  • the lower limit of the resting time can be, for example, 3 hours.
  • the standing time of the battery and the temperature distribution during standing can be determined through the experimental values calibrated offline and/or the empirical values in actual working conditions. It should be noted that there are differences in battery cell systems and other differences between batteries, and the sufficient standing conditions of different batteries are different, and the foregoing embodiments are not used to limit the scope of the display.
  • the voltage range of the open circuit voltage of the battery can be divided into a hysteresis voltage interval and a non-hysteresis voltage interval.
  • the hysteresis voltage interval and the non-hysteresis voltage interval of the battery can be determined, so that you can query
  • the voltage value in the hysteresis voltage interval and the voltage value in the non-hysteresis voltage interval are queried to determine whether the current open circuit voltage test value is in the hysteresis voltage interval or the non-hysteresis voltage interval.
  • the current open circuit voltage measurement value corresponding to the current open circuit voltage measurement value in the charging state or the current open circuit voltage measurement value in the discharge state is based on The corresponding discharge state value determines the state of charge correction target value, and corrects the current state of charge.
  • the charge OCV curve and the discharge OCV curve overlap it can be determined according to the corresponding relationship between the open circuit voltage and the state of charge in the state of charge described by the charge OCV curve
  • the state of charge value corresponding to the current measured value of the open circuit voltage in the charging state is the target value of the state of charge correction; it can also be determined according to the corresponding relationship between the open circuit voltage and the state of charge in the discharge state described by the discharge OCV curve to determine the current state in the discharge state
  • the state of charge value corresponding to the measured value of the open circuit voltage is the state of charge correction target value.
  • the state of charge correction target value such as SOCO
  • the state of charge correction target value when the current state of charge value is less than the lower boundary value of the state of charge confidence interval, the state of charge correction target value is the lower boundary value; the current state of charge value is greater than the upper boundary of the state of charge confidence interval Value, the state of charge correction target value is the upper boundary value.
  • the lower boundary value is the minimum value of the state of charge and discharge
  • the upper boundary value is the maximum value of the state of charge and discharge.
  • the state of charge value corresponding to the current open circuit voltage measurement value in the charging OCV curve, such as SOC1 and the state of charge value corresponding to the current open circuit voltage measurement value in the discharging OCV curve, such as SOC2, form the credible interval range of the current SOC . If SOC1 is less than SOC2, the credible range of the current SOC can be expressed as [SOC1, SOC2]. If the current state of charge value is less than SOC1, the current state of charge is corrected to SOC1, if the current state of charge value is greater than SOC2, the current state of charge is corrected to SOC2. In other words, if the current state of charge exceeds the SOC credible interval range, the current state of charge is corrected to a similar credible range boundary value.
  • the state of charge correction target value is the current state of charge.
  • the state of charge correction target value is the current state of charge, that is, the current SOC does not need to be corrected.
  • the state-of-charge correction method of the embodiment of the present application it can be determined whether the current is in the non-hysteresis voltage interval or the hysteresis voltage interval according to the currently measured open circuit voltage, so as to respectively target the hysteresis OCV interval and the non-hysteresis OCV interval
  • Different open-circuit voltage correction SOC schemes are proposed to effectively improve the correction accuracy of battery state of charge.
  • the current state of charge such as SOCr can be calculated in real time, and the pre-recorded state of charge when the current direction changes from the current state of charge to the nearest N times.
  • the historical state of charge [SOC1, SOC2,..., SOCN] and the current state of charge SOCr together form a SOC change path list.
  • SOC1, SOC2,..., SOCN, SOCr can be expressed as: [SOC1, SOC2,..., SOCN, SOCr].
  • the recorded SOC change path list is used as input, and the current open circuit voltage estimate value is output through the open circuit voltage estimation model with calibrated parameters.
  • the following takes the Hysteresis model component Preisach model used in the open circuit voltage estimation model as an example, and describes the specific process of the open circuit voltage estimation model processing the change path of the state of charge in conjunction with the drawings to obtain the current open circuit voltage estimation value.
  • Fig. 3 shows a schematic diagram of the mesh triangle of the Preisach model in an embodiment of the present application
  • Fig. 4 shows a schematic diagram of the training process of the Preisach model in an embodiment of the present application
  • Fig. 5 shows the training of the Preisach model in another embodiment of the present application Schematic diagram of the process.
  • SOC ⁇ (X-axis) and SOC ⁇ (Y-axis) can form a Preisach triangle (the part of an isosceles right-angled triangle composed of a thick solid line in the upper left corner). Discretize the Preisach triangle, for example, along the X axis and The triangle is divided in the Y axis direction to form a plurality of rectangular grids, for example, a grid triangle composed of L ⁇ L square grids.
  • the Preisach model is constructed by the superposition of hysteretic operators ⁇ ⁇ (i). All Preisach operators ( ⁇ , ⁇ ) form a right-angled triangle in a two-dimensional plane.
  • the historical information of the hysteresis characteristic can be represented by a memory curve in the triangle.
  • the memory curve is a stepped curve (the dotted line in the figure) .
  • SOC0 is taken as the starting point on the hypotenuse of the Preisach triangle, that is, the coordinate point (SOC0, SOC0) is taken as the starting point.
  • the stepped curve reflects It is the line segment that rises horizontally in the triangle; when the battery is judged to be discharged, the stepped curve is reflected as the line segment that moves vertically to the left in the triangle according to the change in the discharged state of charge.
  • the boundary of the hysteresis operator is determined through the historical charge and discharge process of the battery.
  • the point (SOC1, SOC1) where the hysteresis operator boundary intersects with the hypotenuse of the Preisach triangle is taken as the starting point.
  • SOC1 point is drawn parallel to the X-axis.
  • the line is shifted upward by the distance dSOC1, and the broken line formed by the line and the original hysteresis operator boundary is the hysteresis operator boundary.
  • the boundary of the hysteresis operator is updated every time it is charged or discharged.
  • the hysteresis operator boundary is determined according to the hysteresis operator boundary, the hysteresis operator ⁇ ⁇ (i) corresponding to the upper right part of the hysteresis operator boundary in the Preisach triangle is recorded as -1, and the remaining part of the mesh hysteresis operator ⁇ ⁇ (i) is denoted as +1.
  • the process of determining the boundary of the hysteresis operator of the Preisach model is the process of updating the hysteresis operator.
  • the hysteresis operator of the Preisach model is updated according to the change of each current direction in the state of charge change path and the change of the state of charge corresponding to each change of current direction.
  • the Preisach model can be expressed as the following expression (1):
  • ⁇ OCV (t) represents the output of the Preisach model, that is, the open circuit voltage weighting factor
  • N represents the number of Preisach triangular grids
  • ⁇ ⁇ (i) represents the hysteresis corresponding to the i-th grid.
  • ⁇ ⁇ (i) represents the hysteresis operator ⁇ ⁇ (i) corresponding weighting factor.
  • the weighting factor of the hysteresis operator in the embodiment of the present application can be pre-calibrated through a specific charge and discharge process.
  • the current open circuit voltage estimate can be calculated by the following expression (2):
  • OCV(t) (1+ ⁇ OCV (t))/2 ⁇ OCV1(t)+(1- ⁇ OCV (t))/2 ⁇ OCV2(t)
  • OCV1(t) represents the open circuit voltage value determined according to the current state of charge and charging OCV curve
  • OCV2(t) represents the open circuit voltage determined according to the current state of charge and discharge OCV curve
  • OCV1(t) and OCV2(t) are weighted and fused using the open circuit voltage weighting factor ⁇ OCV (t) to obtain the current open circuit voltage estimate.
  • step S130 may specifically include:
  • Step S131 Determine the state of charge change path formed by the current state of charge value and the historical state of charge value, and process the state of charge change path based on the open circuit voltage estimation model component to obtain the current open circuit voltage estimate.
  • the historical state-of-charge value includes: the N state-of-charge values corresponding to the battery when the current direction changes N times, and the Nth state-of-charge value is for the current state of charge.
  • the state-of-charge change path includes: each state-of-charge value and the current state-of-charge value in the historical state-of-charge values acquired according to the sequence of the recording time.
  • Step S132 when the absolute value of the voltage difference formed by the current open-circuit voltage estimated value and the current open-circuit voltage measurement value is greater than or equal to the voltage difference threshold, determine each time based on the credible interval of the state of charge and the preset error range equal division parameters The modified state of charge is modified by the amount of change.
  • the current state of charge value is not corrected. That is, it can be understood that the state of charge correction target value is the current state of charge.
  • the difference between the lower boundary value in the confidence interval of the state of charge and the current state of charge is used as the lower boundary value of the error range of the current state of charge; the upper boundary in the confidence interval of the state of charge The difference between the current state of charge and the current state of charge is used as the upper boundary value of the error range of the current state of charge; the error range is used to divide the parameter to equally divide the lower boundary value of the current state of charge error range and the error of the current state of charge.
  • the error range of the current state of charge determined by the upper boundary value of the range can obtain the upper limit of the number of corrections corresponding to the error range of the current state of charge and the state of charge correction change amount for each correction.
  • the preset error range equalization parameter is k, and k is an integer greater than 1. It can be seen from the description of the above embodiment that the state of charge value corresponding to the current open circuit voltage measurement value in the charging OCV curve, such as SOC1, and the state of charge value corresponding to the current open circuit voltage measurement value in the discharging OCV curve, such as SOC2, form the credibility of the current SOC.
  • Interval range [SOC1, SOC2] the error range of the current state of charge SOCr can be expressed as [SOC1-SOCr, SOC2-SOCr], according to the error range equally divided parameter k, the current SOC error range can be divided into k equal parts , Get the error list composed of k state-of-charge error changes: [dSOC[1], dSOC[2], dSOC[3],...,dSOC[k]], where dSOC[i] in the error list , Represents the state-of-charge correction change amount of the i-th correction, i is an integer greater than or equal to 1 and less than or equal to k, and the upper limit of the number of correction times may be equal to the total number of state-of-charge correction changes obtained.
  • step S133 the current state of charge value is corrected once according to the state of charge correction variation and the positive or negative of the voltage difference to obtain the correction value of the current state of charge value.
  • i is an integer greater than or equal to 1 and less than or equal to k
  • dSOC[i] is the state of charge correction change amount when the current state of charge value is corrected for the i-th time
  • SOCre[i] is the The corrected value of the state of charge value obtained after i times of correction.
  • the value of sign(OCVe-OCVm) is 1, and the correction value of the current state of charge value is the current state of charge value and the charge The sum of the state of charge formed by the state correction change; when the voltage difference formed by the estimated open-circuit voltage value OCVe and the current open-circuit voltage measurement value OCVm is negative, the value of sign(OCVe-OCVm) is -1, the current state of charge value
  • the correction value of the value is the difference between the current state of charge value and the state of charge correction variation.
  • Step S134 Determine a new state of charge change path formed by the correction value of the current state of charge value and the historical state of charge value, until the absolute value of the voltage difference is less than the voltage difference threshold, the current state of charge value
  • the correction value of is used as the target value of the state of charge correction.
  • the new state-of-charge change path [SOC1, SOC2,..., SOCN, SOCre[i]] composed of the SOCre[i] obtained after the i-th correction and the historical N-time SOC change path is used as the Preisach Open circuit voltage estimation model input, re-estimate the current open circuit voltage. If the absolute value of the voltage difference between the re-estimated current open-circuit voltage estimated value and the current open-circuit voltage measured value is less than the voltage difference threshold, the correction value of the current state of charge value is output.
  • step S132 and step S133 the correction value of the current state of charge value is recalculated.
  • the method of estimating the open circuit voltage by the open circuit voltage estimation model component combines the current open circuit voltage measurement value and the current open circuit voltage estimation value determined by the open circuit voltage estimation model component to correct the state of charge.
  • the step of processing the change path of the state of charge based on the open-circuit voltage estimation model component to obtain the current open-circuit voltage estimated value may specifically include:
  • Step S1311 Determine the first open circuit voltage value corresponding to the current state of charge value according to the current state of charge value and the corresponding relationship between the state of charge of the battery and the open circuit voltage in the state of charge.
  • Step S1312 Determine the second open circuit voltage value corresponding to the current state of charge value according to the current state of charge value and the corresponding relationship between the state of charge of the battery and the open circuit voltage in the discharge state.
  • Step S1313 process the change path of the state of charge based on the open circuit voltage estimation model component, determine the open circuit voltage weighting factor, and use the open circuit voltage weighting factor to perform weighted fusion on the first open circuit voltage value and the second open circuit voltage value to obtain the current open circuit voltage estimated value .
  • step S1313 the step of processing the state of charge change path based on the open circuit voltage estimation model component and determining the open circuit voltage weighting factor may specifically include:
  • Step S1313-01 according to the sequence of the recording time of the state of charge value in the state of charge change path, sequentially determine each change in the current direction and the change in the state of charge corresponding to each change in the current direction.
  • step S1313-02 the initial value of the hysteresis operator is determined according to the change in the direction of the first current and the change in the state of charge corresponding to the change in the first current direction.
  • step S1313-03 the hysteresis operator is updated according to the change in the current direction other than the first time and the change in the state of charge when the current direction changes other than the first time.
  • Step S1313-04 using the pre-calibrated weighting factor of the hysteresis operator to perform weighted fusion on the updated hysteresis operator to obtain the open circuit voltage weighting factor.
  • the hysteresis operator in the open circuit voltage estimation model reflects historical operating conditions, such as the change in the current direction in the change path of the historical state of charge and the change in the state of charge corresponding to the change in the current direction.
  • the voltage estimation model component can reflect the corresponding relationship between the open circuit voltage and the state of charge with hysteresis characteristics.
  • the open circuit voltage estimation model component uses the open circuit voltage estimation model component, the change path of the historical state of charge corresponding to the current state of charge is used as the input of the open circuit voltage estimation model component, and the open circuit voltage estimation model is used to estimate the open circuit voltage in real time, and then the method of correcting the SOC can improve the hysteresis The correction accuracy of the state of charge corresponding to the open circuit voltage in the return voltage interval.
  • Fig. 6 shows a schematic structural diagram of a battery state-of-charge correction device according to an embodiment of the present application.
  • the device 600 for correcting the state of charge of the battery includes:
  • the voltage measurement value determination module 610 is used to determine the current open circuit voltage measurement value of the battery, and determine whether the current open circuit voltage measurement value is in the hysteresis voltage interval, and the open circuit voltage measurement value in the hysteresis voltage interval satisfies:
  • the open circuit voltage value corresponding to the state of charge value in the state of charge is different from the value of the state of charge in the discharge state.
  • the state of charge determination module 620 is used to determine the state of charge value corresponding to the current open circuit voltage measurement value in the charging state and the discharge state corresponding to the current open circuit voltage measurement value in the discharging state when the current open circuit voltage measurement value is in the hysteresis voltage range. The value of the state of charge.
  • the state-of-charge correction module 630 is used to determine the state-of-charge correction target value based on the state-of-charge credible interval formed by the state-of-charge value and the state-of-charge value to correct the current state of charge of the battery.
  • the state of charge correction module 630 can also be used for:
  • the state of charge correction target value is determined according to the charge state value or the discharge state value, and the current state of charge is corrected.
  • the state of charge correction module 630 can also be used for:
  • the state of charge correction target value is determined to be the current state of charge.
  • the state of charge correction target value when the current state of charge value is less than the lower boundary value of the state of charge confidence interval, the state of charge correction target value is the lower boundary value of the state of charge confidence interval; the current state of charge value is greater than the lower boundary value of the state of charge confidence interval.
  • the state of charge correction target value when the upper boundary value of the state credible interval, the state of charge correction target value is the upper boundary value of the state of charge credible interval; where the lower boundary value is the smaller value of the charge state value and the discharge state value , The upper boundary value is the larger of the state of charge value of charging and the value of state of discharged charge.
  • the state of charge correction module 630 may include:
  • the open circuit voltage estimation value determination unit is used to determine the state of charge change path formed by the current state of charge value and the pre-recorded historical state of charge value, and process the change path of the state of charge based on the open circuit voltage estimation model component to obtain the current open circuit voltage estimated value.
  • the state-of-charge correction change determination unit is used for when the absolute value of the voltage difference formed by the current open-circuit voltage estimated value and the current open-circuit voltage measurement value is greater than or equal to the voltage difference threshold, based on the state-of-charge credible interval and the preset error
  • the parameters are divided equally in the range to determine the modified change of the state of charge.
  • the state-of-charge correction value determining unit is used to correct the positive or negative of the change amount and the voltage difference according to the state of charge, and correct the current state of charge value once to obtain the correction value of the current state of charge value.
  • the state of charge correction target value determination unit is used to determine a new state of charge change path formed by the correction value of the current state of charge value and the historical state of charge value until the absolute value of the voltage difference is less than the voltage difference threshold ,
  • the current state of charge value correction value is used as the state of charge correction target value.
  • the open circuit voltage estimation value determination unit is specifically used for:
  • the open circuit voltage estimation model component Based on the open circuit voltage estimation model component to process the change path of the state of charge, determine the open circuit voltage weighting factor, and use the open circuit voltage weighting factor to perform weighted fusion on the first open circuit voltage value and the second open circuit voltage value to obtain the current open circuit voltage estimate value.
  • the historical state-of-charge value includes: the N state-of-charge values corresponding to the battery when the current direction changes N times, and the Nth state-of-charge value is for the current state of charge.
  • the state of charge change path includes: each state of charge value and the current state of charge in the historical state of charge values obtained in sequence at the recording time Electrical state value.
  • the open circuit voltage estimation value determining unit when the open circuit voltage estimation value determining unit is specifically used to process the change path of the state of charge based on the open circuit voltage estimation model component and determine the open circuit voltage weighting factor, it is specifically used to:
  • the updated hysteresis operator is weighted and fused to obtain the open circuit voltage weighting factor.
  • the state-of-charge correction variation determining unit when the state-of-charge correction variation determining unit is specifically used to determine the state-of-charge correction variation based on the credible interval of the state of charge and the preset error range halving parameter, it is specifically used to:
  • the difference between the lower boundary value in the confidence interval of the state of charge and the current state of charge is used as the lower boundary value of the error range of the current state of charge;
  • the difference between the upper boundary value in the confidence interval of the state of charge and the current state of charge is used as the upper boundary value of the error range of the current state of charge;
  • the current state of charge error range determined by the lower boundary value of the current state of charge error range and the upper boundary value of the current state of charge error range is equally divided to obtain the state of charge correction variation.
  • the state of charge of the battery is corrected according to the influence of the historical operating conditions of the hysteresis voltage interval, and the accuracy of the state of charge value of the battery is improved. Sex.
  • FIG. 7 is a structural diagram showing an exemplary hardware architecture of a computing device capable of implementing the method and device for correcting the state of charge of a battery according to an embodiment of the present application.
  • the computing device 700 includes an input device 701, an input interface 702, a central processing unit 703, a memory 704, an output interface 705, and an output device 706.
  • the input interface 702, the central processing unit 703, the memory 704, and the output interface 705 are connected to each other through the bus 710
  • the input device 701 and the output device 706 are connected to the bus 710 through the input interface 702 and the output interface 705, respectively, and further connected to the computing device 700
  • the other components are connected.
  • the input device 701 receives input information from the outside, and transmits the input information to the central processing unit 703 through the input interface 702; the central processing unit 703 processes the input information based on computer executable instructions stored in the memory 704 to generate output Information, the output information is temporarily or permanently stored in the memory 704, and then the output information is transmitted to the output device 706 through the output interface 705; the output device 706 outputs the output information to the outside of the computing device 700 for the user to use.
  • the computing device 700 shown in FIG. 7 may be implemented as a battery state-of-charge correction system, and the battery state-of-charge correction system may include: a memory configured to store a program; a processor, It is configured to run a program stored in the memory to execute the battery state-of-charge correction method described in the foregoing embodiment.
  • the process described above with reference to the flowchart can be implemented as a computer software program.
  • the embodiments of the present application include a computer program product, which includes a computer program tangibly contained on a machine-readable medium, and the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network, and/or installed from a removable storage medium.
  • the computer program product includes one or more computer instructions, which when run on a computer, cause the computer to execute the methods described in the above-mentioned various embodiments.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

一种电池的荷电状态修正方法、装置、系统和存储介质,修正方法包括:确定电池的当前开路电压测量值,确定当前开路电压测量值是否处于滞回电压区间(S110);当前开路电压测量值处于滞回电压区间时,确定充电状态时当前开路电压测量值对应的充电荷电状态值,以及放电状态时当前开路电压测量值对应的放电荷电状态值(S120);基于充电荷电状态值和放电荷电状态值形成的荷电状态可信区间,确定荷电状态修正目标值,对电池的当前荷电状态进行修正(S130)。根据电池的荷电状态修正方法,对存在滞回特性的电池的荷电状态修正,提高估算电池的荷电状态值的准确性。

Description

电池的荷电状态修正方法、装置、系统和存储介质
相关申请的交叉引用
本申请要求享有于2019年06月24日提交的名称为“电池的荷电状态修正方法、装置、系统和存储介质”的中国专利申请201910547687.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池的荷电状态修正方法、装置、系统和存储介质。
背景技术
在电动汽车的电池管理系统中,电池的荷电状态(State of Charge,简称SOC)用来反映电池的剩余容量状态,并且SOC也是均衡控制技术、快速充放电管理和安全运行等电池能力的重要参数。因此,准确的SOC估计在实现电池管理系统的电量指示、剩余里程、过充过放保护、电池均衡、充电控制及电池健康状况预测等中都起到了重要的作用。
目前常用的SOC修正方法例如开路电压法,可以利用开路电压(Open-Circuit Voltage,OCV)和SOC的对应关系得到稳定状态的电池SOC。但是,对存在滞回特性的电芯体系而言,表征OCV和SOC的对应关系的OCV曲线受到历史工况影响,OCV曲线的变化会导致开路电压法的误差较大,降低了修正SOC的准确性。
发明内容
本申请实施例提供一种电池的荷电状态修正方法、装置、系统和存储介质,可以对存在滞回特性的电池的荷电状态修正,提高估算电池的荷电状态值的准确性。
根据本申请实施例的一方面,提供一种荷电状态修正方法,包括:
确定电池的当前开路电压测量值,确定当前开路电压测量值是否处于滞回电压区间,滞回电压区间内的开路电压测量值满足:
电池充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值对应的开路电压值;
当前开路电压测量值处于滞回电压区间时,确定充电状态时当前开路电压测量值对应的充电荷电状态值,以及放电状态时当前开路电压测量值对应的放电荷电状态值;
基于充电荷电状态值和放电荷电状态值形成的荷电状态可信区间,确定荷电状态修正目标值,对电池的当前荷电状态进行修正。
根据本申请实施例的另一方面,提供一种荷电状态修正装置,包括:
电压测量值判定模块,用于确定电池的当前开路电压测量值,确定当前开路电压测量值是否处于滞回电压区间,滞回电压区间内的开路电压测量值满足:
电池充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值对应的开路电压值;
荷电状态确定模块,用于当前开路电压测量值处于滞回电压区间时,确定充电状态时当前开路电压测量值对应的充电荷电状态值,以及放电状态时当前开路电压测量值对应的放电荷电状态值;
荷电状态修正模块,用于基于充电荷电状态值和放电荷电状态值形成的荷电状态可信区间,确定荷电状态修正目标值,对电池的当前荷电状态进行修正。
根据本申请实施例的再一方面,提供一种荷电状态修正系统,包括:存储器和处理器;该存储器用于存储程序;该处理器用于读取存储器中存储的可执行程序代码以执行上述的荷电状态修正方法。
根据本申请实施例的又一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算 机执行上述各方面的荷电状态修正方法。
根据本申请实施例中的电池的荷电状态修正方法、装置、系统和存储介质,考虑滞回特性对电池的荷电状态的影响,如果电池的开路电压测量值处于滞回电压区间时,可以利用充电状态时当前开路电压测量值对应的充电荷电状态值,以及放电状态时当前开路电压测量值对应的放电荷电状态值,确定荷电状态修正目标值,以对当前荷电状态进行修正,相比直接利用开路电压值估算荷电状态,本申请实施例的荷电状态修正方法,可以得到更精确的电池的荷电状态。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出电池的OCV滞回特性曲线示意图;
图2示出本申请一个实施例的电池的荷电状态修正方法的流程示意图;
图3示出本申请实施例中Preisach模型的网格三角形示意图;
图4示出本申请一个实施例中Preisach模型训练流程示意图;
图5示出本申请另一个实施例中Preisach模型训练流程示意图;
图6示出根据本申请一实施例提供的电池的荷电状态修正装置的结构示意图;
图7示出可以实现根据本申请实施例的荷电状态修正方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本 申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请实施例中的电池可以为正极和负极均能脱出且接收载能粒子的电池,在此并不限定。从电池种类而言,该电池可以但不限于是磷酸铁锂体系电池或加硅体系的电池,磷酸铁锂体系电池为正极活性物含磷酸铁锂的锂离子电池,加硅体系电池为负极活性物含硅的锂离子电池。从电池规模而言,该电池可以是电芯单体,也可以是电池模组或电池包,在本申请实施例中不做具体限定。
在本申请实施例中,由于电池充电特性和放电特性的不同,滞回特性是指电池以相同的电流分别充电和放电结束后,相同的荷电状态对应的充电后的开路电压和放电后的开路电压不同的现象。这一现象被称为电池的滞回特性。因此,滞回特性可以描述电池的OCV曲线受历史工况影响的特性,使用开路电压估算电池的荷电状态时,需要考虑滞回特性对电池的荷电状态的影响。
在一个实施例中,OCV曲线用于描述电池的OCV与SOC之间的对应关系。OCV曲线可以包括充电OCV曲线和放电OCV曲线。充电OCV曲线可以用于描述充电状态下的电池的OCV与SOC之间的对应关系,放电OCV曲线可以用于描述放电状态下的电池的OCV与SOC之间的对应关系。
由于常用的SOC估算方法,例如开路电压法中,电池的OCV曲线不 受历史工况影响,即电池的OCV只与当前的温度和SOC相关,才能在电池静置达到稳定状态后获得SOC。但是对存在滞回特性的电池而言,OCV曲线的变化会导致开路电压法的误差较大,降低了开路电压法的适用性。
在本申请实施例中,作为被修正的当前荷电状态值,可以通过荷电状态计算装置利用预设的荷电状态计算方法计算得到。因此,本申请实施例对荷电状态计算方法不做限定。
为了更好的理解本申请,下面将结合附图,详细描述根据本申请实施例的电池的荷电状态修正方法,应注意,这些实施例并不是用来限制本申请公开的范围。
本申请实施例提供一种电池的荷电状态修正方法、装置、设备和计算机可读存储介质,可以对具有滞回特性的电池的荷电状态值进行修正,提高估算电池的荷电状态值的准确性。
图1示出了电池的OCV滞回特性曲线示意图。如图1所示,根据充电OCV曲线和放电OCV曲线的不同,可以将电池的OCV区间划分为滞回电压区间和非滞回电压区间。其中,在滞回电压区间,充电OCV曲线和放电OCV曲线不重合,而在非滞回电压区间,充电OCV曲线和放电OCV曲线重合。因此在下面实施例的描述中,可以将非滞回电压区间的充电OCV曲线和放电OCV曲线重合的曲线,称为是非滞回的OCV-SOC曲线。
也就是说,非滞回的OCV-SOC曲线用于描述充电状态下电池在非滞回电压区间内的OCV与SOC之间的对应关系,以及放电状态下电池在非滞回电压区间内的OCV与SOC之间的对应关系。
图2示出了根据本申请一个实施例的电池的荷电状态修正方法的流程示意图。如图2所示,在一个实施例中,荷电状态修正方法100可以包括:
步骤S110,确定电池的当前开路电压测量值,确定当前开路电压测量值是否处于滞回电压区间,滞回电压区间内的开路电压测量值满足:
电池充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值 对应的开路电压值。
在一个实施例中,非滞回电压区间的开路电压值可以满足:电池充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值等于放电状态时的荷电状态值对应的开路电压值。
步骤S120,当前开路电压测量值处于滞回电压区间时,确定充电状态时当前开路电压测量值对应的充电荷电状态值,以及放电状态时当前开路电压测量值对应的放电荷电状态值。
步骤S130,基于充电荷电状态值和放电荷电状态值形成的荷电状态可信区间,确定荷电状态修正目标值,对电池的当前荷电状态进行修正。
根据本申请实施例的电池的荷电状态修正方法,如果电池的开路电压测量值处于滞回电压区间时,可以利用充电状态时当前开路电压测量值对应的充电荷电状态值,以及放电状态时当前开路电压测量值对应的放电荷电状态值,确定荷电状态修正目标值,以对当前荷电状态进行修正,得到较为精确的电池的荷电状态。
在一个实施例中,步骤S110中确定电池的当前开路电压测量值的步骤,可以包括:
根据电池静置时间和静置时的温度分布,判断电池是否满足充分静置条件,当电池满足充分静置条件时,记录电池的当前电压值,作为电池的当前开路电压测量值。
作为一个示例,为使电池达到充分静置条件,当静置最低温度为25摄氏度时,静置时间的下限值例如可以为1小时,即静置时间大于等于1小时;当静置最低温度为0摄氏度时,静置时间的下限值例如可以为2小时;当静置最低温度为-20摄氏度时,静置时间的下限值例如可以为3小时。
在本说明书实施例中,可以通过线下标定的实验值和/或实际工况中的经验值,确定电池的静置时间和静置时的温度分布。需要说明的是,电池之间存在电芯体系等差异,不同电池的充分静置条件有所不同,上述这些实施例并不是用来限制表示的范围。
在一个实施例中,可以将电池的开路电压的电压范围划分为滞回电压区间和非滞回电压区间,通过实验测试可以确定电池的滞回电压区间和非滞回电压区间,从而可以通过查询滞回电压区间中的电压值和查询非滞回电压区间内的电压值,确定当前开路电压测试值是否处于滞回电压区间或非滞回电压区间。
在一个实施例中,当前开路电压测量值处于滞回电压区间外的非滞回电压区间时,根据充电状态时当前开路电压测量值对应的充电荷电状态值或放电状态时当前开路电压测量值对应的放电荷电状态值确定荷电状态修正目标值,对当前荷电状态进行修正。
也就是说,针对非滞回电压区间内的当前开路电压测量值,由于充电OCV曲线和放电OCV曲线重合,所以可以根据充电OCV曲线描述的充电状态时开路电压和荷电状态的对应关系,确定充电状态时当前开路电压测量值对应的充电荷电状态值,为荷电状态修正目标值;也可以根据放电OCV曲线描述的放电状态时开路电压和荷电状态的对应关系,确定放电状态时当前开路电压测量值对应的充电荷电状态值,为荷电状态修正目标值。
在该实施例中,如果当前开路电压测量值处于非滞回电压区间时,根据非滞回的OCV-SOC曲线和当前开路电压测量值,确定荷电状态修正目标值例如SOC0,将当前荷电状态修正为SOC0。
在一个实施例中,当前荷电状态值小于荷电状态可信区间的下边界值时,荷电状态修正目标值为下边界值;当前荷电状态值大于荷电状态可信区间的上边界值时,荷电状态修正目标值为上边界值。
其中,下边界值为充电荷电状态值和放电荷电状态值中的最小值,上边界值为充电荷电状态值和放电荷电状态值中的最大值。
在该实施例中,充电OCV曲线中当前开路电压测量值对应的荷电状态值例如SOC1,与放电OCV曲线中当前开路电压测量值对应的荷电状态值例如SOC2形成当前SOC的可信区间范围。如果SOC1小于SOC2,当前SOC的可信区间范围可以表示为[SOC1,SOC2]。如果当前荷电状态值小于SOC1,将当前荷电状态修正为SOC1,如果当前荷电状态值大于 SOC2,将当前荷电状态修正为SOC2。也就是说,若当前荷电状态超过SOC可信区间范围,则将当前荷电状态修正为相近的可信范围边界值。
在一个实施例中,当前荷电状态大于荷电状态下边界值且小于荷电状态上边界值时,确定荷电状态修正目标值为当前荷电状态。
在该实施例中,若当前SOC未超过SOC可信区间范围,则荷电状态修正目标值为当前荷电状态,也就是说,不需要对当前SOC进行修正。
根据本申请实施例的荷电状态修正方法,可以根据当前测量的开路电压,可以判断当前是否处于非滞回电压区间或滞回电压区间内,从而分别针对滞回OCV区间和非滞回OCV区间提出了不同的开路电压修正SOC方案,有效提高电池荷电状态的修正精度。
下面结合附图,介绍本申请实施例中基于开路电压估算模型对荷电状态进行修正的具体流程。在一个实施例中,可以实时计算当前荷电状态例如SOCr,并获取预先记录的距离当前荷电状态的最近N次电流方向发生变化时的荷电状态。将该最近N次电流方向发生变化时的荷电状态作为历史荷电状态值,则历史荷电状态[SOC1,SOC2,...,SOCN]和当前荷电状态SOCr共同组成SOC变化路径列表例如可以表示为:[SOC1,SOC2,...,SOCN,SOCr]。
在该实施例中,将记录的SOC变化路径列表作为输入,通过已经标定好参数的开路电压估算模型,输出当前开路电压估算值。为了便于理解,下面以开路电压估算模型使用的滞回模型组件Preisach模型为例,结合附图描述开路电压估算模型处理荷电状态变化路径,得到当前开路电压估算值的具体过程。
图3示出了本申请实施例中Preisach模型的网格三角形示意图;图4示出了本申请一个实施例中Preisach模型训练流程示意图;图5示出了本申请另一个实施例中Preisach模型训练流程示意图。
如图3所示,SOCα(X轴)和SOCβ(Y轴)可以组成Preisach三角(左上角粗实线组成的等腰直角三角形部分),将Preisach三角形进行离散化处理,例如沿X轴方向和Y轴方向对该三角形进行划分,形成多个矩形网格,例如划分为L×L的正方形网格组成的网格三角形。
在一个实施例中,Preisach模型由滞回算子γ αβ(i)叠加构造而成。所有的Preisach算子(α,β)构成了二维平面中一直角三角形,滞回特性的历史信息可通过该三角形中一记忆曲线进行表示,记忆曲线是一条阶梯形曲线(图中虚线部分)。
假设开始记录时SOC的初始值为SOC0,则在Preisach三角的斜边上以SOC0作为起点,即以(SOC0,SOC0)坐标点为起点。根据荷电状态变化路径中的每次电流方向发生的变化和每次电流方向发生变化对应的荷电状态变化量,当判断电池充电时,根据充入的荷电状态变化量,阶梯形曲线反映为三角形内水平上升的线段;当判断电池放电时,根据放出的荷电状态变化量,阶梯形曲线反映为三角形内垂直左移的线段。通过上述电池的历史充放电过程确定滞回算子边界。
当充电电池开始充电且充入dSOC0时,作过SOC0点平行于X轴的线,将该线向上平移距离dSOC0,即为滞回算子边界。当开始放电且放出dSOC0时,作过SOC0点平行于Y轴的线,将该线向左平移距离dSOC0即为滞回算子边界。
如图4所示,将滞回算子边界与Preisach三角的斜边相交的点(SOC1,SOC1)作为起点,当继续充电且充入dSOC1时,作过SOC1点平行于X轴的线,将该线向上平移距离dSOC1,该线与原滞回算子边界重新组成的折线即为滞回算子边界。
如图5所示,当继续放电且放出dSOC1时,作过SOC1点平行于Y轴的线,将该线向左平移距离dSOC1,该线与原滞回算子边界重新组成的折线即为滞回算子边界。
依次类推,每次充电或者放电时,更新滞回算子边界。当根据确定滞回算子边界后,将Preisach三角中滞回算子边界右上角部分的网格对应的滞回算子γ αβ(i)记为-1,将剩余部分网格滞回算子γ αβ(i)记为+1。
在本申请实施例中,确定Preisach模型的滞回算子边界的过程,即对滞回算子进行更新的过程。在根据荷电状态变化路径中的每次电流方向发生的变化和每次电流方向发生变化对应的荷电状态变化量,对Preisach模型的滞回算子进行更新。
通过更新的Preisach模型的滞回算子,Preisach模型可以表示为如下的表达式(1):
Figure PCTCN2020084708-appb-000001
在上述表达式(1)中,ω OCV(t)表示Preisach模型的输出,即开路电压权重因子,N表示Preisach三角网格的个数,μ αβ(i)表示第i个网格对应的滞回算子,γ αβ(i)表示滞回算子μ αβ(i)对应的加权因子。本申请实施例中的滞回算子的加权因子可以通过特定的充放电流程预先标定。
当确定开路电压权重因子ω OCV(t),可以通过如下表达式(2)计算当前开路电压估算值:
OCV(t)=(1+ω OCV(t))/2·OCV1(t)+(1-ω OCV(t))/2·OCV2(t)
                             (2)在上述表达式(2)中,OCV1(t)表示根据当前荷电状态和充电OCV曲线确定的开路电压值,OCV2(t)表示根据当前荷电状态和放电OCV曲线确定的开路电压值,利用开路电压权重因子ω OCV(t)对OCV1(t)和OCV2(t)进行加权融合,得到当前开路电压估算值。
在一个实施例中,上述步骤S130具体可以包括:
步骤S131,确定由当前荷电状态值和历史荷电状态值形成的荷电状态变化路径,基于开路电压估算模型组件处理荷电状态变化路径,得到当前开路电压估算值。
在一个实施例中,历史荷电状态值包括:预先依次记录的电池在N次电流方向发生变化时对应的N个荷电状态值,并且第N个荷电状态值是针对当前荷电状态的前一次电流方向发生变化时的荷电状态值,其中,N大于等于1。
在一个实施例中,荷电状态变化路径包括:按照记录时刻的先后获取的历史荷电状态值中的每个荷电状态值和当前荷电状态值。
步骤S132,当前开路电压估算值和当前开路电压测量值形成的电压差值的绝对值大于等于电压差值阈值时,基于荷电状态可信区间和预设的误差范围等分参数,确定每次修正的荷电状态修正变化量。
在一个实施例中,当前开路电压估算值和当前开路电压测量值形成的 电压差值的绝对值小于电压差值阈值时,不修正当前荷电状态值。即可以理解为,荷电状态修正目标值为当前荷电状态。
在该步骤中,将荷电状态可信区间中的下边界值与当前荷电状态的差值,作为当前荷电状态的误差范围的下边界值;将荷电状态可信区间中的上边界值与当前荷电状态的差值,作为当前荷电状态的误差范围的上边界值;利用误差范围等分参数,等分当前荷电状态的误差范围的下边界值和当前荷电状态的误差范围的上边界值确定的当前荷电状态的误差范围,可以得到与当前荷电状态的误差范围对应的修正次数上限值和每次修正的荷电状态修正变化量。
作为一个示例,预设的误差范围等分参数为k,k为大于1的整数。通过上述实施例的描述可知,充电OCV曲线中当前开路电压测量值对应的荷电状态值例如SOC1,与放电OCV曲线中当前开路电压测量值对应的荷电状态值例如SOC2形成当前SOC的可信区间范围[SOC1,SOC2],则当前荷电状态SOCr的误差范围可以表示为[SOC1-SOCr,SOC2-SOCr],根据误差范围等分参数k,可以将当前SOC误差范围等分为k等份,得到k个荷电状态误差变化量组成的误差列表:[dSOC[1],dSOC[2],dSOC[3],…,dSOC[k]],其中,该误差列表中的dSOC[i],表示第i次修正的荷电状态修正变化量,i为大于等于1且小于等于k的整数,修正次数上限值可以等于得到的荷电状态修正变化量的总个数。
步骤S133,根据荷电状态修正变化量和电压差值的正负,对当前荷电状态值进行一次修正,得到当前荷电状态值的修正值。
在该步骤中,当前开路电压估算值和当前开路电压测量值形成的电压差值的绝对值大于等于电压差值阈值时,利用下述表达式(3)计算荷电状态值的修正值:
SOCre[i]=SOCr+dSOC[i]×sign(OCVe-OCVm)        (3)
在上述表达式(3)中,i为大于等于1且小于等于k的整数,dSOC[i]为第i次修正当前荷电状态值时的荷电状态修正变化量,SOCre[i]为第i次修正后得到的荷电状态值的修正值。开路电压估算值OCVe和当前开路电压测量值OCVm形成的电压差值为正数时,sign(OCVe-OCVm)取值为1,当 前荷电状态值的修正值为当前荷电状态值与荷电状态修正变化量形成的荷电状态之和;开路电压估算值OCVe和当前开路电压测量值OCVm形成的电压差值为负数时,sign(OCVe-OCVm)取值为-1,当前荷电状态值值的修正值为当前荷电状态值与荷电状态修正变化量形成的荷电状态之差。
步骤S134,确定由当前荷电状态值的修正值和历史荷电状态值形成的新的荷电状态变化路径,直到上述电压差值的绝对值小于电压差值阈值时,将当前荷电状态值的修正值作为荷电状态修正目标值。
在该步骤中,根据第i次修正后得到的SOCre[i]和历史的N次SOC变化路径组成的新的荷电状态变化路径[SOC1,SOC2,…,SOCN,SOCre[i]]作为Preisach开路电压估算模型的输入,重新估算当前开路电压。若重新估算的当前开路电压估算值与当前开路电压测量值的电压差值的绝对值小于电压差值阈值时,输出当前荷电状态值的修正值。若重新估算的当前开路电压估算值与当前开路电压测量值的差值大于等于电压差值阈值时,对当前荷电状态进行第i+1次修正,令i=i+1,并重复上述步骤S132和步骤S133,重新计算当前荷电状态值的修正值。
在该步骤中,若对当前荷电状态进行修正的次数达到修正次数上限值时,输出当前荷电状态值的修正值。
在该实施例中,通过开路电压估算模型组件估算开路电压的方法,结合当前开路电压测量值和开路电压估算模型组件确定的当前开路电压估算值之间的差异对荷电状态进行修正。
通过上述实施例描述的内容可知,在一个实施例中,上述步骤S131中,基于开路电压估算模型组件处理荷电状态变化路径,得到当前开路电压估算值的步骤,具体可以包括:
步骤S1311,根据当前荷电状态值、以及充电状态时电池的荷电状态与开路电压之间的对应关系,确定与当前荷电状态值对应的第一开路电压值。
步骤S1312,根据当前荷电状态值、以及放电状态时电池的荷电状态与开路电压之间的对应关系,确定与当前荷电状态值对应的第二开路电压值。
步骤S1313,基于开路电压估算模型组件处理荷电状态变化路径,确定开路电压权重因子,利用开路电压权重因子,对第一开路电压值和第二开路电压值进行加权融合,得到当前开路电压估算值。
在一个实施例中,步骤S1313中,基于开路电压估算模型组件处理荷电状态变化路径,确定开路电压权重因子的步骤,具体可以包括:
步骤S1313-01,按照荷电状态变化路径中的荷电状态值的记录时刻的先后,依次确定每次电流方向发生的变化和每次电流方向发生变化对应的荷电状态变化量。
步骤S1313-02,根据首次电流方向发生的变化和首次电流方向发生变化对应的荷电状态变化量,确定滞回算子的初始值。
步骤S1313-03,根据首次以外电流方向发生的变化和首次以外电流方向发生变化时的荷电状态变化量,对滞回算子进行更新。
步骤S1313-04,利用预先标定的滞回算子的加权因子,对更新后的滞回算子进行加权融合,得到开路电压权重因子。
在一个实施例中,开路电压估算模型中的滞回算子反映历史工况,例如历史荷电状态的变化路径中电流方向发生的变化和电流方向发生的变化对应的荷电状态变化量,开路电压估算模型组件可以反映具有滞回特性的开路电压与荷电状态的对应关系。因此,利用开路电压估算模型组件,将当前荷电状态对应的历史荷电状态的变化路径作为开路电压估算模型组件输入,利用开路电压估算模型实时估算开路电压,进而修正SOC的方法,可以提高滞回电压区间内开路电压对应的荷电状态的修正精度。
下面结合附图,详细介绍根据本申请实施例的电池的荷电状态修正装置。图6示出了根据本申请一实施例提供的电池的荷电状态修正装置的结构示意图。如图6所示,电池的荷电状态修正装置600包括:
电压测量值判定模块610,用于确定电池的当前开路电压测量值,确定当前开路电压测量值是否处于滞回电压区间,滞回电压区间内的开路电压测量值满足:
电池充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值 对应的开路电压值。
荷电状态确定模块620,用于当前开路电压测量值处于滞回电压区间时,确定充电状态时当前开路电压测量值对应的充电荷电状态值,以及放电状态时当前开路电压测量值对应的放电荷电状态值。
荷电状态修正模块630,用于基于充电荷电状态值和放电荷电状态值形成的荷电状态可信区间,确定荷电状态修正目标值,对电池的当前荷电状态进行修正。
在一个实施例中,荷电状态修正模块630,还可以用于:
当前开路电压测量值处于滞回电压区间外的非滞回电压区间时,根据充电荷电状态值或放电荷电状态值确定荷电状态修正目标值,对当前荷电状态进行修正。
在一个实施例中,荷电状态修正模块630,还可以用于:
当前荷电状态大于荷电状态下边界值且小于荷电状态上边界值时,确定荷电状态修正目标值为当前荷电状态。
在一个实施例中,当前荷电状态值小于荷电状态可信区间的下边界值时,荷电状态修正目标值为荷电状态可信区间的下边界值;当前荷电状态值大于荷电状态可信区间的上边界值时,荷电状态修正目标值为荷电状态可信区间的上边界值;其中,下边界值为充电荷电状态值和放电荷电状态值中的较小值,上边界值为充电荷电状态值和放电荷电状态值中的较大值。
在一个实施例中,荷电状态修正模块630,可以包括:
开路电压估算值确定单元,用于确定由当前荷电状态值和预先记录的历史荷电状态值形成的荷电状态变化路径,基于开路电压估算模型组件处理荷电状态变化路径,得到当前开路电压估算值。
荷电状态修正变化量确定单元,用于当前开路电压估算值和当前开路电压测量值形成的电压差值的绝对值大于等于电压差值阈值时,基于荷电状态可信区间和预设的误差范围等分参数,确定荷电状态修正变化量。
荷电状态修正值确定单元,用于根据荷电状态修正变化量和电压差值的正负,对当前荷电状态值进行一次修正,得到当前荷电状态值的修正 值。
荷电状态修正目标值确定单元,用于确定由当前荷电状态值的修正值和历史荷电状态值形成的新的荷电状态变化路径,直到电压差值的绝对值小于电压差值阈值时,将当前荷电状态值的修正值作为荷电状态修正目标值。
在一个实施例中,开路电压估算值确定单元具体用于:
根据当前荷电状态值、以及充电状态时电池的荷电状态与开路电压之间的对应关系,确定与当前荷电状态值对应的第一开路电压值;
根据当前荷电状态值、以及放电状态时电池的荷电状态与开路电压之间的对应关系,确定与当前荷电状态值对应的第二开路电压值;
基于开路电压估算模型组件处理荷电状态变化路径,确定开路电压权重因子,利用开路电压权重因子,对第一开路电压值和第二开路电压值进行加权融合,得到当前开路电压估算值。
在一个实施例中,历史荷电状态值包括:预先依次记录的电池在N次电流方向发生变化时对应的N个荷电状态值,并且第N个荷电状态值是针对当前荷电状态的前一次电流方向发生变化时的荷电状态值,其中,N大于等于1;荷电状态变化路径包括:按照记录时刻的先后获取的历史荷电状态值中的每个荷电状态值和当前荷电状态值。
在一个实施例中,开路电压估算值确定单元在具体用于基于开路电压估算模型组件处理荷电状态变化路径,确定开路电压权重因子时,具体用于:
按照荷电状态变化路径中的荷电状态值的记录时刻的先后,依次确定每次电流方向发生的变化和每次电流方向发生变化对应的荷电状态变化量;
根据首次电流方向发生的变化和首次电流方向发生变化对应的荷电状态变化量,确定滞回算子的初始值;
根据首次以外电流方向发生的变化和首次以外电流方向发生变化时的荷电状态变化量,对滞回算子进行更新;
利用预先标定的滞回算子的加权因子,对更新后的滞回算子进行加权 融合,得到开路电压权重因子。
在一个实施例中,荷电状态修正变化量确定单元在具体用于基于荷电状态可信区间和预设的误差范围等分参数,确定荷电状态修正变化量时,具体用于:
将荷电状态可信区间中的下边界值与当前荷电状态的差值,作为当前荷电状态的误差范围的下边界值;
将荷电状态可信区间中的上边界值与当前荷电状态的差值,作为当前荷电状态的误差范围的上边界值;
利用误差范围等分参数,等分当前荷电状态的误差范围的下边界值和当前荷电状态的误差范围的上边界值确定的当前荷电状态的误差范围,得到荷电状态修正变化量。
根据本申请实施例的荷电状态修正装置,针对存在滞回特性的电芯体系,根据滞回电压区间的历史工况影响对电池的荷电状态修正,提高估算电池的荷电状态值的准确性。
需要明确的是,本申请并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图7是示出能够实现根据本申请实施例的电池的荷电状态修正方法和装置的计算设备的示例性硬件架构的结构图。
如图7所示,计算设备700包括输入设备701、输入接口702、中央处理器703、存储器704、输出接口705、以及输出设备706。其中,输入接口702、中央处理器703、存储器704、以及输出接口705通过总线710相互连接,输入设备701和输出设备706分别通过输入接口702和输出接口705与总线710连接,进而与计算设备700的其他组件连接。具体地,输入设备701接收来自外部的输入信息,并通过输入接口702将输入信息传送到中央处理器703;中央处理器703基于存储器704中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器704中,然后通过输出接口705将输出信息传送到输出 设备706;输出设备706将输出信息输出到计算设备700的外部供用户使用。
在一个实施例中,图7所示的计算设备700可以被实现为一种电池的荷电状态修正系统,该电池的荷电状态修正系统可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施例描述的电池的荷电状态修正方法。
根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以从网络上被下载和安装,和/或从可拆卸存储介质被安装。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,当其在计算机上运行时,使得计算机执行上述各个实施例中描述的方法。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多 个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使对应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种电池的荷电状态修正方法,所述荷电状态修正方法包括:
    确定电池的当前开路电压测量值,确定所述当前开路电压测量值是否处于滞回电压区间,所述滞回电压区间内的开路电压测量值满足:
    所述电池充电状态时的荷电状态值和放电状态时的荷电状态值相等时,所述充电状态时的荷电状态值对应的开路电压值不同于所述放电状态时的荷电状态值对应的开路电压值;
    所述当前开路电压测量值处于所述滞回电压区间时,确定充电状态时所述当前开路电压测量值对应的充电荷电状态值,以及放电状态时所述当前开路电压测量值对应的放电荷电状态值;
    基于所述充电荷电状态值和所述放电荷电状态值形成的荷电状态可信区间,确定荷电状态修正目标值,对所述电池的当前荷电状态进行修正。
  2. 根据权利要求1所述的荷电状态修正方法,
    所述当前荷电状态值小于所述荷电状态可信区间的下边界值时,所述荷电状态修正目标值为所述下边界值;
    所述当前荷电状态值大于所述荷电状态可信区间的上边界值时,所述荷电状态修正目标值为所述上边界值;
    其中,所述下边界值为所述充电荷电状态值和所述放电荷电状态值中的较小值,所述上边界值为所述充电荷电状态值和所述放电荷电状态值中的较大值。
  3. 根据权利要求1所述的荷电状态修正方法,所述基于所述充电荷电状态值和所述放电荷电状态值形成的荷电状态可信区间,确定荷电状态修正目标值,包括:
    确定由所述当前荷电状态值和历史荷电状态值形成的荷电状态变化路径,基于开路电压估算模型组件处理所述荷电状态变化路径,得到当前开路电压估算值;
    所述当前开路电压估算值和所述当前开路电压测量值形成的电压差值的绝对值大于等于电压差值阈值时,基于所述荷电状态可信区间和预设的 误差范围等分参数,确定每次修正的荷电状态修正变化量;
    根据所述荷电状态修正变化量和所述电压差值的正负,对所述当前荷电状态值进行修正,得到当前荷电状态值的修正值;
    确定由所述当前荷电状态值的修正值和所述历史荷电状态值形成的新的荷电状态变化路径,直到所述电压差值的绝对值小于所述电压差值阈值时,将所述当前荷电状态值的修正值作为所述荷电状态修正目标值。
  4. 根据权利要求3所述的荷电状态修正方法,所述基于开路电压估算模型组件处理所述荷电状态变化路径,得到当前开路电压估算值,包括:
    根据所述当前荷电状态值、以及充电状态时所述电池的荷电状态与开路电压之间的对应关系,确定与所述当前荷电状态值对应的第一开路电压值;
    根据所述当前荷电状态值、以及放电状态时所述电池的荷电状态与开路电压之间的对应关系,确定与所述当前荷电状态值对应的第二开路电压值;
    基于开路电压估算模型组件处理所述荷电状态变化路径,确定开路电压权重因子,利用所述开路电压权重因子,对所述第一开路电压值和所述第二开路电压值进行加权融合,得到所述当前开路电压估算值。
  5. 根据权利要求3所述的荷电状态修正方法,
    所述历史荷电状态值包括:预先依次记录的所述电池在N次电流方向发生变化时对应的N个荷电状态值,并且第N个荷电状态值是针对所述当前荷电状态的前一次电流方向发生变化时的荷电状态值,其中,N大于等于1;
    所述荷电状态变化路径包括:按照记录时刻的先后获取的所述历史荷电状态值中的每个荷电状态值和所述当前荷电状态值。
  6. 根据权利要求4所述的荷电状态修正方法,所述基于开路电压估算模型组件处理所述荷电状态变化路径,确定开路电压权重因子,包括:
    按照所述荷电状态变化路径中的荷电状态值的记录时刻的先后,依次确定每次电流方向发生的变化和所述每次电流方向发生变化对应的荷电状态变化量;
    根据首次电流方向发生的变化和首次电流方向发生变化对应的荷电状态变化量,确定所述滞回算子的初始值;
    根据首次以外电流方向发生的变化和首次以外电流方向发生变化时的荷电状态变化量,对所述滞回算子进行更新;
    利用预先标定的所述滞回算子的加权因子,对更新后的所述滞回算子进行加权融合,得到开路电压权重因子。
  7. 根据权利要求3所述的荷电状态修正方法,所述基于所述荷电状态可信区间和预设的误差范围等分参数,确定每次修正的荷电状态修正变化量,包括:
    将荷电状态可信区间中的下边界值与所述当前荷电状态的差值,作为所述当前荷电状态的误差范围的下边界值;
    将荷电状态可信区间中的上边界值与所述当前荷电状态的差值,作为所述当前荷电状态的误差范围的上边界值;
    利用所述误差范围等分参数,等分所述当前荷电状态的误差范围的下边界值和所述当前荷电状态的误差范围的上边界值确定的当前荷电状态的误差范围,得到所述每次修正的荷电状态修正变化量。
  8. 根据权利要求1所述的荷电状态修正方法,所述荷电状态修正方法,还包括:
    所述当前开路电压测量值处于所述滞回电压区间外的非滞回电压区间时,根据所述充电荷电状态值或所述放电荷电状态值确定所述荷电状态修正目标值,对所述当前荷电状态进行修正。
  9. 根据权利要求2所述的荷电状态修正方法,所述荷电状态修正方法,还包括:
    所述当前荷电状态大于所述荷电状态下边界值且小于所述荷电状态上边界值时,确定所述荷电状态修正目标值为所述当前荷电状态。
  10. 一种电池的荷电状态修正装置,所述荷电状态修正装置包括:
    电压测量值判定模块,用于确定电池的当前开路电压测量值,确定所述当前开路电压测量值是否处于滞回电压区间,所述滞回电压区间内的开路电压测量值满足:
    所述电池充电状态时的荷电状态值和放电状态时的荷电状态值相等时,所述充电状态时的荷电状态值对应的开路电压值不同于所述放电状态时的荷电状态值对应的开路电压值;
    荷电状态确定模块,用于所述当前开路电压测量值处于所述滞回电压区间时,确定充电状态时所述当前开路电压测量值对应的充电荷电状态值,以及放电状态时所述当前开路电压测量值对应的放电荷电状态值;
    荷电状态修正模块,用于基于所述充电荷电状态值和所述放电荷电状态值形成的荷电状态可信区间,确定荷电状态修正目标值,对所述电池的当前荷电状态进行修正。
  11. 一种电池的荷电状态修正系统,包括存储器和处理器;
    所述存储器用于储存有可执行程序代码;
    所述处理器用于读取所述存储器中存储的可执行程序代码以执行权利要求1至9中任一项所述的电池的荷电状态修正方法。
  12. 一种计算机可读存储介质,所述计算机可读存储介质包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至9中任一项所述的电池的荷电状态修正方法。
PCT/CN2020/084708 2019-06-24 2020-04-14 电池的荷电状态修正方法、装置、系统和存储介质 WO2020259008A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207031026A KR102476166B1 (ko) 2019-06-24 2020-04-14 배터리의 하전 상태 보정 방법, 장치, 시스템 및 저장 매체
JP2020560456A JP7047131B2 (ja) 2019-06-24 2020-04-14 電池の荷電状態の修正方法、装置、システム及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547687.3 2019-06-24
CN201910547687.3A CN110967636B (zh) 2019-06-24 2019-06-24 电池的荷电状态修正方法、装置、系统和存储介质

Publications (1)

Publication Number Publication Date
WO2020259008A1 true WO2020259008A1 (zh) 2020-12-30

Family

ID=70029496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084708 WO2020259008A1 (zh) 2019-06-24 2020-04-14 电池的荷电状态修正方法、装置、系统和存储介质

Country Status (6)

Country Link
US (1) US11231467B2 (zh)
EP (1) EP3758186B1 (zh)
JP (1) JP7047131B2 (zh)
KR (1) KR102476166B1 (zh)
CN (1) CN110967636B (zh)
WO (1) WO2020259008A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896233B (zh) * 2018-09-12 2021-07-30 宁德时代新能源科技股份有限公司 电池管理系统
CN110967636B (zh) * 2019-06-24 2020-12-11 宁德时代新能源科技股份有限公司 电池的荷电状态修正方法、装置、系统和存储介质
CN110988720B (zh) * 2019-06-24 2021-03-09 宁德时代新能源科技股份有限公司 电池荷电状态确定方法、装置、管理系统以及存储介质
CN113547955B (zh) * 2020-04-23 2023-06-16 宁德时代新能源科技股份有限公司 电池的充电控制方法、装置、电池管理系统和介质
CN112415399B (zh) * 2020-10-16 2023-10-10 欣旺达电动汽车电池有限公司 电池单体ocv-soc曲线修正方法、设备及存储介质
CN112379281A (zh) * 2020-11-26 2021-02-19 蔚来汽车科技(安徽)有限公司 车辆低压电池的监控方法、装置、系统、服务器以及介质
CN112698207A (zh) * 2020-12-03 2021-04-23 天津小鲨鱼智能科技有限公司 一种电池容量检测方法及装置
CN112986839B (zh) * 2021-02-25 2021-12-03 北京理工大学 基于置信区间的锂离子动力电池组的故障诊断方法与系统
CN113386627B (zh) * 2021-06-28 2023-01-31 东风汽车有限公司东风日产乘用车公司 汽车蓄电池容量修正方法、电子设备及存储介质
CN113472042A (zh) * 2021-07-02 2021-10-01 深圳市普渡科技有限公司 电池电量映射、电池充电控制系统、方法、机器人及介质
CN113820605B (zh) * 2021-09-30 2023-10-13 蜂巢能源科技(无锡)有限公司 电池soc的修正方法及其装置、计算机可读存储介质
CN113933729A (zh) * 2021-09-30 2022-01-14 蜂巢能源科技有限公司 电池荷电状态的处理方法、装置、车辆及电池管理系统
CN114035059A (zh) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 显示soc精度的计算方法、装置和电子设备
CN115113069A (zh) * 2021-12-24 2022-09-27 长城汽车股份有限公司 电池soc的估算方法及相关装置
US11901748B2 (en) * 2022-02-02 2024-02-13 Enevate Corporation State-of-charge balancing in battery management systems for si/li batteries
CN115498295A (zh) * 2022-09-23 2022-12-20 深圳市正浩创新科技股份有限公司 荷电状态检测方法、装置、储能设备以及介质
CN116070466B (zh) * 2023-03-08 2023-06-13 上海泰矽微电子有限公司 一种电池截止电压下的最优soc仿真寻值方法
CN116299015B (zh) * 2023-05-25 2023-08-08 广汽埃安新能源汽车股份有限公司 电池状态评估方法、装置、电子设备及存储介质
CN116526641B (zh) * 2023-07-05 2023-09-19 合肥华思系统有限公司 一种集中式储能系统的满充soc校准方法、介质和设备
CN116840699B (zh) * 2023-08-30 2023-11-17 上海泰矽微电子有限公司 一种电池健康状态估算方法、装置、电子设备和介质
CN117791823B (zh) * 2024-02-23 2024-05-28 西安新衡科测控技术有限责任公司 电池组电芯电压均衡系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714182A (zh) * 2013-12-11 2015-06-17 广州汽车集团股份有限公司 一种确定电池荷电状态值的方法和系统
CN105203963A (zh) * 2015-09-11 2015-12-30 同济大学 一种基于开路电压滞回特性的荷电状态的估计方法
CN106802394A (zh) * 2017-02-06 2017-06-06 清华大学深圳研究生院 汽车电池荷电状态的修正方法及装置
CN107368619A (zh) * 2017-06-02 2017-11-21 华南理工大学 基于电池滞回电压特性和回弹电压特性的扩展卡尔曼滤波soc估算方法
US10073147B2 (en) * 2013-05-16 2018-09-11 Nec Corporation Battery state estimation device, battery state management system, battery, battery state estimation method, and non-transitory storage medium
CN110967636A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池的荷电状态修正方法、装置、系统和存储介质
CN110988720A (zh) * 2019-06-24 2020-04-10 宁德时代新能源科技股份有限公司 电池荷电状态确定方法、装置、管理系统以及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060098146A (ko) * 2005-03-09 2006-09-18 주식회사 엘지화학 온도에 따른 오픈 회로 전압 히스테레시스를 이용한 배터리의 잔존 용량 초기값 설정 방법
US7957921B2 (en) * 2008-02-19 2011-06-07 GM Global Technology Operations LLC Model-based estimation of battery hysteresis
JP6065561B2 (ja) * 2012-03-08 2017-01-25 日産自動車株式会社 二次電池の制御装置およびsoc検出方法
JP5798067B2 (ja) * 2012-03-13 2015-10-21 プライムアースEvエナジー株式会社 二次電池の状態推定装置
JP2014059206A (ja) * 2012-09-18 2014-04-03 Toyota Industries Corp 充電状態推定装置及び充電状態推定方法
US9651624B2 (en) 2012-12-17 2017-05-16 Qualcomm Incorporated Systems and methods for state of charge estimation
JP5994680B2 (ja) * 2013-02-27 2016-09-21 株式会社豊田自動織機 電池残容量推定方法及び装置
CN103616646B (zh) * 2013-12-02 2016-04-06 惠州市亿能电子有限公司 一种利用ocv-soc曲线修正soc的方法
DE112014006399B4 (de) * 2014-02-25 2019-03-21 Mitsubishi Electric Corporation Ladezustandschätzvorrichtung für eine Sekundärbatterie
WO2018181620A1 (ja) * 2017-03-29 2018-10-04 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム
JP6822300B2 (ja) * 2017-04-27 2021-01-27 トヨタ自動車株式会社 充電率推定方法および車載の電池システム
JP6939057B2 (ja) * 2017-04-27 2021-09-22 トヨタ自動車株式会社 車載の電池システムおよび電池の経年劣化推定方法
JP6927008B2 (ja) * 2017-12-12 2021-08-25 トヨタ自動車株式会社 二次電池システムおよび二次電池のsoc推定方法
CN108226809A (zh) * 2018-04-13 2018-06-29 淮阴工学院 一种多模型并用的电池soc估算方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073147B2 (en) * 2013-05-16 2018-09-11 Nec Corporation Battery state estimation device, battery state management system, battery, battery state estimation method, and non-transitory storage medium
CN104714182A (zh) * 2013-12-11 2015-06-17 广州汽车集团股份有限公司 一种确定电池荷电状态值的方法和系统
CN105203963A (zh) * 2015-09-11 2015-12-30 同济大学 一种基于开路电压滞回特性的荷电状态的估计方法
CN106802394A (zh) * 2017-02-06 2017-06-06 清华大学深圳研究生院 汽车电池荷电状态的修正方法及装置
CN107368619A (zh) * 2017-06-02 2017-11-21 华南理工大学 基于电池滞回电压特性和回弹电压特性的扩展卡尔曼滤波soc估算方法
CN110967636A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池的荷电状态修正方法、装置、系统和存储介质
CN110988720A (zh) * 2019-06-24 2020-04-10 宁德时代新能源科技股份有限公司 电池荷电状态确定方法、装置、管理系统以及存储介质

Also Published As

Publication number Publication date
JP7047131B2 (ja) 2022-04-04
KR20210002358A (ko) 2021-01-07
EP3758186A1 (en) 2020-12-30
CN110967636A (zh) 2020-04-07
US20200400750A1 (en) 2020-12-24
US11231467B2 (en) 2022-01-25
CN110967636B (zh) 2020-12-11
JP2021532336A (ja) 2021-11-25
KR102476166B1 (ko) 2022-12-09
EP3758186B1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
WO2020259008A1 (zh) 电池的荷电状态修正方法、装置、系统和存储介质
WO2020259355A1 (zh) 电池荷电状态确定方法、装置、管理系统以及存储介质
EP3779484A1 (en) Method and apparatus for correcting state of health of battery, and management system and storage medium
CN107526037B (zh) 电池状态推定装置及电池状态推定方法
WO2020108638A1 (zh) 剩余充电时间估算方法、装置、系统和存储介质
CN109856542B (zh) 一种锂电池soc-ocv曲线簇的标定方法、soc校正方法及装置
WO2020259096A1 (zh) 电池的许用功率估算方法、装置、系统和存储介质
JP2017223536A (ja) 電池状態推定装置および電池状態推定方法
CN107831442A (zh) 远程估算soc的方法、装置、存储介质及计算机设备
US20150369876A1 (en) Deterioration determination method, manufacturing method of electric storage device, deterioration determination device, and storage medium
WO2023116519A1 (zh) 电池soc的估算方法及相关装置
JP2021533371A (ja) バッテリーの退化状態を決定するための装置、方法、バッテリーパック及び電気車両
KR20220029109A (ko) 배터리 상태 추정 방법 및 장치
EP4372398A1 (en) Method and device for calibrating soc at tail end of charging or discharging of energy storage system
US11843095B2 (en) Secondary battery management device, secondary battery management method, and non-transitory computer readable storage medium
WO2022183459A1 (zh) 一种估算电池包soc的方法、装置及电池管理系统
US20200319253A1 (en) Methods, storage media, and electronic devices for calculating short-circuit current of battery
TW201440378A (zh) 基於電池操作歷程的均充系統及其均充方法
JP2022014361A (ja) リチウムイオン二次電池の劣化判定方法及びリチウムイオン二次電池の劣化判定装置
US20230168309A1 (en) Estimation method, estimation system, and non-transitory computer-readable recording medium
KR20230075033A (ko) 배터리 상태를 추정하는 전자 장치 및 그 동작 방법
CN115465151A (zh) 一种电池均衡剩余时间的计算方法、装置及电池管理系统
CN115754774A (zh) 锂电池混联系统的soc电量预测方法、装置及计算机设备
CN113782845A (zh) 一种获取锂电池的充放电功率的方法和装置
CN116953520A (zh) 荷电状态的预测方法、储能设备和计算机可读存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020560456

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832468

Country of ref document: EP

Kind code of ref document: A1