WO2019128993A1 - 空穴传输材料及其制备方法和应用 - Google Patents

空穴传输材料及其制备方法和应用 Download PDF

Info

Publication number
WO2019128993A1
WO2019128993A1 PCT/CN2018/123506 CN2018123506W WO2019128993A1 WO 2019128993 A1 WO2019128993 A1 WO 2019128993A1 CN 2018123506 W CN2018123506 W CN 2018123506W WO 2019128993 A1 WO2019128993 A1 WO 2019128993A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
metal ion
hole transporting
nickel oxide
transporting material
Prior art date
Application number
PCT/CN2018/123506
Other languages
English (en)
French (fr)
Inventor
吴龙佳
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Publication of WO2019128993A1 publication Critical patent/WO2019128993A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of display, and in particular relates to a hole transporting material and a preparation method and application thereof.
  • QLEDs quantum dot light-emitting diodes
  • organic polymer materials such as PEDOT:PSS, TFB, etc.
  • hole transport layers due to their high work function, high transmittance, good film formation and good electrical conductivity.
  • quantum dot light-emitting diode devices using organic polymer materials as hole transport layers must undergo a strict and expensive packaging process to isolate water and oxygen. Even so, the instability of organic polymer materials can have a very adverse effect on the working life of quantum dot light-emitting diode devices.
  • transition metal oxides with good chemical stability such as molybdenum oxide, tungsten oxide, vanadium pentoxide, nickel oxide, etc.
  • nickel oxide materials stand out from a wide variety of transition metal oxides and become a popular candidate for hole transport layers.
  • the biggest difference and difference between nickel oxide materials and other transition metal oxides is that nickel oxide is a p-type semiconductor material.
  • This feature makes the nickel oxide material have both the functions of hole transport and hole block, which greatly simplifies the structure of the quantum dot light emitting diode device.
  • the deeper valence band energy level and the quantum dot luminescent layer have better energy level matching relationship, which significantly reduces the injection barrier of holes from the anode to the quantum dot luminescent layer, and its excellent optical transmission. Both the pass and good chemical stability make the nickel oxide material completely replace the organic polymer material as the hole transport layer of QLED.
  • the nano-nickel oxide hole transport layer prepared by depositing the nickel oxide colloid solution has a near-room temperature annealing temperature, a simple manufacturing process, and a low manufacturing cost.
  • the nano-nickel oxide material brings excellent performance to quantum dot light-emitting diodes, and the problems caused by the material's own characteristics are gradually exposed, which hinders nano-oxidation.
  • the nickel material is a further enhancement of the performance of the quantum dot light emitting diode device of the hole transport layer. Specifically, on the one hand, since the particle diameter of the synthesized nickel oxide nanoparticles is generally close to or less than 5 nm, the nickel oxide nanoparticles have a very large specific surface area.
  • the resulting large surface makes the nickel oxide nanoparticles very unstable, and the synthesis of nickel oxide nanoparticles needs to be carried out at a higher temperature (about 300 ° C), so that the generated nickel oxide nanoparticles are at the synthesis temperature.
  • the lower part is prone to agglomeration to reduce the influence of surface energy.
  • it is bound to have a devastating effect on the film formation uniformity of the nickel oxide colloidal solution and the performance of the QLED device using the nano-nickel oxide hole transport layer.
  • the effects of surface defects on nanomaterials cannot be ignored.
  • the surface of the material has a very large number of defects compared to the bulk of the material, which is the accumulation of defects (eg, vacancies, interstitial atoms, etc.).
  • defects eg, vacancies, interstitial atoms, etc.
  • surface defects as a non-composite radiation center will have a significant quenching effect on excitons. Since the nano-nickel oxide material has a very large specific surface area, the defect quenching effect of the surface of the nano-nickel oxide becomes more and more obvious, and the luminous efficiency of the quantum dot light-emitting diode device is greatly reduced.
  • the invention provides a hole transporting material and a preparation method thereof, a hole transporting film and a light emitting diode device comprising the above hole transporting material, and aims to solve the hole transporting layer composed of the existing nanometer nickel oxide material,
  • the film layer has poor uniformity and the problem that the nano-nickel oxide surface defects cause quenching of excitons.
  • the embodiment of the present invention is achieved by the first aspect, and provides a hole transporting material, wherein the hole transporting material is a nano-nickel oxide material containing doped metal ions, wherein the price of the doped metal ion
  • the state is not positive divalent, and the ion radius of the doped metal ion is 130%-200% of the radius of Ni 2+ .
  • a method of preparing a hole transporting material comprising the steps of:
  • the radius is 130%-200% of the radius of Ni 2+ ;
  • the hydroxide mixture is subjected to a calcination treatment under oxygen protection to prepare a nano-nickel oxide material.
  • a light emitting diode device comprising a hole transporting material, wherein the hole transporting material is a nano-nickel oxide material containing doped metal ions, wherein the doped metal ion
  • the valence state is not positive divalent, and the ionic radius of the doped metal ion is 130%-200% of the radius of Ni 2+ ;
  • a method of preparing the hole transporting material comprising the steps of:
  • the radius is 130%-200% of the radius of Ni 2+ ;
  • the hydroxide mixture is subjected to a calcination treatment under oxygen protection to prepare a nano-nickel oxide material.
  • the hole transporting material provided by the present invention is doped with a nano-nickel oxide material using an unequal metal ion having a larger ionic radius.
  • the nano-nickel oxide material can significantly improve the stability of the nickel oxide nanoparticles by doping the metal ions on the surface of the nano-nickel oxide material, and improve the uniformity of the nano-nickel oxide hole transport layer after film formation, further
  • a light emitting diode device such as a QLED (Quantum Dot Light Emitting Diode) device
  • the device performance of a light emitting diode device such as a QLED device can be optimized.
  • this doping method greatly reduces the surface defects of the nano-nickel oxide material, thereby reducing the surface defects of the material to excitons.
  • the quenching action improves the overall luminous efficiency and device performance of a light emitting diode such as a QLED device using the above hole transporting film.
  • the doping metal ion of the present invention has a wide selectivity, as long as the valence state of the doped metal ion is different from the valence state of Ni 2+ and the ion radius of the doped metal ion is significantly larger than that of the Ni 2+ ion. The radius is sufficient, so that it can be targeted according to the specific requirements of the hole transport film in practical applications, and has strong applicability and practicability.
  • the method for preparing a hole transporting material only needs to react the nickel salt, a metal salt containing a metal ion doped, and a mixed solution of a base to prepare a hydroxide-containing mixture, and then calcination.
  • the method is very simple, low in cost, easy to operate, low in equipment requirements, and reproducible, and the prepared colloidal solution formed by doping nickel oxide has good monodispersity and stability.
  • the light-emitting diode provided by the present invention contains the above hole transporting material, the luminous efficiency and device performance of the device can be remarkably improved.
  • the light-emitting diode using the doped nickel oxide hole transporting material does not need to be insulated from water and oxygen, and the finally obtained light-emitting diode device can have good device stability even without strict and complicated packaging process, and the manufacturing cost is greatly reduced.
  • FIG. 1 is a schematic view showing a surface enrichment phenomenon of a doped metal according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for preparing a hole transporting material according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a light emitting diode device according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • An embodiment of the present invention provides a hole transporting material, wherein the hole transporting material is a nano-nickel oxide material containing a doped metal ion, wherein a valence state of the doped metal ion is not a positive divalent, and the The ionic radius of the doped metal ions is 130%-200% of the radius of Ni 2+ .
  • the first doping structure is: doping metal ions into the crystal structure of the host material, occupying a site of the host metal ions to form a solid solution.
  • the second doping structure is that the doped metal ions are precipitated from the host material in the form of impurities, and a uniform structure cannot be formed.
  • the third doping structure is that the doped metal ions are focused on the surface region of the metal oxide host material to constitute a surface enrichment phenomenon. Surface enrichment refers to the metal oxide system doped with metal ions.
  • the doped metal ions accumulate in the surface region of the metal oxide, resulting in the concentration of metal ions in the surface region of the metal oxide is higher than that in the bulk phase of the metal oxide. The phenomenon.
  • the doped metal ions enter the surface region of the metal oxide host material, occupying the defect position mainly composed of the main metal ion vacancies, and maintaining the host material. Crystal structure. That is to say, for the metal oxide host material in which the doping ion surface enrichment phenomenon occurs, the entire host material includes only a single crystal phase including the surface region, and there is no crystal phase structure other than the metal oxide host material. The second phase. Thereby, the uniformity of the overall material properties can be ensured. At the same time, when surface enrichment occurs, the surface properties of the material are bound to change significantly.
  • the surface enrichment phenomenon of doped metal ions can significantly reduce the surface energy of the metal oxide host material, thereby significantly enhancing the stability of the metal oxide host material, especially with a large ratio.
  • the stability of the surface area of the nano metal oxide host material since the doped metal ions enriched on the surface occupy a large amount of defects on the surface of the metal oxide host material, the defects are passivated, so that the metal oxide host material The concentration of defects on the surface is greatly reduced.
  • the nano-nickel oxide material is doped by selecting a suitable doping metal ion, so that the surface enrichment phenomenon occurs on the surface of the nano-nickel oxide particles, that is, the hole transporting material in the embodiment of the present invention is Surface-enriched nano-nickel oxide material of the metal ion, thereby significantly improving the stability of the nickel oxide nano-particle, avoiding the uniformity of the nano-particle agglomeration on the nano-nickel oxide hole transport layer film and the destruction of the performance of the light-emitting diode device such as the QLED device.
  • the surface defect concentration of the nano-nickel oxide material is significantly reduced, and the quenching effect of the surface defects of the nano-nickel oxide material on the excitons is reduced, thereby improving the luminous efficiency of the light-emitting diode such as the QLED device.
  • the nano-nickel oxide material is doped with an unequal metal ion having a larger ionic radius.
  • the nano-nickel oxide material is capable of significantly increasing nickel oxide nanoparticles by doping metal ions on the surface of the nano-nickel oxide material, that is, the hole-transporting material is a nano-nickel oxide material having a surface-enriched metal ion.
  • the stability improves the uniformity of the nano-nickel oxide hole transport layer after film formation, and further optimizes the device of the light-emitting diode device such as the QLED device when used as a light-emitting diode device such as a QLED (quantum dot light-emitting diode) device.
  • this doping method greatly reduces the surface defects of the nano-nickel oxide material, thereby reducing the surface defects of the material to excitons.
  • the quenching action improves the overall luminous efficiency and device performance of a light emitting diode such as a QLED device using the above hole transporting film.
  • the metal ion doped in the embodiment of the invention has a wide selectivity, as long as the valence state of the doped metal ion is different from the valence state of Ni 2+ and the ion radius of the doped metal ion is significantly larger than Ni 2+ .
  • the ionic radius is sufficient, and therefore, it can be selectively selected according to the specific requirements of the hole transport film in practical applications, and has strong applicability and practicability.
  • the selection of the doping metal ions satisfies two requirements.
  • the valence state of the doped metal ion is not positive divalent, that is, the valence state of the doped metal ion is different from the valence state of Ni 2+ .
  • the presence of a large number of defects on the surface of the nano-nickel oxide material makes it not electrically neutral, but locally accumulates a certain charge.
  • the unequal doping of the metal ions causes a large number of free holes or holes, and the free holes or holes generated tend to It is enriched on the surface of the nanomaterial to neutralize the surface charge, thereby promoting the doping of metal ions on the surface of the nano-nickel oxide.
  • the ionic radius of the doped metal ion is significantly larger than the ionic radius of Ni 2+ . Specifically, the ionic radius of the doped metal ion is 130%-200% of the radius of Ni 2+ , that is, the doping.
  • the radius of the metal ions needs to be more than 30% of the radius of the nickel ion and not more than twice the radius of the Ni 2+ .
  • the resulting severe kinetic instability causes the doped metal ions to concentrate on the surface of the nano-nickel oxide, occupying the defect sites dominated by nickel ion vacancies, rather than entering the interior of the crystal structure to replace the nickel ion sites, thereby
  • the crystal phase structure of the nano-nickel oxide of the host material is ensured, thereby ensuring the uniformity of material properties.
  • the doped metal ion When the ionic radius of the doped metal ion is close to the ionic radius of Ni 2+ , the doped metal ion can easily enter the crystal structure of the nickel oxide material, replacing the Ni 2+ site to form a solid solution, affecting the original Electrical properties of nano-nickel oxide.
  • the radius of the doped metal ions reaches twice or more of the Ni 2+ ion radius, the excessively doped metal ions hardly enter the nickel ion vacancies on the surface of the nickel oxide material, but directly oxidize in the form of the second phase. The surface of the nickel material precipitates, causing severe damage to the electrical conductivity of the nano-nickel oxide hole transport layer.
  • the dopant metal ions satisfy: to the decomposition temperature of nickel hydroxide is T 0 meter, doping is the decomposition temperature of the metal hydroxide ions T 0 ⁇ 80 °C. At this time, the decomposition temperature of the metal ion doped hydroxide is close to the decomposition temperature of the nickel hydroxide, and the doped nickel oxide nanoparticles can be successfully synthesized by the coprecipitation method. If the decomposition temperature of nickel hydroxide and the selected doping metal ion hydroxide differs greatly, it is bound to cause a hydroxide to be largely decomposed or even decomposed before the other hydroxide begins to decompose during the actual calcination process. It is difficult for the final product to form uniform doped nickel oxide nanoparticles.
  • the doped metal ion is a rare earth metal ion, and the rare earth metal ion can satisfy the above two conditions as a doping material, and has a good surface enrichment phenomenon for the nano-nickel oxide host material.
  • the doping metal ion is at least one selected from the group consisting of La 3+ , Y 3+ , Nd 3+ , Gd 3+ , and Sm 3+ .
  • the hole transport material is prepared using the preferred doped metal ions, and the doping ions can be successfully concentrated on the surface region of the nano-nickel oxide material.
  • the difference in ionic radius of La 3+ , Y 3+ , Nd 3+ , Gd 3+ , Sm 3+ and nickel ions is as shown in Table 1 below, and the calculation formula of the ionic radius difference is:
  • r represents a radius
  • Mn + represents a doped metal ion
  • a hydroxide decomposition temperature of La 3+ , Y 3+ , Nd 3+ conforms to the above rule, specifically, La 3 Table 2 shows the hydroxide decomposition temperatures of + , Y 3+ , Nd 3+ , Gd 3+ , and Sm 3+ and the decomposition temperatures of nickel hydroxide.
  • the doping molar concentration of the metal ions is determined, and the doping molar concentration of the metal ions also affects the surface enrichment phenomenon of the doping ions.
  • the defect sites such as the bulk metal ion vacancies in the surface region of the material are relatively limited.
  • the larger the ionic radius of the doped metal ions the less the defect positions such as the host metal ion vacancies that can be occupied in the surface region of the host material, and the molar concentration that can be used for doping without generating the second phase. The lower it is.
  • the amount of doped metal ions is extremely small, since the amount of doping ions does not cause significant lattice distortion, the doped metal ions can still enter the bulk phase of the nickel oxide material to form a solid solution. Without enrichment of doped metal ions on the surface of the nickel oxide material. Therefore, control of the molar concentration of doped metal ions is important.
  • the doping metal ions account for less than 13% of the total molar concentration of metal elements in the hole transporting material, but specifically, it is determined by the type of doping metal ions. More preferably, the doping metal ion accounts for 0.1% to 13% of the total molar concentration of the metal element in the hole transporting material.
  • the doping molar concentration of the doping metal ions When the doping molar concentration of the doping metal ions is too low, a part of the doped metal ions may enter the bulk phase of the nickel oxide nanoparticles to form a solid solution, and the amount and body of the doped metal ions in the surface region at this time The number of phases is relatively close, which is not conducive to the formation of doping ion surface enrichment phenomenon; when the doping molar concentration of the doping metal ions is too high, the doped metal ions enter the nickel oxide nanoparticle body phase The severe lattice distortion produced will cause the newly added excess doped metal ions to be concentrated on the surface of the nickel oxide nanoparticles. The doping of metal ions on the surface of the nickel oxide material will precipitate in the form of the second phase, which seriously affects the nickel oxide. The electrical properties of the material.
  • the embodiment of the invention only needs to dope a metal ion to realize the two functions of improving the conductivity of the nickel oxide hole transporting material and improving the luminous efficiency of the quantum dot light emitting diode device, and the doping effect is very good.
  • the hole transporting film as a nano-nickel oxide hole transporting film containing a doping metal ion as an example, and specifically,
  • the doping molar concentration of the La 3+ is 0.01% to 8%.
  • the molar ratio of the number of moles of the doping concentration of La 3+ in the range the number of moles of nickel oxide La 3+ nanoparticle surface area and La 3+ in the nickel oxide nanoparticles in the bulk phase is 1: 1 ⁇ 40:1. More preferably, the doping molar concentration of the La 3+ is 0.1% to 8%.
  • the molar number of La 3+ in the surface region of the nickel oxide nanoparticles is The ratio of the number of moles of La 3+ in the body phase of the nickel oxide nanoparticles is 4:1 to 40:1, that is, the ratio of the number of La 3+ in the surface region to the number in the bulk phase is 4:1 to 40:1,
  • the surface enrichment phenomenon of the doped ions can be formed. Within this range, the higher the content of the doped metal ions, the more obvious the surface enrichment phenomenon.
  • the doping molar concentration of the Y 3+ is 0.01% to 13%.
  • the molar concentration of the dopant in the range of Y 3+, Y 3+ molar ratio of the number of moles of nickel oxide nanoparticles in the surface region of Y 3+ and nickel oxide nanoparticles in the bulk phase is: 1: 4 ⁇ 50:1.
  • the doping molar concentration of the Y 3+ is 0.2% to 13%, and when the doping molar concentration of Y 3+ is in this range, the molar number of Y 3+ in the surface region of the nickel oxide nanoparticles is The ratio of the number of moles of Y 3+ in the bulk phase of the nickel oxide nanoparticles is 2:1 to 50:1, that is, the ratio of the number of Y 3+ in the surface region to the number in the bulk phase is 2:1 to 50:1,
  • the surface enrichment phenomenon of the doped ions can be formed. Within this range, the higher the content of the doped metal ions, the more obvious the surface enrichment phenomenon.
  • the doping molar concentration of the Nd 3+ is 0.01% to 10%.
  • Nd molar ratio of the number of moles of the doping concentration at this range, the number of moles of Nd Nd 3+ nickel oxide nanoparticle surface area of the nickel oxide nanoparticles 3+ 3+ bulk phase is 1: 2 to 40 :1. More preferably, the doping molar concentration of the Nd 3+ is 0.1% to 10%.
  • Nd 3+ moles of nickel oxide nanoparticle surface area ratio of moles of Nd 3+ in the nickel oxide nanoparticles in the bulk phase is 3: 1 40:1, that is, the ratio of the number of Nd 3+ in the surface region to the number in the bulk phase is 3:1 to 40:1, which can form a surface enrichment phenomenon of doping ions, in which metal ions are doped
  • the hole transporting material provided by the embodiment of the present invention can be obtained by the following method.
  • an embodiment of the present invention provides a method for preparing a hole transporting material, which includes the following steps:
  • the hydroxide mixture is subjected to calcination treatment under oxygen protection to prepare a nano-nickel oxide material.
  • the method for preparing a hole transporting material provided by the embodiment of the invention only needs to react the nickel salt, the metal salt containing the doped metal ion, and the alkali to prepare a mixture containing the hydroxide, and then calcining the mixture. .
  • the method is very simple, low in cost, easy to operate, low in equipment requirements, and reproducible, and the prepared colloidal solution formed by doping nickel oxide has good monodispersity and stability.
  • the mixed solution of the nickel salt, the metal salt containing the doped metal ion, and the alkali is formed by dissolving a nickel salt, a metal salt containing a doped metal ion, and an alkali in a solvent.
  • the nickel salt is used as a nickel source to provide nickel for preparing nickel oxide nanoparticles containing doped metal ions
  • the nickel salts include, but are not limited to, nickel acetate, nickel nitrate, nickel sulfate, nickel chloride, etc. One of them.
  • the metal salt containing doped metal ions prepares nickel oxide nanoparticles containing doped metal ions to provide doped metal ions, and the type of the doping metal ions satisfies: the valence state of the doped metal ions is not positive divalent And the ionic radius of the doped metal ion is 130%-200% of the radius of Ni 2+ , as described above.
  • the doping metal ion is selected from the group consisting of rare earth metal ions, and particularly preferably from at least one of La 3+ , Y 3+ , and Nd 3+ .
  • the metal salt containing a doping metal ion may be selected from barium sulfate, barium chloride, barium nitrate, barium acetate, barium sulfate, barium chloride, barium acetate, barium nitrate, barium nitrate, barium acetate, barium sulfate. At least one of barium chloride and a metal salt thereof and at least one of the metal salt compounds thereof, but is not limited thereto.
  • the reaction process for preparing the hydroxide mixture by using the nickel salt, the mixed metal ion-containing metal salt and the alkali mixed solution is: nickel ion in the nickel salt and doping metal ion and alkali solution in the metal salt
  • the reaction produces a hydroxide mixture.
  • the base provides a hydroxide ion for the reaction, and specifically, the base is at least one selected from the group consisting of lithium hydroxide, potassium hydroxide, sodium hydroxide, TMAH, and ammonia water.
  • the solvent for forming a mixed solution of a nickel salt, a metal salt containing a metal ion, and a base may be an organic solvent or an inorganic solvent, and may be selected from water, methanol, ethanol, etc., and has a relatively large polarity. At least one of the solvents which are easily volatilized, but is not limited thereto, and is preferably distilled water.
  • the doping metal ion accounts for 0.01%-13% of the total molar concentration of the metal ion. More preferably, the doping metal ion accounts for 0.1% to 13% of the total molar concentration of the metal element in the hole transporting material.
  • the doping molar concentration of the doping metal ions When the doping molar concentration of the doping metal ions is too low, a part of the doped metal ions may enter the bulk phase of the nickel oxide nanoparticles to form a solid solution, and the amount and body of the doped metal ions in the surface region at this time The number of phases is relatively close, which is not conducive to the formation of doping ion surface enrichment phenomenon; when the doping molar concentration of the doping metal ions is too high, the doped metal ions enter the nickel oxide nanoparticle body phase The severe lattice distortion produced will cause the newly added excess doped metal ions to be concentrated on the surface of the nickel oxide nanoparticles. The doping of metal ions on the surface of the nickel oxide material will precipitate in the form of the second phase, which seriously affects the nickel oxide. The electrical properties of the material.
  • the base is added in an amount such that the pH of the mixed solution of the nickel salt, the metal salt containing the doped metal ion, and the alkali is 8-12.
  • the pH of the mixed solution directly determines whether the hydroxide mixture is sufficiently formed and whether the final hydroxide mixture can be sufficiently decomposed.
  • the mixed salt solution of the doped metal salt and the nickel salt cannot be sufficiently converted into the hydroxide mixture due to insufficient alkalinity of the mixed solution; and when the pH of the mixed solution is greater than 12, the alkali The liquid is significantly excessive, and the excess hydroxide ions are coated on the surface of the hydroxide mixture, hindering the calcination decomposition of the hydroxide mixture in the following steps, so that some undecomposed hydrogen peroxide appears in the obtained doped nickel oxide nanopowder.
  • the mixture of materials affects the film forming properties of the doped nickel oxide colloidal solution and the conductive properties of the doped nickel oxide hole transport layer after film formation in the preparation of alternating solutions. More preferably, the pH of the mixed solution of the nickel salt, the metal salt containing the doped metal ion, and the alkali is 9 to 10.5.
  • the mixed solution of the nickel salt, the metal salt containing the doped metal ion and the alkali in the embodiment of the invention can be prepared by adding a nickel salt, a metal salt containing a doped metal ion, and a base to a solvent.
  • the preparation method of the nickel salt, the metal salt containing the doped metal ion, and the alkali is prepared as follows:
  • An alkali solution is added to the salt solution to obtain a mixed solution of a nickel salt, a metal salt containing a doped metal ion, and an alkali.
  • the above steps can be carried out at room temperature (10-30 ° C).
  • the lye may be one in which the alkali is dissolved or the base is diluted in another solvent which is the same as or different from the solvent for dissolving the nickel salt or the metal salt containing the metal ion.
  • the nickel salt and the metal salt containing the doped metal ion can be sufficiently dissolved and uniformly mixed, and further addition of the alkali solution under the conditions can promote the reaction to proceed uniformly.
  • Providing a mixed solution of a nickel salt, a metal salt containing a doped metal ion, and a base comprises: mixing the nickel salt, a metal salt containing a doped metal ion, and a base at room temperature
  • the hydroxide mixture was prepared by reacting at -90 ° C for 10-120 min. The above temperature ensures the formation of a hydroxide mixture.
  • the reaction temperature is lower than room temperature, the reaction temperature is too low, which will significantly slow down the formation of hydroxide; when the reaction temperature is higher than 90 °C, the near boiling aqueous solution may cause partial decomposition of the hydroxide mixture, affecting the final sample. Uniformity.
  • the reaction temperature is selected from room temperature to 50 °C.
  • the reaction time is from 10 to 120 minutes to ensure a uniform hydroxide mixture is formed. When the reaction time is less than 10 min, the reaction time is too short, the formation of the hydroxide mixture may be insufficient, thereby affecting the uniformity of the final doped nickel oxide nanoparticles; and when the reaction time exceeds 2 h, the cost is increased. More preferably, the reaction time is from 30 min to 2 h.
  • the reaction process of the examples of the present invention can be achieved by stirring.
  • the reaction solution after the reaction is further subjected to centrifugation to obtain a hydroxide mixture.
  • the hydroxide mixture collected after centrifugation is subjected to a cleaning treatment, and the solvent for the cleaning treatment may be a solvent having a relatively large polarity and being easily volatilized with water, methanol, ethanol or the like.
  • the collected hydroxide mixture is dried, specifically dried in a forced air oven.
  • step S02 the hydroxide mixture is subjected to calcination treatment under oxygen protection to decompose to form metal ion doped nickel oxide nanoparticles.
  • the calcination temperature is a very important parameter in the process of synthesizing the doped nickel oxide particles by the coprecipitation method in the embodiment of the present invention to further prepare the doped nickel oxide colloid solution.
  • the calcination temperature directly determines whether the doped nickel oxide nanoparticles can be smoothly formed and the stability of the generated nanoparticles.
  • the selected temperature needs to satisfy both the decomposition temperature of the doped metal ion hydroxide and the decomposition temperature of the nickel hydroxide. Otherwise, it will inevitably result in incomplete decomposition of one of the hydroxides, which in turn affects the uniformity of the final doped nickel oxide nanoparticle sample.
  • the selected calcination temperature cannot be too high. Otherwise, the synthesized doped nickel oxide nanoparticles are seriously agglomerated, which directly affects the uniformity and conductivity of the final nano-nickel oxide hole transport layer film.
  • the temperature at which the hydroxide mixture is calcined under oxygen protection is from 250 to 400 °C. Specifically, when the doping metal ion is La 3+ , the calcination temperature is 280-350° C.; when the doping metal ion is Y 3+ , the calcination temperature is 250-330° C.; when the doping metal ion is Nd 3 In the case of + , the calcination temperature is 330 to 400 °C.
  • the hydroxide mixture has a calcination time of from 1 h to 4 h.
  • the calcination time of the hydroxide mixture needs to correspond to the calcination temperature to ensure the smooth formation of the doped nickel oxide nanoparticles and the excellent stability of the resulting nanoparticles.
  • the calcination temperature is determined, if the calcination time is too short, it is impossible to ensure that all the hydroxide mixture is fully decomposed, thereby affecting the uniformity of the final doped nickel oxide nanoparticle sample; and when the calcination time is too long, It will cause serious agglomeration of doped nickel oxide nanoparticles, which directly affects the uniformity and conductivity of the final nano-nickel oxide hole transport layer film.
  • the calcination temperature is 280-350° C.
  • the calcination time is 1 h 3 h
  • the doped metal ion is Y 3+
  • the calcination temperature is 250-330° C.
  • calcination The time is from 2h to 4h
  • the doped metal ion is Nd 3+
  • the calcination temperature is 330-400 ° C
  • the calcination time is 1 h 2 h.
  • the doped nickel oxide colloid solution is synthesized by the coprecipitation method, and the mixed solution of the nickel salt and the metal salt containing the doped metal ion reacts with the alkali solution to form a hydroxide precipitate in the whole reaction process of the coprecipitation method. Then, the hydroxide precipitate is pyrolyzed to form doped nickel oxide nanoparticles, and the formation of the doped nickel oxide nanoparticles is carried out at a higher temperature.
  • the higher decomposition temperature provides sufficient power for the mass transfer and diffusion of the doped metal ions in the nickel oxide nanoparticles, so that the metal doping ions meeting the requirements described above can be diffused to the nickel oxide nanometer in a short time.
  • the surface of the particles ensures the occurrence of surface enrichment of the doped metal ions in terms of kinetics.
  • the embodiment of the present invention provides a hole transporting film which is made of the above hole transporting film, or the hole transporting film is made of a hole transporting film prepared by the above method. .
  • the hole transporting film provided by the embodiment of the present invention has better film layer uniformity and stability because it contains the above hole transporting material.
  • the hole transporting film has a thickness of 10 to 100 nm.
  • the thickness of the hole transporting film is less than 10 nm, the film layer is easily broken down by carriers, and the injection performance of the carrier cannot be ensured; when the thickness of the hole transporting film is more than 100 nm, the film is hindered.
  • the injection of the hole affects the charge injection balance of the device.
  • the embodiment of the invention provides a method for preparing a hole transporting film, comprising the following steps:
  • a colloidal solution of the doped metal-containing nano-nickel oxide material is deposited on the substrate and dried to form a film to obtain a hole transporting film.
  • the nano-nickel oxide material containing the doped metal ions in the colloidal solution of the nano-nickel oxide material containing the metal ion doped is as described above, and is not described herein again in order to save space.
  • the nano-nickel oxide material containing the doped metal ions is dissolved in the solvent, and the colloidal solution can be obtained by sufficiently dispersing uniformly.
  • the selection of the substrate is not strictly limited, and may be a common substrate for depositing a hole transport film, or may be deposited with other functional layers.
  • a functional substrate such as an anode substrate, which further deposits a hole transporting film is required.
  • the deposition method is not strictly limited, and the solution processing method can be adopted based on the colloidal solution property of the nano-nickel oxide material containing the doped metal ions. Specifically, it includes, but is not limited to, one of a spin coating method, a knife coating method, a printing method, a spray coating method, a roll coating method, and an electrodeposition method.
  • a film of a colloidal solution of a nano-nickel oxide material doped with metal ions is dried to form a film, and the drying is performed by low-temperature annealing.
  • the low-temperature annealing temperature selected here only needs to be a solvent in the doped nickel oxide colloid solution. It can be volatilized and does not require a higher temperature, depending on the boiling point of the solvent in the doped nickel oxide colloidal solution.
  • the low temperature annealing is performed at 60 to 150 ° C. Higher annealing temperatures in turn can cause damage to the anode that has been deposited on the substrate.
  • the low temperature annealing process needs to be performed under an inert atmosphere to protect the functional layer deposited on the substrate, such as the quantum dot luminescent layer, from damage.
  • an embodiment of the present invention provides a light emitting diode device, wherein the light emitting diode device includes a hole transporting material, and the hole transporting material is a nano nickel oxide material containing doped metal ions, wherein the doping is performed.
  • the valence state of the metal ion is not positive divalent, and the ion radius of the doped metal ion is 130%-200% of the radius of Ni 2+ ;
  • a method of preparing the hole transporting material comprising the steps of:
  • the radius is 130%-200% of the radius of Ni 2+ ;
  • the hydroxide mixture is subjected to a calcination treatment under oxygen protection to prepare a nano-nickel oxide material.
  • the light-emitting diode provided by the embodiment of the present invention can significantly improve the luminous efficiency and device performance of the device because it contains the above hole transporting material.
  • the light-emitting diode using the doped nickel oxide hole transporting material does not need to be insulated from water and oxygen, and the finally obtained light-emitting diode device can have good device stability even without strict and complicated packaging process, and the manufacturing cost is greatly reduced.
  • the hole transporting material is the hole transporting material described above; or the hole transporting material is a hole transporting material prepared by the method described above.
  • the specific case of the hole transporting material, the specific case of preparing the obtained hole transporting material is as described above, and is not described herein again in order to save space.
  • the light emitting diode device includes the hole transporting film described above, and the hole transporting film contains the hole transporting material.
  • the light emitting diode includes a light emitting layer, and the light emitting layer may be an organic light emitting layer or a quantum dot light emitting layer.
  • the light emitting diode device is an organic light emitting diode (OLED) device; when the light emitting layer is a quantum dot light emitting layer, the light emitting diode is a quantum dot light emitting diode ( QLED) device.
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diode
  • the light emitting diode further comprises a hole transport layer to promote the transport of holes and promote carrier balance.
  • the light emitting diode comprises an anode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5 and a cathode 6 laminated on the substrate 1, wherein The hole transport layer 3 was prepared in accordance with the above method.
  • the substrate may be a hard substrate or a flexible substrate, and specifically, a glass substrate may be selected.
  • the anode may be ITO, but is not limited thereto.
  • the hole transporting layer may employ the above hole transporting film.
  • the light emitting layer material may be selected from a conventional organic light emitting material.
  • the quantum dots of the luminescent layer material may be one of red, green, and blue, specifically CdS, CdSe, CdTe, NiO, NiS, NiSe, NiTe.
  • the quantum dots may or may not contain cadmium.
  • the thickness of the light-emitting layer is preferably from 20 to 60 nm.
  • the electron transport layer may be a conventional electron transport material including, but not limited to, at least one of ZnO, TiO 2 , CsF, LiF, CsCO 3 , and Alq 3 , and may be other high performance electron transport materials.
  • the cathode adopts a metal cathode material, such as metal silver or metal aluminum, or a nano silver wire or a nano copper wire, and the nano silver wire or the nano copper wire is used, which has a smaller electric resistance, and facilitates smooth injection of carriers.
  • the thickness of the cathode is preferably 15-30 nm.
  • the obtained light emitting diode can be packaged.
  • an embodiment of the present invention provides a method for fabricating a light emitting diode, including the following steps:
  • a hole transport layer was prepared on the anode.
  • a hole transporting layer is prepared on the anode, which is prepared by the above method for transporting a hole transporting film, and will not be described herein.
  • a light-emitting layer was prepared on the hole transport layer.
  • the light-emitting layer material solution is deposited on the anode surface.
  • the luminescent layer material solution may be deposited into a film by spin coating. Specifically, the anode substrate is placed on a homogenizer, and a solution of a certain concentration of the luminescent layer material is spin-coated to form a film, and the thickness of the luminescent layer is controlled by adjusting the concentration of the solution, the spin coating speed, and the spin coating time, and then Thermal annealing at a suitable temperature.
  • a cathode is prepared on the light-emitting layer.
  • the deposited luminescent sheet is placed in a vapor deposition chamber and the cathode is thermally evaporated through a mask.
  • the method further comprises preparing an electron transport layer on the light-emitting layer.
  • the electron transport layer may be prepared in the same manner as the light-emitting layer, preferably by a solution processing method such as spin coating, and further controlling the film thickness by adjusting the concentration of the solution, the spin coating speed, and the spin coating time, and then at a suitable temperature. Thermal annealing treatment.
  • the device is packaged, and the encapsulation conditions are preferably performed under conditions of an oxygen content and a water content of less than 0.1 ppm to ensure the stability of the device.
  • the light-emitting diode can also be obtained by another method.
  • the method for preparing the light-emitting diode includes the following steps:
  • An anode is prepared on the hole transport layer.
  • a nano-nickel oxide hole transporting film doped with cerium ions the preparation method thereof comprises the following steps:
  • an appropriate amount of nickel acetate and barium sulfate was added to 50 ml of distilled water solvent to form a mixed salt solution having a total concentration of 0.1 mol/L, wherein the molar concentration of La 3+ was 2%.
  • an appropriate amount of potassium hydroxide powder was dissolved in another 50 ml of distilled water solvent to form a lye having a concentration of 0.3 mol/L.
  • the mixed salt solution was then heated to 50 ° C, and the potassium hydroxide solution was added dropwise until the pH of the mixed solution reached 9 to stop. After the completion of the dropwise addition of the potassium hydroxide solution, the mixed solution was further stirred at 50 ° C for 1 hour to obtain a green turbid solution.
  • the turbid solution was centrifuged at 7000 rpm, and the resulting green precipitate was mixed with 50 ml of distilled water solvent and stirred for 10 minutes, and then centrifuged again at 7000 rpm. This cleaning process is repeated four times.
  • the green precipitate washed several times was then placed in a forced air oven and thoroughly dried at 80 ° C for 8 h.
  • the dried green precipitate was calcined in a muffle furnace at 290 ° C under an oxygen atmosphere for a calcination time of 3 h to obtain a black doped nickel oxide nanopowder.
  • the doped nickel oxide nanopowder was dissolved in an appropriate amount of distilled water solvent to obtain a cerium ion doped nickel oxide colloid solution having a concentration of 30 mg/ml.
  • the obtained 30 mg/ml cesium ion-doped nickel oxide colloid solution was deposited by spin coating on a substrate on which an anode had been deposited, and annealed at 120 ° C to obtain a cerium ion doped nano-nickel oxide space. Hole transport layer.
  • the spin coating speed was 3000 rpm, and the spin coating time was 30 s to control the thickness of the doped nickel oxide hole transport layer to be about 50 nm.
  • a nano-nickel oxide hole transporting film doped with cerium ions the preparation method thereof comprises the following steps:
  • the turbid solution was centrifuged at 7000 rpm, and the resulting green precipitate was mixed with 50 ml of an ethanol solvent and stirred for 10 minutes, and then centrifuged again at 7000 rpm. This cleaning process is repeated four times.
  • the green precipitate washed several times was then placed in a forced air oven and thoroughly dried at 70 ° C for 8 h.
  • the dried green precipitate was calcined in a muffle furnace at 330 ° C under an oxygen atmosphere for a calcination time of 2 h to obtain a black doped nickel oxide nanopowder.
  • the doped nickel oxide nanopowder was dissolved in an appropriate amount of ethanol solvent to obtain a cerium ion doped nickel oxide colloid solution having a concentration of 30 mg/ml.
  • the obtained 30 mg/ml cesium ion doped nickel oxide colloid solution was deposited by spin coating on a substrate on which an anode had been deposited, and annealed at 100 ° C to obtain a cerium ion doped nano ZnO space. Hole transport layer.
  • the spin coating speed was 3000 rpm, and the spin coating time was 30 s to control the thickness of the doped nickel oxide hole transport layer to be about 50 nm.
  • a nano-nickel oxide hole transporting film doped with cerium ions the preparation method thereof comprises the following steps:
  • an appropriate amount of nickel chloride and cerium nitrate were added to 30 ml of distilled water solvent to form a mixed salt solution having a total concentration of 0.1 mol/L, wherein the doping molar concentration of Y 3+ was 5%.
  • an appropriate amount of lithium hydroxide powder was dissolved in another 50 ml of distilled water solvent to form a lye having a concentration of 0.15 mol/L.
  • the mixed salt solution was then kept at room temperature, and the lithium hydroxide solution was added dropwise until the pH of the mixed solution reached 9 to stop. After the completion of the dropwise addition of the lithium hydroxide solution, the mixed solution was further stirred at room temperature for 1 hour to obtain a green turbid solution.
  • the turbid solution was centrifuged at 7000 rpm, and the resulting green precipitate was mixed with 50 ml of an ethanol solvent and stirred for 10 minutes, and then centrifuged again at 7000 rpm. This cleaning process is repeated four times.
  • the green precipitate washed several times was then placed in a forced air oven and thoroughly dried at 70 ° C for 8 h.
  • the dried green precipitate was calcined in a muffle furnace at 260 ° C under an oxygen atmosphere for a calcination time of 3 h to obtain a black doped nickel oxide nanopowder.
  • the doped nickel oxide nanopowder was dissolved in an appropriate amount of ethanol solvent to obtain a cerium ion doped nickel oxide colloid solution having a concentration of 30 mg/ml.
  • the obtained 30 mg/ml cesium ion doped nickel oxide colloid solution was deposited by spin coating on a substrate on which an anode had been deposited, and annealed at 100 ° C to obtain a cerium ion doped nano ZnO space. Hole transport layer.
  • the spin coating speed was 4500 rpm and the spin coating time was 30 s to control the thickness of the doped nickel oxide hole transport layer to be about 20 nm.
  • a nano-nickel oxide hole transporting film doped with cerium ions the preparation method thereof comprises the following steps:
  • an appropriate amount of nickel sulfate and cesium acetate were added to 50 ml of distilled water solvent to form a mixed salt solution having a total concentration of 0.1 mol/L, wherein the doping molar concentration of Y 3+ was 10%.
  • an appropriate amount of potassium hydroxide powder was dissolved in another 50 ml of distilled water solvent to form a lye having a concentration of 0.3 mol/L.
  • the mixed salt solution was then heated to 50 ° C, and a potassium hydroxide solution was added dropwise until the pH of the mixed solution reached 10.5. After the completion of the dropwise addition of the potassium hydroxide solution, the mixed solution was kept at 50 ° C and stirring was continued for 30 minutes to obtain a green turbid solution.
  • the turbid solution was centrifuged at 7000 rpm, and the resulting green precipitate was mixed with 50 ml of a methanol solvent and stirred for 10 minutes, and then centrifuged again at 7000 rpm. This cleaning process is repeated four times.
  • the green precipitate washed several times was then placed in a forced air oven and thoroughly dried at 60 ° C for 8 h.
  • the dried green precipitate was calcined in a muffle furnace at 310 ° C under an oxygen atmosphere for a calcination time of 2 h to obtain a black doped nickel oxide nanopowder.
  • the doped nickel oxide nanopowder was dissolved in an appropriate amount of methanol solvent to obtain a cerium ion doped nickel oxide colloid solution having a concentration of 30 mg/ml.
  • the obtained 30 mg/ml cesium ion doped nickel oxide colloid solution was deposited by spin coating on a substrate on which an anode had been deposited, and annealed at 80 ° C to obtain a cerium ion doped nano nickel oxide space. Hole transport layer.
  • the spin coating speed was 4500 rpm and the spin coating time was 30 s to control the thickness of the doped nickel oxide hole transport layer to be about 20 nm.
  • a nano-nickel oxide hole transporting film doped with cerium ions the preparation method thereof comprises the following steps:
  • a mixed salt solution having a total concentration of 0.1 mol/L, wherein the doping molar concentration of Nd 3+ was 2%.
  • an appropriate amount of TMAH powder was dissolved in another 50 ml of distilled water solvent to form a lye having a concentration of 0.3 mol/L.
  • the mixed salt solution was then heated to 50 ° C, and the TMAH solution was added dropwise until the pH of the mixed solution reached 10 to stop. After the completion of the dropwise addition of the TMAH solution, the mixed solution was kept at 50 ° C and stirring was continued for 1 hour to obtain a green turbid solution.
  • the turbid solution was centrifuged at 7000 rpm, and the resulting green precipitate was mixed with 50 ml of distilled water solvent and stirred for 10 minutes, and then centrifuged again at 7000 rpm. This cleaning process is repeated four times.
  • the green precipitate washed several times was then placed in a forced air oven and thoroughly dried at 80 ° C for 8 h.
  • the dried green precipitate was calcined in a muffle furnace at 340 ° C under an oxygen atmosphere for a calcination time of 2 h to obtain a black doped nickel oxide nanopowder.
  • the doped nickel oxide nanopowder was dissolved in an appropriate amount of distilled water solvent to obtain a cerium ion doped nickel oxide colloid solution having a concentration of 30 mg/ml.
  • the obtained 30 mg/ml cesium ion doped nickel oxide colloid solution was deposited by spin coating on a substrate on which an anode had been deposited, and annealed at 100 ° C to obtain a cerium ion doped nano ZnO space. Hole transport layer.
  • the spin coating speed was 1500 rpm and the spin coating time was 30 s to control the thickness of the doped nickel oxide hole transport layer to be about 80 nm.
  • a nano-nickel oxide hole transporting film doped with cerium ions the preparation method thereof comprises the following steps:
  • an appropriate amount of nickel acetate and cesium chloride were added to 30 ml of distilled water solvent to form a mixed salt solution having a total concentration of 0.1 mol/L, wherein the doping molar concentration of Nd 3+ was 9%.
  • an appropriate amount of aqueous ammonia solution was diluted into another 50 ml of distilled water solvent to form a lye having a concentration of 0.3 mol/L.
  • the mixed salt solution was kept at room temperature, and an aqueous ammonia solution was added dropwise until the pH of the mixed solution reached 9 to stop.
  • the mixed solution was kept at room temperature and stirring was continued for 30 minutes to obtain a green turbid solution.
  • the turbid solution was centrifuged at 7000 rpm, and the resulting green precipitate was mixed with 50 ml of an ethanol solvent and stirred for 10 minutes, and then centrifuged again at 7000 rpm. This cleaning process is repeated four times.
  • the green precipitate washed several times was then placed in a forced air oven and thoroughly dried at 70 ° C for 8 h.
  • the dried green precipitate was calcined in a muffle furnace at 380 ° C under an oxygen atmosphere for a calcination time of 1 h to obtain a black doped nickel oxide nanopowder.
  • the doped nickel oxide nanopowder was dissolved in an appropriate amount of ethanol solvent to obtain a cerium ion doped nickel oxide colloid solution having a concentration of 30 mg/ml.
  • the obtained 30 mg/ml cesium ion doped nickel oxide colloid solution was deposited by spin coating on a substrate on which an anode had been deposited, and annealed at 80 ° C to obtain a cerium ion doped nano nickel oxide space. Hole transport layer.
  • the spin coating speed was 1500 rpm and the spin coating time was 30 s to control the thickness of the doped nickel oxide hole transport layer to be about 80 nm.
  • a positive QLED device comprises, in order from bottom to top, a substrate, an anode, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a cathode.
  • the material of the substrate is a glass piece
  • the material of the anode is an ITO substrate
  • the material of the hole transport layer is TFB
  • the material of the electron transport layer is an unequal metal ion doped with nickel oxide and a cathode having a larger ionic radius.
  • the material is Al.
  • the positive QLED device includes the following steps:
  • the cathode is vapor deposited on the electron transport layer to obtain a quantum dot light emitting diode.
  • An OLED device comprising, in order, a substrate, an anode, a hole transport layer, an organic light emitting layer, an electron transport layer, and a cathode.
  • the material of the substrate is a glass piece
  • the material of the anode is an ITO substrate
  • the material of the hole transport layer is TFB
  • the material of the electron transport layer is an unequal metal ion doped with nickel oxide and a cathode having a larger ionic radius.
  • the material is Al.
  • the cathode is vapor-deposited on the electron transport layer to obtain an organic light emitting diode.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种空穴传输材料,所述空穴传输材料为含有掺杂金属离子的纳米氧化镍材料,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%。所述空穴传输材料,能够显著提高氧化镍纳米颗粒的稳定性,改善了成膜后纳米氧化镍空穴传输层的均匀性;同时,极大地减少了纳米氧化镍材料的表面缺陷,从而降低材料表面缺陷对激子的淬灭作用。

Description

空穴传输材料及其制备方法和应用 技术领域
本发明属于显示技术领域,尤其涉及一种空穴传输材料及其制备方法和应用。
背景技术
近来,随着显示技术的不断发展,以量子点材料作为发光层的量子点发光二极管(QLED)展现出了巨大的应用前景。由于其发光效率高、发光颜色可控、色纯度高、器件稳定性好、可用于柔性用途等特点,使QLED在显示技术、固态照明等领域受到了越来越多的关注。
目前量子点发光二极管中,有机高分子材料(如PEDOT:PSS,TFB等)由于具有高功函数、高透过率、较好的成膜性和良好的导电性而普遍被用做空穴传输层。但是由于有机高分子材料自身对于水氧的高敏感性,使得使用有机高分子材料作为空穴传输层的量子点发光二极管器件必须要进行严格且昂贵的封装过程以隔绝水氧。即便如此,有机高分子材料的不稳定性仍然会对量子点发光二极管器件的工作寿命产生非常不利的影响。为了解决这一问题,越来越多的研究人员使用具有良好化学稳定性的过渡金属氧化物(如氧化钼,氧化钨,五氧化二钒,氧化镍等)来替代有机高分子材料充当空穴传输层。
随着针对金属氧化物空穴传输层研究的不断深入,氧化镍材料从种类繁多的过渡金属氧化物中脱颖而出,成为了空穴传输层的热门备选材料。氧化镍材料与其它过渡金属氧化物相比,其最大的特点和不同就在于氧化镍是一种p型的半导体材料。这一特性使氧化镍材料同时具备了空穴传输和空穴阻挡这两大功能,大大简化了量子点发光二极管器件的结构。此外,其较深的价带能级与量子点发光层之间具有较好的能级匹配关系,显著降低了空穴从阳极到量子点发光层的注入势垒,再加之其优秀的光学透过性和良好的化学稳定性,都使得氧化镍材料完全可以替代有机高分子材料成为QLED的空穴传输层。而随着氧化镍空穴传输层制备方法的不断改进,通过沉积氧化镍胶体溶液制得的纳米氧化镍空穴传输层以其接近室温的退火温度,简单的制造工艺,低廉的制造成本成为最近一两年来氧化镍空穴传输层的主要研究方向。
随着纳米氧化镍空穴传输层的研究逐步展开,纳米氧化镍材料在为量子点发光二极管带来优良性能的同时,其材料本身特性所带来的问题也逐渐暴露出来,阻碍了以纳米氧化镍材料为空穴传输层的量子点发光二极管器件性能的进一步提升。具体而言,一方面,由于合成出来的氧化镍纳米颗粒的粒径一般都接近甚至小于5nm,使得氧化镍纳米颗粒具有非常大的比表面积。由此带来的巨大的表面能使氧化镍纳米颗粒变得非常不稳定,加之氧 化镍纳米颗粒的合成需要在较高温度(300℃左右)下进行,使得生成的氧化镍纳米颗粒在合成温度下极易发生团聚以减小表面能带来的影响。然而团聚一旦发生,势必对氧化镍胶体溶液的成膜均匀性和使用该纳米氧化镍空穴传输层的QLED器件性能产生毁灭性的影响。另一方面,纳米材料表面缺陷的影响也是不容忽视的。与材料的体相相比,材料的表面具有非常多的缺陷,是缺陷的聚集地(如,空位,间隙原子等等)。在量子点发光二极管器件发光的过程中,表面缺陷作为非复合辐射中心会对激子产生明显的淬灭作用。而由于纳米氧化镍材料具有非常大的比表面积,使得纳米氧化镍表面的缺陷淬灭作用变得越发明显,大大降低了量子点发光二极管器件的发光效率。
技术问题
本发明提供一种空穴传输材料及其制备方法、一种含有上述空穴传输材料的空穴传输薄膜和发光二极管器件,旨在解决现有的纳米氧化镍材料组成的空穴传输层中,膜层均匀性较差、以及纳米氧化镍表面缺陷对激子造成淬灭的问题。
技术解决方案
本发明实施例是这样实现的,第一方面,提供了一种空穴传输材料,所述空穴传输材料为含有掺杂金属离子的纳米氧化镍材料,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%。
第二方面,提供了一种空穴传输材料的制备方法,包括以下步骤:
提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;
将所述氢氧化物混合物在氧气保护下进行煅烧处理,制备纳米氧化镍材料。
第三方面,提供了一种发光二极管器件,所述发光二极管器件中含有空穴传输材料,所述空穴传输材料为含有掺杂金属离子的纳米氧化镍材料,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;或
制备所述空穴传输材料的方法,包括以下步骤:
提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;
将所述氢氧化物混合物在氧气保护下进行煅烧处理,制备纳米氧化镍材料。
有益效果
本发明提供的空穴传输材料,采用具有较大离子半径的不等价金属离子掺杂纳米氧化 镍材料。一方面,纳米氧化镍材料通过掺杂金属离子在纳米氧化镍材料表面的富集,能够显著提高氧化镍纳米颗粒的稳定性,改善了成膜后纳米氧化镍空穴传输层的均匀性,进一步在用作发光二极管器件如QLED(量子点发光二极管)器件时,可以优化发光二极管器件如QLED器件的器件性能。另一方面,这种掺杂方式(采用具有较大离子半径的不等价金属离子掺杂纳米氧化镍材料)极大地减少了纳米氧化镍材料的表面缺陷,从而降低材料表面缺陷对激子的淬灭作用,进而整体提高了使用上述空穴传输薄膜的发光二极管如QLED器件的发光效率和器件性能。此外,本发明的掺杂金属离子的可选择性很广,只要符合掺杂金属离子的价态要与Ni 2+的价态不同且掺杂金属离子的离子半径要明显大于Ni 2+的离子半径即可,因此,可根据实际应用中对于空穴传输薄膜的具体要求进行有针对性的选择,具有很强的适用性和实用性。
本发明提供的空穴传输材料的制备方法,只需将所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备含有氢氧化物混合物后,经煅烧处理即可。该方法非常简单,成本低廉,易于操作,对设备要求较低,且可重复性好,制备出的掺杂氧化镍形成的胶体溶液具有较好的单分散性和稳定性。
本发明提供的发光二极管,由于含有上述空穴传输材料,因此,可以显著提高器件的发光效率和器件性能。此外,采用掺杂氧化镍空穴传输材料的发光二极管无需隔绝水氧,最终制得的发光二极管器件即使不进行严格复杂的封装过程也可以有良好的器件稳定性,大大降低了制造成本。
附图说明
图1是本发明实施例提供的掺杂金属表面富集现象示意图;
图2是本发明实施例提供的空穴传输材料的制备方法流程示意图;
图3是本发明实施例提供的发光二极管器件结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例提供了一种空穴传输材料,所述空穴传输材料为含有掺杂金属离子的纳 米氧化镍材料,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%。
当把一种金属离子掺杂到另一种金属氧化物主体材料中时,掺杂金属离子与主体材料之间可能形成的结构共有三种。第一种掺杂结构为:掺杂金属离子进入主体材料晶体结构中,占据主体金属离子的位点以形成固溶体。第二种掺杂结构为:掺杂金属离子以杂质的形式从主体材料中析出,无法形成统一的结构。第三种掺杂结构为:掺杂金属离子聚焦在金属氧化物主体材料的表面区域,构成表面富集现象。表面富集是指掺杂金属离子的金属氧化物体系中,掺杂金属离子在金属氧化物表面区域聚集,导致金属离子在金属氧化物表面区域中的浓度高于在金属氧化物体相中的浓度的现象。
对于表面富集现象而言,如图1所示,掺杂金属离子绝大部分都进入了金属氧化物主体材料的表面区域,占据以主体金属离子空位为主的缺陷位,并维持了主体材料的晶体结构。也就是说,对于发生掺杂离子表面富集现象的金属氧化物主体材料而言,整个主体材料包括表面区域在内只含有单一晶相,并不存在除金属氧化物主体材料晶相结构以外的第二相。由此,可以保证整体材料性能的均一性。同时,当表面富集现象发生时,材料的表面性能势必会发生明显的改变。一方面,根据吉布斯表面吸附方程,掺杂金属离子的表面富集现象会明显降低金属氧化物主体材料的表面能,进而显著增强金属氧化物主体材料的稳定性,尤其是具有极大比表面积的纳米金属氧化物主体材料的稳定性;另一方面,由于富集在表面的掺杂金属离子大量占据了金属氧化物主体材料表面的缺陷位,钝化了缺陷,使得金属氧化物主体材料表面的缺陷浓度大大下降。
有鉴于此,本发明实施例通过选择合适的掺杂金属离子对纳米氧化镍材料进行掺杂,使表面富集现象发生在纳米氧化镍颗粒的表面即本发明实施例所述空穴传输材料为表面富集所述金属离子的纳米氧化镍材料,从而显著提高氧化镍纳米颗粒的稳定性,避免纳米颗粒团聚对纳米氧化镍空穴传输层膜的均匀性和发光二极管器件如QLED器件性能遭受破坏;同时明显减少纳米氧化镍材料的表面缺陷浓度,降低纳米氧化镍材料表面缺陷对激子的淬灭作用,进而提高发光二极管如QLED器件的发光效率。
本发明实施例提供的空穴传输材料,采用具有较大离子半径的不等价金属离子掺杂纳米氧化镍材料。一方面,纳米氧化镍材料通过掺杂金属离子在纳米氧化镍材料表面的富集,即所述空穴传输材料为表面富集所述金属离子的纳米氧化镍材料,能够显著提高氧化镍纳米颗粒的稳定性,改善了成膜后纳米氧化镍空穴传输层的均匀性,进一步在用作发光二极管器件如QLED(量子点发光二极管)器件时,可以优化优化了发光二极管器件如QLED器件的器件性能。另一方面,这种掺杂方式(采用具有较大离子半径的不等价金属离子掺 杂纳米氧化镍材料)极大地减少了纳米氧化镍材料的表面缺陷,从而降低材料表面缺陷对激子的淬灭作用,进而整体提高了使用上述空穴传输薄膜的发光二极管如QLED器件的发光效率和器件性能。此外,本发明实施例的掺杂金属离子的可选择性很广,只要符合掺杂金属离子的价态要与Ni 2+的价态不同且掺杂金属离子的离子半径要明显大于Ni 2+的离子半径即可,因此,可根据实际应用中对于空穴传输薄膜的具体要求进行有针对性的选择,具有很强的适用性和实用性。
具体的,为了使掺杂金属离子富集在纳米氧化镍材料的表面,形成表面富集现象,所述掺杂金属离子的选择要满足两个要求。首先,所述掺杂金属离子的价态不为正二价,即所述掺杂金属离子的价态要与Ni 2+的价态不同。纳米氧化镍材料的表面大量缺陷的存在使得其并不呈电中性,而是会局部聚集一定的电荷。因此,当不等价金属离子掺杂到纳米氧化镍材料中时,不等价的掺杂金属离子会带来大量的自由空穴或者空穴,而这些产生的自由空穴或者空穴会倾向于富集在纳米材料的表面以中和表面电荷,从而促进掺杂金属离子富集在纳米氧化镍的表面。其次,所述掺杂金属离子的离子半径要明显大于Ni 2+的离子半径,具体的,所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%,即所述掺杂金属离子与的半径差距需要在镍离子半径的30%以上,且不超过Ni 2+半径的两倍。离子半径在此范围的所述掺杂金属离子,进入氧化镍晶体结构中所引起的晶格畸变会因为较大的离子半径差异而变得异常剧烈。由此引起得严重动力学不稳定性会促使掺杂金属离子富集在纳米氧化镍的表面,占据以镍离子空位为主的缺陷位,而不是进入晶体结构内部替换镍离子位点,从而可以保证主体材料纳米氧化镍的晶相结构,从而保证材料性能的均一性。当所述掺杂金属离子的离子半径与Ni 2+的离子半径较为接近时,掺杂金属离子会轻易的进入氧化镍材料的晶体结构中,替代Ni 2+位点形成固溶体,影响原有的纳米氧化镍的电学性能。而当掺杂金属离子的半径达到Ni 2+离子半径的两倍及以上时,过大的掺杂金属离子难以进入氧化镍材料表面的镍离子空位,而是直接以第二相的形式从氧化镍材料的表面析出,对纳米氧化镍空穴传输层的导电性能产生严重的破坏。
进一步优选的,所述掺杂金属离子满足:以氢氧化镍的分解温度为T 0计,掺杂金属离子的氢氧化物的分解温度为T 0±80℃。此时,掺杂金属离子的氢氧化物的分解温度与氢氧化镍的分解温度较为接近,才能通过共沉淀法成功合成出掺杂氧化镍纳米颗粒。如果氢氧化镍和所选掺杂金属离子氢氧化物的分解温度相差较大,势必造成在实际煅烧过程中一种氢氧化物在另一种氢氧化物开始分解前已经大量分解甚至分解完成,令最终产物难以形成均一的掺杂氧化镍纳米颗粒。
优选的,所述掺杂金属离子为稀土金属离子,所述稀土金属离子作为掺杂材料,可以 满足上述两个条件,且对于纳米氧化镍主体材料而言,具有较好的表面富集现象。
具体优选的,所述掺杂金属离子选自La 3+、Y 3+、Nd 3+、Gd 3+、Sm 3+中的至少一种。采用优选的掺杂金属离子制备所述空穴传输材料,可以成功将掺杂离子富集在纳米氧化镍材料的表面区域。本发明实施例中,La 3+、Y 3+、Nd 3+、Gd 3+、Sm 3+与镍离子的离子半径差异如下表1所示,离子半径差异的计算公式为:
Figure PCTCN2018123506-appb-000001
其中,r表示半径,M n+表示掺杂金属离子;在上述五种金属掺杂离子中,La 3+、Y 3+、Nd 3+的氢氧化物分解温度符合上述规则,具体地,La 3+、Y 3+、Nd 3+、Gd 3+、Sm 3+的氢氧化物分解温度与氢氧化镍的分解温度对比如表2所示。
表1
Figure PCTCN2018123506-appb-000002
表2
Ni(OH) 2 La(OH) 3 Nd(OH) 3 Y(OH) 3
分解温度(℃) 230 260 300 190
本发明实施例中,除了掺杂离子的价态和离子半径会决定掺杂离子表面富集现象的发生以外,金属离子的掺杂摩尔浓度也会影响掺杂离子的表面富集现象。与材料体相中主体金属离子的位点数量相比,材料表面区域的主体金属离子空位等缺陷位是较为有限的。一旦掺杂离子数量超过可以占据的表面缺陷位的数量,多余的掺杂金属离子仍会以第二相的形式从主体材料中析出,破坏主体材料的原有性能。此外,掺杂金属离子的离子半径越大,其在主体材料表面区域可以占据的主体金属离子空位等缺陷位也就越少,在不产生第二相的情况下可用于掺杂的摩尔浓度也就越低。而另一方面,当掺杂金属离子的数量极少时,由于极少的掺杂离子数量不会引起明显的晶格畸变,因此掺杂金属离子仍可以进入氧化镍材料的体相中形成固溶体,而不会产生掺杂金属离子在氧化镍材料表面的富集现象。因此,对掺杂金属离子摩尔浓度的控制较为重要。
优选的,所述掺杂金属离子占空穴传输材料中金属元素摩尔总浓度的13%以内,但具体的,需结合掺杂金属离子的类型确定。更优选的,所述掺杂金属离子占空穴传输材料中金属元素摩尔总浓度的0.1%-13%。当所述掺杂金属离子的掺杂摩尔浓度过低时,仍有部分 掺杂金属离子可以进入到氧化镍纳米颗粒的体相中形成固溶体,此时掺杂金属离子在表面区域中数量与体相中数量是相对比较接近的,不利于掺杂离子表面富集现象的形成;而当所述掺杂金属离子的掺杂摩尔浓度过高时,掺杂金属离子进入氧化镍纳米颗粒体相所产生的剧烈的晶格畸变会促使新加入的过量掺杂金属离子全部富集在氧化镍纳米颗粒的表面,在氧化镍材料表面掺杂金属离子会以第二相的形式析出,严重影响氧化镍材料的电学性能。
本发明实施例只需要掺杂一种金属离子即可以同时实现改善氧化镍空穴传输材料的导电性能和提高量子点发光二极管器件的发光效率这两大功能,掺杂效果非常好。以所述空穴传输薄膜为含有一种掺杂金属离子的纳米氧化镍空穴传输薄膜为例,具体优选的,
当掺杂金属离子为La 3+时,且以所述空穴传输材料中金属元素摩尔总浓度为100%计,所述La 3+的掺杂摩尔浓度为0.01%~8%。当La 3+的掺杂摩尔浓度在此范围时,La 3+在氧化镍纳米颗粒表面区域中的摩尔数与La 3+在氧化镍纳米颗粒体相中的摩尔数的比值为1:1~40:1。更优的,所述La 3+的掺杂摩尔浓度为0.1%~8%,当La 3+的掺杂摩尔浓度在此范围时,La 3+在氧化镍纳米颗粒表面区域中的摩尔数与La 3+在氧化镍纳米颗粒体相中的摩尔数的比值为4:1~40:1,即La 3+在表面区域中数量与体相中数量的比值为4:1~40:1,可以形成掺杂离子的表面富集现象,在此范围内,掺杂金属离子的含量越高,表面富集现象越明显。
当掺杂金属离子为Y 3+时,且以所述空穴传输材料中金属元素摩尔总浓度为100%计,所述Y 3+的掺杂摩尔浓度为0.01%~13%。当Y 3+的掺杂摩尔浓度在此范围时,Y 3+在氧化镍纳米颗粒表面区域中的摩尔数与Y 3+在氧化镍纳米颗粒体相中的摩尔数的比值为:1:4~50:1。更优的,所述Y 3+的掺杂摩尔浓度为0.2%~13%,当Y 3+的掺杂摩尔浓度在此范围时,Y 3+在氧化镍纳米颗粒表面区域中的摩尔数与Y 3+在氧化镍纳米颗粒体相中的摩尔数的比值为2:1~50:1,即Y 3+在表面区域中数量与体相中数量的比值为2:1~50:1,可以形成掺杂离子的表面富集现象,在此范围内,掺杂金属离子的含量越高,表面富集现象越明显。
当掺杂金属离子为Nd 3+时,且以所述空穴传输材料中金属元素摩尔总浓度为100%计,所述Nd 3+的掺杂摩尔浓度为0.01%~10%。Nd 3+的掺杂摩尔浓度在此范围时,Nd 3+在氧化镍纳米颗粒表面区域中的摩尔数与Nd 3+在氧化镍纳米颗粒体相中的摩尔数的比值为1:2~40:1。更优的,所述Nd 3+的掺杂摩尔浓度为0.1%~10%。当Nd 3+的掺杂摩尔浓度在此范围时,Nd 3+在氧化镍纳米颗粒表面区域中的摩尔数与Nd 3+在氧化镍纳米颗粒体相中的摩尔数的比值为3:1~40:1,即Nd 3+在表面区域中数量与体相中数量的比值为3:1~40:1,可以形成掺杂离子的表面富集现象,在此范围内,掺杂金属离子的含量越高,表面富集现象越明显。
本发明实施例提供的空穴传输材料,可以通过下述方法制备获得。
相应的,如图2所示,本发明实施例提供了一种空穴传输材料的制备方法,包括以下步骤:
S01.提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;
S02.将所述氢氧化物混合物在氧气保护下进行煅烧处理,制备纳米氧化镍材料。
本发明实施例提供的空穴传输材料的制备方法,只需将所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备含有氢氧化物混合物后,经煅烧处理即可。该方法非常简单,成本低廉,易于操作,对设备要求较低,且可重复性好,制备出的掺杂氧化镍形成的胶体溶液具有较好的单分散性和稳定性。
具体的,上述步骤S01中,所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,由镍盐、含有掺杂金属离子的金属盐、碱溶于溶剂中形成。
其中,所述镍盐作为镍源,为制备含有掺杂金属离子的氧化镍纳米颗粒提供镍,具体的,所述镍盐包括但不局限于醋酸镍、硝酸镍、硫酸镍、氯化镍等中的一种。
所述含有掺杂金属离子的金属盐制备含有掺杂金属离子的氧化镍纳米颗粒提供掺杂金属离子,所述掺杂金属离子的类型满足:所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%,具体可参见上文。优选的,所述掺杂金属离子选自稀土金属离子,具体优选自La 3+、Y 3+、Nd 3+中的至少一种。具体的,所述含有掺杂金属离子的金属盐可选自硫酸镧、氯化镧、硝酸镧、醋酸镧、硫酸钇、氯化钇、醋酸钇、硝酸钇、硝酸钕、醋酸钕、硫酸钕、氯化钕及其金属盐水合物中的至少一种及其金属盐水合物中的至少一种,但不限于此。
本发明实施例采用镍盐、含有掺杂金属离子的金属盐、碱的混合溶液制备制备氢氧化物混合物的反应历程为:镍盐中的镍离子和金属盐中的掺杂金属离子与碱液反应生成氢氧化物混合物。其中,所述碱为反应提供氢氧根离子,具体的,所述碱选自氢氧化锂、氢氧化钾、氢氧化钠、TMAH、氨水中的至少一种。
本发明实施例用于形成镍盐、含有掺杂金属离子的金属盐、碱的混合溶液的溶剂,可以为有机溶剂或无机溶剂,具体可选自水、甲醇、乙醇等具有较大极性、且易于挥发的溶剂中的至少一种,但不限于此,优选为蒸馏水。
优选的,所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液中,所述掺杂金属离子占金属离子总摩尔浓度的0.01%-13%。更优选的,所述掺杂金属离子占空穴传输材料中金属元素摩尔总浓度的0.1%-13%。当所述掺杂金属离子的掺杂摩尔浓度过低时,仍有部分 掺杂金属离子可以进入到氧化镍纳米颗粒的体相中形成固溶体,此时掺杂金属离子在表面区域中数量与体相中数量是相对比较接近的,不利于掺杂离子表面富集现象的形成;而当所述掺杂金属离子的掺杂摩尔浓度过高时,掺杂金属离子进入氧化镍纳米颗粒体相所产生的剧烈的晶格畸变会促使新加入的过量掺杂金属离子全部富集在氧化镍纳米颗粒的表面,在氧化镍材料表面掺杂金属离子会以第二相的形式析出,严重影响氧化镍材料的电学性能。
优选的,所述碱的添加量满足:所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液的pH值为8-12。该混合溶液的PH值直接决定了氢氧化物混合物能否充分生成和最终氢氧化物混合物能否充分分解。当混合溶液的pH值小于8时,由于混合溶液碱性不足,无法将掺杂金属盐和镍盐的混合盐溶液充分转变为氢氧化物混合物;而当混合溶液的pH值大于12时,碱液显著过量,过量的氢氧根离子包覆在氢氧化物混合物的表面,阻碍了下述步骤氢氧化物混合物的煅烧分解,使得到的掺杂氧化镍纳米粉末中出现部分未分解的氢氧化物混合物,进而在制备成交替溶液时影响掺杂氧化镍胶体溶液的成膜性和成膜后掺杂氧化镍空穴传输层的导电性能。更优的,所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液的pH值为9~10.5。
本发明实施例所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,可以将镍盐、含有掺杂金属离子的金属盐、碱加入溶剂中制备获得。作为一种优选方式,所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液的制备方法如下:
将镍盐和含有掺杂金属离子的金属盐溶解在溶剂中,得到盐溶液;
在所述盐溶液中加入碱液,得到镍盐、含有掺杂金属离子的金属盐、碱的混合溶液。
上述步骤在室温(10-30℃)条件下完成即可。其中,所述碱液可以为将碱进行溶解或将碱稀释在另一份与镍盐、含有掺杂金属离子的金属盐的溶解用溶剂相同或不同的溶剂中。
通过这种方式,可以先将镍盐和含有掺杂金属离子的金属盐充分溶解,混合均匀,在此条件下进一步添加碱液,可以促使反应均匀进行。
提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物的步骤包括:将所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,在室温-90℃条件下反应10-120min,制备氢氧化物混合物。上述温度可以确保氢氧化物混合物的形成。当反应温度低于室温时,反应温度过低会显著减缓氢氧化物的生成;而当反应温度高于90℃时,接近沸腾的水溶液可能会造成氢氧化物混合物的部分分解,影响最终样品的均一性。更优的,反应温度选在室温~50℃。进一步的,反应时间为10-120min,以确保生成均匀的氢氧化物混合物。当反应时间少于10min时,反应时间过短,氢氧化物混合物的形成可能不充分,进而影响到最终掺杂氧化镍纳米颗粒的均一性;而当反应时间超过2h时,会增加成本。 更优选的,反应时间为30min~2h。本发明实施例反应过程可以通过搅拌实现。
进一步的,在反应结束后,还包括将反应后的反应液进行离心处理,得到氢氧化物混合物。更进一步的,将离心后收集的氢氧化物混合物进行清洗处理,所述清洗处理的溶剂可选用水、甲醇、乙醇等极性较大且易于挥发的溶剂。将收集的氢氧化物混合物进行干燥处理,具体可在鼓风烘箱中充分干燥。
上述步骤S02中,将所述氢氧化物混合物在氧气保护下进行煅烧处理,分解生成掺杂金属离子的氧化镍纳米颗粒。
煅烧温度是本发明实施例中利用共沉淀法合成掺杂氧化镍颗粒,进一步制备掺杂氧化镍胶体溶液过程中一个非常重要的参数。该煅烧温度直接决定了掺杂氧化镍纳米颗粒能否顺利生成以及生成的纳米颗粒的稳定性。当选择煅烧温度时,一方面所选择的温度需要同时满足掺杂金属离子氢氧化物的分解温度和氢氧化镍的分解温度。否则,必将造成其中一个氢氧化物的分解不完全,进而影响最终掺杂氧化镍纳米颗粒样品的均一性。另一方面,选择的煅烧温度又不能过高。否则,会造成合成出的掺杂氧化镍纳米颗粒发生严重团聚,直接影响最终纳米氧化镍空穴传输层膜的均匀性和导电性。优选的,将所述氢氧化物混合物在氧气保护下进行煅烧处理的温度为250-400℃。具体优选的,当掺杂金属离子为La 3+时,煅烧温度为280~350℃;当掺杂金属离子为Y 3+时,煅烧温度为250~330℃;当掺杂金属离子为Nd 3+时,的煅烧温度为330~400℃。
进一步优选的,所述氢氧化物混合物的煅烧时间为1h~4h。所述氢氧化物混合物的煅烧时间需要与煅烧温度相对应,确保掺杂氧化镍纳米颗粒的顺利生成和生成的纳米颗粒的优良稳定性。当煅烧温度确定后,如果煅烧时间过短,则无法保证所有的氢氧化物混合物都得到充分的分解,进而影响最终掺杂氧化镍纳米颗粒样品的均一性;而当煅烧时间过长时,依然会造成掺杂氧化镍纳米颗粒的严重团聚,直接影响最终纳米氧化镍空穴传输层膜的均匀性和导电性能。具体优选的,当掺杂金属离子为La 3+时,煅烧温度为280~350℃,煅烧时间为1h~3h;当掺杂金属离子为Y 3+时,煅烧温度为250~330℃,煅烧时间为2h~4h;当掺杂金属离子为Nd 3+时,的煅烧温度为330~400℃,煅烧时间为1h~2h。
本发明实施例利用共沉淀法合成掺杂氧化镍胶体溶液,在共沉淀法的整个反应历程中(镍盐和含有掺杂金属离子的金属盐构成的混合溶液与碱液反应生成氢氧化物沉淀物,随后氢氧化物沉淀物高温分解生成掺杂氧化镍纳米粒子),掺杂氧化镍纳米粒子的生成都是在较高温度中进行。而较高的分解温度为掺杂金属离子在氧化镍纳米颗粒中的传质和扩散提供了足够的动力,使得符合前文所述要求的金属掺杂离子在短时间内就可以扩散到氧化镍纳米颗粒的表面,从动力学方面确保了掺杂金属离子表面富集现象的发生。
以及,本发明实施例提供了一种空穴传输薄膜,所述空穴传输薄膜由上述的空穴传输薄膜制成,或所述空穴传输薄膜由如上述方法制备的空穴传输薄膜制成。
本发明实施例提供的空穴传输薄膜,由于含有上述空穴传输材料,因此,具有较好的膜层均匀性和稳定性。
优选的,所述空穴传输薄膜的厚度为10-100nm。当所述空穴传输薄膜的厚度小于10nm时,膜层很容易被载流子击穿,无法保证载流子的注入性能;当所述空穴传输薄膜的厚度大于100nm时,则会阻碍空穴的注入,影响器件的电荷注入平衡。
对应的,本发明实施例提供了一种空穴传输薄膜的制备方法,包括以下步骤:
提供含有掺杂金属离子的纳米氧化镍材料的胶体溶液;
在基板上沉积所述含有掺杂金属的纳米氧化镍材料的胶体溶液,干燥成膜,得到空穴传输薄膜。
具体的,含有掺杂金属离子的纳米氧化镍材料的胶体溶液中的含有掺杂金属离子的纳米氧化镍材料如上文所述,为了节约篇幅,此处不再赘述。本发明实施例只需将含有掺杂金属离子的纳米氧化镍材料溶于溶剂中,充分分散均匀即可获得胶体溶液。
在基板上沉积所述掺杂金属离子的纳米氧化镍材料的胶体溶液,所述基板的选择没有严格限定,可以为用于沉积空穴传输薄膜的普通基板,也可以是沉积好其他功能层,需要进一步沉积空穴传输薄膜的功能基板,如阳极基板。
沉积方式没有严格限制,基于含有掺杂金属离子的纳米氧化镍材料的胶体溶液性质,采用溶液加工法即可。具体的,包括但不局限于旋涂法、刮涂法、印刷法、喷涂法、滚涂法、电沉积法等中的一种。
进一步的,将沉积有掺杂金属离子的纳米氧化镍材料的胶体溶液的片子干燥成膜,所述干燥采用低温退火,此处选择的低温退火温度只需将掺杂氧化镍胶体溶液中的溶剂挥发即可,并不需要较高温度,具体根据掺杂氧化镍胶体溶液中溶剂的沸点来决定。具体的,所述低温退火在60~150℃条件下进行。较高的退火温度反而会对已沉积在基片上的阳极产生破坏。所述低温退火过程需要在惰性气氛下进行,以保护沉积在基片上的功能层如量子点发光层不被破坏。
以及,本发明实施例提供了一种发光二极管器件,所述发光二极管器件中含有空穴传输材料,所述空穴传输材料为含有掺杂金属离子的纳米氧化镍材料,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;或
制备所述空穴传输材料的方法,包括以下步骤:
提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物, 其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;
将所述氢氧化物混合物在氧气保护下进行煅烧处理,制备纳米氧化镍材料。
本发明实施例提供的发光二极管,由于含有上述空穴传输材料,因此,可以显著提高器件的发光效率和器件性能。此外,采用掺杂氧化镍空穴传输材料的发光二极管无需隔绝水氧,最终制得的发光二极管器件即使不进行严格复杂的封装过程也可以有良好的器件稳定性,大大降低了制造成本。
本发明实施例中,所述空穴传输材料为上文所述的空穴传输材料;或者,所述空穴传输材料为上文所述方法制备获得的空穴传输材料。所述空穴传输材料的具体情形,制备获得的空穴传输材料的具体情形如上文所述,为了节约篇幅,此处不再赘述。
在优选实施方式中,所述发光二极管器件中含有上述的空穴传输薄膜,所述空穴传输薄膜中含有所述空穴传输材料。
具体的,所述发光二极管中含有发光层,所述发光层可以为有机发光层,也可以为量子点发光层。对应的,当所述发光层为有机发光层时,所述发光二极管器件为有机发光二极管(OLED)器件;当所述发光层为量子点发光层时,所述发光二极管为量子点发光二极管(QLED)器件。
优选的,所述发光二极管还包括空穴传输层,从而促进空穴的传输,促进载流子平衡。作为一种具体实施例,如图3所示,所述发光二极管包括层叠结合在衬底1上的阳极2、空穴传输层3、发光层4、电子传输层5和阴极6,其中,空穴传输层3按照上述方法制备得到的空穴传输薄膜。
具体的,所述衬底可采用硬质衬底或柔性衬底,具体的,可选用玻璃衬底。
所述阳极可以为ITO,但不限于此。
所述空穴传输层可采用采用上述空穴传输薄膜。
所述发光层为有机发光层时,发光层材料可选自常规的有机发光材料。当所述发光层为量子点发光层时,发光层材料的量子点可以为红、绿、蓝三种中的一种量子点,具体可以为CdS、CdSe、CdTe、NiO、NiS、NiSe、NiTe、GaAs、GaP、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、CuInS、CuInSe、以及各种核壳结构量子点或合金结构量子点中的至少一种;也可以为常见的红、绿、蓝三种的任意一种量子点或者其它颜色如黄光量子点混合得到。所述量子点可以含镉或者不含镉。所述发光层的厚度优选为20-60nm。
所述电子传输层可以采用常规的电子传输材料,包括但不限于ZnO、TiO 2、CsF、LiF、CsCO 3、Alq 3中的至少一种,亦可以是其它高性能的电子传输材料。
所述阴极采用金属阴极材料,如金属银或金属铝,或纳米银线或纳米铜线、采用所述纳米银线或所述纳米铜线,具有更小的电阻,有利于载流子顺利注入。所述阴极的厚度优选为15-30nm。
进一步的,可对得到的发光二极管进行封装处理。
相应的,本发明实施例提供了一种发光二极管的制备方法,包括以下步骤:
Q01.在阳极上制备空穴传输层。
在所述阳极上制备空穴传输层,采用上述空穴传输薄膜的方法制备获得,此处不再赘述。
Q02.在所述空穴传输层上制备发光层。
具体的,可以采用溶液法加工实现,即将发光层材料溶解成发光层材料溶液后,将发光层材料溶液沉积在阳极表面。进一步的,可以通过旋涂的方式将所述发光层材料溶液沉积成膜。具体的,将阳极基片置于匀胶机上,将配制好一定浓度的发光层材料溶液旋涂成膜,通过调节溶液的浓度、旋涂速度和旋涂时间来控制发光层的厚度,然后在适当温度下热退火处理。
Q03.在所述发光层上制备阴极。
将沉积发光的片子置于蒸镀仓中通过掩膜板热蒸镀阴极。
优选的,在制备阴极之前,还包括在发光层上制备电子传输层。所述电子传输层可以采用与发光层相同的方法制备,优选采用溶液加工法,如旋涂,并进一步通过调节溶液的浓度、旋涂速度和旋涂时间来控制膜厚,然后在适当温度下热退火处理。
进一步的,对器件进行封装处理,封装条件优选在氧含量和水含量均低于0.1ppm的条件下进行,以保证器件的稳定性。
当然,所述发光二极管也可以采用另一种方法制备获得,具体的,所述发光二极管的制备方法,包括以下步骤:
Q01.在阴极上制备发光层;
Q02.在所述发光层上制备空穴传输层;
Q03.在所述空穴传输层上制备阳极。
各层的制备方法参照同上一种实施方式。
下面结合具体实施例进行说明。
实施例1
一种镧离子掺杂的纳米氧化镍空穴传输薄膜,其制备方法包括以下步骤:
首先将适量的醋酸镍和硫酸镧加入到50ml蒸馏水溶剂中形成总浓度为0.1mol/L的混合盐溶液,其中La 3+的掺杂摩尔浓度为2%。同时将适量的氢氧化钾粉末溶解到另一份50ml蒸馏水溶剂中形成浓度为0.3mol/L的碱液。随后将混合盐溶液加热至50℃,并逐滴加入氢氧化钾溶液直至混合溶液的PH值达到9时停止。氢氧化钾溶液滴注完成后,将混合溶液在50℃下继续搅拌1h,得到一绿色浑浊溶液。将浑浊溶液以7000rpm的速度进行离心,所得绿色沉淀与50ml蒸馏水溶剂混合搅拌10min后再次以7000rpm的速度进行离心。此清洗过程重复进行四次。随后将清洗多次的绿色沉淀放入鼓风烘箱中,在80℃的温度下充分干燥8h。将干燥后的绿色沉淀在氧气气氛保护下在290℃的马弗炉中进行煅烧,煅烧时间为3h,即可得到黑色的掺杂氧化镍纳米粉末。最终将掺杂氧化镍纳米粉末溶于适量蒸馏水溶剂中,得到浓度为30mg/ml的镧离子掺杂的氧化镍胶体溶液。
将所得30mg/ml镧离子掺杂的氧化镍胶体溶液以旋涂的方法沉积在已沉积有阳极、的基片上,并在120℃下进行退火,即制得了镧离子掺杂的纳米氧化镍空穴传输层。其中旋涂转速为3000rpm,旋涂时间为30s,以控制掺杂氧化镍空穴传输层的厚度在50nm左右。
实施例2
一种镧离子掺杂的纳米氧化镍空穴传输薄膜,其制备方法包括以下步骤:
首先将适量的硝酸镍和硝酸镧加入到50ml蒸馏水溶剂中形成总浓度为0.1mol/L的混合盐溶液,其中La 3+的掺杂摩尔浓度为7%。同时将适量的氢氧化钠粉末溶解到另一份50ml蒸馏水溶剂中形成浓度为0.3mol/L的碱液。随后将混合盐溶液保持在室温,并逐滴加入氢氧化钠溶液直至混合溶液的PH值达到10时停止。氢氧化钠溶液滴注完成后,将混合溶液在室温下继续搅拌30min,得到一绿色浑浊溶液。将浑浊溶液以7000rpm的速度进行离心,所得绿色沉淀与50ml乙醇溶剂混合搅拌10min后再次以7000rpm的速度进行离心。此清洗过程重复进行四次。随后将清洗多次的绿色沉淀放入鼓风烘箱中,在70℃的温度下充分干燥8h。将干燥后的绿色沉淀在氧气气氛保护下在330℃的马弗炉中进行煅烧,煅烧时间为2h,即可得到黑色的掺杂氧化镍纳米粉末。最终将掺杂氧化镍纳米粉末溶于适量乙醇溶剂中,得到浓度为30mg/ml的镧离子掺杂的氧化镍胶体溶液。
将所得30mg/ml镧离子掺杂的氧化镍胶体溶液以旋涂的方法沉积在已沉积有阳极、的基片上,并在100℃下进行退火,即制得了镧离子掺杂的纳米氧化镍空穴传输层。其中旋涂转速为3000rpm,旋涂时间为30s,以控制掺杂氧化镍空穴传输层的厚度在50nm左右。
实施例3
一种钇离子掺杂的纳米氧化镍空穴传输薄膜,其制备方法包括以下步骤:
首先将适量的氯化镍和硝酸钇加入到30ml蒸馏水溶剂中形成总浓度为0.1mol/L的混合盐溶液,其中Y 3+的掺杂摩尔浓度为5%。同时将适量的氢氧化锂粉末溶解到另一份50ml蒸馏水溶剂中形成浓度为0.15mol/L的碱液。随后将混合盐溶液保持在室温,并逐滴加入氢氧化锂溶液直至混合溶液的PH值达到9时停止。氢氧化锂溶液滴注完成后,将混合溶液在室温下继续搅拌1h,得到一绿色浑浊溶液。将浑浊溶液以7000rpm的速度进行离心,所得绿色沉淀与50ml乙醇溶剂混合搅拌10min后再次以7000rpm的速度进行离心。此清洗过程重复进行四次。随后将清洗多次的绿色沉淀放入鼓风烘箱中,在70℃的温度下充分干燥8h。将干燥后的绿色沉淀在氧气气氛保护下在260℃的马弗炉中进行煅烧,煅烧时间为3h,即可得到黑色的掺杂氧化镍纳米粉末。最终将掺杂氧化镍纳米粉末溶于适量乙醇溶剂中,得到浓度为30mg/ml的钇离子掺杂的氧化镍胶体溶液。
将所得30mg/ml钇离子掺杂的氧化镍胶体溶液以旋涂的方法沉积在已沉积有阳极、的基片上,并在100℃下进行退火,即制得了钇离子掺杂的纳米氧化镍空穴传输层。其中旋涂转速为4500rpm,旋涂时间为30s,以控制掺杂氧化镍空穴传输层的厚度在20nm左右。
实施例4
一种钇离子掺杂的纳米氧化镍空穴传输薄膜,其制备方法包括以下步骤:
首先将适量的硫酸镍和醋酸钇加入到50ml蒸馏水溶剂中形成总浓度为0.1mol/L的混合盐溶液,其中Y 3+的掺杂摩尔浓度为10%。同时将适量的氢氧化钾粉末溶解到另一份50ml蒸馏水溶剂中形成浓度为0.3mol/L的碱液。随后将混合盐溶液加热至50℃,并逐滴加入氢氧化钾溶液直至混合溶液的PH值达到10.5时停止。氢氧化钾溶液滴注完成后,将混合溶液保持在50℃下继续搅拌30min,得到一绿色浑浊溶液。将浑浊溶液以7000rpm的速度进行离心,所得绿色沉淀与50ml甲醇溶剂混合搅拌10min后再次以7000rpm的速度进行离心。此清洗过程重复进行四次。随后将清洗多次的绿色沉淀放入鼓风烘箱中,在60℃的温度下充分干燥8h。将干燥后的绿色沉淀在氧气气氛保护下在310℃的马弗炉中进行煅烧,煅烧时间为2h,即可得到黑色的掺杂氧化镍纳米粉末。最终将掺杂氧化镍纳米粉末溶于适量甲醇溶剂中,得到浓度为30mg/ml的钇离子掺杂的氧化镍胶体溶液。
将所得30mg/ml钇离子掺杂的氧化镍胶体溶液以旋涂的方法沉积在已沉积有阳极、的基片上,并在80℃下进行退火,即制得了钇离子掺杂的纳米氧化镍空穴传输层。其中旋涂转速为4500rpm,旋涂时间为30s,以控制掺杂氧化镍空穴传输层的厚度在20nm左右。
实施例5
一种钕离子掺杂的纳米氧化镍空穴传输薄膜,其制备方法包括以下步骤:
首先将适量的硝酸镍和硝酸钕加入到50ml蒸馏水溶剂中形成总浓度为0.1mol/L的混合盐溶液,其中Nd 3+的掺杂摩尔浓度为2%。同时将适量的TMAH粉末溶解到另一份50ml蒸馏水溶剂中形成浓度为0.3mol/L的碱液。随后将混合盐溶液加热至50℃,并逐滴加入TMAH溶液直至混合溶液的PH值达到10时停止。TMAH溶液滴注完成后,将混合溶液保持在50℃下继续搅拌1h,得到一绿色浑浊溶液。将浑浊溶液以7000rpm的速度进行离心,所得绿色沉淀与50ml蒸馏水溶剂混合搅拌10min后再次以7000rpm的速度进行离心。此清洗过程重复进行四次。随后将清洗多次的绿色沉淀放入鼓风烘箱中,在80℃的温度下充分干燥8h。将干燥后的绿色沉淀在氧气气氛保护下在340℃的马弗炉中进行煅烧,煅烧时间为2h,即可得到黑色的掺杂氧化镍纳米粉末。最终将掺杂氧化镍纳米粉末溶于适量蒸馏水溶剂中,得到浓度为30mg/ml的钕离子掺杂的氧化镍胶体溶液。
将所得30mg/ml钕离子掺杂的氧化镍胶体溶液以旋涂的方法沉积在已沉积有阳极、的基片上,并在100℃下进行退火,即制得了钕离子掺杂的纳米氧化镍空穴传输层。其中旋涂转速为1500rpm,旋涂时间为30s,以控制掺杂氧化镍空穴传输层的厚度在80nm左右。
实施例6
一种钕离子掺杂的纳米氧化镍空穴传输薄膜,其制备方法包括以下步骤:
首先将适量的醋酸镍和氯化钕加入到30ml蒸馏水溶剂中形成总浓度为0.1mol/L的混合盐溶液,其中Nd 3+的掺杂摩尔浓度为9%。同时将适量的氨水溶液稀释到另一份50ml蒸馏水溶剂中形成浓度为0.3mol/L的碱液。随后将混合盐溶液保持在室温,并逐滴加入氨水溶液直至混合溶液的PH值达到9时停止。氨水溶液滴注完成后,将混合溶液保持在室温下继续搅拌30min,得到一绿色浑浊溶液。将浑浊溶液以7000rpm的速度进行离心,所得绿色沉淀与50ml乙醇溶剂混合搅拌10min后再次以7000rpm的速度进行离心。此清洗过程重复进行四次。随后将清洗多次的绿色沉淀放入鼓风烘箱中,在70℃的温度下充分干燥8h。将干燥后的绿色沉淀在氧气气氛保护下在380℃的马弗炉中进行煅烧,煅烧时间为1h,即可得到黑色的掺杂氧化镍纳米粉末。最终将掺杂氧化镍纳米粉末溶于适量乙醇溶剂中,得到浓度为30mg/ml的钕离子掺杂的氧化镍胶体溶液。
将所得30mg/ml钕离子掺杂的氧化镍胶体溶液以旋涂的方法沉积在已沉积有阳极、的基片上,并在80℃下进行退火,即制得了钕离子掺杂的纳米氧化镍空穴传输层。其中旋涂转速为1500rpm,旋涂时间为30s,以控制掺杂氧化镍空穴传输层的厚度在80nm左右。
实施例7-12
一种正型QLED器件,从下而上依次包括衬底、阳极、空穴传输层、量子点发光层、电子传输层、阴极。其中,衬底的材料为玻璃片,阳极的材料为ITO基板,空穴传输层的材料为TFB,电子传输层的材料为具有较大离子半径的不等价金属离子掺杂氧化镍及阴极的材料为Al。
所述正型QLED器件包括以下步骤:
按照实施例1-6的方法,旋涂掺杂氧化镍空穴传输层于ITO基板上;
在空穴传输层上旋涂量子点发光层;
在量子点发光层上旋涂电子传输层;
蒸镀阴极于电子传输层上,得到量子点发光二极管。
实施例13-18
一种OLED器件,依次包括衬底、阳极、空穴传输层、有机发光层、电子传输层、阴极。其中,衬底的材料为玻璃片,阳极的材料为ITO基板,空穴传输层的材料为TFB,电子传输层的材料为具有较大离子半径的不等价金属离子掺杂氧化镍及阴极的材料为Al。
按照实施例1-6的方法,旋涂掺杂氧化镍空穴传输层于ITO基板上;
在空穴传输层上旋涂有机发光层;
在有机发光层上旋涂电子传输层;
蒸镀阴极于电子传输层上,得到有机发光二极管。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种空穴传输材料的制备方法,其特征在于,包括以下步骤:
    提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;
    将所述氢氧化物混合物在氧气保护下进行煅烧处理,制备纳米氧化镍材料。
  2. 如权利要求1所述的空穴传输材料的制备方法,其特征在于,所述掺杂金属离子选自La 3+、Y 3+、Nd 3+中的至少一种;和/或
    所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液中,所述掺杂金属离子占金属离子总摩尔浓度的0.01%-13%。
  3. 如权利要求1所述的空穴传输材料的制备方法,其特征在于,所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液的pH值为8-12。
  4. 如权利要求1所述的空穴传输材料的制备方法,其特征在于,将所述氢氧化物混合物在氧气保护下进行煅烧处理的温度为250-400℃。
  5. 如权利要求1项所述的空穴传输材料的制备方法,其特征在于,提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物的步骤包括:将所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,在室温-90℃条件下反应10-120min,制备氢氧化物混合物。
  6. 如权利要求1所述的空穴传输材料的制备方法,其特征在于,所述含有掺杂金属离子的金属盐选自硫酸镧、氯化镧、硝酸镧、醋酸镧、硫酸钇、氯化钇、醋酸钇、硝酸钇、硝酸钕、醋酸钕、硫酸钕、氯化钕及其金属盐水合物中的至少一种;和/或
    所述碱选自氢氧化锂、氢氧化钾、氢氧化钠、TMAH、氨水中的至少一种。
  7. 如权利要求1所述的空穴传输材料的制备方法,其特征在于,所述镍盐、含有掺杂金属离子的金属盐、碱的混合溶液的制备方法如下:
    将镍盐和含有掺杂金属离子的金属盐溶解在溶剂中,得到盐溶液;
    在所述盐溶液中加入碱液,得到镍盐、含有掺杂金属离子的金属盐、碱的混合溶液。
  8. 如权利要求1所述的空穴传输材料的制备方法,其特征在于,提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物的步骤中,还包括将反应后的反应液进行离心处理,得到氢氧化物混合物。
  9. 一种空穴传输材料,其特征在于,所述空穴传输材料为含有掺杂金属离子的纳米氧 化镍材料,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%。
  10. 如权利要求9所述的空穴传输材料,其特征在于,所述掺杂金属离子满足:以氢氧化镍的分解温度为T 0计,掺杂金属离子的氢氧化物的分解温度为T 0±80℃。
  11. 如权利要求9所述的空穴传输材料,其特征在于,所述掺杂金属离子为稀土金属离子。
  12. 如权利要求11所述的空穴传输材料,其特征在于,所述掺杂金属离子选自La 3+、Y 3+、Nd 3+中的至少一种。
  13. 如权利要求12所述的空穴传输材料,其特征在于,所述空穴传输材料为含有一种掺杂金属离子的纳米氧化镍材料,且以所述空穴传输材料中金属元素摩尔总浓度为100%计,所述La 3+的掺杂摩尔浓度为0.01%~8%;或
    所述Y 3+的掺杂摩尔浓度为0.01%~13%;或
    所述Nd 3+的掺杂摩尔浓度为0.01%~10%。
  14. 如权利要求9所述的空穴传输材料,其特征在于,所述空穴传输材料为表面富集所述金属离子的纳米氧化镍材料。
  15. 一种发光二极管器件,其特征在于,所述发光二极管器件中含有空穴传输材料,所述空穴传输材料为含有掺杂金属离子的纳米氧化镍材料,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;或
    所述空穴传输材料的制备方法,包括以下步骤:
    提供镍盐、含有掺杂金属离子的金属盐、碱的混合溶液,反应制备氢氧化物混合物,其中,所述掺杂金属离子的价态不为正二价,且所述掺杂金属离子的离子半径为Ni 2+半径的130%-200%;
    将所述氢氧化物混合物在氧气保护下进行煅烧处理,制备纳米氧化镍材料。
PCT/CN2018/123506 2017-12-29 2018-12-25 空穴传输材料及其制备方法和应用 WO2019128993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711482039.1A CN109994607B (zh) 2017-12-29 2017-12-29 空穴传输材料及其制备方法和应用
CN201711482039.1 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128993A1 true WO2019128993A1 (zh) 2019-07-04

Family

ID=67063204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123506 WO2019128993A1 (zh) 2017-12-29 2018-12-25 空穴传输材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109994607B (zh)
WO (1) WO2019128993A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363395A (zh) * 2020-03-02 2021-09-07 海信视像科技股份有限公司 一种显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675348B (zh) * 2020-05-13 2023-04-07 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示装置
CN113206198A (zh) * 2021-04-19 2021-08-03 武汉大学 一种镍酸镧纳米颗粒空穴传输层的制备方法、反式钙钛矿太阳能电池及其制备方法
CN115915874A (zh) * 2021-09-30 2023-04-04 Tcl科技集团股份有限公司 金属氧化物材料及制备方法、载流子功能薄膜及光电器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840047A (zh) * 2014-02-20 2014-06-04 浙江大学 一种以胶体NiO纳米晶薄膜为空穴传输层的光电器件及其制备方法
WO2016187265A1 (en) * 2015-05-19 2016-11-24 Northwestern University Dopant-free polymeric hole-transporting for perovskite solar cell
CN106549109A (zh) * 2016-10-25 2017-03-29 Tcl集团股份有限公司 一种基于p‑i‑n结构的QLED器件及其制备方法
CN107482122A (zh) * 2017-08-23 2017-12-15 中节能万润股份有限公司 一种钙钛矿太阳能电池及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100924A2 (en) * 2001-02-12 2002-12-19 Nanoproducts Corporation Precursors of engineered powders
SG11201706566XA (en) * 2015-02-12 2017-09-28 Avantama Ag Optoelectronic devices comprising solution-processable metal oxide buffer layers
CN105895829B (zh) * 2016-04-26 2018-09-18 Tcl集团股份有限公司 一种Cu:NiO纳米粒子、发光二极管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840047A (zh) * 2014-02-20 2014-06-04 浙江大学 一种以胶体NiO纳米晶薄膜为空穴传输层的光电器件及其制备方法
WO2016187265A1 (en) * 2015-05-19 2016-11-24 Northwestern University Dopant-free polymeric hole-transporting for perovskite solar cell
CN106549109A (zh) * 2016-10-25 2017-03-29 Tcl集团股份有限公司 一种基于p‑i‑n结构的QLED器件及其制备方法
CN107482122A (zh) * 2017-08-23 2017-12-15 中节能万润股份有限公司 一种钙钛矿太阳能电池及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363395A (zh) * 2020-03-02 2021-09-07 海信视像科技股份有限公司 一种显示装置
CN113363395B (zh) * 2020-03-02 2022-11-18 海信视像科技股份有限公司 一种显示装置

Also Published As

Publication number Publication date
CN109994607B (zh) 2021-12-07
CN109994607A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2019128993A1 (zh) 空穴传输材料及其制备方法和应用
WO2019128992A1 (zh) 电子传输薄膜及其制备方法和应用
CN109980106B (zh) 电子传输材料及其制备方法和qled器件
CN109980097B (zh) 一种薄膜的制备方法与qled器件
Papadas et al. Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells
CN109411614B (zh) 一种有机无机复合型钙钛矿发光二极管器件及其制备方法
CN109994629B (zh) 复合薄膜及其制备方法和应用
CN112538163A (zh) 复合材料及其制备方法和量子点发光二极管
CN109980126A (zh) 载流子传输材料、载流子传输薄膜及其制备方法和应用
CN109994630B (zh) 复合薄膜及其制备方法和应用
CN109994625B (zh) 复合薄膜及其制备方法和应用
CN109994621A (zh) 复合薄膜及其制备方法和应用
CN113054118B (zh) 复合材料及其制备方法、应用、发光二极管及其制备方法
CN110963535A (zh) 复合材料及其制备方法和量子点发光二极管
CN113054145B (zh) 复合材料及其制备方法、应用、发光二极管及其制备方法
CN111725433B (zh) 量子点发光二极管、量子点发光二极管的制备方法
CN110752302B (zh) 复合材料及其制备方法和量子点发光二极管
CN112420936B (zh) 纳米材料及其制备方法、应用和量子点发光二极管
CN112397670B (zh) 复合材料及其制备方法和量子点发光二极管
CN113054119B (zh) 复合材料及其制备方法、应用、发光二极管及其制备方法
WO2020108072A1 (zh) 一种纳米金属氧化物及其制备方法、量子点发光二极管
CN114520297A (zh) 纳米材料及其制备方法和量子点发光二极管
CN114695748A (zh) 量子点发光二极管的制备方法
CN116750787A (zh) 纳米氧化锌溶液及制备方法、纳米氧化锌薄膜、光电器件
CN114695750A (zh) 复合材料、量子点发光二极管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896239

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12-11-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18896239

Country of ref document: EP

Kind code of ref document: A1