WO2020108073A1 - 一种量子点发光二极管及其制备方法 - Google Patents
一种量子点发光二极管及其制备方法 Download PDFInfo
- Publication number
- WO2020108073A1 WO2020108073A1 PCT/CN2019/108354 CN2019108354W WO2020108073A1 WO 2020108073 A1 WO2020108073 A1 WO 2020108073A1 CN 2019108354 W CN2019108354 W CN 2019108354W WO 2020108073 A1 WO2020108073 A1 WO 2020108073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quantum dot
- dot light
- metal oxide
- emitting diode
- transport layer
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 103
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 229920000962 poly(amidoamine) Polymers 0.000 claims abstract description 93
- 230000005525 hole transport Effects 0.000 claims abstract description 83
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 82
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 82
- 239000002105 nanoparticle Substances 0.000 claims abstract description 80
- SENLDUJVTGGYIH-UHFFFAOYSA-N n-(2-aminoethyl)-3-[[3-(2-aminoethylamino)-3-oxopropyl]-[2-[bis[3-(2-aminoethylamino)-3-oxopropyl]amino]ethyl]amino]propanamide Chemical compound NCCNC(=O)CCN(CCC(=O)NCCN)CCN(CCC(=O)NCCN)CCC(=O)NCCN SENLDUJVTGGYIH-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 37
- 125000003277 amino group Chemical group 0.000 claims abstract description 23
- 239000010410 layer Substances 0.000 claims description 141
- 239000000243 solution Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 35
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000003446 ligand Substances 0.000 claims description 16
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 239000002346 layers by function Substances 0.000 claims description 6
- 230000000903 blocking effect Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 238000000576 coating method Methods 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000000151 deposition Methods 0.000 description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000000412 dendrimer Substances 0.000 description 6
- 229920000736 dendritic polymer Polymers 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- ZENZJGDPWWLORF-UHFFFAOYSA-N (Z)-9-Octadecenal Natural products CCCCCCCCC=CCCCCCCCC=O ZENZJGDPWWLORF-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 238000000053 physical method Methods 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000003573 thiols Chemical class 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007928 solubilization Effects 0.000 description 3
- 238000005063 solubilization Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- VFAKIOSBFMWOEQ-UHFFFAOYSA-N C(CC)O.[W]=O Chemical class C(CC)O.[W]=O VFAKIOSBFMWOEQ-UHFFFAOYSA-N 0.000 description 1
- FKIMGDULOMGVCR-UHFFFAOYSA-N C(CCC)O.[Ni]=O Chemical class C(CCC)O.[Ni]=O FKIMGDULOMGVCR-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- -1 HgSe Inorganic materials 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052956 cinnabar Inorganic materials 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000012678 divergent method Methods 0.000 description 1
- ILZAGRAURPDGEF-UHFFFAOYSA-N ethanol oxomolybdenum Chemical class C(C)O.[Mo]=O ILZAGRAURPDGEF-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
Definitions
- the present disclosure relates to the field of quantum dot light-emitting diodes, in particular to a quantum dot light-emitting diode and a preparation method thereof.
- QLEDs Quantum dot light-emitting diodes
- QLEDs are used for the advantages of adjustable emission spectrum, narrow emission spectrum, high luminous efficiency, etc., and are the choices of the next generation flat panel light emitting technology.
- QLED still has problems such as low luminous efficiency and low lifespan, and it cannot be used in large-scale commercial applications for the time being.
- the main reason for the problems of low luminous efficiency and low life of QLED is that the hole transport capacity in QLED devices is insufficient, and the hole transport efficiency cannot match the electron transport efficiency, resulting in a decrease in the overall charge transport efficiency of the device, which leads to low luminous efficiency and device life. Not high issues.
- Metal oxides, organic polymers and other materials are often used to prepare QLED hole injection layers and hole transport layers. Metal oxides have better stability than organic polymer hole layer materials and will not corrode ITO substrates. Conducive to the preparation of higher life devices.
- metal oxides are generally nanoparticles in powder form, which need to be dispersed in a solvent or ink before film formation. It is difficult to avoid agglomeration in the solvent and cannot achieve good dispersibility, resulting in the particles not being arranged after film formation. Problems such as uniformity, large gaps between particles, and a large amount of solvent mixed between the particles affect the transmission performance of the film.
- the purpose of the present disclosure is to provide a quantum dot light emitting diode and a preparation method thereof, aiming to solve the problem of low hole transmission efficiency of the existing quantum dot light emitting diode, resulting in its low luminous efficiency .
- a quantum dot light-emitting diode includes a cathode, an anode, and a quantum dot light-emitting layer disposed between the cathode and the anode.
- a hole transport layer is further provided between the anode and the quantum dot light-emitting layer.
- the hole transport layer material includes PAMAM dendrimers and metal oxide nanoparticles bound to amino groups on the PAMAM dendrimers.
- a preparation method of quantum dot light-emitting diode which includes the steps of:
- An anode substrate is provided, a hole transport layer is prepared on the anode substrate, a quantum dot light emitting layer is prepared on the hole transport layer, a cathode is prepared on the quantum dot light emitting layer, and the quantum dot light emitting diode is manufactured ;
- a cathode substrate is provided, a quantum dot light emitting layer is prepared on the cathode substrate, a hole transport layer is prepared on the quantum dot light emitting layer, and an anode is prepared on the hole transport layer to prepare the quantum dot led;
- the hole transport layer material includes PAMAM dendrimers and metal oxide nanoparticles bound to amino groups on the PAMAM dendrimers.
- the quantum dot light-emitting diode provided by the present disclosure includes a hole transport layer, and the material of the hole transport layer includes PAMAM dendrimers and metal oxide nanoparticles coordinately bonded to amino groups on the PAMAM dendrimers.
- PAMAM (polyamide-amine) dendrimer is a highly branched dendrimer. Its molecular chains are irregularly arranged, and its chain length, variety and configuration are diverse, which makes it have good solubilization and breakage.
- Emulsion and stabilization are excellent nano-molecular surfactants, suitable for improving the dispersibility of metal oxide nanoparticles in solvents and improving their film-forming properties; further, the PAMAM dendrimers have a large number of The amino group can form one or more coordination bonds with the metal part of the metal oxide nanoparticles at a certain temperature and be firmly connected, which allows the PAMAM dendrimer to be bridged to connect the film-formed metal oxide
- the carbon branch on the PAMAM dendrimer can be the same as ligands such as thiol, carboxylic acid, etc. to achieve the effect of improving the charge transfer efficiency between metal oxide nanoparticles.
- the present disclosure uses PAMAM dendrimers and metal oxide nanoparticles bound to the amino groups on the PAMAM dendrimers as hole transport layer materials, which can not only improve the hole transport efficiency of the hole transport layer, but also improve The film-forming performance of the hole transport layer further improves the luminous efficiency of the quantum dot light-emitting diode.
- FIG. 1 is a schematic structural diagram of a preferred embodiment of a quantum dot light emitting diode of the present disclosure.
- FIG. 2 is a schematic structural diagram of another preferred embodiment of a quantum dot light emitting diode of the present disclosure.
- FIG. 3 is a flow chart of a method for preparing a positive-type quantum dot light-emitting diode of the present disclosure.
- FIG. 4 is a flow chart of a method for manufacturing an inverse structure quantum dot light emitting diode of the present disclosure.
- FIG. 5 is a schematic structural diagram of a quantum dot light-emitting diode in Embodiment 1 of the present disclosure.
- the present disclosure provides a quantum dot light emitting diode and a manufacturing method thereof.
- a quantum dot light emitting diode and a manufacturing method thereof.
- the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure and are not intended to limit the present disclosure.
- quantum dot light-emitting diodes There are many forms of quantum dot light-emitting diodes, and the quantum dot light-emitting diodes are divided into a formal structure and a trans structure.
- the quantum structure light-emitting diodes of the inverse structure may include a substrate, a cathode, and quantum dots stacked from bottom to top Light emitting layer, hole transport layer and anode.
- the positive-type quantum dot light-emitting diode shown in FIG. 1 will be mainly used as an example for introduction. Specifically, as shown in FIG.
- the positive-type quantum dot light-emitting diode includes a substrate 10, an anode 20, a hole transport layer 30, a quantum dot light-emitting layer 40, and a cathode 50 stacked from bottom to top, wherein
- the material of the hole transport layer includes PAMAM dendrimers and metal oxide nanoparticles bound to amino groups on the PAMAM dendrimers.
- an electronic functional layer may also be provided between the cathode and the quantum dot light emitting layer.
- the electronic functional layer includes an electron injection layer, an electron At least one of a transport layer and a hole blocking layer, but is not limited thereto.
- the positive-type quantum dot light-emitting diode includes a substrate 10, an anode 20, a hole transport layer 30, and a quantum dot light-emitting layer 40 stacked in this order from bottom to top , An electronic functional layer 60 and a cathode 50, wherein the electronic functional layer 60 includes a hole blocking layer 61, an electron transport layer 62, and an electron injection layer 63 stacked in this order from bottom to top, and the material of the hole transport layer includes PAMAM dendrimers and metal oxide nanoparticles bound to amino groups on the PAMAM dendrimers.
- a hole function layer such as a hole injection layer and an electron blocking layer may be provided between the anode and the quantum dot light emitting layer.
- PAMAM dendrimers and metal oxide nanoparticles coordinated with the amino groups on the PAMAM dendrimers are used as hole transport layer materials, which can improve the hole transport performance and film forming performance of the hole transport layer To further improve the luminous efficiency of quantum dot light-emitting diodes.
- the mechanism for achieving the above effects is as follows:
- PAMAM (polyamide-amine) dendrimer is a highly branched dendrimer. Its molecular chains are irregularly arranged, and its chain length, variety and configuration are diverse, which makes it have good solubilization and breakage. Milk and stabilizing effect are excellent nano-molecular surfactants, suitable for improving the dispersibility of metal oxide nano-particles in a variety of solvents; further, the PAMAM dendrimer has a large number of amino groups, At a certain temperature, it can form one or more coordination bonds with the metal part of the metal oxide nanoparticles and be firmly connected, which allows the PAMAM dendrimer to be bridged to connect the metal oxide nanoparticle particles after film formation
- the carbon branch on the PAMAM dendrimer can be the same as ligands such as thiol, carboxylic acid, etc.
- the present disclosure uses PAMAM dendrimers and metal oxide nanoparticles bound to the amino groups on the PAMAM dendrimers as hole transport layer materials, which can not only improve the hole transport efficiency of the hole transport layer, but also improve The film-forming performance of the hole transport layer further improves the luminous efficiency of the quantum dot light-emitting diode.
- the PAMAM dendrimer is obtained by reacting different molecular units A (ethylenediamine) and molecular unit B (methyl acrylate).
- the PAMAM dendrimer can be synthesized by a divergent method.
- the methyl ester reacts to form a carboxylic acid ester.
- the obtained carboxylic acid ester is reacted with excess ethylenediamine.
- the first generation PAMAM dendrimer can be prepared. Get higher algebraic PAMAM dendrimers.
- the general formulas of molecular unit A and molecular unit B contained in PAMAM dendrimers of different algebras are: A(2 n +2 n-1 +...+2 n-3 )+B(2 n+1 +2 n + ....+2 n-1 ), where the value of n is 3-10; in addition, the general formula of the first generation PAMAM dendrimer containing molecular unit A and molecular unit B is A+4B, the second generation PAMAM dendrimer The general formula of the molecule containing molecular unit A and molecular unit B is 5A+8B.
- the number of branches in the PAMAM dendrimer is 3 or more and 12 or less, and the number of carbon atoms in each branch is 6 or more and 18 or less.
- the length of carbon branches has a great influence on their polarity.
- the number of branches is greater than or equal to 3 and less than or equal to 12, and the number of carbon atoms in each branch is greater than or equal to 6 and less than or equal to 18
- the metal oxide nanoparticles are favorably dispersed in a polar solvent, thereby improving the film-forming performance of the metal oxide nanoparticles.
- the metal oxide nanoparticles are metal oxides with high work function and high hole mobility.
- the metal oxide nanoparticles are selected from one or more of NiO, V 2 O 5 , WO 3 and MoO 3 , but are not limited thereto.
- the present disclosure also provides a method for manufacturing a positive-type quantum dot light-emitting diode as shown in FIG. 1, wherein, as shown in FIG. 3, it includes the steps of:
- the preparation method of the above layers may be a chemical method or a physical method, wherein the chemical method includes but is not limited to one of chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodizing method, electrolytic deposition method, co-precipitation method or A variety of; physical methods include but are not limited to physical coating method or solution method, wherein the solution method includes but not limited to spin coating method, printing method, blade coating method, dipping method, dipping method, spraying method, roll coating method, casting Method, slot coating method, strip coating method; physical coating method includes but not limited to thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, One or more of atomic layer deposition and pulsed laser deposition.
- the chemical method includes but is not limited to one of chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodizing method, electrolytic deposition method, co-pre
- the method for preparing the hole transport layer material includes the steps of: dispersing the metal oxide nanoparticles in an organic solvent to generate a metal oxide nanoparticle solution; adding to the metal oxide nanoparticle solution Oleylamine, mixed to bind the oleylamine to the surface of the metal oxide nanoparticles; continue to add PAMAM dendrimers to the metal oxide nanoparticles solution, and mixed to bind the PAMAM dendrimers to the metal
- the oleylamine on the surface of the oxide nanoparticles undergoes a ligand exchange reaction, that is, the hole transport layer material is prepared.
- the metal oxide nanoparticles have a particle size of 5-20 nm, and within this range, the metal oxide nanoparticles can be well dispersed in an organic solvent in a non-agglomerated state to form metal oxides Nanoparticle solution; if the particle size of the metal oxide nanoparticles is greater than 20nm, it will cause PAMAM to be suspended in the organic solvent, thereby reducing the film-forming performance of the metal oxide nanoparticles.
- the organic solvent is a polar solvent.
- the organic solvent is selected from one or more of ethanol, propanol, and n-butanol, but is not limited thereto.
- the concentration of the metal oxide nanoparticle solution is 10-50 mg/ml.
- the metal oxide nanoparticles are not easy to agglomerate in an organic solvent, and a better dispersion effect can be obtained, which provides the best contact area for the subsequent ligand exchange reaction; if the metal oxide nanoparticle solution is If the concentration is too low (less than 10mg/ml), it will cause the metal oxide nanoparticles to disperse too much in the solvent, thereby causing excessive grafting of the ligand, which ultimately affects the performance of the hole transport layer; if the oxide concentration is too high ( More than 50mg/ml), it is easy to form agglomerates and cannot form a good contact environment with the ligand.
- oleylamine is added to the metal oxide nanoparticle solution and mixed to bind the oleylamine to the surface of the metal oxide nanoparticles.
- a predetermined temperature for example, 40-50°C
- a small amount of oleylamine can be attached to the surface of the metal oxide nanoparticles in the form of a ligand
- oleylamine is a commonly used ligand solvent
- its amino group can also improve the dispersibility of the metal oxide nanoparticles under heating. More preferably, the volume percentage of the oleylamine in the metal oxide nanoparticle solution is 0.5-2%.
- the oleylamine can be well dispersed in organic solvents and can be oxidized with the metal Nanoparticles are in full contact and adhere to the surface; if the amount of oleamine is too small (less than 0.5%), there is no guarantee that the metal oxide nanoparticles are fully bound and wrapped by oleamine; if the amount of oleamine is excessive (greater than 2%), In the later period, the amount of PAMAM dendrimers needs to be greatly increased to be able to issue ligand exchange reactions, which is not conducive to the balance of forward ligand exchange.
- the PAMAM dendrimer is continuously added to the metal oxide nanoparticle solution at a molar mass ratio of oleylamine to PAMAM dendrimer of 1:5-1:20, mixed and heated to At 60-70°C, the PAMAM dendrimer undergoes a ligand exchange reaction with oleylamine bound to the surface of the metal oxide nanoparticles, that is, the hole transport layer material is prepared.
- the reactivity of oleylamine and PAMAM dendrimers can be increased to increase the dynamic reaction rate of ligand exchange, and because the concentration of PAMAM dendrimers is much higher than oleylamine, the PAMAM dendrimers
- the oleylamine can be replaced and combined on the surface of the metal oxide nanoparticles to prepare a hole transport layer material.
- the quantum dot light-emitting layer material is selected from one or more of red quantum dots, green quantum dots, and blue quantum dots.
- the quantum dot light emitting layer material is selected from CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, ZnTe, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InSb, AlAs, AlP, CuInS, and One or more of CuInSe.
- the material of the quantum dot light-emitting layer is at least one of a core-shell structure quantum dot and an alloy structure quantum dot.
- the hole transport layer has a thickness of 10-100 nm.
- the thickness of the hole transport layer is 20-50 nm.
- the present disclosure can effectively improve the solution dispersibility of the metal oxide nanoparticles through the coordination bond between the amino functional group of the PAMAM dendrimer and the metal on the surface of the metal oxide nanoparticles, thereby solving the problem of the metal oxide nanoparticle particles after film formation Problems such as uneven arrangement, large gaps between particles, and more than two solvents mixed between particles; at the same time, the PAMAM dendrimer can also be connected to the formed metal oxide nanoparticle particles in a bridging manner.
- the carbon branches on PAMAM dendrimers can achieve the effect of improving the charge transfer efficiency between particles like ligands such as thiol and carboxylic acid.
- the present disclosure adopts PAMAM dendrimers and metal oxide nanoparticles coordinated to the amino groups on the PAMAM dendrimers as hole transport layer materials, which not only improves the hole transport efficiency of the hole transport layer, but also The film-forming performance of the hole transport layer can be improved, thereby improving the luminous efficiency of the quantum dot light-emitting diode.
- the present disclosure also provides a method for preparing a QLED with an inverted structure, as shown in FIG. 4, including the following steps:
- the cathode substrate includes a substrate and a bottom electrode provided on the substrate, the bottom electrode is a cathode; in yet another embodiment of the present disclosure, the cathode substrate may be It includes a substrate, a bottom electrode stacked on the surface of the substrate and an electron injection layer; in yet another embodiment of the present disclosure, the cathode substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, and electron injection Layer and an electron transport layer; in yet another embodiment of the present disclosure, the anode substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, an electron injection layer stacked on the surface of the substrate, and an electron transport layer And hole blocking layer.
- the preparation method of the above layers may be a chemical method or a physical method, wherein the chemical method includes but is not limited to one of chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodizing method, electrolytic deposition method, co-precipitation method or A variety of; physical methods include but are not limited to physical coating method or solution method, wherein the solution method includes but not limited to spin coating method, printing method, blade coating method, dipping method, dipping method, spraying method, roll coating method, casting Method, slot coating method, strip coating method; physical coating method includes but not limited to thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, One or more of atomic layer deposition and pulsed laser deposition.
- the chemical method includes but is not limited to one of chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodizing method, electrolytic deposition method, co-pre
- a quantum dot light emitting diode as shown in FIG. 5, includes an anode substrate 101, a hole transport layer 102, a quantum dot light emitting layer 103, an electron transport layer 104, and a cathode 105, which are stacked from bottom to top.
- the hole transport layer material includes a PAMAM dendrimer model CAS: 155773-72-1 and a nano-nickel oxide coordinated with the amino group of the PAMAM dendrimer.
- the preparation method of the quantum dot light-emitting diode includes the following steps:
- the hole transport layer material select nano-nickel oxide powder with a particle size of less than 200nm uniformly dispersed in n-butanol and stir at 3000rpm/min for 5 minutes to form a uniform solution (concentration 20mg/mL) ), followed by raising the temperature to 50°C in an argon atmosphere, adding a small amount of oleylamine (0.1mL of oleylamine per 10mL of solution), after 15 minutes of reaction, the temperature was raised to 60 degrees Celsius, according to oleamine and PAMAM dendrimers The molar ratio of 1:10 was added to the solution of PAMAM dendrimers, and the reaction was incubated for 30 minutes; then the temperature of the reaction solution was reduced to room temperature, precipitated and washed with ethyl acetate, ethanol, acetone, and then redispersed in N-butanol, prepared PAMAM modified nickel oxide (hole transport layer material) butanol solution;
- a cathode is deposited on the electron transport layer to produce the quantum dot light-emitting diode.
- a quantum dot light emitting diode as shown in FIG. 2, includes an anode substrate, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a cathode that are stacked from bottom to top, wherein the hole transport layer
- the material includes a PAMAM dendrimer model CAS: 142986-44-5 and a nano-molybdenum oxide coordinated with the amino group of the PAMAM dendrimer.
- the preparation method of the quantum dot light-emitting diode includes the following steps:
- hole transport layer material choose nano-molybdenum oxide powder with particle size below 200nm, evenly dispersed in ethanol and stir at 3000rpm/min for 5 minutes to form a uniform solution (concentration 20mg/mL), Subsequently, the temperature was raised to 50°C in an argon atmosphere, and a small amount of oleylamine was added (0.1 mL of oleylamine was added per 10 mL of solution). After 15 minutes of reaction, the temperature was raised to 60 degrees Celsius according to the molar ratio of oleylamine and PAMAM dendrimer.
- the PAMAM dendrimer was added to the solution at a ratio of 1:15, and the reaction was incubated for 30 minutes; then the temperature of the reaction solution was reduced to room temperature, precipitated and washed with ethyl acetate, ethanol, and acetone, and then redispersed in Ethanol, prepare PAMAM modified molybdenum oxide (hole transport layer material) ethanol solution;
- a cathode is deposited on the electron transport layer to produce the quantum dot light-emitting diode.
- a quantum dot light emitting diode as shown in FIG. 2, includes an anode substrate, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a cathode that are stacked from bottom to top, wherein the hole transport layer
- the material includes a PAMAM dendrimer model CAS: 155773-72-1 and a nano tungsten oxide coordinated with the amino group of the PAMAM dendrimer.
- the preparation method of the quantum dot light-emitting diode includes the following steps:
- hole transport layer material choose nano tungsten oxide powder with particle size below 200nm and disperse in propanol uniformly and stir at 3000rpm/min for 5 minutes to form a uniform solution (concentration 20mg/mL) Then, the temperature was raised to 50°C in an argon atmosphere, and a small amount of oleylamine was added (0.1 mL of oleylamine was added per 10 mL of solution). After 15 minutes of reaction, the temperature was raised to 60 degrees Celsius.
- the PAMAM dendrimer was added to the solution at a molar ratio of 1:15, and the reaction was incubated for 30 minutes; then the temperature of the reaction solution was lowered to room temperature, precipitated and washed with ethyl acetate, ethanol, and acetone, and then redispersed In propanol, prepare PAMAM modified tungsten oxide (hole transport layer material) propanol solution;
- a cathode is deposited on the electron transport layer to produce the quantum dot light-emitting diode.
- the quantum dot light emitting diode includes a hole transport layer, and the material of the hole transport layer includes PAMAM dendrimers and metal oxide nanoparticles that coordinately bind to the amino groups on the PAMAM dendrimers Particles.
- PAMAM (polyamide-amine) dendrimer is a highly branched dendrimer. Its molecular chains are irregularly arranged, and its chain length, variety and configuration are diverse, which makes it have good solubilization and breakage.
- Emulsion and stabilization are excellent nano-molecular surfactants, suitable for improving the dispersibility of metal oxide nanoparticles in solvents and improving their film-forming properties; further, the PAMAM dendrimers have a large number of The amino group can form one or more coordination bonds with the metal part of the metal oxide nanoparticles at a certain temperature and be firmly connected, which allows the PAMAM dendrimer to be bridged to connect the film-formed metal oxide
- the carbon branch on the PAMAM dendrimer can be the same as ligands such as thiol, carboxylic acid, etc. to achieve the effect of improving the charge transfer efficiency between metal oxide nanoparticles.
- the present disclosure adopts PAMAM dendrimers and metal oxide nanoparticles coordinated to the amino groups on the PAMAM dendrimers as hole transport layer materials, which not only improves the hole transport efficiency of the hole transport layer, but also The film-forming performance of the hole transport layer can be improved, thereby improving the luminous efficiency of the quantum dot light-emitting diode.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种量子点发光二极管及其制备方法,其中,所述量子点发光二极管包括空穴传输层,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒。
Description
本公开涉及量子点发光二极管领域,尤其涉及一种量子点发光二极管及其制备方法。
量子点发光二极管(QLED)用于发射光谱可调、发光光谱窄、发光效率高等优点,是下一代平板发光技术备受关注的选择。然而,目前QLED仍存在发光效率低下、寿命不高等问题,暂时还无法被大规模商业应用。造成QLED发光效率低下、寿命不高等问题的主要原因在于QLED器件中的空穴传输能力不足,空穴传输效率无法匹配电子传输效率,导致器件整体电荷传输效率下降,进而引发发光效率低、器件寿命不高等问题。
金属氧化物、有机聚合物等材料常被用于制备QLED空穴注入层和空穴传输层,金属氧化物比起有机聚合物空穴层材料具有更好的稳定性,不会腐蚀ITO基板,有利于制备更高寿命的器件。然而,金属氧化物一般为粉末状态的纳米颗粒,在制备成膜前需要先分散于溶剂或墨水,在溶剂中难以避免发生团聚而无法实现较好的分散性,导致成膜后颗粒排布不均、颗粒间间隙较大、颗粒间掺有较多量的溶剂等问题,从而影响膜层的传输性能。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种量子点发光二极管及其制备方法,旨在解决现有量子点发光二极管的空穴传输效率较低,导致其发光效率较低的问题。
本公开的技术方案如下:
一种量子点发光二极管,包括阴极、阳极以及设置在所述阴极和阳极之间的量子点发光层,所述阳极和量子点发光层之间还设置有空穴传输层,其特征在于,所述空穴传 输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒。
一种量子点发光二极管的制备方法,其中,包括步骤:
提供一阳极基板,在所述阳极基板上制备空穴传输层,在所述空穴传输层上制备量子点发光层,在所述量子点发光层上制备阴极,制得所述量子点发光二极管;
或者,提供一阴极基板,在所述阴极基板上制备量子点发光层,在所述量子点发光层上制备空穴传输层,在所述空穴传输层上制备阳极,制得所述量子点发光二极管;
其中,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒。
有益效果:本公开提供的量子点发光二极管包括空穴传输层,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基配位结合的金属氧化物纳米颗粒。PAMAM(聚酰胺-胺)树形分子是一种高度支化的树状化合物,其分子链呈不规则排列,且其链长、种类和构型多样,这使得其具有良好的增溶、破乳和稳定的作用,是优良的纳米级单分子表面活性剂,适合用于改进金属氧化物纳米颗粒在溶剂中的分散性,提高其成膜性能;进一步地,所述PAMAM树形分子拥有大量的氨基,在一定温度下可以与金属氧化物纳米颗粒的金属部分形成一个或多个配位键并牢固连接,这使得所述PAMAM树形分子可以以架桥方式连接成膜后的金属氧化物纳米颗粒颗粒,所述PAMAM树形分子上的碳支链可以与硫醇、羧酸等配体一样达到提高金属氧化物纳米颗粒相互之间电荷传输效率的效果。因此,本公开采用PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒作为空穴传输层材料,不仅可提高空穴传输层的空穴传输效率,还可改善空穴传输层的成膜性能,进而提高量子点发光二极管的发光效率。
图1为本公开一种量子点发光二极管较佳实施例的结构示意图。
图2为本公开另一种量子点发光二极管较佳实施例的结构示意图。
图3为本公开一种正型结构的量子点发光二极管的制备方法流程图。
图4为本公开一种反型结构的量子点发光二极管的制备方法流程图。
图5为本公开实施例1中量子点发光二极管的结构示意图。
本公开提供一种量子点发光二极管及其制备方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
量子点发光二极管有多种形式,且所述量子点发光二极管分为正式结构和反式结构,所述反型结构的量子点发光二极管可包括从下往上层叠设置的基板、阴极、量子点发光层、空穴传输层以及阳极。而本公开的具体实施方式中将主要以如图1所示的正型结构的量子点发光二极管为实施例进行介绍。具体地,如图1所示,所述正型结构的量子点发光二极管包括从下往上层叠设置的基板10、阳极20、空穴传输层30、量子点发光层40、以及阴极50,其中,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒。
需说明的是,对于所述正型结构和反型结构的量子点发光二极管,在所述阴极和量子点发光层之间还可以设置电子功能层,所述电子功能层包括电子注入层、电子传输层和空穴阻挡层中的至少一种,但不限于此。
在一些具体的实施方式中,如图2所示,所述正型结构的量子点发光二极管包括从下往上依次层叠设置的基板10、阳极20、空穴传输层30、量子点发光层40、电子功能层60以及阴极50,其中,所述电子功能层60包括从下往上依次层叠设置的空穴阻挡层61、电子传输层62、电子注入层63,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒。
在一些实施方式中,在所述阳极和量子点发光层之间除了设置所述空穴传输层之外,还可以设置空穴注入层和电子阻挡层等空穴功能层。
本实施例采用PAMAM树形分子以及与所述PAMAM树形分子上的氨基配位结合 的金属氧化物纳米颗粒作为空穴传输层材料,可提高空穴传输层的空穴传输性能和成膜性能,进而提高量子点发光二极管的发光效率。实现上述效果的机理具体如下:
PAMAM(聚酰胺-胺)树形分子是一种高度支化的树状化合物,其分子链呈不规则排列,且其链长、种类和构型多样,这使得其具有良好的增溶、破乳和稳定的作用,是优良的纳米级单分子表面活性剂,适合用于改进金属氧化物纳米颗粒颗粒在多种溶剂中的分散性;进一步地,所述PAMAM树形分子拥有大量的氨基,在一定温度下可以与金属氧化物纳米颗粒的金属部分形成一个或多个配位键并牢固连接,这使得所述PAMAM树形分子可以以架桥方式连接成膜后的金属氧化物纳米颗粒颗粒,所述PAMAM树形分子上的碳支链可以与硫醇、羧酸等配体一样达到提高颗粒间电荷传输效率的效果。因此,本公开采用PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒作为空穴传输层材料,不仅可提高空穴传输层的空穴传输效率,还可改善空穴传输层的成膜性能,进而提高量子点发光二极管的发光效率。
所述PAMAM树形分子是由不同的分子单元A(乙二胺)和分子单元B(丙烯酸甲酯)反应得到,所述PAMAM树形分子可由发散法合成,第一步由乙二胺和丙烯酸甲酯反应生成羧酸酯,第二步将得到的羧酸酯与过量的乙二胺反应,经过上述两步反应后即可制得第一代PAMAM树形分子,重复上述两步反应即可得到更高代数的PAMAM树形分子。不同代数的PAMAM树形分子所含有的分子单元A和分子单元B的通式为:A(2
n+2
n-1+…+2
n-3)+B(2
n+1+2
n+….+2
n-1),其中n的取值为3-10;另外,第一代PAMAM树形分子含有分子单元A和分子单元B的通式为A+4B,第二代PAMAM树形分子含有分子单元A和分子单元B的通式为5A+8B。随着PAMAM树形分子的代数变大,其分子体积也越大,且其分子内腔体也变多,导致其电荷传输能力相应的变弱。也就是说,所述PAMAM树形分子随着代数的增加其电荷传输能力逐渐减弱。
在一些的实施方式中,所述PAMAM树形分子中的支链数量大于等于3且小于等于12,且每个支链的碳原子数大于等于6且小于等于18。在PAMAM树形分子中,碳支链的长短对其极性影响较大,当其支链数量大于等于3且小于等于12,且每个支链的碳原子数量大于等于6且小于等于18时,所述PAMAM树形分子与金属氧化物纳米颗粒 通过配位键结合后,将有利于所述金属氧化物纳米颗粒分散在极性溶剂中,从而改善金属氧化物纳米颗粒的成膜性能。
在一些实施方式中,所述金属氧化物纳米颗粒为功函数高、空穴迁移率高的金属氧化物。优选的,所述金属氧化物纳米颗粒选自NiO、V
2O
5、WO
3和MoO
3中的一种或多种,但不限于此。
进一步的,本公开还提供一种如图1所示正型结构量子点发光二极管的制备方法,其中,如图3所示,包括步骤:
S10、提供一阳极基板;
S20、在所述阳极基板上制备空穴传输层,其中,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基配位结合的金属氧化物纳米颗粒;
S30、在所述空穴传输层上制备量子点发光层;
S40、在所述量子点发光层上制备阴极,制得所述量子点发光二极管。
上述各层的制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于物理镀膜法或溶液法,其中溶液法包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法;物理镀膜法包括但不限于热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法中的一种或多种。
在一些实施方式中,所述空穴传输层材料的制备方法包括步骤:将金属氧化物纳米颗粒分散在有机溶剂中,生成金属氧化物纳米颗粒溶液;向所述金属氧化物纳米颗粒溶液中加入油胺,混合使所述油胺结合在所述金属氧化物纳米颗粒的表面;继续向所述金属氧化物纳米颗粒溶液中加入PAMAM树形分子,混合使所述PAMAM树形分子与结合在金属氧化物纳米颗粒表面的油胺发生配体交换反应,即制得所述空穴传输层材料。
本实施例中,所述金属氧化物纳米颗粒的粒径为5-20nm,在该范围内,所述金属氧化物纳米颗粒能够在非团聚状态下较好地分散在有机溶剂中,形成金属氧化物纳米颗粒溶液;若金属氧化物纳米颗粒的粒径大于20nm,则将导致PAMAM以悬浊的方式存 在有机溶剂中,从而降低了金属氧化物纳米颗粒的成膜性能。更优选的,所述有机溶剂为极性溶剂,作为举例,所述有机溶剂选自乙醇、丙醇和正丁醇中的一种或多种,但不限于此。
本实施例中,所述金属氧化物纳米颗粒溶液的浓度为10-50mg/ml。在该范围内,所述金属氧化物纳米颗粒在有机溶剂中不易团聚,可以获得较佳的分散效果,为后续配体交换反应提供最佳的接触面积;若所述金属氧化物纳米颗粒溶液的浓度过低(小于10mg/ml),则会引起金属氧化物纳米颗粒在溶剂中的分散度过大,从而引起配体的过量嫁接,最终影响空穴传输层性能;若氧化物浓度过高(大于50mg/ml),则容易形成团聚物,无法与配体形成良好的接触环境。
在一些实施方式中,向所述金属氧化物纳米颗粒溶液中加入油胺,混合使所述油胺结合在所述金属氧化物纳米颗粒的表面。当金属氧化物纳米颗粒溶液达到预定温度时,例如40-50℃,则少量的油胺可以以配体的形式附着在所述金属氧化物纳米颗粒表面,油胺作为一种常用的配体溶剂,其氨基除了可以与金属氧化物纳米颗粒较为稳固的结合在一起至外,还可以在加温的情况下提高金属氧化物纳米颗粒的分散性。更优选的,所述油胺在金属氧化物纳米颗粒溶液中的体积百分比为0.5-2%,在该浓度范围下,所述油胺可以在有机溶剂中较好地分散,且可以与金属氧化物纳米颗粒充分接触,并附着在其表面;若油胺的量过少(小于0.5%),则无法保证金属氧化物纳米颗粒被油胺充分结合包裹;若油胺过量(大于2%),则后期需要大幅度增加PAMAM树形分子的量才能够印发配体交换反应,不利于正向配体交换的平衡。
在一些实施方式中,按照油胺与PAMAM树形分子的摩尔质量比为1:5-1:20的比例继续向所述金属氧化物纳米颗粒溶液中加入PAMAM树形分子,混合并加温至60-70℃使所述PAMAM树形分子与结合在金属氧化物纳米颗粒表面的油胺发生配体交换反应,即制得所述空穴传输层材料。通过升高温度,可提高油胺和PAMAM树形分子的反应活性,以增加配体交换的动态反应速率,同时由于PAMAM树形分子的浓度远高于油胺,因此,所述PAMAM树形分子可将油胺替代下来并结合在金属氧化物纳米颗粒表面,制得空穴传输层材料。
在一些实施方式中,所述量子点发光层材料选自红光量子点、绿光量子点和蓝光量子点中的一种或多种。作为举例,所述量子点发光层材料选自CdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、GaAs、GaP、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、CuInS和CuInSe中的一种或多种。优选的,所述量子点发光层材料为核壳结构量子点和合金结构量子点中的至少一种。
在一些实施方式中,所述空穴传输层的厚度为10-100nm。优选的,所述空穴传输层的厚度为20-50nm。
本公开通过PAMAM树形分子的氨基官能团与金属氧化物纳米颗粒表面金属之间的配位键结合,可有效提高金属氧化物纳米颗粒的溶液分散性,从而解决金属氧化物纳米颗粒颗粒成膜后排布不均、颗粒间间隙较大以及颗粒间掺有较多两的溶剂等问题;同时所述PAMAM树形分子还可以以架桥方式连接成膜后的金属氧化物纳米颗粒颗粒,所述PAMAM树形分子上的碳支链可以与硫醇、羧酸等配体一样达到提高颗粒间电荷传输效率的效果。因此,本公开采用PAMAM树形分子以及与所述PAMAM树形分子上的氨基配位结合的金属氧化物纳米颗粒作为空穴传输层材料,不仅可提高空穴传输层的空穴传输效率,还可改善空穴传输层的成膜性能,进而提高量子点发光二极管的发光效率。
本公开还提供一种反型结构的QLED的制备方法,如图4所示,包括如下步骤:
S100、提供一阴极基板;
S200、在所述阴极基板上制备量子点发光层;
S300、在量子点发光层上制备空穴传输层,其中,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基配位结合的金属氧化物纳米颗粒;
S400、在空穴传输层上制备阳极,制得所述量子点发光二极管。
在本公开的一种实施方式中,所述阴极基板包括衬底、设置在衬底上的底电极,所述底电极为阴极;在本公开的又一种实施方式中,所述阴极基板可以包括衬底、层叠设置在衬底表面的底电极和电子注入层;在本公开的又一种实施方式中,所述阴极基板可以包括衬底、层叠设置在衬底表面的底电极、电子注入层和电子传输层;在本公开的还一种实施方式中,所述阳极基板可以包括衬底、层叠设置在衬底表面的底电极、层叠设 置在衬底表面的电子注入层、电子传输层和空穴阻挡层。
上述各层的制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于物理镀膜法或溶液法,其中溶液法包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法;物理镀膜法包括但不限于热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法中的一种或多种。
下面通过实施例对本公开量子点发光二极管及其制备方法进行详细说明:
实施例1
一种量子点发光二极管,如图5所示,其包括从下至上叠层设置的阳极衬底101、空穴传输层102、量子点发光层103、电子传输层104以及阴极105,其中,所述空穴传输层材料包括型号为CAS:155773-72-1的PAMAM树形分子以及与所述PAMAM树形分子的氨基配位结合纳米氧化镍。所述量子点发光二极管的制备方法包括步骤:
1)、空穴传输层材料的制备:选取粒径大小在200nm以下的纳米氧化镍粉末均匀分散在正丁醇中并以3000rpm/min的速率搅拌5分钟形成均匀的溶液(浓度为20mg/mL),随后在氩气氛围中升温到50℃,加入少量的油胺(每10mL溶液加入0.1mL的油胺),反应15分钟后,将温度升温到60摄氏度,按照油胺与PAMAM树形分子的摩尔比为1:10的比例向所述溶液中加入PAMAM树形分子,保温反应30分钟;随后将反应溶液温度降低至室温,用乙酸乙酯、乙醇、丙酮沉淀并清洗,随后重新分散于正丁醇,制备出PAMAM改性氧化镍(空穴传输层材料)丁醇溶液;
2)、量子点发光二极管的制备:
在阳极基板上沉积所述PAMAM改性氧化镍丁醇溶液,得到厚度为30nm的空穴传输层;
在所述空穴传输层上沉积量子点发光层;
在所述量子点发光层上沉积电子传输层;
在所述电子传输层上沉积阴极,制得所述量子点发光二极管。
实施例2
一种量子点发光二极管,如图2所示,其包括从下至上叠层设置的阳极衬底、空穴传输层、量子点发光层、电子传输层以及阴极,其中,所述空穴传输层材料包括型号为CAS:142986-44-5的PAMAM树形分子以及与所述PAMAM树形分子的氨基配位结合纳米氧化钼。所述量子点发光二极管的制备方法包括步骤:
1)、空穴传输层材料的制备:选取粒径大小在200nm以下的纳米氧化钼粉末均匀分散在乙醇中并以3000rpm/min的速率搅拌5分钟形成均匀的溶液(浓度为20mg/mL),随后在氩气氛围中升温到50℃,加入少量的油胺(每10mL溶液加入0.1mL的油胺),反应15分钟后,将温度升温到60摄氏度,按照油胺与PAMAM树形分子的摩尔比为1:15的比例向所述溶液中加入所述PAMAM树形分子,保温反应30分钟;随后将反应溶液温度降低至室温,用乙酸乙酯、乙醇、丙酮沉淀并清洗,随后重新分散于乙醇,制备出PAMAM改性氧化钼(空穴传输层材料)乙醇溶液;
2)、量子点发光二极管的制备:
在阳极基板上沉积所述PAMAM改性氧化钼乙醇溶液,得到厚度为50nm的空穴传输层;
在所述空穴传输层上沉积量子点发光层;
在所述量子点发光层上沉积电子传输层;
在所述电子传输层上沉积阴极,制得所述量子点发光二极管。
实施例3
一种量子点发光二极管,如图2所示,其包括从下至上叠层设置的阳极衬底、空穴传输层、量子点发光层、电子传输层以及阴极,其中,所述空穴传输层材料包括型号为CAS:155773-72-1的PAMAM树形分子以及与所述PAMAM树形分子的氨基配位结合纳米氧化钨。所述量子点发光二极管的制备方法包括步骤:
1)、空穴传输层材料的制备:选取粒径大小在200nm以下的纳米氧化钨粉末均匀分散在丙醇中并以3000rpm/min的速率搅拌5分钟形成均匀的溶液(浓度为20mg/mL),随后在氩气氛围中升温到50℃,加入少量的油胺(每10mL溶液加入0.1mL的油胺), 反应15分钟后,将温度升温到60摄氏度,按照油胺与PAMAM树形分子的摩尔比为1:15的比例向所述溶液中加入所述PAMAM树形分子,保温反应30分钟;随后将反应溶液温度降低至室温,用乙酸乙酯、乙醇、丙酮沉淀并清洗,随后重新分散于丙醇,制备出PAMAM改性氧化钨(空穴传输层材料)丙醇溶液;
2)、量子点发光二极管的制备:
在阳极基板上沉积所述PAMAM改性氧化钨丙醇溶液,得到厚度为100nm的空穴传输层;
在所述空穴传输层上沉积量子点发光层;
在所述量子点发光层上沉积电子传输层;
在所述电子传输层上沉积阴极,制得所述量子点发光二极管。
综上所述,本公开提供的量子点发光二极管包括空穴传输层,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基配位结合的金属氧化物纳米颗粒。PAMAM(聚酰胺-胺)树形分子是一种高度支化的树状化合物,其分子链呈不规则排列,且其链长、种类和构型多样,这使得其具有良好的增溶、破乳和稳定的作用,是优良的纳米级单分子表面活性剂,适合用于改进金属氧化物纳米颗粒在溶剂中的分散性,提高其成膜性能;进一步地,所述PAMAM树形分子拥有大量的氨基,在一定温度下可以与金属氧化物纳米颗粒的金属部分形成一个或多个配位键并牢固连接,这使得所述PAMAM树形分子可以以架桥方式连接成膜后的金属氧化物纳米颗粒颗粒,所述PAMAM树形分子上的碳支链可以与硫醇、羧酸等配体一样达到提高金属氧化物纳米颗粒相互之间电荷传输效率的效果。因此,本公开采用PAMAM树形分子以及与所述PAMAM树形分子上的氨基配位结合的金属氧化物纳米颗粒作为空穴传输层材料,不仅可提高空穴传输层的空穴传输效率,还可改善空穴传输层的成膜性能,进而提高量子点发光二极管的发光效率。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。
Claims (15)
- 一种量子点发光二极管,包括阴极、阳极以及设置在所述阴极和阳极之间的量子点发光层,所述阳极和量子点发光层之间还设置有空穴传输层,其特征在于,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒。
- 根据权利要求1所述的量子点发光二极管,其特征在于,所述PAMAM树形分子中的支链数量大于等于3且小于等于12,且每个支链的碳原子数量大于等于6且小于等于18。
- 根据权利要求1所述的量子点发光二极管,其特征在于,所述金属氧化物纳米颗粒包括NiO、V 2O 5、WO 3和MoO 3中的至少一种。
- 根据权利要求1所述的量子点发光二极管,其特征在于,所述金属氧化物纳米颗粒的粒径为5-20nm。
- 根据权利要求1所述的量子点发光二极管,其特征在于,所述空穴传输层的厚度为10-100nm。
- 根据权利要求1所述的量子点发光二极管,其特征在于,所述阴极和量子点发光层之间还设置有电子功能层。
- 根据权利要求6所述的量子点发光二极管,其特征在于,所述电子功能层包括电子注入层、电子传输层和空穴阻挡层中的至少一种。
- 一种量子点发光二极管的制备方法,其特征在于,包括步骤:提供一阳极基板,在所述阳极基板上制备空穴传输层,在所述空穴传输层上制备量子点发光层,在所述量子点发光层上制备阴极,制得所述量子点发光二极管;或者,提供一阴极基板,在所述阴极基板上制备量子点发光层,在所述量子点发光层上制备空穴传输层,在所述空穴传输层上制备阳极,制得所述量子点发光二极管;其中,所述空穴传输层材料包括PAMAM树形分子以及与所述PAMAM树形分子上的氨基结合的金属氧化物纳米颗粒。
- 根据权利要求8所述量子点发光二极管的制备方法,其特征在于,所述空穴传输层材料的制备方法包括步骤:将金属氧化物纳米颗粒分散在有机溶剂中,生成金属氧化物纳米颗粒溶液;向所述金属氧化物纳米颗粒溶液中加入油胺,混合使所述油胺结合在所述金属氧化物纳米颗粒的表面;向所述金属氧化物纳米颗粒溶液中加入PAMAM树形分子混合,使所述PAMAM树形分子与结合在金属氧化物纳米颗粒表面的油胺发生配体交换反应,制得所述空穴传输层材料。
- 根据权利要求9所述量子点发光二极管的制备方法,其特征在于,所述金属氧化物纳米颗粒的粒径为5-20nm。
- 根据权利要求9所述量子点发光二极管的制备方法,其特征在于,所述金属氧化物纳米颗粒溶液的浓度为10-50mg/ml。
- 根据权利要求9所述量子点发光二极管的制备方法,其特征在于,所述向所述金属氧化物纳米颗粒溶液中加入油胺之前,还包括步骤:将所述金属氧化物纳米颗粒溶液加热至40-50℃。
- 根据权利要求9所述量子点发光二极管的制备方法,其特征在于,所述油胺在金属氧化物纳米颗粒溶液中的体积百分比为0.5-2%。
- 根据权利要求9所述量子点发光二极管的制备方法,其特征在于,按照油胺与PAMAM树形分子的摩尔质量比为1:5-1:20的比例向所述金属氧化物纳米颗粒溶液中加入PAMAM树形分子。
- 根据权利要求14所述量子点发光二极管的制备方法,其特征在于,所述向所述金属氧化物纳米颗粒溶液中加入PAMAM树形分子之后,还包括步骤:将所述金属氧化物纳米颗粒溶液加温至60-70℃,使所述PAMAM树形分子与结合在金属氧化物纳米颗粒表面的油胺发生配体交换反应,制得所述空穴传输层材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811432326.6 | 2018-11-28 | ||
CN201811432326.6A CN111244293B (zh) | 2018-11-28 | 2018-11-28 | 一种量子点发光二极管及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020108073A1 true WO2020108073A1 (zh) | 2020-06-04 |
Family
ID=70853719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/108354 WO2020108073A1 (zh) | 2018-11-28 | 2019-09-27 | 一种量子点发光二极管及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111244293B (zh) |
WO (1) | WO2020108073A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115769387A (zh) * | 2020-10-28 | 2023-03-07 | 京东方科技集团股份有限公司 | 空穴传输材料、量子点发光器件及其制作方法、显示装置 |
WO2023083098A1 (zh) * | 2021-11-12 | 2023-05-19 | Tcl科技集团股份有限公司 | 一种发光二极管及其制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112876690B (zh) * | 2021-02-04 | 2022-04-22 | 四川大学 | 一种高强度自修复水性聚氨酯复合材料及其制备方法 |
JPWO2022190193A1 (zh) * | 2021-03-09 | 2022-09-15 | ||
CN114197015B (zh) * | 2021-12-10 | 2023-06-27 | 深圳市华星光电半导体显示技术有限公司 | 纳米粒子膜、纳米粒子膜的制造方法以及显示面板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102169964A (zh) * | 2010-01-20 | 2011-08-31 | 株式会社半导体能源研究所 | 发光装置、柔性发光装置、电子设备、照明装置、以及发光装置和柔性发光装置的制造方法 |
CN103354275A (zh) * | 2006-06-02 | 2013-10-16 | 株式会社半导体能源研究所 | 发光元件、发光器件以及电子器具 |
CN106257703A (zh) * | 2015-06-18 | 2016-12-28 | 潘才法 | 一种包含有金属纳米团簇的电致发光器件 |
CN107359264A (zh) * | 2017-08-03 | 2017-11-17 | 青岛海信电器股份有限公司 | 一种qled、制备方法及显示装置 |
CN107492587A (zh) * | 2017-08-10 | 2017-12-19 | 青岛海信电器股份有限公司 | 一种qled显示器件、制备方法及应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006134666A (ja) * | 2004-11-04 | 2006-05-25 | Dainippon Printing Co Ltd | 分散液、薄膜および有機エレクトロルミネッセンス素子 |
CN103275701B (zh) * | 2013-04-18 | 2014-10-29 | 暨南大学 | 一种树枝状分子修饰的荧光量子点及其制备方法和应用 |
-
2018
- 2018-11-28 CN CN201811432326.6A patent/CN111244293B/zh active Active
-
2019
- 2019-09-27 WO PCT/CN2019/108354 patent/WO2020108073A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103354275A (zh) * | 2006-06-02 | 2013-10-16 | 株式会社半导体能源研究所 | 发光元件、发光器件以及电子器具 |
CN102169964A (zh) * | 2010-01-20 | 2011-08-31 | 株式会社半导体能源研究所 | 发光装置、柔性发光装置、电子设备、照明装置、以及发光装置和柔性发光装置的制造方法 |
CN106257703A (zh) * | 2015-06-18 | 2016-12-28 | 潘才法 | 一种包含有金属纳米团簇的电致发光器件 |
CN107359264A (zh) * | 2017-08-03 | 2017-11-17 | 青岛海信电器股份有限公司 | 一种qled、制备方法及显示装置 |
CN107492587A (zh) * | 2017-08-10 | 2017-12-19 | 青岛海信电器股份有限公司 | 一种qled显示器件、制备方法及应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115769387A (zh) * | 2020-10-28 | 2023-03-07 | 京东方科技集团股份有限公司 | 空穴传输材料、量子点发光器件及其制作方法、显示装置 |
WO2023083098A1 (zh) * | 2021-11-12 | 2023-05-19 | Tcl科技集团股份有限公司 | 一种发光二极管及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111244293A (zh) | 2020-06-05 |
CN111244293B (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020108073A1 (zh) | 一种量子点发光二极管及其制备方法 | |
US20170352827A1 (en) | Quantum dot light emitting device including ligand-substituted quantum dot light emitting layer with polymer having amine groups and method for fabricating the same | |
CN107492587B (zh) | 一种qled显示器件、制备方法及应用 | |
CN109962179B (zh) | 一种薄膜及其制备方法与qled器件 | |
JP2021507541A (ja) | 電子輸送膜およびその調製方法と応用 | |
CN113903865B (zh) | 氧化锌纳米材料及其制备方法、发光器件 | |
WO2020108071A1 (zh) | 一种量子点发光二极管及其制备方法 | |
CN109980129B (zh) | 一种金属氧化物及其制备方法与qled器件 | |
WO2019010999A1 (zh) | 量子点及量子点的制备方法 | |
CN110970569B (zh) | 一种量子点发光二极管及其制备方法 | |
WO2022143676A1 (zh) | 一种复合材料及其制备方法、量子点发光二极管 | |
CN113817455B (zh) | 无机化合物复合材料、量子点发光二极管及其制备方法 | |
WO2018120514A1 (zh) | Qled器件及其制备方法 | |
CN113861960B (zh) | 量子点复合材料、量子点发光二极管及其及其制备方法 | |
CN111384249B (zh) | 复合材料及其制备方法和量子点发光二极管 | |
CN110752302B (zh) | 复合材料及其制备方法和量子点发光二极管 | |
CN113122241A (zh) | 量子点材料及其制备方法、量子点发光二极管和发光装置 | |
CN113831908A (zh) | 量子点材料及制备方法、量子点发光二极管及制备方法 | |
CN113046056B (zh) | 量子点材料及其制备方法、量子点发光二极管和发光装置 | |
WO2024120060A1 (zh) | 复合材料、发光器件及其制备方法 | |
CN114686209B (zh) | 复合材料、量子点发光二极管及其制备方法 | |
WO2024139488A1 (zh) | 一种复合材料及其制备方法、发光器件 | |
CN113823568B (zh) | 氧化锌薄膜及其制备方法、量子点发光二极管 | |
CN113120952B (zh) | 一种硫化锌纳米材料及其制备方法、硫化锌薄膜、量子点发光二极管 | |
WO2020108072A1 (zh) | 一种纳米金属氧化物及其制备方法、量子点发光二极管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19890685 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19890685 Country of ref document: EP Kind code of ref document: A1 |