WO2020108072A1 - 一种纳米金属氧化物及其制备方法、量子点发光二极管 - Google Patents

一种纳米金属氧化物及其制备方法、量子点发光二极管 Download PDF

Info

Publication number
WO2020108072A1
WO2020108072A1 PCT/CN2019/108338 CN2019108338W WO2020108072A1 WO 2020108072 A1 WO2020108072 A1 WO 2020108072A1 CN 2019108338 W CN2019108338 W CN 2019108338W WO 2020108072 A1 WO2020108072 A1 WO 2020108072A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
nano metal
composite material
quantum dot
pamam dendrimer
Prior art date
Application number
PCT/CN2019/108338
Other languages
English (en)
French (fr)
Inventor
程陆玲
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2020108072A1 publication Critical patent/WO2020108072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Definitions

  • the present disclosure relates to the field of metal oxide doping, in particular to a nano metal oxide, its preparation method, and quantum dot light-emitting diode.
  • Quantum dot light-emitting diode (QLED) device efficiency, life and other technical indicators are closely related to each functional layer in the device, where the electron transport layer affects the charge injection level of the device.
  • Metal oxide nanoparticles are the main materials used for quantum dot light-emitting diodes.
  • As an electron transport layer the electron mobility and energy band width of metal oxide nanoparticles are the key technologies that affect the device. Therefore, the preparation has appropriate electron mobility and energy. The metal oxide of the band width is more important.
  • the preparation of doped metal oxide nanoparticles can effectively change the electron mobility and energy band width of the metal oxide nanoparticles.
  • the main technical means for preparing the doped metal oxide nanoparticles is the gel sol method and uses The doping ions are mainly metal salt solutions.
  • the use of metal salt solutions as doping metal elements to prepare doped metal oxide nanoparticles can not achieve uniform doping well, which will cause more defects and affect the doped metal oxide The quality of nanoparticles, so the existing technology needs to be improved.
  • the purpose of the present disclosure is to provide a nano metal oxide and its preparation method, quantum dot light-emitting diode, aiming to solve the problem that the prior art can not achieve uniform doping when preparing nano metal oxide , Leading to the problems that the prepared nano metal oxide has many defects and poor quality.
  • a method for preparing nano metal oxide which comprises the steps of:
  • a composite material including PAMAM dendrimers and metal ions bound in the cavity of the PAMAM dendrimers;
  • the composite material is added to a nano metal oxide growth reaction system and mixed, and metal oxide crystal growth is performed to obtain the nano metal oxide.
  • a nano metal oxide which is prepared by the method of the present disclosure.
  • a quantum dot light-emitting diode includes a cathode, an anode, and a quantum dot light-emitting layer disposed between the cathode and the anode.
  • An electron transport layer is provided between the cathode and the quantum dot light-emitting layer.
  • the electron transport layer material is the nano metal oxide prepared by the preparation method of the present disclosure or the nano metal oxide described in the present disclosure.
  • the present disclosure provides a method for preparing a nano metal oxide by providing a composite material including PAMAM dendrimers and metal ions bound in the cavity of the PAMAM dendrimers; The composite material is added to the nano metal oxide growth reaction system and mixed, and the metal oxide crystal is grown to obtain the nano metal oxide.
  • the present disclosure can achieve uniform doping of metal ions into nano metal oxides to produce nano metal oxides with fewer defects and better quality. The uniform doping of the metal ions can effectively change the electrons of nano metal oxides Mobility and energy level width.
  • FIG. 1 is a flowchart of a preferred embodiment of a method for preparing a nano metal oxide according to the present disclosure.
  • the present disclosure provides a nano metal oxide, a preparation method thereof, and a quantum dot light emitting diode.
  • a nano metal oxide a preparation method thereof, and a quantum dot light emitting diode.
  • the present disclosure provides a flow chart of a preferred embodiment of a method for preparing a nano metal oxide. As shown in the figure, the method includes the following steps:
  • the method provided in this embodiment can achieve uniform doping of metal ions into nano metal oxides to produce nano metal oxides with fewer defects and better quality.
  • the uniform doping of the metal ions can effectively change the nano metal
  • the electron mobility and energy level width of the oxide is as follows:
  • the metal ions in the composite material are coordinately bonded to the N atoms in the PAMAM dendrimer cavity.
  • the metal ions can be ionized, but the ionization speed is relative to the metal salt Slower; and, in the nano metal oxide growth reaction system, the generated nano metal oxide is dispersed into the composite material, because the PAMAM dendrimer in the composite material has a larger viscosity, which is slowing down the nano metal oxide
  • the formation rate can also achieve the orderly and uniform doping of metal ions. Therefore, the composite material containing metal ions in the PAMAM dendritic molecular cavity can effectively achieve uniform doping when participating in the preparation of the nano metal oxide, thereby preparing a nano metal oxide with fewer defects and better quality.
  • the method for preparing the composite material includes the steps of: providing a PAMAM dendrimer; adding the PAMAM dendrimer to a metal ion solution, and mixing the N atoms in the PAMAM dendrimer cavity with The metal ions are coordinated and combined to obtain a composite material.
  • the PAMAM (polyamide-amine) dendrimer is obtained by reacting different molecular units A (ethylenediamine) and molecular units B (methyl acrylate), and the PAMAM dendrimer can be obtained by a divergent method Synthesis, the first step is the reaction of ethylenediamine and methyl acrylate to produce carboxylic acid ester. The second step is to react the obtained carboxylic acid ester with excess ethylenediamine. After the above two steps, the first generation of PAMAM can be prepared For dendrimers, repeat the above two steps to obtain higher algebraic PAMAM dendrimers.
  • the general formulas of molecular unit A and molecular unit B contained in PAMAM dendrimers of different algebras are: A(2 n +2 n-1 +...+2 n-3 )+B(2 n+1 +2 n + ....+2 n-1 ), where the value of n is 3-10; in addition, the general formula of the first generation PAMAM dendrimer containing molecular unit A and molecular unit B is A+4B, the second generation PAMAM dendrimer The general formula of the molecule containing molecular unit A and molecular unit B is 5A+8B.
  • the number of metal ions that can be combined by different generations of PAMAM dendrimers is different.
  • the main reason is that different generations of PAMAM dendrimers can coordinate metal ions.
  • the generation of PAMAM dendrimers is from the first generation to In the fourth generation, due to its low density of terminal functional groups (amine groups), it is not easy to be used as a carrier for adsorbing metal ions.
  • the PAMAM dendrimer is selected from the fifth generation PAMAM dendrimer (G5), the sixth generation PAMAM dendrimer (G6), the seventh generation PAMAM dendrimer (G7), and the eighth generation PAMAM One or more of dendrimer (G8), ninth generation PAMAM dendrimer (G9), tenth generation PAMAM dendrimer (G10), etc.
  • the algebra of the PAMAM dendrimer is G5-G10
  • the functional groups and functional groups can form a complete and The closed cavity, so the PAMAM dendrimers of the G5-G10 generation can be used as candidate materials for the coordination with metal ions.
  • the composite material prepared in this embodiment can Stable storage in polar solvents.
  • the polar solvent is selected from one of ethanol, water, or methanol.
  • the element of the metal ion is selected from one or more of Mg, Au, Cu, Li, Al, Cd, In, Cs, Ga, and Gd, but is not limited thereto.
  • the composite material is added to a nano metal oxide growth reaction system and mixed to ionize the metal ions from the composite material.
  • the ionized metal ions participate in the growth of the nano metal oxide to obtain
  • the steps of the nano metal oxide include: providing a nano metal oxide growth reaction system, the nano metal oxide growth reaction system includes a nano metal oxide precursor and an organic base; adding the composite material to the The nano metal oxide growth reaction system is mixed to cause the nano metal oxide precursor and an organic base to undergo a hydrolysis reaction to generate a nano metal oxide, and at the same time, the metal ions in the composite material are ionized and doped into the nano On the metal oxide, nano metal oxide is prepared.
  • the composite material can not only slowly release metal ions to participate in the preparation of nano metal oxides, and to obtain nanocrystals with better crystallization, but also do not introduce other unnecessary anions to affect the doping effect, so it is easier to obtain High-quality, defect-free nano metal oxide.
  • the conventional preparation method of the nano metal oxide includes a precipitation method, a sol-gel method, a microemulsion method, etc., which is mainly prepared by a sol-gel method.
  • the sol-gel method refers to: dissolving a metal salt (such as zinc acetate, etc.) in an organic solvent (such as ethanol), adjusting the pH value by an organic base and preparing the metal salt solution by hydrolysis to obtain the corresponding nano metal oxide Thing.
  • the composite material may be added to the nano metal oxide growth reaction system at any time point in the preparation of the nano metal oxide or in the intermediate process of the preparation according to requirements to achieve uniform doping of metal ions.
  • the nano metal oxide precursor is selected from one or more of zinc acetate, nickel acetate, tungsten acetate, titanium tetrachloride, tin acetate, zirconium acetate, and thallium acetate, but is not limited thereto .
  • the PAMAM dendrimer is selected from one or both of the fifth generation PAMAM dendrimer and the sixth generation PAMAM dendrimer. Because the rate of the metal ions in the composite material detaching from the PAMAM dendrimer becomes slower as the generation number of the PAMAM dendrimer increases, and the larger the generation, the greater the viscosity of the PAMAM dendrimer, the more effective it is to reduce the reaction nano
  • the metal oxide reaction rate on the premise of ensuring that the metal ions can be uniformly doped into the nano metal oxide, in order to improve the preparation efficiency of the nano metal oxide, the PAMAM dendrimer of the present disclosure is the fifth generation PAMAM dendrimer And one or two of the sixth generation PAMAM dendrimers.
  • the molar ratio of PAMAM dendrimers to nanometal oxide precursors is related to the generation of PAMAM dendrimers.
  • the composite material is added to the step of mixing the nano metal oxide growth reaction system.
  • the PAMAM dendrimer in the composite material is the fifth generation PAMAM dendrimer, the fifth generation PAMAM dendrimer and nano
  • the molar ratio of the metal oxide precursor is 0.1-0.5:1, and the composite material is added to the nano metal oxide growth reaction system and mixed.
  • the composite material is added according to the molar ratio of the sixth generation PAMAM dendrimer to the nano metal oxide precursor is 0.05-0.2:1 Mix in the nano metal oxide growth reaction system.
  • the composite material is added according to the molar ratio of the seventh generation PAMAM dendrimer to the nano metal oxide precursor is 0.02-0.1:1 Mix in the nano metal oxide growth reaction system.
  • the composite material is added according to the molar ratio of the eighth generation PAMAM dendrimer to the nano metal oxide precursor is 0.01-0.05:11 Mix in the nano metal oxide growth reaction system.
  • the composite material is added according to the molar ratio of the ninth generation PAMAM dendrimer to the nano-metal oxide precursor is 0.005-0.01:11 Mix in the nano metal oxide growth reaction system.
  • the composite material is added according to the molar ratio of the tenth generation PAMAM dendrimer to the nano metal oxide precursor is 0.001-0.005:1 Mix in the nano metal oxide growth reaction system.
  • the nano metal oxide is selected from one or more of ZnO, NiO, W 2 O 3 , Mo 2 O 3 , TiO 2 , SnO, ZrO 2 and Ta 2 O 3 , but not Limited to this.
  • the present disclosure also provides a nano metal oxide, which is prepared by the method of the present disclosure.
  • the present disclosure also provides a quantum dot light emitting diode, including an electron transport layer, wherein the electron transport layer is a nano metal oxide prepared by the preparation method of the present disclosure.
  • the nano metal oxide with fewer defects and better quality produced by the present disclosure is used as the electron of the quantum dot light emitting diode
  • the material of the transmission layer can adjust the electron mobility of the quantum dot light-emitting diode, so that the electron hole injection rate of the quantum dot light-emitting diode reaches a balance, thereby improving the luminous efficiency of the quantum dot light-emitting diode.
  • the quantum dot light emitting diode includes an anode, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a cathode that are stacked, wherein the electron transport layer material is a nanometer prepared by the preparation method of the present disclosure Metal oxide.
  • the present disclosure is not limited to the quantum dot light-emitting diode of the above structure, and may further include an interface function layer or an interface modification layer, including but not limited to an electron blocking layer, a hole blocking layer, an electrode modification layer, and an isolation protection layer One or more.
  • the quantum dot light emitting diode of the present disclosure may be partially encapsulated, fully encapsulated, or unencapsulated.
  • QLED quantum dot light-emitting diode
  • the QLED can be divided into a formal structure QLED and a trans structure QLED.
  • the QLED of the formal structure includes an anode (anode stack provided on the substrate), a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a cathode that are stacked from bottom to top ,
  • the electron transport layer material is a nano metal oxide prepared by the preparation method of the present disclosure.
  • the trans-structured QLED includes a cathode stacked from below to above (the cathode stack is disposed on the substrate), an electron transport layer, a quantum dot light emitting layer, and a hole transport layer And an anode, wherein the electron transport layer material is a nano metal oxide prepared by the preparation method of the present disclosure.
  • the material of the anode is selected from doped metal oxides; wherein, the doped metal oxides include but are not limited to indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), Antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), indium-doped zinc oxide (IZO), magnesium-doped zinc oxide (MZO), aluminum-doped magnesium oxide One or more of (AMO).
  • ITO indium-doped tin oxide
  • FTO fluorine-doped tin oxide
  • ATO Antimony-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • IZO indium-doped zinc oxide
  • MZO magnesium-doped zinc oxide
  • AMO aluminum-doped magnesium oxide
  • AMO aluminum-doped magnesium oxide
  • the material of the hole transport layer is selected from organic materials with good hole transport capabilities, such as but not limited to poly(9,9-dioctylfluorene-CO-N-(4- (Butylphenyl) diphenylamine) (TFB), polyvinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) ( Poly-TPD), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4',4”-tri(carb Azole-9-yl) triphenylamine (TCTA), 4,4'-bis(9-carbazole) biphenyl (CBP), N,N'-diphenyl-N,N'-bis(3-methyl Phenyl)-1,1'-biphenyl-4,4'
  • the material of the quantum dot light-emitting layer is selected from one or more of red quantum dots, green quantum dots, and blue quantum dots, and may also be selected from yellow light quantum dots.
  • the material of the quantum dot light emitting layer is selected from CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, ZnTe, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InSb, AlAs, AlP, CuInS , CuInSe, and one or more of various core-shell structure quantum dots or alloy structure quantum dots.
  • the quantum dots in the present disclosure may be selected from cadmium-containing or cadmium-free quantum dots.
  • the quantum dot light-emitting layer of the material has the characteristics of wide excitation spectrum and continuous distribution, and high stability of emission spectrum.
  • the material of the cathode is selected from one or more of conductive carbon materials, conductive metal oxide materials and metal materials; wherein the conductive carbon materials include but are not limited to doped or undoped carbon nanotubes , One or more of doped or undoped graphene, doped or undoped graphene oxide, C60, graphite, carbon fiber and porous carbon; conductive metal oxide materials include but are not limited to ITO, FTO, ATO And one or more of AZO; metal materials include, but are not limited to, Al, Ag, Cu, Mo, Au, or their alloys; wherein, among the metal materials, their morphologies include but are not limited to dense thin films, nanowires, One or more of nanospheres, nanorods, nanocones and hollow nanospheres.
  • the present disclosure also provides a method for preparing a QLED with a hole transport layer in a formal structure, including the following steps:
  • the electron transport layer material is a nano metal oxide prepared by the preparation method of the present disclosure
  • a cathode is prepared on the electron transport layer to obtain QLED.
  • the present disclosure also provides a method for preparing a QLED with a hole-transporting layer in a trans structure, which includes the following steps:
  • the electron transport layer material is a nano metal oxide prepared by the preparation method of the present disclosure
  • An anode was prepared on the hole transport layer to obtain QLED.
  • the preparation method of the above layers may be a chemical method or a physical method, wherein the chemical method includes but is not limited to one of chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodizing method, electrolytic deposition method, co-precipitation method or A variety of; physical methods include but are not limited to physical coating method or solution method, wherein the solution method includes but not limited to spin coating method, printing method, blade coating method, dipping method, dipping method, spraying method, roll coating method, casting Method, slot coating method, strip coating method; physical coating method includes but not limited to thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, One or more of atomic layer deposition and pulsed laser deposition.
  • the chemical method includes but is not limited to one of chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodizing method, electrolytic deposition method, co-pre
  • a quantum dot light-emitting diode which includes an anode substrate, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer, and a cathode stacked from bottom to top, wherein the material of the electron transport layer is Cu 2+ doped Nano zinc oxide.
  • the preparation method of the quantum dot light-emitting diode includes the following steps:
  • a 150 nm aluminum electrode is deposited on the electron transport layer through a mask plate by means of thermal steaming to produce the quantum dot light-emitting diode.
  • a quantum dot light emitting diode comprising an anode substrate, a hole transport layer, a quantum dot light emitting layer, an electron transport layer and a cathode, which are stacked from bottom to top, wherein the material of the electron transport layer is Ag ion-doped nano Nickel oxide.
  • the preparation method of the quantum dot light-emitting diode includes the following steps:
  • a 150 nm aluminum electrode is deposited on the electron transport layer through a mask plate by means of thermal steaming to produce the quantum dot light-emitting diode.
  • a quantum dot light-emitting diode which includes an anode substrate, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer, and a cathode that are stacked from bottom to top, wherein the material of the electron transport layer is Cu ion-doped nano Nickel oxide.
  • the preparation method of the quantum dot light-emitting diode includes the following steps:
  • the seventh generation PAMAM dendrimer aqueous solution (0.5 ⁇ 10 -3 mol/L) and Cu(NO 3 ) 2 aqueous solution (1.0 ⁇ 10 -2 mol/L) are added to the equipped stirring device In the reactor, stir at room temperature for 2h to prepare the seventh generation PAMAM dendrimer solution containing Cu 2+ (0.5 ⁇ 10 -4 mol/L) for use;
  • a 150 nm aluminum electrode is deposited on the electron transport layer through a mask plate by means of thermal steaming to produce the quantum dot light-emitting diode.
  • the present disclosure provides a method for preparing nano metal oxides by providing a composite material including PAMAM dendrimers and metal ions bound in the cavity of the PAMAM dendrimers;
  • the composite material is added to a nano metal oxide growth reaction system and mixed to ionize the metal ions from the composite material.
  • the ionized metal ions participate in the growth of the nano metal oxide to obtain the nano metal oxide.
  • the present disclosure can achieve uniform doping of metal ions into nano metal oxides to produce nano metal oxides with fewer defects and better quality.
  • the uniform doping of the metal ions can effectively change the electrons of nano metal oxides Mobility and energy level width.
  • the electron mobility of the quantum dot light emitting diode can be adjusted, so that the electron hole injection rate of the quantum dot light emitting diode is balanced, thereby improving the quantum Point luminous efficiency of light-emitting diodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种纳米金属氧化物及其制备方法、量子点发光二极管,其中,纳米金属氧化物的制备方法包括步骤:(S100)提供一种复合材料,所述复合材料包括PAMAM树形分子以及结合在所述PAMAM树形分子腔体内的金属离子;(S200)将所述复合材料加入到纳米金属氧化物生长反应体系中混合,得到所述纳米金属氧化物。该方法能够实现将金属离子均一地掺杂到纳米金属氧化物中,制得缺陷较少、质量较佳的纳米金属氧化物,将所述纳米金属氧化物作为量子点发光二极管的电子传输层材料,可以调节量子点发光二极管的电子迁移率,从而使其电子空穴注入速率达到平衡,进而提高其发光效率。

Description

一种纳米金属氧化物及其制备方法、量子点发光二极管 技术领域
本公开涉及金属氧化物掺杂领域,尤其涉及一种纳米金属氧化物及其制备方法、量子点发光二极管。
背景技术
量子点发光二极管(QLED)的器件效率、寿命等技术指标的高低都与器件中的每一个功能层有着密切联系,其中,电子传输层影响着器件的电荷注入水平。金属氧化物纳米颗粒是用于量子点发光二极管的主要材料,作为电子传输层,金属氧化物纳米颗粒的电子迁移率和能带宽度是影响器件的关键技术,因此制备具有合适电子迁移率和能带宽度的金属氧化物比较重要。
制备掺杂金属氧化物纳米颗粒,能够有效的改变金属氧化物纳米颗粒的电子迁移率和能带宽度,现有技术中制备掺杂金属氧化物纳米颗粒的主要技术手段是凝胶溶胶法并且采用的掺杂离子主要是金属盐溶液,利用金属盐溶液作为掺杂金属元素制备掺杂金属氧化物纳米颗粒不能够很好的实现均一掺杂,会造成较多的缺陷从而影响掺杂金属氧化物纳米颗粒的质量,因此现有技术有待改进。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种纳米金属氧化物及其制备方法、量子点发光二极管,旨在解决现有技术在制备纳米金属氧化物时,由于无法实现均一掺杂,导致制备的纳米金属氧化物缺陷较多、质量较差的问题。
本公开的技术方案如下:
一种纳米金属氧化物的制备方法,其中,包括步骤:
提供一种复合材料,所述复合材料包括PAMAM树形分子以及结合在所述PAMAM树形分子腔体内的金属离子;
将所述复合材料加入到纳米金属氧化物生长反应体系中混合,进行金属氧化物晶体生长得到所述纳米金属氧化物。
一种纳米金属氧化物,其中,采用本公开方法制备而成。
一种量子点发光二极管,包括阴极、阳极以及设置在所述阴极和所述阳极之间的量子点发光层,所述阴极和所述量子点发光层之间设置有电子传输层,其中,所述电子传输层材料为本公开制备方法制备的纳米金属氧化物或本公开所述的纳米金属氧化物。
有益效果:本公开提供一种纳米金属氧化物的制备方法,通过提供一种复合材料,所述复合材料包括PAMAM树形分子以及结合在所述PAMAM树形分子腔体内的金属离子;将所述复合材料加入到纳米金属氧化物生长反应体系中混合,进行金属氧化物晶体生长得到所述纳米金属氧化物。本公开能够实现将金属离子均一地掺杂到纳米金属氧化物中,制得缺陷较少、质量较佳的纳米金属氧化物,所述金属离子的均一掺杂能够有效改变纳米金属氧化物的电子迁移率和能级宽度。
附图说明
图1为本公开一种纳米金属氧化物的制备方法较佳实施例的流程图。
具体实施方式
本公开提供一种纳米金属氧化物及其制备方法、量子点发光二极管,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
请参阅图1,本公开提供一种纳米金属氧化物的制备方法较佳实施例的流程图,其中,如图所示,包括步骤:
S100、提供一种复合材料,所述复合材料包括PAMAM树形分子以及结合在所述PAMAM树形分子腔体内的金属离子;
S200、将所述复合材料加入到纳米金属氧化物生长反应体系中混合,使所述金属离子从复合材料中电离,电离后的金属离子参与金属氧化物的生长,得到所述纳米金属氧 化物。
本实施例提供的方法能够实现将金属离子均一地掺杂到纳米金属氧化物中,制得缺陷较少、质量较佳的纳米金属氧化物,所述金属离子的均一掺杂能够有效改变纳米金属氧化物的电子迁移率和能级宽度。实现上述效果的机理具体如下:
所述复合材料中的金属离子与PAMAM树形分子腔体内的N原子以配位键结合,所述复合材料在极性溶剂溶液环境中,金属离子能发生电离,但是其电离速度相对于金属盐较慢;并且,在纳米金属氧化物生长反应体系中,生成的纳米金属氧化物被分散到复合材料中,由于复合材料中的PAMAM树形分子具有较大的粘度,其在减缓纳米金属氧化物生成速率的同时也可以实现金属离子的有序、均一掺杂。因此利用PAMAM树形分子腔体中含有金属离子的复合材料参与纳米金属氧化物的制备时能够有效实现均一性掺杂,从而制得缺陷较少、质量较佳的纳米金属氧化物。
在一些实施方式中,所述复合材料的制备方法包括以下步骤:提供一种PAMAM树形分子;向金属离子溶液中加入所述PAMAM树形分子,混合使PAMAM树形分子腔体内的N原子与金属离子配位结合,得到复合材料。
本实施例中,所述PAMAM(聚酰胺-胺)树形分子是由不同的分子单元A(乙二胺)和分子单元B(丙烯酸甲酯)反应得到,所述PAMAM树形分子可由发散法合成,第一步由乙二胺和丙烯酸甲酯反应生成羧酸酯,第二步将得到的羧酸酯与过量的乙二胺反应,经过上述两步反应后即可制得第一代PAMAM树形分子,重复上述两步反应即可得到更高代数的PAMAM树形分子。不同代数的PAMAM树形分子所含有的分子单元A和分子单元B的通式为:A(2 n+2 n-1+…+2 n-3)+B(2 n+1+2 n+….+2 n-1),其中n的取值为3-10;另外,第一代PAMAM树形分子含有分子单元A和分子单元B的通式为A+4B,第二代PAMAM树形分子含有分子单元A和分子单元B的通式为5A+8B。
不同代数的PAMAM树形分子能够结合的金属离子的数量不同,其主要原因是不同代数的PAMAM树形分子能够配位金属离子的能力不同,当所述PAMAM树形分子的代数为第一代至第四代时,由于其末梢官能团(胺基)密集度较低,因此不易作为吸附金属离子的载体。
本实施例中,所述PAMAM树形分子选自第五代PAMAM树形分子(G5)、第六代PAMAM树形分子(G6)、第七代PAMAM树形分子(G7)、第八代PAMAM树形分子(G8)、第九代PAMAM树形分子(G9)和第十代PAMAM树形分子(G10)等中的一种或多种。当所述PAMAM树形分子的代数为G5-G10时,由于其外围具有较多的官能团(胺基)且具有电负性,所述官能团与官能团之间通过产生静电相互作用能够形成完整而又封闭的空腔,因此G5-G10代的PAMAM树形分子可以作为制备与金属离子配位结合的候选材料。
本实施例中,由于PAMAM树形分子为亲水性有机分子,且金属离子与所述PAMAM树形分子腔体内的N原子以配位键结合,因此,本实施例制备的所述复合材料能够稳定存放在极性溶剂中。在一些实施方式中,所述极性溶剂选自乙醇、水或甲醇中的一种。
在一些实施方式中,所述金属离子的元素选自Mg、Au、Cu、Li、Al、Cd、In、Cs、Ga和Gd中的一种或多种,但不限于此。
在一些实施方式中,所述将所述复合材料加入到纳米金属氧化物生长反应体系中混合,使所述金属离子从复合材料中电离,电离后的金属离子参与纳米金属氧化物的生长,得到所述纳米金属氧化物的步骤包括:提供一种纳米金属氧化物生长反应体系,所述纳米金属氧化物生长反应体系中包括纳米金属氧化物前驱体和有机碱;将所述复合材料加入到所述纳米金属氧化物生长反应体系中混合,使所述纳米金属氧化物前驱体与有机碱发生水解反应生成纳米金属氧化物,同时所述复合材料中的金属离子发生电离并掺杂到所述纳米金属氧化物上,制得纳米金属氧化物。
本实施例中,所述复合材料不仅能够缓慢释放金属离子参与纳米金属氧化物的制备,得到结晶较好的纳米晶,而且又不会引入其他不需要的阴离子影响掺杂效果,因此比较容易得到高质量的、无缺陷的纳米金属氧化物。
在一些实施方式中,所述纳米金属氧化物的常规制备方法包括沉淀法、溶胶凝胶法以及微乳液法等,其中主要是采用溶胶凝胶法制备得到。所述溶胶凝胶法是指:将金属盐(如醋酸锌等)溶解在有机溶剂中(如乙醇)中,通过有机碱调节pH值并使所述金属盐水解制备,得到相应的纳米金属氧化物。
在一些实施方式中,所述复合材料可根据需求在纳米金属氧化物的制备起点或制备中间过程任一时间点加入到纳米金属氧化物生长反应体系中,实现金属离子的均一掺杂。
在一些实施方式中,所述纳米金属氧化物前驱体选自醋酸锌、醋酸镍、醋酸钨、四氯化钛、醋酸锡、醋酸锆和醋酸铊中的一种或多种,但不限于此。
在一些实施方式中,所述PAMAM树形分子选自第五代PAMAM树形分子和第六代PAMAM树形分子中的一种或两种。由于所述复合材料中的金属离子脱离PAMAM树形分子的速率随着PAMAM树形分子的代数增加而变慢,且代数越大的PAMAM树形分子其粘度越大,越能有效的降低反应纳米金属氧化物反应速率,在保证金属离子能够均一掺杂到纳米金属氧化物中的前提下,为了提升纳米金属氧化物的制备效率,本公开所述PAMAM树形分子为第五代PAMAM树形分子和第六代PAMAM树形分子中的一种或两种。
在一些实施方式中,由于不同代数的PAMAM树形分子结合金属离子的量不同,因此PAMAM树形分子与纳米金属氧化物前躯体的摩尔比与PAMAM树形分子的代数有关。将所述复合材料加入到纳米金属氧化物生长反应体系混合的步骤中,当所述复合材料中的PAMAM树形分子为第五代PAMAM树形分子时,按第五代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.1-0.5:1,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。当复合材料中的PAMAM树形分子为第六代PAMAM树形分子时,按第六代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.05-0.2:1,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。当复合材料中的PAMAM树形分子为第七代PAMAM树形分子时,按第七代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.02-0.1:1,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。当复合材料中的PAMAM树形分子为第八代PAMAM树形分子时,按第八代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.01-0.05:11,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。当复合材料中的PAMAM树形分子为第九代PAMAM树形分子时,按第九代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.005-0.01:11,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。当 复合材料中的PAMAM树形分子为第十代PAMAM树形分子时,按第十代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.001-0.005:1,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。
在一些实施方式中,所述纳米金属氧化物选自ZnO、NiO、W 2O 3、Mo 2O 3、TiO 2、SnO、ZrO 2和Ta 2O 3中的一种或多种,但不限于此。
本公开还提供一种纳米金属氧化物,其中,采用本公开方法制备而成。
本公开还提供一种量子点发光二极管,包括电子传输层,其中,所述电子传输层为本公开制备方法制备的纳米金属氧化物。
由于金属离子的均一掺杂能够有效改变纳米金属氧化物的电子迁移率和能级宽度,因此,将本公开制得的缺陷较少、质量较佳的纳米金属氧化物作为量子点发光二极管的电子传输层材料,可以调节量子点发光二极管的电子迁移率,从而使量子点发光二极管的电子空穴注入速率达到平衡,进而提高量子点发光二极管的发光效率。
在一些实施方式中,所述量子点发光二极管包括层叠设置的阳极、空穴传输层、量子点发光层、电子传输层以及阴极,其中,所述电子传输层材料为本公开制备方法制备的纳米金属氧化物。
需说明的是,本公开不限于上述结构的量子点发光二极管,还可进一步包括界面功能层或界面修饰层,包括但不限于电子阻挡层、空穴阻挡层、电极修饰层、隔离保护层中的一种或多种。本公开所述量子点发光二极管可以部分封装、全封装或不封装。
下面对含空穴传输层的量子点发光二极管(QLED)结构及其制备方法作详细说明:
根据所述QLED发光类型的不同,所述QLED可以分为正式结构的QLED和反式结构的QLED。
在一些实施方式中,所述正式结构的QLED包括从下往上叠层设置的阳极(所述阳极叠层设置于衬底上)、空穴传输层、量子点发光层、电子传输层和阴极,其中,所述电子传输层材料为本公开制备方法制备的纳米金属氧化物。
在另一些实施方式中,所述反式结构的QLED包括从下往上叠层设置的阴极(所述阴极叠层设置于衬底上)、电子传输层、量子点发光层、空穴传输层和阳极,其中,所 述电子传输层材料为本公开制备方法制备的纳米金属氧化物。
在一些实施方式中,所述阳极的材料选自掺杂金属氧化物;其中,所述掺杂金属氧化物包括但不限于铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)、镓掺杂氧化锌(GZO)、铟掺杂氧化锌(IZO)、镁掺杂氧化锌(MZO)、铝掺杂氧化镁(AMO)中的一种或多种。
在一些实施方式中,所述空穴传输层的材料选自具有良好空穴传输能力的有机材料,例如可以为但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)、掺杂石墨烯、非掺杂石墨烯和C60中的一种或多种。
在一些实施方式中,所述量子点发光层的材料选自红量子点、绿量子点、蓝量子点中的一种或多种,也可选自黄光量子点。具体的,所述量子点发光层的材料选自CdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、GaAs、GaP、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、CuInS、CuInSe、以及各种核壳结构量子点或合金结构量子点中的一种或多种。本公开所述量子点可以选自含镉或者不含镉量子点。该材料的量子点发光层具有激发光谱宽并且连续分布,发射光谱稳定性高等特点。
在一些实施方式中,所述阴极的材料选自导电碳材料、导电金属氧化物材料和金属材料中的一种或多种;其中导电碳材料包括但不限于掺杂或非掺杂碳纳米管、掺杂或非掺杂石墨烯、掺杂或非掺杂氧化石墨烯、C60、石墨、碳纤维和多孔碳中的一种或多种;导电金属氧化物材料包括但不限于ITO、FTO、ATO和AZO中的一种或多种;金属材料包括但不限于Al、Ag、Cu、Mo、Au、或它们的合金;其中所述金属材料中,其形态包括但不限于致密薄膜、纳米线、纳米球、纳米棒、纳米锥和纳米空心球中的一种或多种。
本公开还提供一种正式结构的含空穴传输层的QLED的制备方法,包括如下步骤:
提供含阳极的衬底,在阳极上制备空穴传输层;
在空穴传输层上制备量子点发光层;
在量子点发光层上制备电子传输层,其中,所述电子传输层材料为本公开制备方法制备的纳米金属氧化物;
在电子传输层上制备阴极,得到QLED。
本公开还提供一种反式结构的含空穴传输层的QLED的制备方法,包括如下步骤:
提供含有阴极的衬底,在所述阴极上制备电子传输层,其中,所述电子传输层材料为本公开制备方法制备的纳米金属氧化物;
在电子传输层上制备量子点发光层;
在量子点发光层上制备空穴传输层;
在空穴传输层上制备阳极,得到QLED。
上述各层的制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于物理镀膜法或溶液法,其中溶液法包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法;物理镀膜法包括但不限于热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法中的一种或多种。
下面通过实施例对本公开量子点发光二极管及其制备方法进行详细说明:
实施例1
一种量子点发光二极管,其包括从下至上叠层设置的阳极衬底、空穴传输层、量子点发光层、电子传输层以及阴极,其中,所述电子传输层材料为Cu 2+掺杂纳米氧化锌。所述量子点发光二极管的制备方法包括步骤:
1)、复合材料的制备:将第十代PAMAM树形分子水溶液(0.5×10 -3mol/L)与Cu(NO 3) 2水溶液(1.0×10 -2mol/L)加入装有搅拌装置的反应器中,室温搅拌2h制备得到含有Cu 2+的PAMAM树形分子(G10)溶液(0.5×10 -4mol/L)备用;
2)、Cu 2+掺杂纳米氧化锌的制备:将0.5mol的水合醋酸锌分散在25ml的二甲基亚 砜中使其完全分散得到第一混合液;将0.55mol的四甲基氢氧化铵分散在30ml的乙醇中使其完全分散得到第二混合液;将第一混合液和第二混合液进行室温混合搅拌10min后,得到第三混合液;取1ml的含有Cu 2+的PAMAM树形分子(G10)溶液添加到所述第三混合液中进行搅拌,最后得到均一性掺杂Cu 2+的纳米氧化锌;
4)、量子点发光二极管的制备:
以4000rpm的转速在清洗干净的ITO玻璃片上旋涂PVK,旋涂60s后以150℃退火处理15min,制得空穴传输层;
以2000rpm的转速在空穴传输层上旋涂红色量子点CdSe/ZnS溶液,旋涂60s后制得量子点发光层;
以3000rpm的转速在量子点发光层上旋涂所述步骤2)中制得的Cu离子掺杂纳米氧化锌,旋涂60s后以120℃退火处理30min,制得电子传输层;
最后,在所述电子传输层上通过掩膜板采用热蒸的方式沉积150nm的铝电极,制得所述量子点发光二极管。
实施例2
一种量子点发光二极管,其包括从下至上叠层设置的阳极衬底、空穴传输层、量子点发光层、电子传输层以及阴极,其中,所述电子传输层材料为Ag离子掺杂纳米氧化镍。所述量子点发光二极管的制备方法包括步骤:
1)、复合材料的制备:将第六代PAMAM树形分子水溶液(1.0×10 -4mol/L)与AgNO 3水溶液(1.0×10 -2mol/L)加入装有搅拌装置的反应器中,室温搅拌2h制备得到含有Ag +的第六代PAMAM树形分子溶液备用;
2)、Ag离子掺杂纳米氧化镍的制备:将0.5mol的水合醋酸镍分散在25ml的二甲基亚砜中使其完全分散得到第一混合液;将0.55mol的四甲基氢氧化铵分散在30ml的乙醇中使其完全分散得到第二混合液;将第一混合液和第二混合液进行室温混合搅拌10min后,得到第三混合液;取1ml的含有Ag +的第六代PAMAM树形分子溶液添加到所述第三混合液中进行搅拌,最后得到均一性掺杂Ag +的纳米氧化镍;
3)、量子点发光二极管的制备:
以4000rpm的转速在清洗干净的ITO玻璃片上旋涂TFB,旋涂60s后以150℃退火处理15min,制得空穴传输层;
以2000rpm的转速在空穴传输层上旋涂红色量子点CdSe/ZnS溶液,旋涂60s后制得量子点发光层;
以3000rpm的转速在量子点发光层上旋涂所述步骤2)中制得的Ag离子掺杂纳米氧化镍,旋涂60s后以100℃退火处理40min,制得电子传输层;
最后,在所述电子传输层上通过掩膜板采用热蒸的方式沉积150nm的铝电极,制得所述量子点发光二极管。
实施例3
一种量子点发光二极管,其包括从下至上叠层设置的阳极衬底、空穴传输层、量子点发光层、电子传输层以及阴极,其中,所述电子传输层材料为Cu离子掺杂纳米氧化镍。所述量子点发光二极管的制备方法包括步骤:
1)、复合材料的制备:将第七代PAMAM树形分子水溶液(0.5×10 -3mol/L)与Cu(NO 3) 2水溶液(1.0×10 -2mol/L)加入装有搅拌装置的反应器中,室温搅拌2h制备得到含有Cu 2+的第七代PAMAM树形分子溶液(0.5×10 -4mol/L)备用;
2)、Cu离子掺杂纳米氧化镍的制备:将0.5mol的水合醋酸镍分散在25ml的二甲基亚砜中使其完全分散得到第一混合液;将0.55mol的四甲基氢氧化铵分散在30ml的乙醇中使其完全分散得到第二混合液;将第一混合液和第二混合液进行室温混合搅拌10min后,得到第三混合液;取1ml的含有Cu 2+的第七代PAMAM树形分子溶液添加到所述第三混合液中进行搅拌,最后得到均一性掺杂Cu 2+的纳米氧化镍;
3)、量子点发光二极管的制备:
以4000rpm的转速在清洗干净的ITO玻璃片上旋涂TFB,旋涂60s后以150℃退火处理15min,制得空穴传输层;
以2000rpm的转速在空穴传输层上旋涂红色量子点CdSe/ZnS溶液,旋涂60s后制得量子点发光层;
以3000rpm的转速在量子点发光层上旋涂所述步骤2)中制得的Cu离子掺杂纳米 氧化镍,旋涂60s后以100℃退火处理40min,制得电子传输层;
最后,在所述电子传输层上通过掩膜板采用热蒸的方式沉积150nm的铝电极,制得所述量子点发光二极管。
综上所述,本公开提供一种纳米金属氧化物的制备方法,通过提供一种复合材料,所述复合材料包括PAMAM树形分子以及结合在所述PAMAM树形分子腔体内的金属离子;将所述复合材料加入到纳米金属氧化物生长反应体系中混合,使所述金属离子从复合材料中电离,电离后的金属离子参与纳米金属氧化物的生长,得到所述纳米金属氧化物。本公开能够实现将金属离子均一地掺杂到纳米金属氧化物中,制得缺陷较少、质量较佳的纳米金属氧化物,所述金属离子的均一掺杂能够有效改变纳米金属氧化物的电子迁移率和能级宽度。进一步地,将所述纳米金属氧化物作为量子点发光二极管的电子传输层材料,可以调节量子点发光二极管的电子迁移率,从而使量子点发光二极管的电子空穴注入速率达到平衡,进而提高量子点发光二极管的发光效率。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (20)

  1. 一种纳米金属氧化物的制备方法,其特征在于,包括步骤:
    提供一种复合材料,所述复合材料包括PAMAM树形分子以及结合在所述PAMAM树形分子腔体内的金属离子;
    将所述复合材料加入到纳米金属氧化物生长反应体系中混合,进行金属氧化物晶体生长得到所述纳米金属氧化物。
  2. 根据权利要求1所述纳米金属氧化物的制备方法,其特征在于,将所述复合材料加入到纳米金属氧化物生长反应体系中混合,使所述金属离子从复合材料中电离,电离后的金属离子参与金属氧化物的晶体生长,得到所述纳米金属氧化物。
  3. 根据权利要求1-2任一所述纳米金属氧化物的制备方法,其特征在于,所述PAMAM树形分子选自第五代至第十代PAMAM树形分子中的一种或多种。
  4. 根据权利要求1-2任一所述纳米金属氧化物的制备方法,其特征在于,所述PAMAM树形分子选自第五代和第六代PAMAM树形分子中的一种或两种。
  5. 根据权利要求1-2任一所述纳米金属氧化物的制备方法,其特征在于,所述金属离子的元素类型选自Mg、Au、Cu、Li、Al、Cd、In、Cs、Ga和Gd中的一种或多种。
  6. 根据权利要求1所述纳米金属氧化物的制备方法,其特征在于,所述纳米金属氧化物生长反应体系包括纳米金属氧化物前驱体和有机碱。
  7. 根据权利要求6所述纳米金属氧化物的制备方法,其特征在于,所述纳米金属氧化物前驱体选自醋酸锌、醋酸镍、醋酸钨、四氯化钛、醋酸锡、醋酸锆和醋酸铊中的一种或多种。
  8. 根据权利要求3所述纳米金属氧化物的制备方法,其特征在于,当所述复合材料中的PAMAM树形分子为第五代PAMAM树形分子时,按第五代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.1-0.5:1,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。
  9. 根据权利要求3所述纳米金属氧化物的制备方法,其特征在于,当复合材料中的PAMAM树形分子为第六代PAMAM树形分子时,按第六代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.05-0.2:1,将所述复合材料加入到纳米金属氧化物生 长反应体系中混合。
  10. 根据权利要求3所述纳米金属氧化物的制备方法,其特征在于,当复合材料中的PAMAM树形分子为第七代PAMAM树形分子时,按第七代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.02-0.1:1,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。
  11. 根据权利要求3所述纳米金属氧化物的制备方法,其特征在于,当复合材料中的PAMAM树形分子为第八代PAMAM树形分子时,按第八代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.01-0.05:11,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。
  12. 根据权利要求3所述纳米金属氧化物的制备方法,其特征在于,当复合材料中的PAMAM树形分子为第九代PAMAM树形分子时,按第九代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.005-0.01:11,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。
  13. 根据权利要求3所述纳米金属氧化物的制备方法,其特征在于,当复合材料中的PAMAM树形分子为第十代PAMAM树形分子时,按第十代PAMAM树形分子与纳米金属氧化物前驱体的摩尔比为0.001-0.005:1,将所述复合材料加入到纳米金属氧化物生长反应体系中混合。
  14. 一种纳米金属氧化物,其特征在于,采用权利要求1-13任意一种方法制备而成。
  15. 一种量子点发光二极管,包括阴极、阳极以及设置在所述阴极和所述阳极之间的量子点发光层,所述阴极和所述量子点发光层之间设置有电子传输层,其特征在于,所述电子传输层材料为权利要求1-13任一所述制备方法制备的纳米金属氧化物或权利要求14所述的纳米金属氧化物。
  16. 根据权利要求15所述的量子点发光二极管,其特征在于,所述阳极和所述量子点发光层之间设置有空穴传输层。
  17. 根据权利要求16所述的量子点发光二极管,其特征在于,所述空穴传输层材 料选自TFB、PVK、Poly-TPD、PFB、TCTA、CBP、TPD、NPB、掺杂石墨烯、非掺杂石墨烯和C60中的一种或多种。
  18. 根据权利要求15所述的量子点发光二极管,其特征在于,所述阳极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO和AMO中的一种或多种。
  19. 根据权利要求15所述的量子点发光二极管,其特征在于,所述阴极的材料选自导电碳材料、导电金属氧化物材料和金属材料中的一种或多种。
  20. 根据权利要求15所述的量子点发光二极管,其特征在于,所述量子点发光层材料选自红量子点、绿量子点、蓝量子点中的一种或多种。
PCT/CN2019/108338 2018-11-28 2019-09-27 一种纳米金属氧化物及其制备方法、量子点发光二极管 WO2020108072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811432411.2A CN111244294B (zh) 2018-11-28 2018-11-28 一种纳米金属氧化物及其制备方法、量子点发光二极管
CN201811432411.2 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020108072A1 true WO2020108072A1 (zh) 2020-06-04

Family

ID=70853774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108338 WO2020108072A1 (zh) 2018-11-28 2019-09-27 一种纳米金属氧化物及其制备方法、量子点发光二极管

Country Status (2)

Country Link
CN (1) CN111244294B (zh)
WO (1) WO2020108072A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928563A (zh) * 2010-06-03 2010-12-29 福建师范大学 一种氧化钇基质纳米氧化物荧光粉制备方法
CN102559171A (zh) * 2011-09-26 2012-07-11 吉首大学 一种能在水溶液中稳定分散的氧化锌量子点的制备方法
CN102703057A (zh) * 2012-05-18 2012-10-03 北京工商大学 一种聚酰胺-胺树形分子包覆的ZnX半导体量子点在指纹显现中的应用
US20180085736A1 (en) * 2013-08-29 2018-03-29 John Norbert Kuhn Metal chelating composites, methods of using composites, and methods of making composites

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258896B1 (en) * 1998-12-18 2001-07-10 3M Innovative Properties Company Dendritic polymer dispersants for hydrophobic particles in water-based systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928563A (zh) * 2010-06-03 2010-12-29 福建师范大学 一种氧化钇基质纳米氧化物荧光粉制备方法
CN102559171A (zh) * 2011-09-26 2012-07-11 吉首大学 一种能在水溶液中稳定分散的氧化锌量子点的制备方法
CN102703057A (zh) * 2012-05-18 2012-10-03 北京工商大学 一种聚酰胺-胺树形分子包覆的ZnX半导体量子点在指纹显现中的应用
US20180085736A1 (en) * 2013-08-29 2018-03-29 John Norbert Kuhn Metal chelating composites, methods of using composites, and methods of making composites

Also Published As

Publication number Publication date
CN111244294B (zh) 2021-05-18
CN111244294A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN109980097B (zh) 一种薄膜的制备方法与qled器件
WO2019128992A1 (zh) 电子传输薄膜及其制备方法和应用
CN111384273B (zh) 一种量子点发光二极管及其制备方法
CN109962179B (zh) 一种薄膜及其制备方法与qled器件
US11355725B2 (en) Composite thin film and formation method and application thereof
WO2020108071A1 (zh) 一种量子点发光二极管及其制备方法
CN109980126B (zh) 载流子传输材料、载流子传输薄膜及其制备方法和应用
WO2019128993A1 (zh) 空穴传输材料及其制备方法和应用
CN109935733B (zh) 一种n型ZnO薄膜及其制备方法与QLED器件
CN113948647A (zh) 一种纳米材料及其制备方法与量子点发光二极管
WO2020108072A1 (zh) 一种纳米金属氧化物及其制备方法、量子点发光二极管
WO2020108069A1 (zh) 一种纳米金属氧化物及其制备方法、量子点发光二极管
CN111244297B (zh) 一种量子点发光二极管及其制备方法
CN111384245B (zh) 复合材料及其制备方法和量子点发光二极管
CN114695696A (zh) 复合电子传输材料及其制备方法和发光二极管
CN113120949A (zh) 一种氧化锌纳米材料及其制备方法、薄膜及光电器件
WO2020108087A1 (zh) 一种量子点发光二极管及其制备方法
CN110963535A (zh) 复合材料及其制备方法和量子点发光二极管
CN110943171A (zh) 一种量子点发光二极管及其制备方法
CN115394943A (zh) 氢化氧化锌纳米材料及其制备方法、薄膜以及光电器件
CN112320838B (zh) 纳米材料及其制备方法和应用
CN112397658B (zh) 一种复合材料及其制备方法与量子点发光二极管
US20240099043A1 (en) Qled and preparation method thereof
CN111341921B (zh) 复合材料及其制备方法和量子点发光二极管
CN115188902A (zh) 一种纳米材料及其制备方法与量子点发光二极管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890025

Country of ref document: EP

Kind code of ref document: A1