WO2020098537A1 - 洗衣机 - Google Patents

洗衣机 Download PDF

Info

Publication number
WO2020098537A1
WO2020098537A1 PCT/CN2019/115864 CN2019115864W WO2020098537A1 WO 2020098537 A1 WO2020098537 A1 WO 2020098537A1 CN 2019115864 W CN2019115864 W CN 2019115864W WO 2020098537 A1 WO2020098537 A1 WO 2020098537A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
washing
coil
drive motor
time
Prior art date
Application number
PCT/CN2019/115864
Other languages
English (en)
French (fr)
Inventor
前场克之
大槻太郎
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社 filed Critical 青岛海尔洗衣机有限公司
Priority to CN201980070958.9A priority Critical patent/CN112912555B/zh
Publication of WO2020098537A1 publication Critical patent/WO2020098537A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to a washing machine.
  • washing machines have used a driving motor as a driving source to wash the laundry contained in the washing tub such as the washing and dewatering tub and the drum.
  • a driving motor as a driving source to wash the laundry contained in the washing tub such as the washing and dewatering tub and the drum.
  • a pulsator is provided at the bottom of the washing and dewatering tub, the drive motor operates in a state where water is stored in the washing and dewatering tub, and the pulsator rotates.
  • mechanical force is applied to the laundry, and the laundry is washed or rinsed.
  • the washing machine for example, by increasing the torque of the drive motor or extending the on-time, the mechanical force applied to the laundry can be increased, and the washing power of the laundry can be improved.
  • the temperature of the coil of the drive motor is likely to rise.
  • Patent Document 1 describes a washing machine that includes a motor composed of a rotor and a stator having a coil, and a thermistor that detects the temperature of the stator.
  • the thermistor is detected during the washing operation by continuously performing a washing operation or the like When the temperature exceeds a predetermined value, the motor stops.
  • the motor stops when the temperature of the stator is above a predetermined value, that is, the washing operation is interrupted. Therefore, although the motor temperature can be prevented from being abnormal, the washing power during the washing operation may greatly decrease.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-239688
  • an object of the present invention is to provide a washing machine which can well prevent the coil of the drive motor from exceeding the upper limit temperature.
  • the main aspect of the present invention relates to a washing machine which performs a washing operation for washing the laundry contained in the washing tub by applying a mechanical force by the operation of a driving motor.
  • the washing machine of this aspect includes: a coil temperature sensor that detects the temperature of the coil of the drive motor or a temperature related to the temperature of the coil as the coil temperature; and a control unit.
  • the control unit sets the operating conditions during the washing operation based on the temperature of the coil detected before the drive motor operates in a state where water is stored in the washing tub.
  • the temperature of the coil when the temperature of the coil is low and the gap with the upper limit temperature is large, the temperature of the coil can be easily increased. Therefore, it is possible to set a large mechanical force to the laundry by applying the operation of the driving motor or to apply a mechanical force for a long time Such operating conditions can ensure high washing power.
  • the operating conditions such as applying a small mechanical force to the laundry or applying a mechanical force for a short time by the operation of the driving motor can be set to The temperature is not easy to rise, which can prevent the temperature of the coil from exceeding the upper limit temperature.
  • a configuration may be adopted which further includes an ambient temperature sensor that detects the ambient temperature of the drive motor or a temperature related to the ambient temperature as the ambient temperature.
  • the control unit sets the temperature according to the temperature difference between the coil temperature and the ambient temperature detected before the drive motor operates in a state where water is stored in the washing tub Operating conditions.
  • the temperature of the coil driving the motor can be determined based on the temperature difference between the coil temperature detected by the coil temperature sensor and the ambient temperature detected by the ambient temperature sensor, and the operating conditions can be set.
  • the washing machine of this aspect the following structure may be adopted: It is further provided with a pulsator, which is arranged at the bottom of the washing tub and rotates by the torque of the drive motor.
  • the operation condition may include a water level when storing water into the washing tub according to the load of the laundry.
  • the control unit relatively lowers the water level when the coil temperature is relatively low, and relatively increases the water level when the coil temperature is relatively high.
  • the lower the water level of the washing tub the closer the laundry is to the pulsator. Therefore, a strong water flow is easily applied to the laundry or the laundry is easily rubbed by the pulsator, and the mechanical force applied to the laundry becomes greater.
  • the load from the laundry received by the pulsator increases, and the load on the drive motor also increases, so the temperature of the coil is likely to rise.
  • the temperature of the coil when the temperature of the coil is low, the water level of the washing tub becomes low for the same load, and therefore, the mechanical force applied to the laundry by the operation of the drive motor becomes large. Thus, a high cleaning power can be ensured.
  • the temperature of the coil when the temperature of the coil is high, the water level of the washing tub becomes higher for the same load, and therefore the load from the laundry received by the pulsator becomes smaller and the load on the drive motor also becomes smaller. As a result, the temperature of the coil does not easily rise, and therefore, the temperature of the coil can be prevented from exceeding the upper limit temperature.
  • the operating conditions may include a soaking time for the washing motor to be immersed and placed in water when the driving motor does not work.
  • the control unit is set such that the immersion leaving time does not exist when the coil temperature is relatively low or the immersion leaving time is relatively short, and there is a location when the coil temperature is relatively high The soaking standing time or making the soaking standing time relatively longer.
  • the operation time is not easily extended.
  • the temperature of the coil is high, there is a soaking standing time or the soaking standing time becomes longer, and therefore, the coil is easily cooled while the laundry is soaked and placed in water. As a result, the temperature of the coil does not easily rise, and therefore, the temperature of the coil can be prevented from exceeding the upper limit temperature.
  • the operating conditions may include the amount of power provided when the drive motor is operated.
  • the control unit relatively increases the electric power when the coil temperature is relatively low, and relatively decreases the electric power when the coil temperature is relatively high.
  • the temperature of the coil when the temperature of the coil is low, the electric power supplied to the drive motor becomes large, and therefore, the mechanical force applied to the laundry by the operation of the drive motor becomes large. Thus, a high cleaning power can be ensured.
  • the temperature of the coil when the temperature of the coil is high, the power supplied to the drive motor becomes small, and therefore, the temperature of the coil does not easily rise. This can prevent the temperature of the coil from exceeding the upper limit temperature.
  • the operating conditions may include a ratio of the off time when the drive motor is intermittently operated.
  • the control unit makes the ratio of the off time relatively small when the coil temperature is relatively low, and relatively increases the ratio of the off time when the coil temperature is relatively high .
  • the ratio of the off time becomes smaller, and accordingly, the ratio of the on time becomes larger. Therefore, the time for applying mechanical force to the laundry by the operation of the drive motor becomes longer. Thus, a high cleaning power can be ensured.
  • the temperature of the coil is high, the ratio of the off time becomes large, and therefore, the temperature of the coil does not easily rise. This can prevent the temperature of the coil from exceeding the upper limit temperature.
  • a configuration may be adopted which further includes an ambient temperature sensor that detects the ambient temperature of the drive motor or a temperature related to the ambient temperature as the ambient temperature.
  • the control unit sets the operating condition based on the ambient temperature.
  • Fig. 1 is a side cross-sectional view of the fully automatic washing and drying machine according to the embodiment.
  • Fig. 2 is a rear perspective view of the upper part of the fully automatic washing and drying machine according to the embodiment.
  • FIG. 3 is a block diagram showing the configuration of the fully automatic washing and drying machine according to the embodiment.
  • FIG. 4 is a diagram for explaining data stored in a storage unit for an operation condition setting process according to an embodiment.
  • FIG. 5 is a flowchart showing control processing in the operation condition setting process of the embodiment.
  • FIG. 6 is a flowchart showing control processing in the cleaning process of the embodiment.
  • FIG. 7 is a side cross-sectional view of a fully-automatic washer-dryer according to Modification 1.
  • FIG. 1 is a side sectional view of the fully automatic washing and drying machine 1 of the present embodiment.
  • FIG. 2 is a rear perspective view of the upper part of the fully automatic washing and drying machine 1 of the present embodiment.
  • the fully-automatic washing and drying machine 1 is provided with a cabinet 10 constituting an appearance.
  • the cabinet 10 includes: a rectangular tube-shaped body portion 11 with open upper and lower surfaces; an upper panel 12 covering the upper surface of the body portion 11; and a footrest 13 that supports the body portion 11.
  • the upper panel 12 is formed with an outer input port 14 for inputting laundry.
  • the outer inlet 14 is covered by an upper cover 15 that can be opened and closed freely.
  • the outer tub 20 is elastically suspended and supported by four suspension bars 21 having vibration-proof devices.
  • the outer tub 20 includes: a substantially cylindrical outer tub body 20a with an upper surface opening; and an outer tub cover 20b that constitutes the upper surface of the outer tub 20 by covering the upper surface of the outer tub body 20a.
  • an inner input port 22 for inputting laundry is formed at a position corresponding to the outer input port 14.
  • the inner inlet 22 is covered by the outer lid 23 so as to be openable and closable.
  • a substantially cylindrical washing and dewatering tub 24 with an open upper surface is disposed in the outer tub 20 .
  • a balance ring 25 is provided on the upper part of the washing and dewatering tub 24.
  • a pulsator 26 is arranged at the bottom of the washing and dewatering tub 24.
  • a plurality of blades 26a are radially arranged on the surface of the pulsator 26. It should be noted that the washing and dewatering tub 24 corresponds to the washing tub of the present invention.
  • the drive unit 30 that generates torque that drives the washing and dewatering tub 24 and the pulsator 26 is disposed.
  • the drive unit 30 includes a drive motor 31, a transmission mechanism portion 32, a wing shaft 33, and a dewatering bucket shaft 34.
  • the drive motor 31 is, for example, a DC brushless motor, and includes a stator 35 having a coil 35 a and a rotor 36 that rotates by energizing the stator 35.
  • the wing shaft 33 is connected to the pulsator 26, and the dewatering tub shaft 34 is connected to the washing and dewatering tub 24.
  • the transmission mechanism section 32 has a clutch mechanism.
  • the torque of the drive motor 31 is transmitted only to the wing shaft 33 and only the pulsator 26 is rotated during the washing process and the rinsing process.
  • the torque of the drive motor 31 is transmitted to the wing shaft 33 and the dewatering tub shaft 34 to rotate the pulsator 26 and the washing dewatering tub 24 integrally.
  • the transmission mechanism section 32 has a speed reduction mechanism. During the washing process and the rinsing process, the rotation of the drive motor 31 is reduced according to the speed reduction ratio of the speed reduction mechanism and transmitted to the wing shaft 33.
  • a drain port 20c is formed on the outer bottom of the outer tub 20.
  • a drain valve 40 is provided in the drain port 20c.
  • the drain valve 40 is connected to the drain hose 41. When the drain valve 40 is opened, the water stored in the washing and dehydrating tub 24 and the outer tub 20 is discharged to the outside of the machine through the drain hose 41.
  • a drying device 50 and a water supply device 60 are arranged above the outer tub 20 at the rear of the cabinet 10.
  • the drying device 50 and the water supply device 60 are mounted on the fixed plate 16 disposed at the rear of the upper surface of the body portion 11 and covered by the upper panel 12.
  • the drying device 50 dries the laundry contained in the washing and dehydrating tub 24.
  • the drying device 50 includes a heater and a circulation air path 50a provided with a blower fan.
  • the circulation air path 50a is connected to the inside of the outer tub 20 through an air inlet duct 71 and an air outlet duct 72.
  • the air intake duct 71 and the air exhaust duct 72 are flexible ducts, formed of an elastic material such as rubber, and have a serpentine portion (not shown) in the middle portion.
  • the warm air generated by the operation of the heater and the blower fan is discharged from the circulation air path 50a, and is introduced into the outer tub 20 through the air inlet duct 71. Furthermore, the warm air discharged from the outer tub 20 is introduced into the circulating air passage 50a through the exhaust duct 72. In this way, the warm air circulates between the circulation air passage 50a and the outer tub 20.
  • the drying device 50 performs a cyclic drying operation based on the circulation of the warm air and an exhaust drying operation that subsequently discharges a part of the circulated warm air to the outside.
  • the upper panel 12 is provided with an air outlet 51, which is constituted by a plurality of exhaust holes to discharge warm air.
  • the water supply port 61 exposed to the outside of the water supply device 60 is connected to an external water supply hose (not shown) extending from the faucet.
  • the water supply device 60 includes a water supply valve and a detergent container. By opening the water supply valve, tap water from the faucet is supplied into the outer tub 20 together with the detergent stored in the detergent container.
  • the water supply device 60 may include a bath water pump.
  • FIG. 3 is a block diagram showing the structure of the fully automatic washing and drying machine 1 of the present embodiment.
  • the fully automatic washing and drying machine 1 further includes an operation unit 91, a display unit 92, and a buzzer 93.
  • the fully automatic washing and drying machine 1 includes a control unit 100.
  • the control unit 100 includes a control unit 101, a storage unit 102, a motor drive unit 103, a clutch drive unit 104, a water supply drive unit 105, a drain drive unit 106, a fan drive unit 107, a heater drive unit 108, and a temperature sensor 109.
  • the control unit 100 is provided, for example, in the lower part of the cabinet 10.
  • the operation section 91 includes various operation buttons such as the following buttons: a power button for turning on and off the power of the automatic washing and drying machine 1; a start / pause button for starting and pausing operation; and a mode selection button, It is used to select an arbitrary operation mode from a plurality of operation modes related to a washing operation, a washing and drying operation, and a drying operation.
  • the operation unit 91 outputs an input signal corresponding to the operation button operated by the user to the control unit 101.
  • the display section 92 includes a mode display section that displays the selected operation mode, a water level display section that displays the water level in the washing and dewatering tub 2, a process display section that displays the currently executing process in conjunction with the progress of the operation, and displays the remaining operation. Time remaining time display unit, etc.
  • the buzzer 93 outputs various buzzer sounds such as a sound notifying that the operation button has been accepted and a sound notifying that the operation has ended in accordance with the control signal from the control unit 101.
  • the water level sensor 94 detects the water level in the washing and dehydrating tub 24 and outputs a water level signal corresponding to the detected water level to the control unit 101.
  • the control unit 101, the storage unit 102, the motor drive unit 103, the clutch drive unit 104, the water supply drive unit 105, the drain drive unit 106, the fan drive unit 107, and the heater drive unit 108 are integrated circuits such as ICs (integrated circuits).
  • the structure is arranged on the substrate 110.
  • the motor driving section 103 is, for example, a driver IC, and includes a driving circuit 103a and a temperature sensor 103b.
  • the drive circuit 103 a drives the drive motor 31 based on the control signal from the control unit 101.
  • the drive circuit 103 a outputs a drive current corresponding to the rotation speed of the drive motor 31 detected by the rotation speed sensor (not shown) to the drive motor 31.
  • PWM Pulse Width Modulation
  • the drive current corresponding to the duty ratio that is, power is supplied to the drive motor 31.
  • the temperature sensor 103b detects the temperature K2 of the drive circuit 103a (hereinafter referred to as "driver temperature K2”), and outputs a temperature signal corresponding to the detected drive temperature K2 to the control unit 101.
  • the temperature of the coil 35a of the drive motor 31 rises
  • the temperature of the drive circuit 103a that drives the drive motor 31 also rises. That is, the driver temperature K2 is related to the temperature of the coil 35a of the drive motor 31.
  • the temperature sensor 103b corresponds to the coil temperature sensor of the present invention
  • the driver temperature K2 corresponds to the coil temperature of the present invention.
  • the clutch driving unit 104 drives the clutch mechanism 32a of the transmission mechanism unit 32 based on the control signal output from the control unit 101.
  • the water supply driving unit 105 drives the water supply valve 62 of the water supply device 60 according to the control signal from the control unit 101.
  • the drain driving unit 106 drives the drain valve 40 according to the control signal from the control unit 101.
  • the fan driving unit 107 drives the blower fan 52 of the drying device 50 based on the control signal output from the control unit 101.
  • the heater driving unit 108 drives the heater 53 of the drying device 50 based on the control signal output from the control unit 101.
  • the temperature sensor 109 is, for example, a thermistor, is disposed on the substrate 110, and detects the temperature K1 around the substrate 110 (hereinafter referred to as "substrate ambient temperature K1").
  • the substrate ambient temperature K1 is a temperature that is substantially the same as the temperature around the drive motor 31, that is, the relevant temperature.
  • the temperature sensor 109 corresponds to the ambient temperature sensor of the present invention, and the substrate ambient temperature K1 corresponds to the ambient temperature of the present invention.
  • the storage unit 102 includes EEPROM, RAM, and the like.
  • the storage unit 102 stores programs for executing washing operations, washing and drying operations, and drying operations in various operation modes.
  • the storage unit 102 stores various operating conditions for these washing operations, washing and drying operations, and drying operations.
  • the control unit 101 controls the display unit 92, the motor drive unit 103, the clutch drive unit 104, the water supply drive unit 105, the drain drive unit 106, the fan drive unit 107, the heater drive unit 108, etc. based on the program stored in the storage unit 102 .
  • a washing operation is an operation in which only washing is performed, and the washing process, the intermediate dehydration process, the rinsing process, and the final dehydration process are sequentially executed.
  • the washing and drying operation is a continuous washing to drying operation, and the drying process is performed after the final dehydration process.
  • the drying operation is an operation in which only drying is performed, and only the drying process is performed.
  • the pulsator 26 In the washing process and the rinsing process, in a state where water is stored in the washing and dewatering tank 24, the pulsator 26 alternately rotates in the right direction and the left direction in a state where it is occasionally stopped.
  • the laundry in the washing and dewatering tub 24 is washed or rinsed by the action of water flow or the like generated by the rotation of the pulsator 26. It should be noted that during the rinsing process, water storage rinsing or water rinsing are performed according to the washing mode.
  • the washing dehydration tub 24 and the pulsator 26 are integrated into a high-speed rotation.
  • the laundry is dehydrated by washing the centrifugal force generated in the dehydration tub 24.
  • the internal air circulation drying process is performed first, followed by the external air introduction drying process.
  • the drying device 50 performs a circulation drying action, whereby the warm air circulates between the circulation air path 50a and the outer tub 20.
  • the temperature in the washing and dewatering tank 24 rises rapidly.
  • the pulsator 26 rotates, and the laundry is dried by the circulating warm air while being stirred.
  • the temperature in the washing and dewatering tank 24 continues to rise and the moisture evaporates from the laundry to cause the warm air to contain a large amount of moisture, it is switched to the outside air introduction drying process.
  • the drying device 50 performs an exhaust drying operation, introduces outside air into the circulating air passage 50a, and discharges a part of the circulating warm air from the circulating air passage 50a. Since the water evaporated from the laundry is effectively discharged from the outer tub 20 to the outside of the cabinet 10, the outer tub 20 becomes easily dehumidified, thus promoting the drying of the laundry.
  • the operation condition setting process is executed before the washing process.
  • Fig. 4 is a diagram for explaining data stored in the storage unit 102 for the operation condition setting process of the present embodiment.
  • the storage unit 102 stores a first load amount-water level table, a second load amount-water level table, and a third load amount-water level table.
  • These load-water level tables are tables for setting the water level in the washing and dewatering tank 24 as one of the operating conditions according to the load of the laundry.
  • the first load amount-water level table the water level corresponding to the same load amount is lower than the second load amount-water level table
  • the second load amount-water level table the water level corresponding to the same load amount is lower than the third load amount- The water table is low.
  • any one of these three load-water level tables is used to set the water level during the cleaning process.
  • the storage unit 102 stores, as part of various operating conditions, the soaking time during the cleaning process set during the operating condition setting process, the PWM control duty cycle, and the motor off time.
  • the soaking time refers to the time during which the driving motor 31 works so that the pulsator 26 does not rotate, and the laundry is soaked and placed in water.
  • the soaking time three values of 0 minutes, T1 minutes, and T2 minutes greater than T1 minutes are stored.
  • the duty ratio and the motor off time are the duty ratio when the drive motor 31 is turned on and the off time of the drive motor 31 when the drive motor 31 is intermittently operated to rotate the pulsator 26 in the left-right direction.
  • the duty ratio three values of R1%, R2% smaller than R1%, and R3% smaller than R2% are stored.
  • the motor off time three values of t1 seconds, t2 seconds greater than t1 seconds, and t3 seconds greater than t2 seconds are stored.
  • FIG. 5 is a flowchart showing the control process during the operation condition setting process of the present embodiment.
  • the control unit 101 acquires the substrate ambient temperature K1 from the temperature sensor 109 (S101), and acquires the driver temperature K2 from the temperature sensor 103b (S102). Then, the control unit 101 calculates the temperature difference K3 between the driver temperature K2 and the substrate ambient temperature K1 (S103).
  • control unit 101 determines the load of the laundry put into the washing and dehydrating tub 24 (S104). For example, the control unit 101 operates the drive motor 31 to rotate the pulsator 26 in a state where there is no water in the washing and dewatering tank 24, and detects the current applied to the pulsator 26 based on the arrival speed of the drive motor 31, the inertial rotation amount, etc The magnitude of the load is determined based on the detection result.
  • the control unit 101 determines whether the temperature difference K3 is smaller than the threshold value M1 (S105).
  • the temperature of the coil 35a of the drive motor 31 is already sufficiently low, and the driver temperature K2 is also sufficiently low. Therefore, in this case, since the driver temperature K2 is close to the substrate surrounding temperature K1, the temperature difference K3 becomes smaller, and as a result, the temperature difference K3 becomes smaller than the threshold value M1.
  • the control unit 101 refers to the first load amount-water level table, and sets the water level in the washing and dewatering tank 24 based on the load amount determined in S104 (S106) .
  • the control unit 101 sets the soaking time to 0 minutes, that is, the setting that the laundry is not soaked and placed in water (S107).
  • the control unit 101 sets the duty ratio to R1% (S108), and sets the off time to t1 second (S109).
  • the temperature of the coil 35a of the drive motor 31 is not low enough, and the driver temperature K2 is also not low enough. . Therefore, in this case, since the driver temperature K2 is different from the substrate surrounding temperature K1, the temperature difference K3 becomes larger. As a result, the temperature difference K3 is equal to or greater than the threshold value M1.
  • the control unit 101 determines whether the substrate ambient temperature K1 is less than the threshold value M2 (S110).
  • the substrate surrounding temperature K1 does not become high, so the substrate surrounding temperature K1 becomes lower than the threshold value M2.
  • the control unit 101 refers to the second load-water level table, and sets the water level in the washing and dewatering tank 24 based on the load determined in S104 (S111 ). In addition, the control unit 101 adopts the setting that the laundry is soaked and placed in water, and sets the soaking and leaving time to T1 minutes (S112). Furthermore, the control unit 101 sets the duty ratio to R2% smaller than R1% (S113), and sets the off time to t2 seconds longer than t1 seconds (S114).
  • the temperature of the installation environment of the fully automatic washing and drying machine 1 may become high, and the temperature around the drive motor 31 may become high.
  • the temperature K1 around the substrate also becomes high, and the temperature K1 around the substrate becomes the threshold M2 or more.
  • the control unit 101 refers to the third load-water level table, and sets the water level in the washing and dewatering tank 24 based on the load determined in S104 ( S115). In addition, the control unit 101 adopts the setting that the laundry is soaked and placed in water, and sets the soaking time to T2 minutes longer than T1 minutes (S116). Furthermore, the control unit 101 sets the duty ratio to R3% which is smaller than R2% (S117), and sets the off time to t3 seconds longer than t2 seconds (S118).
  • the motor-on time is independent of the temperature difference K3 and the substrate ambient temperature K1, and is a predetermined fixed time. Therefore, the longer the motor on time is set, the larger the proportion of the motor off time in the intermittent operation of the drive motor 31 is set. Conversely, the shorter the motor off time is set, the greater the proportion of the motor on time.
  • the control unit 101 calculates the operation time, and uses the calculated operation time as the remaining operation time, which is displayed on the display unit 92.
  • the remaining time display unit (S119).
  • the remaining operation time varies according to the operating conditions such as the water level set according to the load and the soaking time.
  • the remaining operation time displayed on the remaining time display unit decreases as the washing operation progresses.
  • FIG. 6 is a flowchart showing control processing in the cleaning process of the present embodiment.
  • the control section 101 opens the water supply valve 62 to supply water into the washing tub 20, that is, into the washing and dewatering tub 24 (S201).
  • the detergent put into the detergent container of the water supply device 60 is mixed with water and supplied to the washing and dewatering tub 24.
  • the water in the washing and dewatering tub 24 becomes detergent water.
  • the control unit 101 determines whether the water level in the washing and dewatering tank 24 has reached the set water level set in S106, S111, or S115 of the operation condition setting process (S202). When the water level in the washing and dehydrating tub 24 is the set water level (S202: YES), the control unit 101 closes the water supply valve 62 and stops water supply (S203).
  • the control unit 101 determines whether or not the soaking time has elapsed after the water supply is stopped (S204).
  • the immersion leaving time is set to 0 in S107 of the operation condition setting process, it is directly determined that the immersion leaving time has elapsed. In this case, in essence, the laundry is placed in water without being soaked.
  • S112 or S115 of the operation condition setting process is set to T1 minutes or T2 minutes, when T1 minutes or T2 minutes have elapsed, it is determined that the soak storage time has elapsed.
  • the control unit 101 starts the on / off control of the drive motor 31 to alternately rotate the pulsator 26 in the right direction and the left direction so as to stop (S205).
  • the duty ratio of the PWM control when the rotation of the drive motor 31, that is, the pulsator 26 is started is R1% set in S108, R2% set in S113, or R3 set in S117 in the operating condition setting process. %.
  • the motor off time adopts t1 second set in S109 of the operating condition setting process, t2 second set in S114, or t3 second set in S118.
  • the control unit 101 determines whether the washing time has elapsed after the pulsator 26 started to rotate (S206).
  • the cleaning time is independent of the temperature difference K3 and the substrate ambient temperature K1, and is a predetermined fixed time.
  • the control unit 101 stops the drive motor 31 and stops the pulsator 26 (S207).
  • the control unit 101 opens the drain valve 40 to drain water from the outer tub 20, that is, the washing and dewatering tub 24 (S208).
  • the drain valve 40 remains open.
  • the first load-water level table is used during the cleaning process Since the water level is set, the water level of the washing and dewatering tank 24 becomes lower for the same load. In addition, since the soaking time is 0, the laundry is not soaked and placed in water before the pulsator 26 is rotated. Furthermore, by setting the duty ratio of the PWM control to a value as large as R1%, the power supplied to the drive motor 31 becomes larger. Furthermore, by setting the motor off time to a value as small as t1 seconds, the ratio of the motor off time becomes smaller, and accordingly, the ratio of the motor on time becomes larger.
  • the drive motor 31 is subjected to on / off control, and when the pulsator 26 alternately rotates to the right and left in a stopped manner, when the water level is low for the same load amount, the laundry is close to the pulsator 26, so it is easy When a strong water flow acts on the laundry or the laundry is easily rubbed by the pulsator 26, the mechanical force applied to the laundry becomes larger.
  • the electric power supplied to the driving motor 31 becomes larger, the torque of the driving motor 31 becomes larger, and therefore, it is easy to advance the start of the rotation of the pulsator 26 or to easily increase the rotation speed, and the mechanical force applied to the laundry Big.
  • the ratio of the motor-on time becomes larger, the rotation time of the pulsator 26 becomes longer, and the time for applying mechanical force to the laundry becomes longer. Thereby, the laundry is washed well, and therefore, a high washing power is ensured.
  • the second load-water level gauge or the third The load-water level table is used to set the water level. For the same load, the water level of the washing and dewatering tank 24 becomes higher. In addition, there is a soaking period of T1 minutes or T2 minutes, and the laundry is soaked and placed in water before the pulsator 26 is rotated. Furthermore, by setting the duty ratio of the PWM control to a value as small as R2% or R3%, the power supplied to the drive motor 31 becomes small. Furthermore, by setting the motor off time to a large value of t2 seconds or t3 seconds, the ratio of the motor off time becomes larger.
  • the drive motor 31 is subjected to on / off control, and when the pulsator 26 alternately rotates in the right and left directions in a stopped manner, when the water level is high for the same load amount, the laundry is away from the pulsator 26. The load from the laundry received by the wheel 26 is reduced, and the load on the drive motor 31 is also reduced. Therefore, the temperature of the coil 35a does not easily rise. In addition, when the electric power supplied to the drive motor 31 becomes small, and further, when the ratio of the motor off time becomes large, the temperature of the coil 35a does not easily rise. Furthermore, the coil 35a can be cooled while the laundry is soaked and left.
  • the temperature of the coil 35a of the drive motor 31 can be prevented from exceeding the upper limit temperature prescribed by law.
  • the temperature of the coil 35a can be prevented from exceeding the upper limit temperature prescribed by law.
  • the third load-water level table is used to clean The water level of the dewatering barrel 24 is further increased, the soaking time is T2 minutes longer than T1 minutes, the duty ratio is R3% less than R2%, and the motor off time is t3 seconds longer than t2 seconds.
  • the temperature around the drive motor 31 is high, the temperature of the coil 35a does not easily rise, and therefore, the temperature of the coil 35a can be further prevented from exceeding the upper limit temperature.
  • the temperature difference K3 of K1 sets the operating conditions during this washing operation. Therefore, when the temperature of the coil 35a is low and the gap with the upper limit temperature is large, the temperature of the coil 35a can be easily increased. Therefore, it is possible to set a large mechanical force to the laundry by the operation of the drive motor 31 or for a long time Operating conditions such as the application of mechanical force can ensure a high cleaning power.
  • the temperature of the coil 35a is high and the gap between the upper limit temperature and the upper limit temperature is small, it is possible to set operating conditions such as applying a small mechanical force to the laundry by applying the operation of the drive motor 31 or applying a mechanical force for a short time, so that The temperature of the coil 35a does not easily rise, and the temperature of the coil 35a can be prevented from exceeding the upper limit temperature.
  • the temperature of the coil 35a when the temperature of the coil 35a is low, the water level of the washing dewatering tank 24 becomes lower for the same load, and therefore, the mechanical force applied to the laundry by the operation of the drive motor 31 becomes larger. Thus, a high cleaning power can be ensured.
  • the temperature of the coil 35a when the temperature of the coil 35a is high, the water level of the washing and dewatering tub 24 becomes higher for the same load, so the load from the laundry received by the pulsator 26 becomes smaller, and the load on the drive motor 31 become smaller. Thus, the temperature of the coil 35a does not easily rise, and therefore, the temperature of the coil 35a can be prevented from exceeding the upper limit temperature.
  • the temperature of the coil 35a when the temperature of the coil 35a is low, there is no immersion leaving time, so the operation time is not easily extended.
  • the temperature of the coil 35a when the temperature of the coil 35a is high, there is a soaking standing time, so the coil 35a is easily cooled while the laundry is soaked and placed in water. Thus, the temperature of the coil 35a does not easily rise, and therefore, the temperature of the coil 35a can be prevented from exceeding the upper limit temperature.
  • the electric power supplied to the drive motor 31 becomes large, so the mechanical force applied to the laundry by the operation of the drive motor 31 becomes large.
  • a high cleaning power can be ensured.
  • the temperature of the coil 35a is high, the power supplied to the drive motor 31 becomes small, and therefore, the temperature of the coil 35a does not easily rise. This can prevent the temperature of the coil 35a from exceeding the upper limit temperature.
  • the ratio of the motor off time when the drive motor 31 is intermittently operated becomes smaller, and accordingly, the ratio of the motor on time becomes larger. Therefore, by driving the motor 31 Time to apply mechanical force to the laundry becomes longer. Thus, a high cleaning power can be ensured.
  • the temperature of the coil 35a is high, the proportion of the motor off time becomes large, so the temperature of the coil 35a does not easily rise. This can prevent the temperature of the coil 35a from exceeding the upper limit temperature.
  • the operation of the drive motor 31 can apply a small mechanical force to the laundry or apply the machine for a short time
  • the water level of the washing and dewatering tub 24 can be increased, the soaking time can be extended, the power supplied to the drive motor 31 can be reduced, and the ratio of the motor off time when the drive motor 31 is intermittently operated can be increased. This can further prevent the temperature of the coil 35a from exceeding the upper limit temperature.
  • the washing operation may be interrupted. As a result, the remaining operation time is greatly disturbed. In contrast, in this embodiment, the remaining operation time is not greatly disturbed.
  • FIG. 7 is a side cross-sectional view of the fully automatic washing and drying machine 1 according to Modification 1.
  • the temperature sensor 103b is provided in the motor driving unit 103, and the temperature of the drive circuit 103a related to the temperature of the coil 35a driving the motor 31 is detected by the temperature sensor 103b.
  • a temperature sensor 109 is provided on the substrate 110, and the temperature around the substrate 110 related to the temperature around the drive motor 31 is detected by the temperature sensor 109.
  • a temperature sensor 81 is provided on the stator 35 of the drive motor 31.
  • the temperature sensor 81 detects the temperature of the coil 35a of the stator 35.
  • a temperature sensor 82 is provided around the drive motor 31.
  • the temperature sensor 82 detects the temperature around the drive motor 31.
  • the temperature sensor 81 corresponds to the coil temperature sensor of the present invention
  • the temperature sensor 82 corresponds to the ambient temperature sensor of the present invention.
  • the temperature difference between the temperature of the coil 35a detected by the temperature sensor 81 and the ambient temperature detected by the temperature sensor 82 is calculated in S103.
  • the calculated temperature difference and The threshold value corresponding to the temperature difference is compared.
  • the ambient temperature detected by the temperature sensor 82 is compared with a threshold value corresponding to the ambient temperature.
  • the operating conditions of processes other than the cleaning process are not set based on the temperature difference K3 and the substrate ambient temperature K1.
  • the operating conditions of processes other than the cleaning process can also be set based on the temperature difference K3 and the substrate ambient temperature K1.
  • the water level in the washing and dewatering tub 24 during the water storage rinsing during the rinsing process, the duty ratio when the pulsator 26 is rotated, and the motor off time can also be based on the temperature difference K3 and the substrate ambient temperature K1 in the same manner as the cleaning process.
  • the spin speed and spin time in the intermediate spin process and the final spin process can also be set according to the temperature difference K3 and the substrate surrounding temperature K1.
  • the spin speed is higher than when the temperature difference K3 is not less than the threshold M1, and the spin time is extended.
  • the spin speed is higher than when the substrate ambient temperature K1 is not less than the threshold value M2, and the spin speed is extended.
  • the temperature difference K3 between the driver temperature K2 and the substrate ambient temperature K1 is calculated in S103, and the temperature is changed in S105.
  • the difference K3 is compared with the threshold value M1 corresponding to the temperature difference K3.
  • the driver temperature K2 and the threshold value corresponding to the driver temperature K2 may be compared.
  • the value of the motor-on time is fixed, and the value of the motor-off time is changed so as to change the ratio of the motor-off time during the intermittent operation of the drive motor 31 according to the temperature difference K3 and the substrate ambient temperature K1 That is, the ratio of the motor on time.
  • the value of the motor off time may be fixed, and the value of the motor on time may be changed.
  • the motor on time and the motor off time during the intermittent operation of the drive motor 31 are set to be fixed.
  • the temperature difference K3 and The temperature K1 around the substrate changes the cleaning time.
  • the cleaning time is set to be longer than the temperature difference K3 is greater than the threshold M1 and the substrate ambient temperature K1 is less than the threshold M2, and the substrate ambient temperature K1 is less than the threshold M2
  • the cleaning time is set to a time longer than the substrate ambient temperature K1 being equal to or greater than the threshold value M2.
  • the immersion leaving time when the temperature difference K3 is smaller than the threshold value M1, the immersion leaving time is set to 0 in S107, that is, the immersion leaving time is not set.
  • the immersion soaking time when the temperature difference K3 is less than the threshold value M1, in S107, the immersion soaking time may be set to be shorter than the immersion soaking time when the temperature difference K3 is greater than the threshold value M1 and the substrate ambient temperature K1 is less than the threshold value M2.
  • the laundry is soaked in water for a soaking time.
  • it may be temporarily interrupted after the pulsator 26 starts to rotate, and the rotation may be resumed after the laundry is soaked in water for a soaking time.
  • load-water level tables that differ in the water level in the washing and dewatering tank 24 for the same load are used.
  • a load-water level table may be used, and instead, in S106, S111, and S115, the additional water level or water amount may be set based on the temperature difference K3 and the substrate ambient temperature K1.
  • the additional water level or amount of water is set to be smaller than when the temperature difference K3 is greater than the threshold M1 and the substrate ambient temperature K1 is less than the threshold M2, and the substrate ambient temperature K1 is less than In the case of the threshold value M2, the additional water level or amount of water is set to be smaller than when the substrate surrounding temperature K1 is equal to or greater than the threshold value M2.
  • the present invention can also be applied to a fully automatic washing machine not equipped with a laundry drying function.
  • the present invention can also be applied to a drum-type washing machine in which a horizontal-axis drum constituting a washing tub is arranged in an outer tub, and a drum-type washing and drying integrated machine in which a drying function of clothes is installed in the drum-type washing machine.
  • the water level setting based on the temperature difference K3 and the substrate ambient temperature K1 from S106, S111, and S115 is not performed.
  • the duty cycle set in S108, S113, or S117 and the motor off time set in S109, S114, or S118 are when the drive motor is operated to rotate the drum to the right and left in an intermittent stop. time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

一种洗衣机(1),具备温度传感器(81、103b)和控制部(101),温度传感器(81、103b)检测驱动马达(31)的线圈(35a)的温度,控制部(101)根据在洗涤脱水桶(24)内蓄有水的状态下在驱动马达(31)进行工作之前检测出的线圈(35a)的温度,设定该次洗涤运转中的运转条件。可以良好地避免驱动马达(31)超过上限温度。

Description

洗衣机 技术领域
本发明涉及一种洗衣机。
背景技术
一直以来,洗衣机进行以驱动马达为驱动源对收容在洗涤脱水桶、滚筒等洗涤桶的洗涤物进行洗涤的洗涤运转。例如,在全自动洗衣机中,在洗涤脱水桶内的底部具备波轮,驱动马达在洗涤脱水桶内蓄有水的状态下工作,波轮进行旋转。由此,对洗涤物施加机械力,洗涤物被清洗或漂洗。
在洗衣机中,例如,通过增大驱动马达的转矩或延长接通时间,能增大施加于洗涤物的机械力,能提高洗涤物的洗净力。另一方面,由于需要为驱动马达提供较多的电力,因此驱动马达的线圈的温度容易上升。
在洗衣机未被使用的期间,线圈的温度低,不久就变成与驱动马达周围的温度大致相同的温度。但是,在洗涤物多,用户连续进行洗涤运转这样的情况下,在上一次洗涤运转之后,在驱动马达的线圈的温度不够低的情况下就开始本次的洗涤运转。因此,如上所述,在增大施加给洗涤物的机械力而使洗涤物的洗净力提高的情况下,当连续进行洗涤运转时,驱动马达的线圈的温度过高,可能会超过法律等规定的上限温度。
以下的专利文献1中记载了一种洗衣机,其具备由转子和具有线圈的定子构成的马达以及检测定子的温度的热敏电阻,通过连续进行洗涤运转等,在热敏电阻于洗涤运转中检测到规定值以上的温度的情况下,马达停止。
上述洗衣机中,当定子的温度为规定值以上时马达会停止,即,洗涤运转会中断,因此虽然能避免马达温度异常,但是该次洗涤运转中的洗净力可能会大幅度下降。
现有技术文献
专利文献
专利文献1:日本特开平11-239688号公报
发明内容
发明所要解决的问题
因此,本发明的目的在于提供一种洗衣机,其能良好地避免驱动马达的线圈超过上限温度。
用于解决问题的方案
本发明的主要方案涉及一种洗衣机,其进行通过驱动马达的工作来施加机械力从而对收容在洗涤桶内的洗涤物进行洗涤的洗涤运转。本方案的洗衣机具备:线圈温度传感器,检测所述驱动马达的线圈的温度或与该线圈的温度相关的温度来作为线圈温度;以及控制部。其中,所述控制部根据在所述洗涤桶内蓄有水的状态下在所述驱动马达进行工作之前检测出的所述线圈温度,设定该次所述洗涤运转中的运转条件。
根据上述结构,当线圈的温度低且与上限温度差距大时,线圈的温度可以容易上升,因此,能设定通过驱动马达的工作来对洗涤物施加大的机械力或长时间地施加机械力这样的运转条件,能确保高洗净力。另一方面,当线圈的温度高且与上限温度差距小时,可以设定通过驱动马达的工作来对洗涤物施加小的机械力或较短时间地施加机械力这样的运转条件,以使线圈的温度不容易上升,能防止线圈的温度超过上限温度。
而且,由于该结构中,即使在线圈的温度高的情况下,洗涤运转也会在设定的运转条件下进行到最后,因此,与在线圈的温度可能超过上限温度时中断洗涤运转的结构不同,不容易发生洗净力大幅度下降的情况,能进行洗净力稳定的洗涤运转。
本方案的洗衣机中,可以采用如下结构:还具备周围温度传感器,其检测所述驱动马达的周围的温度或与该周围的温度相关的温度来作为周围温度。这种情况下,所述控制部根据在所述洗涤桶内蓄有水的状态下在所述驱动马达进行工作之前检测出的所述线圈温度与所述周围温度的温度差来设定所述运转条件。
根据上述结构,能根据由线圈温度传感器检测出的线圈温度与由周围温度传感器检测出的周围温度的温度差来判定驱动马达的线圈的温度,设定运转条件。
本方案的洗衣机中,可以采用如下结构:还具备波轮,其配置于所述洗涤桶的底部,通过所述驱动马达的转矩来进行旋转。这种情况下,所述运转条件可以包括根据洗涤物的负荷量来向所述洗涤桶内蓄水时的水位。对于相同的负荷量,所述控制部在所述线圈温度相对较低时使所述水位相对变低,在所述线圈温度相对较高时使所述水位相对变高。
对于相同的负荷量,洗涤桶的水位越低,洗涤物越靠近波轮,因此,容易对洗涤物作用强水流或洗涤物容易被波轮摩擦,施加给洗涤物的机械力变大。另一方面,波轮受到的来自洗涤物的负荷变大,对驱动马达的负荷也变大,因此,线圈的温度容易上升。
根据上述结构,当线圈的温度低时,对于相同的负荷量,洗涤桶的水位变低,因此,通过驱动马达的工作而施加给洗涤物的机械力变大。由此,能确保高洗净力。另一方面,当线圈的温度高时,对于相同的负荷量,洗涤桶的水位变高,因此,波轮受到的来自洗涤物的负荷变小,对驱动马达的负荷也变小。由此,线圈的温度不容易上升,因此,能防止线圈的温度超过上限温度。
本方案的洗衣机中,所述运转条件可以包括所述驱动马达不工作而洗涤物浸泡放置在水中的浸泡放置时间。这种情况下,所述控制部设为:在所述线圈温度相对较低时不存在所述浸泡放置时间或使所述浸泡放置时间相对变短,在所述线圈温度相对较高时存在所述浸泡放置时间或使所述浸泡放置时间相对变长。
根据上述结构,当线圈的温度低时,不存在浸泡放置时间或使浸泡放置时间变短,因此,运转时间不容易延长。另一方面,当线圈的温度高时,存在浸泡放置时间或使浸泡放置时间变长,因此,线圈容易在洗涤物浸泡放置在水中的期间冷却。由此,线圈的温度不容易上升,因此,能防止线圈的温度超过上限温度。
本方案的洗衣机中,所述运转条件可以包括在使所述驱动马达工作时提供 的电力的大小。这种情况下,所述控制部在所述线圈温度相对较低时使所述电力相对变大,在所述线圈温度相对较高时使所述电力相对变小。
提供给驱动马达的电力越大,驱动马达的转矩越大,因此,通过驱动马达的工作而施加给洗涤物的机械力变大。另一方面,由于线圈中容易流过大电流,因此线圈的温度容易上升。
根据上述结构,当线圈的温度低时,提供给驱动马达的电力变大,因此,通过驱动马达的工作而施加给洗涤物的机械力变大。由此,能确保高洗净力。另一方面,当线圈的温度高时,提供给驱动马达的电力变小,因此,线圈的温度不容易上升。由此,能防止线圈的温度超过上限温度。
本方案的洗衣机中,所述运转条件可以包括使所述驱动马达间歇工作时的断开时间的比例。这种情况下,所述控制部在所述线圈温度相对较低时使所述断开时间的比例相对变小,在所述线圈温度相对较高时使所述断开时间的比例相对变大。
根据上述结构,当线圈的温度低时,断开时间的比例变小,相应地,接通时间的比例变大,因此,通过驱动马达的工作而对洗涤物施加机械力的时间变长。由此,能确保高洗净力。另一方面,当线圈的温度高时,断开时间的比例变大,因此,线圈的温度不容易上升。由此,能防止线圈的温度超过上限温度。
本方案的洗衣机中,可以采用如下结构:还具备周围温度传感器,其检测所述驱动马达的周围的温度或与该周围的温度相关的温度来作为周围温度。这种情况下,所述控制部根据所述周围温度来设定所述运转条件。
根据上述结构,能设定在驱动马达周围的温度高且线圈的温度容易上升时通过驱动马达的工作来对洗涤物施加小的机械力或较短时间地施加机械力这样的运转条件,能进一步防止线圈的温度超过上限温度。
发明效果
根据本发明,能提供一种洗衣机,其能良好地避免驱动马达的线圈超过上限温度。
通过以下所示的实施方式的说明,本发明的效果和意义将变得更清楚。但 是,以下的实施方式终究只是实施本发明时的一个示例,本发明不受以下的实施方式所记载的内容的任何限制。
附图说明
图1是实施方式的全自动洗干一体机的侧剖图。
图2是实施方式的全自动洗干一体机的上部的后视立体图。
图3是表示实施方式的全自动洗干一体机的结构的框图。
图4是用于对实施方式的为了运转条件设定过程而存储于存储部的数据进行说明的图。
图5是表示实施方式的运转条件设定过程中的控制处理的流程图。
图6是表示实施方式的清洗过程中的控制处理的流程图。
图7是变形例1的全自动洗干一体机的侧剖图。
附图标记说明
1:全自动洗干一体机(洗衣机);24:洗涤脱水桶(洗涤桶);26:波轮;31:驱动马达;81:温度传感器(线圈温度传感器);82:温度传感器(周围温度传感器);101:控制部;103b:温度传感器(线圈温度传感器);109:温度传感器(周围温度传感器)。
具体实施方式
以下,参照附图,对本发明的洗衣机的一实施方式的全自动洗干一体机1进行说明。
图1是本实施方式的全自动洗干一体机1的侧剖图。图2是本实施方式的全自动洗干一体机1的上部的后视立体图。
全自动洗干一体机1具备构成外观的箱体10。箱体10包括:方形筒状的机身部11,上下表面敞开;上面板12,覆盖机身部11的上表面;以及脚台13,支承机身部11。在上面板12形成有用于投入洗涤物的外侧投入口14。外侧投 入口14被自由开闭的上盖15覆盖。
在箱体10内,外桶20通过具有防振装置的四根吊棒21被弹性地悬吊支承。外桶20包括:近似圆筒状的外桶主体20a,上表面开口;以及外桶罩20b,通过覆盖外桶主体20a的上表面而构成外桶20的上表面。在外桶20的上表面即外桶罩20b,在与外侧投入口14对应的位置形成有用于投入洗涤物的内侧投入口22。内侧投入口22被外桶盖23可开闭地覆盖。
外桶20内配置有上表面敞开的近似圆筒状的洗涤脱水桶24。在洗涤脱水桶24的内周面,遍及整周地形成有许多脱水孔24a。在洗涤脱水桶24的上部设置有平衡环25。在洗涤脱水桶24的底部配置有波轮26。在波轮26的表面辐射状地设置有多个叶片26a。需要说明的是,洗涤脱水桶24相当于本发明的洗涤桶。
在外桶20的外底部配置有产生驱动洗涤脱水桶24和波轮26的转矩的驱动单元30。驱动单元30包括驱动马达31、传递机构部32、翼轴33以及脱水桶轴34。驱动马达31例如是DC无刷马达,包括具有线圈35a的定子35和通过对定子35通电而进行旋转的转子36。翼轴33与波轮26连接,脱水桶轴34与洗涤脱水桶24连接。传递机构部32具有离合器机构,通过该离合器机构的切换操作,在清洗过程和漂洗过程中,将驱动马达31的转矩仅传递给翼轴33而仅使波轮26旋转,在脱水过程中,将驱动马达31的转矩传递给翼轴33和脱水桶轴34而使波轮26和洗涤脱水桶24一体地旋转。需要说明的是,传递机构部32具有减速机构,在清洗过程和漂洗过程中,驱动马达31的旋转根据减速机构的减速比被减速,传递给翼轴33。
在外桶20的外底部形成有排水口部20c。在排水口部20c设置有排水阀40。排水阀40与排水软管41连接。当打开排水阀40时,蓄于洗涤脱水桶24和外桶20的水通过排水软管41被排出到机外。
在箱体10内的后部,在外桶20的上方配置有烘干装置50和供水装置60。烘干装置50和供水装置60装配于配置在机身部11的上表面后部的固定板16,被上面板12覆盖。
烘干装置50将收容在洗涤脱水桶24内的洗涤物烘干。烘干装置50包括加热器和配置有鼓风扇的循环风路50a,循环风路50a通过进风管道71和排风管 道72而与外桶20的内部连接。进风管道71和排风管道72是柔性管道,由橡胶等弹性材料形成,中间部分具有未图示的蛇纹部。通过加热器和鼓风扇的工作而生成的暖风从循环风路50a排出,通过进风管道71被导入外桶20内。进而,从外桶20排出的暖风通过排风管道72被导入循环风路50a内。这样,暖风在循环风路50a与外桶20之间循环。
烘干装置50进行基于暖风的循环的循环烘干动作和在此之后接着将循环的暖风的一部分向外部排出的排风烘干动作。在上面板12设置有排风口51,排风口由许多排气孔构成,排出暖风。
供水装置60的露出至外部的供水口61与从水龙头延伸的未图示的外部供水软管连接。供水装置60包括供水阀和洗涤剂容器,通过打开供水阀,来自水龙头的自来水与收容于洗涤剂容器内的洗涤剂一起被供给至外桶20内。供水装置60可以包括洗澡水泵。
图3是表示本实施方式的全自动洗干一体机1的结构的框图。
全自动洗干一体机1除了上述结构之外,还具备操作部91、显示部92以及蜂鸣器93。此外,全自动洗干一体机1具备控制单元100。控制单元100包括:控制部101、存储部102、马达驱动部103、离合器驱动部104、供水驱动部105、排水驱动部106、风扇驱动部107、加热器驱动部108以及温度传感器109。控制单元100例如设置于箱体10内的下部。
操作部91包括以下按钮等各种操作按钮:电源按钮,用于接通和断开全自动洗干一体机1的电源;开始/暂停按钮,用于使运转开始、暂停;以及模式选择按钮,用于从与洗涤运转、洗涤烘干运转以及烘干运转相关的多个运转模式中选择任意的运转模式。操作部91将与用户操作过的操作按钮对应的输入信号输出至控制部101。
显示部92包括显示所选择的运转模式的模式显示部、显示洗涤脱水桶2内的水位的水位显示部、与运转的进行相配合来显示现在执行中的过程的过程显示部以及显示运转的剩余时间的剩余时间显示部等。蜂鸣器93根据来自控制部101的控制信号,输出告知操作按钮已被接受的声音、告知运转已结束的声音等各种蜂鸣音。
水位传感器94检测洗涤脱水桶24内的水位,将与检测出的水位对应的水位信号输出给控制部101。
控制部101、存储部102、马达驱动部103、离合器驱动部104、供水驱动部105、排水驱动部106、风扇驱动部107以及加热器驱动部108由IC(integrated circuit:集成电路)等电子电路构成,配置在基板110上。
马达驱动部103例如是驱动器IC,包括驱动电路103a和温度传感器103b。驱动电路103a根据来自控制部101的控制信号,对驱动马达31进行驱动。驱动电路103a将与转速传感器(未图示)检测出的驱动马达31的转速相应的驱动电流输出给驱动马达31。作为驱动马达31的转速控制,在本实施方式中,能使用PWM(Pulse Width Modulation:脉冲宽度调制)控制。这种情况下,与占空比相应的驱动电流即电力被提供给驱动马达31。温度传感器103b检测驱动电路103a的温度K2(以下称为“驱动器温度K2”),将相当于检测出的驱动器温度K2的温度信号输出给控制部101。当驱动马达31的线圈35a的温度上升时,驱动驱动马达31的驱动电路103a的温度也上升。即,驱动器温度K2与驱动马达31的线圈35a的温度相关。需要说明的是,温度传感器103b相当于本发明的线圈温度传感器,驱动器温度K2相当于本发明的线圈温度。
离合器驱动部104根据从控制部101输出的控制信号,驱动传递机构部32的离合器机构32a。供水驱动部105根据来自控制部101的控制信号,驱动供水装置60的供水阀62。排水驱动部106根据来自控制部101的控制信号,驱动排水阀40。
风扇驱动部107根据从控制部101输出的控制信号,驱动烘干装置50的鼓风扇52。加热器驱动部108根据从控制部101输出的控制信号,驱动烘干装置50的加热器53。
温度传感器109例如是热敏电阻,配置于基板110,检测基板110的周围的温度K1(以下称为“基板周围温度K1”)。基板周围温度K1是与驱动马达31周围的温度大致相同的温度即相关的温度。需要说明的是,温度传感器109相当于本发明的周围温度传感器,基板周围温度K1相当于本发明的周围温度。
存储部102包括EEPROM、RAM等。存储部102存储有用于执行各种运转 模式的洗涤运转、洗涤烘干运转以及烘干运转的程序。此外,存储部102中存储有用于这些洗涤运转、洗涤烘干运转以及烘干运转的各种运转条件。
控制部101根据存储于存储部102的程序,对显示部92、马达驱动部103、离合器驱动部104、供水驱动部105、排水驱动部106、风扇驱动部107以及加热器驱动部108等进行控制。
在全自动洗干一体机1中,进行各种运转模式的洗涤运转、洗涤烘干运转或烘干运转。洗涤运转是仅进行洗涤的运转,按顺序执行清洗过程、中间脱水过程、漂洗过程以及最终脱水过程。洗涤烘干运转是连续进行洗涤到烘干的运转,在最终脱水过程之后接着执行烘干过程。烘干运转是仅进行烘干的运转,仅执行烘干过程。
在清洗过程和漂洗过程中,在洗涤脱水桶24内蓄有水的状态下,波轮26在间或停止的状态下向右方向和左方向交替旋转。洗涤脱水桶24内的洗涤物通过因波轮26的旋转而产生的水流等的作用被清洗或者漂洗。需要说明的是,在漂洗过程中,根据洗涤模式进行蓄水漂洗或注水漂洗。
在中间脱水过程和最终脱水过程中,洗涤脱水桶24和波轮26成为一体高速旋转。洗涤物通过洗涤脱水桶24中产生的离心力的作用而被脱水。
烘干过程中,首先进行内部空气循环烘干过程,接着进行外部空气导入烘干过程。内部空气循环烘干过程中,烘干装置50进行循环烘干动作,由此暖风在循环风路50a与外桶20之间循环。通过烘干风的循环,洗涤脱水桶24内的温度迅速上升。波轮26进行旋转,洗涤物一边被搅拌一边被循环的暖风烘干。当洗涤脱水桶24内的温度继续上升,水分从洗涤物蒸发而使得暖风中含有大量水分时,切换为外部空气导入烘干过程。外部空气导入烘干过程中,通过烘干装置50进行排风烘干动作,向循环风路50a导入外部空气,并且从循环风路50a排出一部分循环的暖风。由于从洗涤物蒸发的水分有效地从外桶20内排出到箱体10外,外桶20内变得容易除湿,因此促进了洗涤物的烘干。
另外,在洗涤运转和洗涤烘干运转中,在清洗过程之前,执行运转条件设定过程。
图4是用于对本实施方式的为了运转条件设定过程而存储于存储部102的 数据进行说明的图。
如图4所示,存储部102中存储有第一负荷量-水位表、第二负荷量-水位表以及第三负荷量-水位表。这些负荷量-水位表是用于根据洗涤物的负荷量来设定作为运转条件之一的洗涤脱水桶24内的水位的表。在第一负荷量-水位表中,与同一负荷量对应的水位比第二负荷量-水位表低,在第二负荷量-水位表中,与同一负荷量对应的水位比第三负荷量-水位表低。在运转条件设定过程中,使用这三个负荷量-水位表中的任意一个来进行清洗过程中的水位设定。
此外,在存储部102中,作为各种运转条件的一部分,存储有在运转条件设定过程中设定的清洗过程中的浸泡放置时间、PWM控制的占空比以及马达断开时间。浸泡放置时间是指驱动马达31工作而使波轮26不旋转,洗涤物浸泡放置在水中的时间。本实施方式中,在洗涤脱水桶24内的水位达到设定水位之后,在波轮26开始旋转之前,洗涤物被浸泡放置在水中。作为浸泡放置时间,存储有0分钟、T1分钟、比T1分钟的值大的T2分钟这三种值。占空比和马达断开时间是为了使波轮26向左右方向旋转而使驱动马达31间歇工作时的驱动马达31的接通时的占空比和驱动马达31的断开时间。作为占空比,存储有R1%、比R1%小的R2%、比R2%小的R3%这三个值。此外,作为马达断开时间,存储有t1秒、比t1秒大的t2秒、比t2秒大的t3秒这三个值。
图5是表示本实施方式的运转条件设定过程中的控制处理的流程图。
当洗涤运转或洗涤烘干运转开始时,首先进行运转条件设定过程。控制部101从温度传感器109获取基板周围温度K1(S101),从温度传感器103b获取驱动器温度K2(S102)。然后,控制部101计算出驱动器温度K2与基板周围温度K1的温度差K3(S103)。
接着,控制部101对投入洗涤脱水桶24内的洗涤物的负荷量进行判定(S104)。例如,控制部101在洗涤脱水桶24内没有水的状态下使驱动马达31工作而使波轮26旋转,根据驱动马达31的到达转速、惯性旋转量等来检测此时施加给波轮26的负荷的大小,根据检测结果判定负荷量。
接着,控制部101判定温度差K3是否小于阈值M1(S105)。在上次运转结束之后经过了足够长的时间之后开始本次运转的情况下,驱动马达31的线圈 35a的温度已经足够低,同样,驱动器温度K2也足够低。因此,这种情况下,由于驱动器温度K2接近基板周围温度K1,因此温度差K3变小,其结果是,温度差K3变得比阈值M1小。
在温度差K3小于阈值M1的情况下(S105:是),控制部101参照第一负荷量-水位表,根据在S104中判定出的负荷量,设定洗涤脱水桶24内的水位(S106)。此外,控制部101将浸泡放置时间设定为0分钟,即,采用洗涤物不浸泡放置在水中的设定(S107)。进而,控制部101将占空比设定为R1%(S108),将断开时间设定为t1秒(S109)。
另一方面,在上次运转结束之后的短时间内开始本次运转的情况下,即连续进行运转的情况下,驱动马达31的线圈35a的温度还不够低,同样,驱动器温度K2也不够低。因此,这种情况下,由于驱动器温度K2与基板周围温度K1有差距,因此温度差K3变大,其结果是,温度差K3为阈值M1以上。
在温度差K3为阈值M1以上的情况下(S105:否),控制部101判定基板周围温度K1是否小于阈值M2(S110)。在全自动洗干一体机1的设置环境的温度不高,驱动马达31周围的温度不高的情况下,基板周围温度K1也不会变高,因此基板周围温度K1变得比阈值M2小。
在基板周围温度K1小于阈值M2的情况下(S110:是),控制部101参照第二负荷量-水位表,根据在S104中判定出的负荷量,设定洗涤脱水桶24内的水位(S111)。此外,控制部101采用洗涤物浸泡放置在水中的设定,将浸泡放置时间设定为T1分钟(S112)。进而,控制部101将占空比设定为比R1%小的R2%(S113),将断开时间设定为比t1秒长的t2秒(S114)。
在夏季等情况下,全自动洗干一体机1的设置环境的温度可能会变高,驱动马达31周围的温度可能会变高。这样一来,基板周围温度K1也会变高,基板周围温度K1变为阈值M2以上。
在基板周围温度K1为阈值M2以上的情况下(S110:否),控制部101参照第三负荷量-水位表,根据在S104中判定出的负荷量,设定洗涤脱水桶24内的水位(S115)。此外,控制部101采用洗涤物浸泡放置在水中的设定,将浸泡放置时间设定为比T1分钟长的T2分钟(S116)。进而,控制部101将占空 比设定为比R2%小的R3%(S117),将断开时间设定为比t2秒长的t3秒(S118)。
需要说明的是,马达接通时间与温度差K3和基板周围温度K1无关,为预先设定的固定时间。因此,马达接通时间设定得越长,则驱动马达31的间歇工作中的马达断开时间的比例设定得越大。相反地,马达断开时间设定得越短,则马达接通时间的比例设定得越大。
这样一来,当设定了水位、浸泡放置时间、占空比以及马达断开时间时,控制部101计算出运转时间,以计算出的运转时间来作为运转剩余时间,显示于显示部92的剩余时间显示部(S119)。运转剩余时间根据与负荷量相应地设定的水位、浸泡放置时间等运转条件而变动。显示于剩余时间显示部的运转剩余时间随着洗涤运转的进行而减少。当运转剩余时间的显示被执行时,运转条件设定处理结束,移至清洗过程。
图6是表示本实施方式的清洗过程中的控制处理的流程图。
当清洗过程开始时,控制部101打开供水阀62向外桶20内即洗涤脱水桶24内进行供水(S201)。在该供水时,投入到供水装置60的洗涤剂容器的洗涤剂与水混合,被供给至洗涤脱水桶24。由此,洗涤脱水桶24内的水变成洗涤剂水。
控制部101判定洗涤脱水桶24内的水位是否达到了运转条件设定处理的S106、S111或S115中设定的设定水位(S202)。当洗涤脱水桶24内的水位为设定水位时(S202:是),控制部101关闭供水阀62,停止供水(S203)。
接着,控制部101判定在供水停止后是否经过了浸泡放置时间(S204)。在运转条件设定处理的S107中浸泡放置时间被设定为0的情况下,直接判定为经过了浸泡放置时间。这种情况下,实质上,洗涤物没有浸泡放置在水中。另一方面,在运转条件设定处理的S112或S115中浸泡放置时间被设定为T1分钟或T2分钟的情况下,当经过了T1分钟或T2分钟时,判定为经过了浸泡放置时间。
当经过了浸泡放置时间时(S204:是),控制部101开始驱动马达31的接通/断开控制,使波轮26以间或停止的方式向右方向和左方向交替旋转(S205)。这时,启动驱动马达31即波轮26的旋转时的PWM控制的占空比采用运转条件 设定处理的S108中设定的R1%、S113中设定的R2%或S117中设定的R3%。此外,马达断开时间采用运转条件设定处理的S109中设定的t1秒、S114中设定的t2秒或S118中设定的t3秒。控制部101判定波轮26开始旋转之后是否经过了清洗时间(S206)。清洗时间与温度差K3和基板周围温度K1无关,为预先设定的固定时间。当经过了清洗时间时(S206:是),控制部101使驱动马达31停止,使波轮26停止(S207)。然后,控制部101打开排水阀40,从外桶20即洗涤脱水桶24进行排水(S208)。当排水完成时,清洗过程结束,移至中间脱水过程。排水阀40保持打开状态。
这样,在本实施方式中,在本次运转开始时驱动马达31的线圈35a的温度已经足够低,温度差K3小于阈值M1的情况下,在清洗过程中,使用第一负荷量-水位表来进行水位的设定,因此对于相同的负荷量,洗涤脱水桶24的水位变低。此外,由于浸泡放置时间为0,因此在使波轮26旋转之前洗涤物不会浸泡放置在水中。进而,通过将PWM控制的占空比设为R1%这样大的值,提供给驱动马达31的电力变大。进而,通过使马达断开时间设为t1秒这样小的值,马达断开时间的比例变小,相应地,马达接通时间的比例变大。
驱动马达31受到接通/断开控制,在波轮26以间或停止的方式向右方向和左方向交替旋转时,当对于相同的负荷量水位低时,洗涤物靠近波轮26,因此,容易对洗涤物作用强水流或洗涤物容易被波轮26摩擦,施加给洗涤物的机械力变大。此外,当提供给驱动马达31的电力变大时,驱动马达31的转矩变大,因此,容易使波轮26的旋转的启动提前或容易使转速变高,施加给洗涤物的机械力变大。进而,当马达接通时间的比例变大时,波轮26的旋转时间变长,向洗涤物施加机械力的时间变长。由此,洗涤物被很好地清洗,因此,确保了高洗净力。
此外,由于在使波轮26旋转之前洗涤物没有被浸泡放置在水中,因此,清洗过程中的运转时间不会延长。
另一方面,在本次运转开始时驱动马达31的线圈35a的温度不怎么低,温度差K3为阈值M1以上的情况下,在清洗过程中,为了使用第二负荷量-水位表或第三负荷量-水位表来进行水位的设定,对于相同的负荷量,洗涤脱水桶24的水位变高。此外,存在T1分钟或T2分钟的浸泡放置时间,在使波轮26旋转 之前洗涤物被浸泡放置在水中。进而,通过将PWM控制的占空比设为R2%或R3%这样小的值,提供给驱动马达31的电力变小。进而,通过将马达断开时间设为t2秒或t3秒这样大的值,马达断开时间的比例变大。
驱动马达31受到接通/断开控制,在波轮26以间或停止的方式向右方向和左方向交替旋转时,当对于相同的负荷量水位高时,洗涤物远离波轮26,因此,波轮26受到的来自洗涤物的负荷变小,对驱动马达31的负荷也变小。因此,线圈35a的温度不容易上升。此外,当提供给驱动马达31的电力变小时,进而,当马达断开时间的比例变大时,线圈35a的温度不容易上升。进而,线圈35a能在洗涤物被浸泡放置的期间冷却。由此,即使在运转开始时驱动马达31的线圈35a的温度还不怎么低,也能防止线圈35a的温度超过法律等规定的上限温度。此外,通过将洗涤物浸泡放置在含有洗涤剂的水中,附着于洗涤物的污垢容易分解,洗净力提高。
进而,在温度差K3为阈值M1以上的情况下,驱动马达31周围的温度高,当基板周围温度K1为阈值M2以上时,在清洗过程中,通过使用第三负荷量-水位表来使洗涤脱水桶24的水位进一步升高,浸泡放置时间为比T1分钟更长的T2分钟,占空比为小于R2%的R3%,马达断开时间为比t2秒更长的t3秒。由此,即使驱动马达31周围的温度高,线圈35a的温度也不容易上升,因此,能进一步防止线圈35a的温度超过上限温度。
<实施方式的效果>
根据本实施方式,根据在洗涤脱水桶24内蓄有水的状态下在驱动马达31工作之前检测出的与线圈35a的温度相关的驱动器温度K2和与驱动马达31周围的温度相关的基板周围温度K1的温度差K3,设定该次洗涤运转中的运转条件。由此,当线圈35a的温度低且与上限温度差距大时,线圈35a的温度可以容易上升,因此,能设定通过驱动马达31的工作来对洗涤物施加大的机械力或较长时间地施加机械力这样的运转条件,能确保高洗净力。另一方面,当线圈35a的温度高且与上限温度差距小时,可以设定通过驱动马达31的工作来对洗涤物施加小的机械力或较短时间地施加机械力这样的运转条件,以使线圈35a的温度不容易上升,能能防止线圈35a的温度超过上限温度。
此外,根据本实施方式,当线圈35a的温度低时,对于相同的负荷量,洗 涤脱水桶24的水位会变低,因此,通过驱动马达31的工作而施加给洗涤物的机械力变大。由此,能确保高洗净力。另一方面,当线圈35a的温度高时,对于相同的负荷量,洗涤脱水桶24的水位会变高,因此,波轮26受到的来自洗涤物的负荷变小,对驱动马达31的负荷也变小。由此,线圈35a的温度不容易上升,因此,能防止线圈35a的温度超过上限温度。
进而,根据本实施方式,当线圈35a的温度低时,不存在浸泡放置时间,因此运转时间不容易延长。另一方面,当线圈35a的温度高时,存在浸泡放置时间,因此线圈35a容易在洗涤物被浸泡放置在水中的期间冷却。由此,线圈35a的温度不容易上升,因此,能防止线圈35a的温度超过上限温度。
进而,根据本实施方式,当线圈35a的温度低时,提供给驱动马达31的电力变大,因此,通过驱动马达31的工作而施加给洗涤物的机械力变大。由此,能确保高洗净力。另一方面,当线圈35a的温度高时,提供给驱动马达31的电力变小,因此,线圈35a的温度不容易上升。由此,能防止线圈35a的温度超过上限温度。
进而,根据上述实施方式,当线圈35a的温度低时,使驱动马达31间歇工作时的马达断开时间的比例变小,相应地,马达接通时间的比例变大,因此,通过驱动马达31的工作来对洗涤物施加机械力的时间变长。由此,能确保高洗净力。另一方面,当线圈35a的温度高时,马达断开时间的比例变大,因此,线圈35a的温度不容易上升。由此,能防止线圈35a的温度超过上限温度。
进而,根据本实施方式,能设定在驱动马达31周围的温度高且线圈35a的温度容易上升时,通过驱动马达31的工作来对洗涤物施加较小的机械力或较短时间地施加机械力这样的运转条件。具体而言,能增高洗涤脱水桶24的水位,能延长浸泡放置时间,能减小提供给驱动马达31的电力,能增大使驱动马达31间歇工作时的马达断开时间的比例。由此,能进一步防止线圈35a的温度超过上限温度。
需要说明的是,在像以往那样采用当随着洗涤运转中的驱动马达31的工作而使线圈35a的温度达到规定温度以上时使驱动马达31停止的结构情况下,可能会由于洗涤运转的中断而导致运转剩余时间大幅紊乱。与此相对,在本实施方式中,不会使运转剩余时间大幅紊乱。
以上,对本发明的实施方式进行了说明,但本发明不受上述实施方式等的任何限制,此外,本发明的实施方式也可以进行上述以外的各种变形。
<变形例1>
图7是变形例1的全自动洗干一体机1的侧剖图。
在上述实施方式中,在马达驱动部103设置有温度传感器103b,通过温度传感器103b来检测与驱动马达31的线圈35a的温度相关的驱动电路103a的温度。此外,在基板110设置有温度传感器109,通过温度传感器109来检测与驱动马达31周围的温度相关的基板110周围的温度。
相对于此,本变形例中,如图7所示,在驱动马达31的定子35设置有温度传感器81。温度传感器81检测定子35的线圈35a的温度。此外,在驱动马达31的周围设置有温度传感器82。温度传感器82检测驱动马达31周围的温度。温度传感器81相当于本发明的线圈温度传感器,温度传感器82相当于本发明的周围温度传感器。
在运转条件设定过程中,在S103中计算出由温度传感器81检测出的线圈35a的温度与由温度传感器82检测出的周围的温度的温度差,在S105中,对计算出的温度差和与该温度差对应的阈值进行比较。此外,在S110中,对由温度传感器82检测出的周围的温度和与该周围温度对应的阈值进行比较。
<其他变形例>
上述实施方式中,清洗过程之外的过程的运转条件不根据温度差K3和基板周围温度K1来设定。但是,清洗过程之外的过程的运转条件也可以根据温度差K3和基板周围温度K1来设定。例如,漂洗过程中的蓄水漂洗时的洗涤脱水桶24内的水位、使波轮26旋转时的占空比以及马达断开时间也可以与清洗过程同样地根据温度差K3和基板周围温度K1来设定。进而,中间脱水过程和最终脱水过程中的脱水转速、脱水时间等也可以根据温度差K3和基板周围温度K1来设定。这种情况下,当温度差K3小于阈值M1时,脱水转速比温度差K3不小于阈值M1时高,脱水时间被延长。此外,当基板周围温度K1小于阈值M2时,脱水转速比基板周围温度K1不小于阈值M2时高,脱水时间被延长。
此外,上述实施方式中,在运转条件设定过程中,为了判定驱动马达31的 线圈35a的温度降低情况,在S103中计算驱动器温度K2与基板周围温度K1的温度差K3,在S105中将温度差K3和与该温度差K3对应的阈值M1进行比较。但是,也可以不执行S103的处理,而是在S105中对驱动器温度K2和与该驱动器温度K2对应的阈值进行比较。
进而,上述实施方式中,马达接通时间的值被固定,马达断开时间的值被改变,以便根据温度差K3和基板周围温度K1来改变驱动马达31间歇工作时的马达断开时间的比例也就是马达接通时间的比例。但是,也可以是,马达断开时间的值被固定,马达接通时间的值被改变。
进而,在上述实施方式中,无论温度差K3和基板周围温度K1如何,都将驱动马达31间歇工作时的马达接通时间和马达断开时间设为固定,取而代之,也可以根据温度差K3和基板周围温度K1来改变清洗时间。这种情况下,在温度差K3小于阈值M1的情况下,清洗时间被设定为比温度差K3为阈值M1以上且基板周围温度K1小于阈值M2时长的时间,在基板周围温度K1小于阈值M2的情况下,清洗时间被设定为比基板周围温度K1为阈值M2以上时长的时间。
进而,上述实施方式中,在温度差K3小于阈值M1的情况下,在S107中浸泡放置时间被设为0,即,不设置浸泡放置时间。但是,在温度差K3小于阈值M1的情况下,在S107中也可以将浸泡放置时间设定为比温度差K3为阈值M1以上且基板周围温度K1小于阈值M2时的浸泡放置时间短的时间。
进而,上述实施方式中,在洗涤脱水桶24内的水位达到设定水位之后,在波轮26开始旋转之前,洗涤物在水中浸泡放置了浸泡放置时间。但是,也可以是,在波轮26开始旋转之后暂时中断,在将洗涤物在水中浸泡放置了浸泡放置时间之后恢复旋转。
进而,上述实施方式中,使用了对于相同的负荷量而言使洗涤脱水桶24内的水位不同的三个负荷量-水位表。但是,也可以使用一个负荷量-水位表,取而代之,在S106、S111以及S115中,根据温度差K3和基板周围温度K1来设定追加的水位或水量。这种情况下,在温度差K3小于阈值M1的情况下,追加的水位或水量被设定为比温度差K3为阈值M1以上且基板周围温度K1小于阈值M2时少,在基板周围温度K1小于阈值M2的情况下,追加的水位或水量被 设定为比基板周围温度K1为阈值M2以上时少。
进而,上述实施方式中,示出了将本发明应用于搭载有衣物烘干功能的全自动洗干一体机1的例子。但是,本发明也能应用于不搭载衣物烘干功能的全自动洗衣机。此外,本发明也能应用于在外桶内配置有构成洗涤筒的横轴型滚筒的滚筒式洗衣机和在滚筒式洗衣机中搭载了衣物的烘干功能的滚筒式洗干一体机。需要说明的是,在本发明应用于滚筒式洗衣机或滚筒式洗干一体机的情况下,不进行与S106、S111以及S115的基于温度差K3和基板周围温度K1的水位设定。此外,S108、S113或S117中设定的占空比和S109、S114或S118中设定的马达断开时间是使驱动马达工作而使滚筒以间或停止的方式向右方向和左方向旋转时的时间。
除此之外,本发明的实施方式可以在技术方案所示的技术思想的范围内适当地进行各种变形。

Claims (7)

  1. 一种洗衣机,其进行通过驱动马达的工作来施加机械力从而对收容在洗涤桶内的洗涤物进行洗涤的洗涤运转,其特征在于,具备:
    线圈温度传感器,检测所述驱动马达的线圈的温度或与该线圈的温度相关的温度来作为线圈温度;以及
    控制部,
    所述控制部根据在所述洗涤桶内蓄有水的状态下在所述驱动马达进行工作之前检测出的所述线圈温度,设定该次所述洗涤运转中的运转条件。
  2. 根据权利要求1所述的洗衣机,其特征在于,还具备:
    周围温度传感器,检测所述驱动马达的周围的温度或与该周围的温度相关的温度来作为周围温度,
    所述控制部根据在所述洗涤桶内蓄有水的状态下在所述驱动马达工作之前检测出的所述线圈温度与所述周围温度的温度差来设定所述运转条件。
  3. 根据权利要求1或2所述的洗衣机,其特征在于,还具备:
    波轮,配置于所述洗涤桶的底部,通过所述驱动马达的转矩来进行旋转,
    所述运转条件包括根据洗涤物的负荷量来向所述洗涤桶内蓄水时的水位,对于相同的负荷量,所述控制部在所述线圈温度相对较低时使所述水位相对变低,在所述线圈温度相对较高时使所述水位相对变高。
  4. 根据权利要求1至3的任意一项所述的洗衣机,其特征在于,
    所述运转条件包括所述驱动马达不工作而洗涤物浸泡放置在水中的浸泡放置时间,
    所述控制部设为:在所述线圈温度相对较低时不存在所述浸泡放置时间或使所述浸泡放置时间相对变短,在所述线圈温度相对较高时存在所述浸泡放置时间或使所述浸泡放置时间相对变长。
  5. 根据权利要求1至4的任意一项所述的洗衣机,其特征在于,
    所述运转条件包括在使所述驱动马达工作时提供的电力的大小,
    所述控制部在所述线圈温度相对较低时使所述电力相对变大,在所述线圈 温度相对较高时使所述电力相对变小。
  6. 根据权利要求1至5的任意一项所述的洗衣机,其特征在于,
    所述运转条件包括使所述驱动马达间歇工作时的断开时间的比例,
    所述控制部在所述线圈温度相对较低时使所述断开时间的比例相对变小,在所述线圈温度相对较高时使所述断开时间的比例相对变大。
  7. 根据权利要求1至6的任意一项所述的洗衣机,其特征在于,还具备:
    周围温度传感器,检测所述驱动马达周围的温度或与该周围的温度相关的温度来作为周围温度,
    所述控制部根据所述周围温度来设定所述运转条件。
PCT/CN2019/115864 2018-11-12 2019-11-06 洗衣机 WO2020098537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980070958.9A CN112912555B (zh) 2018-11-12 2019-11-06 洗衣机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018212582A JP7285471B2 (ja) 2018-11-12 2018-11-12 洗濯機
JP2018-212582 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020098537A1 true WO2020098537A1 (zh) 2020-05-22

Family

ID=70730932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115864 WO2020098537A1 (zh) 2018-11-12 2019-11-06 洗衣机

Country Status (3)

Country Link
JP (1) JP7285471B2 (zh)
CN (1) CN112912555B (zh)
WO (1) WO2020098537A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862957A (zh) * 2021-11-02 2021-12-31 珠海格力电器股份有限公司 一种洗衣机的补水控制方法、洗衣机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113818185B (zh) * 2020-06-19 2023-11-03 天津海尔洗涤电器有限公司 一种基于掉电记忆的控制方法、系统及衣物处理设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000075091A (ko) * 1999-05-28 2000-12-15 구자홍 세탁기의 구동방법
CN1928198A (zh) * 2005-09-06 2007-03-14 松下电器产业株式会社 滚筒式洗衣机
JP2013132412A (ja) * 2011-12-27 2013-07-08 Panasonic Corp 洗濯機
CN103298991A (zh) * 2010-10-15 2013-09-11 Bsh博世和西门子家用电器有限公司 用于控制洗衣机的驱动电机的制动操作的方法以及驱动设备和洗衣机
JP2017055927A (ja) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 洗濯機
CN108396507A (zh) * 2017-02-08 2018-08-14 东芝生活电器株式会社 洗衣机
CN108625109A (zh) * 2017-03-24 2018-10-09 东芝生活电器株式会社 洗衣机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478807B1 (de) * 1990-09-28 1994-11-30 Siemens Aktiengesellschaft Waschautomat mit einer Überwachung der Motortemperatur
JPH0592097A (ja) * 1991-10-03 1993-04-16 Toshiba Corp 洗濯機
JPH0956969A (ja) * 1995-08-21 1997-03-04 Hitachi Ltd 洗濯機の洗濯制御方法
JP2000061191A (ja) * 1998-08-20 2000-02-29 Nippon Kentetsu Co Ltd 洗濯機
JP3398073B2 (ja) * 1998-09-30 2003-04-21 三洋電機株式会社 洗濯機
JP2007151984A (ja) * 2005-12-08 2007-06-21 Hitachi Appliances Inc 洗濯機
KR20090024467A (ko) * 2007-09-04 2009-03-09 엘지전자 주식회사 세탁물 처리장치의 제어방법.
JP2012055402A (ja) * 2010-09-07 2012-03-22 Panasonic Corp 洗濯機
CN104032539B (zh) * 2013-03-08 2020-05-01 青岛海尔洗衣机有限公司 一种滚筒洗衣机自清洁方法
KR20150052698A (ko) * 2013-11-06 2015-05-14 삼성전자주식회사 세탁기 및 그 제어방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000075091A (ko) * 1999-05-28 2000-12-15 구자홍 세탁기의 구동방법
CN1928198A (zh) * 2005-09-06 2007-03-14 松下电器产业株式会社 滚筒式洗衣机
CN103298991A (zh) * 2010-10-15 2013-09-11 Bsh博世和西门子家用电器有限公司 用于控制洗衣机的驱动电机的制动操作的方法以及驱动设备和洗衣机
JP2013132412A (ja) * 2011-12-27 2013-07-08 Panasonic Corp 洗濯機
JP2017055927A (ja) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 洗濯機
CN108396507A (zh) * 2017-02-08 2018-08-14 东芝生活电器株式会社 洗衣机
CN108625109A (zh) * 2017-03-24 2018-10-09 东芝生活电器株式会社 洗衣机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862957A (zh) * 2021-11-02 2021-12-31 珠海格力电器股份有限公司 一种洗衣机的补水控制方法、洗衣机

Also Published As

Publication number Publication date
JP2020078419A (ja) 2020-05-28
JP7285471B2 (ja) 2023-06-02
CN112912555B (zh) 2023-05-02
CN112912555A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
EP2752514B1 (en) Drum-type washing machine
JP2004008275A (ja) 洗濯乾燥機
WO2013031050A1 (ja) ドラム式洗濯機
CN109750443B (zh) 洗衣干燥机
WO2020098537A1 (zh) 洗衣机
JP2008526296A (ja) ドラム洗濯機の制御方法
JPWO2020003760A1 (ja) 洗濯機
CN109137399B (zh) 滚筒洗衣机及其洗涤控制方法和装置
JP3966268B2 (ja) 洗濯機
JP2004230063A (ja) 洗濯機
JP2003111998A (ja) 乾燥機
JP6395994B2 (ja) ドラム式洗濯機
JP2004358087A (ja) 洗濯機
JP6736805B2 (ja) 洗濯乾燥機
CN110857507B (zh) 控制衣物处理装置的方法
JP2017070648A (ja) 洗濯乾燥機
JP6799753B2 (ja) 洗濯機
JP2006136448A (ja) ドラム式洗濯乾燥機
JP4316930B2 (ja) 洗濯乾燥機
US20110126359A1 (en) Washing machine and a method of controlling the same
JP2019130196A (ja) 洗濯乾燥機
WO2024114208A1 (zh) 臭氧处理装置
JP2013063096A (ja) 洗濯機
JP2003144791A (ja) 洗濯乾燥機
JPH10272285A (ja) 洗濯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884440

Country of ref document: EP

Kind code of ref document: A1