WO2020096384A1 - 발광 소자 - Google Patents

발광 소자 Download PDF

Info

Publication number
WO2020096384A1
WO2020096384A1 PCT/KR2019/015090 KR2019015090W WO2020096384A1 WO 2020096384 A1 WO2020096384 A1 WO 2020096384A1 KR 2019015090 W KR2019015090 W KR 2019015090W WO 2020096384 A1 WO2020096384 A1 WO 2020096384A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
substrate
blocking layer
light blocking
Prior art date
Application number
PCT/KR2019/015090
Other languages
English (en)
French (fr)
Inventor
이정훈
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to JP2021523199A priority Critical patent/JP7500556B2/ja
Priority to CN201980073256.6A priority patent/CN113056830A/zh
Priority to BR112021008898-9A priority patent/BR112021008898A2/pt
Priority to KR1020217011686A priority patent/KR20210074301A/ko
Priority to EP19882208.2A priority patent/EP3879584A4/en
Publication of WO2020096384A1 publication Critical patent/WO2020096384A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the present invention relates to a light emitting device, and more particularly, to a light emitting device including a plurality of light emitting units.
  • the light emitting diode is an inorganic light source, and is used in various fields such as a display device, a vehicle lamp, and general lighting.
  • Light-emitting diodes have the advantages of long life, low power consumption, and fast response time, so they are rapidly replacing existing light sources.
  • the problem to be solved by the present invention is to provide a light emitting device with improved light efficiency and light extraction.
  • the light emitting device includes a substrate having a first surface and a second surface opposite to the first surface, and light emission disposed on the first surface of the substrate
  • a first light blocking layer exposing at least a portion of a light emitting region in which the light emitting structure is disposed, on a second surface of the structure and the substrate, wherein at least a portion of the second surface of the substrate overlaps the light emitting region It can have an uneven surface.
  • the thickness of the substrate may be smaller than the thickness in the section excluding the uneven surface.
  • the second surface of the substrate further includes a sidewall formed by the uneven surface, wherein the first light blocking film extends to the sidewall of the substrate to cover an end of the uneven surface to cover the light of the light emitting structure.
  • the extraction surface can be defined.
  • the light extraction surface may have a width smaller than that of the uneven surface, and may have a width smaller than that of the emission area.
  • the uneven surface includes a plurality of uneven surfaces, and the uneven surfaces of the light extraction surface and the uneven surfaces covered by the first light blocking film may have different roughness.
  • the first light blocking layer may be formed to have the same width along the sidewall of the substrate.
  • the sidewall of the substrate has an inclination
  • the first light blocking layer has a width that decreases toward the inside of the substrate from the second surface of the substrate, and may have a vertical side surface.
  • the concave-convex surface is disposed in the emission area, and may have a width smaller than that of the emission area.
  • the concave-convex surface covers the light emitting area and may have the same or a larger width than the light emitting area.
  • the light emitting device may further include a second light blocking film surrounding the outside of the light emitting structure on the first surface of the substrate.
  • the first surface of the substrate may have a convex portion in the light emitting region and a concave portion in the region excluding the light emitting region.
  • the light emitting device may further include a second light blocking film filling the recess and surrounding the outside of the light emitting structure.
  • a portion of the second light blocking layer filling the concave portion on the first surface of the substrate and the portion of the first light blocking layer covering the end of the uneven surface on the second surface of the substrate may overlap.
  • the uneven surface includes a plurality of first holes, and the first holes may be formed in an area corresponding to at least the light emitting area.
  • the first light blocking layer may fill the first holes and extend to a second surface of the substrate to cover at least a portion of the light emitting area, thereby defining a light extraction surface of the light emitting structure.
  • the light extraction surface may have a width smaller than that of the emission area.
  • the first holes formed in the light extraction surface may be filled with air.
  • the first holes formed in the light extraction surface may be filled with the first light blocking film.
  • the light emitting device may further include a second light blocking film surrounding the outside of the light emitting structure on the first surface of the substrate.
  • the first surface of the substrate includes a plurality of second holes, but the second light blocking layer may fill at least a portion of the second holes.
  • the light emitting device it is possible to improve color reproducibility by preventing light generated from neighboring light emitting structures from being mixed by the first and second light blocking films.
  • the substrate can support a plurality of light emitting structures and may not be damaged by external impact.
  • the light blocking layer may cover the end of the uneven surface to define a light extraction surface, thereby improving the contrast ratio of the light emitting device.
  • FIG. 1A and 1B are plan views illustrating a light emitting device according to an embodiment of the present invention.
  • FIG. 1C, 1D, and 1E are cross-sectional views of FIG. 1A taken along line A-A '.
  • FIG. 2A is a plan view illustrating a light emitting device according to another embodiment of the present invention.
  • FIG. 2B is a cross-sectional view of FIG. 2A taken along line A-A '.
  • 3A is a cross-sectional view for describing a light emitting device according to an embodiment of the present invention.
  • 3B is a cross-sectional view of the light emitting device of FIG. 3A cut along A-A 'and B-B'.
  • 4A, 4B, 5A, and 5B are cross-sectional views illustrating a concave-convex surface and a second light blocking film structure according to an embodiment of the present invention.
  • 6A is a plan view illustrating a light emitting device according to another embodiment of the present invention.
  • FIG. 6B is a cross-sectional view of the light emitting device of FIG. 6A cut along A-A '.
  • FIG. 7A is a plan view illustrating a light emitting device according to another embodiment of the present invention.
  • 7B and 7C are cross-sectional views of the light emitting device of FIG. 7A taken along line A-A '.
  • 8A and 8B are enlarged views of B of the light emitting device of FIG. 6B.
  • 9 to 13 are cross-sectional views illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • FIGS. 1C, 1D, and 1E are cross-sectional views of FIG. 1A taken along line A-A '.
  • 2A is a plan view illustrating a light emitting device according to another embodiment of the present invention
  • FIG. 2B is a cross-sectional view of FIG. 2A taken along line A-A '.
  • 3A is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention
  • FIG. 3B is a cross-sectional view of the light emitting device of FIG. 3A cut along A-A 'and B-B'.
  • 4A, 4B, 5A, and 5B are cross-sectional views illustrating a concave-convex surface and a second light blocking film structure according to an embodiment of the present invention.
  • the light emitting device includes a substrate 100 and a first stacked on the substrate 100
  • a light emitting structure LED including a light emitting part LE1, a second light emitting part LE2, and a third light emitting part LE3 may be included.
  • FIG. 1A is a plan view seen from the third light emitting unit LE3
  • FIG. 1B is a plan view seen from the substrate 100 direction
  • 2A is a plan view seen from the substrate 100 direction
  • 3A and 3B are diagrams illustrating one light emitting device in more detail.
  • the substrate 100 is a substrate capable of growing a gallium nitride-based semiconductor layer, sapphire (Al2O3), silicon carbide (SiC), gallium nitride (GaN), indium gallium nitride (InGaN), aluminum gallium nitride (AlGaN), nitride Aluminum (AlN), gallium oxide (Ga2O3), or silicon.
  • the substrate 100 may be a patterned sapphire substrate.
  • the substrate 100 may include a material through which visible light is transmitted.
  • the substrate 100 may include a first surface SF1 and a second surface SF2 facing the first surface SF1.
  • a plurality of light emitting structures LEDs may be disposed on the first surface SF1 of the substrate 100 spaced apart from each other.
  • the area in which the light emitting structure LED is disposed is referred to as a light emitting area LEA, and the remaining area in which the light emitting structure LED is not arranged is called a light blocking area LSA.
  • the first surface SF1 of the substrate 100 may be a flat surface.
  • the first surface SF1 of the substrate 100 has a convex portion CNV in the light emitting region LEA and a concave portion CNC in the light blocking region LSA.
  • the upper surface of the convex portion CNV of the first surface SF1 may be located at a higher level than the upper surface of the concave portion CNC. Accordingly, a step portion may be formed between the convex portion CNV and the concave portion CN1 of the first surface SF1.
  • the second surface SF2 of the substrate 100 has an uneven surface having irregularities CC It may include a flat surface (PLT) excluding the (RGH) and the uneven surface (RGH).
  • the uneven surface RGH may overlap with at least a portion of the emission area LEA of the first surface SF1 of the substrate 100.
  • the light emitting area LEA has a first width W1 and a concavo-convex surface RGH is smaller than the first width W1. It may have a width (W2). Also, the center of the light emitting area LEA may be concentric with the center of the uneven surface RRG. As another example illustrated in FIG. 1E, the light emitting area LEA may have a first width W1 and the uneven surface RGH may have a second width W2 that is greater than or equal to the first width W1. Also, the center of the light emitting area LEA may be concentric with the center of the uneven surface RRG.
  • the second surface SF2 of the substrate 100 has concave-convex surfaces RGH, light generated from the light-emitting regions LEA is diffusely reflected through the concave-convex surfaces RGH, so that the light of the light emitting device The extraction efficiency can be improved.
  • the first surface SF1 of the substrate 100 is flat
  • the second surface SF2 is the uneven surface RGH and the flat surface PLT
  • the substrate 100 has a first thickness TH1
  • the irregularities of the second surface SF2 of the substrate 100 In each section of the surfaces RGH, the second thickness TH2 may be smaller than the first thickness TH1.
  • the sidewall SDW of the substrate 100 may be defined by each end of each of the uneven surfaces RGH due to the thickness difference of the substrate 100. As another example shown in FIG.
  • the first surface SF1 of the substrate 100 has a convex portion CNV and a concave portion CNC
  • the second surface SF2 has a concave-convex surface RGH and a flat surface PLT )
  • the uneven surface RGH corresponds to the convex portion CNV and may overlap with at least a portion of the convex portion CNV.
  • the substrate 100 In the concave portion CN1 of the first surface SF1 of the substrate 100 and the flat surface PLT of the second surface SF2, the substrate 100 has a first thickness TH1, and the substrate 100 In the convex portion CNV of the first surface SF1 and the uneven surface RGH of the second surface SF2, the substrate 100 may have a second thickness TH2 smaller than the first thickness TH1. have.
  • the thickness of the substrate 100 is relatively thin in the uneven surface RGH section, so that the distance through which the light emitted through the light emitting region LEA passes through the substrate 100 can be reduced. Therefore, the amount of light lost in the substrate 100 among the light generated from the light emitting structure (LED) can be reduced.
  • the thickness of the substrate 100 in the flat surface (PLT) section is relatively thick, the substrate 100 can support the light emitting structure (LED), it is possible to prevent the substrate 100 from being damaged from external impact. .
  • the uneven surfaces CC of the uneven surface RGH have the same shape with each other and may be regularly arranged. According to another embodiment, the uneven surfaces CC of the uneven surface RGH have different shapes and may be irregularly arranged.
  • the sidewall SDW of the substrate 100 defined by the uneven surface RGH in the second surface SF2 of the substrate 100 may have a slope.
  • the space defined by the sidewall SDW of the substrate 100 may have a width that narrows toward the inside from the second surface SF2.
  • the sidewall SDW of the substrate 100 may be vertical.
  • the first The wavelength of the light emitted from the light emitting part LE1 is the shortest, the wavelength of the light emitted from the second light emitting part LE2 is longer than the wavelength of the light emitted from the first light emitting part LE1, and the light emitted from the third light emitting part LE3 It is shorter than the wavelength of the light, and the wavelength of the light emitted from the third light emitting part LE3 may be the longest.
  • the first light emitting unit LE1 emits blue light
  • the second light emitting unit LE2 emits green light
  • the third light emitting unit LE3 emits red light.
  • the present disclosure is not limited thereto.
  • the second light emitting unit LE2 may emit light having a shorter wavelength than the first light emitting unit LE1.
  • the first light emitting unit LE1 includes a first n-type semiconductor layer 102, a first active layer 104, a first p-type semiconductor layer 106, and a first ohmic layer ( 108)
  • the second light emitting unit LE2 includes a second n-type semiconductor layer 202, a second active layer 204, a second p-type semiconductor layer 206, and a second ohmic layer 208.
  • the third light emitting unit LE3 may include a third n-type semiconductor layer 302, a third active layer 304, a third p-type semiconductor layer 306, and a third ohmic layer 308. have.
  • Each of the first n-type semiconductor layer 102, the second n-type semiconductor layer 202, and the third n-type semiconductor layer 302 may be a gallium nitride-based semiconductor layer doped with Si.
  • Each of the first p-type semiconductor layer 106, the second p-type semiconductor layer 206, and the third p-type semiconductor layer 306 may be a gallium nitride-based semiconductor layer doped with Mg.
  • Each of the first active layer 104, the second active layer 204, and the third active layer 304 may include a multi-quantum well (MQW) structure, and its composition ratio to emit light having a desired peak wavelength Can be determined.
  • MQW multi-quantum well
  • Each of the first ohmic layer 108, the second ohmic layer 208, and the third ohmic layer 308 is tin oxide (SnO), indium oxide (InO2), zinc oxide (ZnO), indium tin oxide ( ITO), and a transparent oxide layer (TCO) such as indium tin oxide (ITZO) may be used.
  • the first light emitting part LE1 may be arranged to be spaced apart from the second light emitting part LE2.
  • the first ohmic layer 108 of the first light emitting unit LE1 may face the second ohmic layer 208 of the second light emitting unit LE2.
  • the first ohmic layer 108 of the first light emitting part LE1 and the second n-type semiconductor layer 202 of the second light emitting part LE2 may be faced.
  • the second light emitting part LE2 may be arranged to be spaced apart from the third light emitting part LE3.
  • the second ohmic layer 208 of the second light emitting unit LE2 may face the third ohmic layer 308 of the third light emitting unit LE3.
  • the second ohmic layer 208 of the second light emitting unit LE2 may face the third n-type semiconductor layer 302 of the third light emitting unit LE3.
  • the light emitting device includes a first adhesive part AD1 that bonds between the first light emitting part LE1 and the second light emitting part LE2 between the first light emitting part LE1 and the second light emitting part LE2 spaced apart from each other, and A second adhesive portion AD2 that bonds between the second and second light emitting portions LE2 and LE3 between the second and second light emitting portions LE2 and LE3 spaced apart from each other may be further included.
  • Each of the first adhesive portion AD1 and the second adhesive portion AD2 may transmit visible light and include an insulating material.
  • Each of the first adhesive portion AD1 and the second adhesive portion AD2 may include a polymer, a resist, or a polyimide.
  • each of the first adhesive portion AD1 and the second adhesive portion AD2 is Spin-On-Glass (SOG), BenzoCycloButadiene (BCB), Hydrogen SilsesQuioxanes (HSQ), SU-8 photoresist, epoxy, PAE ( Poly arylene ether (Flare TM) , MSSQ (methylsilsesquioxane), PMMA (polymethylmethacrylate), PDMS (polydimethylsiloxane), fluoropolymer, polyimide, PEEK (polyethereherketone), ATSP (Aromatic Thermosetting Poyester), PVDC (Polyvinylidene chloride), LCP (liquid- crystal polymer), and wax (wax) or the like.
  • SOG Spin-On-Glass
  • BCB BenzoCycloButadiene
  • HSQ Hydrogen SilsesQuioxanes
  • SU-8 photoresist epoxy
  • PAE Poly arylene ether (F
  • the light emitting element is disposed between the first color filter CF1 and the second light emitting unit LE2 and the third light emitting unit LE3 disposed between the first light emitting unit LE1 and the second light emitting unit LE2.
  • a second color filter CF2 may be further included.
  • the first color filter CF1 may be disposed on the first ohmic layer 108 of the first light emitting unit LE1 or the second ohmic layer 208 of the second light emitting unit LE2.
  • the second color filter CF2 may be disposed on the second n-type semiconductor layer 202 of the second light emitting part LE2 or the third ohmic layer 308 of the third light emitting part LE3.
  • the first color filter CF1 is generated from the first light emitting part LE1 so that light generated from the first light emitting part LE1 does not affect each of the second light emitting part LE2 and the third light emitting part LE3.
  • the reflected light may be reflected, and light generated from each of the second light emitting part LE2 and the third light emitting part LE3 may pass through.
  • the second color filter CF2 includes the first light emitting unit LE1 and the first light emitting unit LE1 so that light generated from each of the first light emitting unit LE1 and the second light emitting unit LE2 does not affect the third light emitting unit LE3.
  • the light generated from the second light emitting unit LE2 may be reflected, and the light generated from the third light emitting unit LE3 may pass.
  • Each of the first color filter CF1 and the second color filter CF2 may include a distributed Bragg Reflector (DBR) having a structure in which TiO2 and SiO2 are alternately stacked.
  • the first color filter CF1 may have a different number and thickness of alternating second color filters CF2 and TiO2 and SiO2. According to an embodiment, the first color filter CF1 and the second color filter CF2 may be omitted.
  • DBR distributed Bragg Reflector
  • the light emitting device includes a first pad PD1 electrically connected to the first ohmic layer 108, a second pad PD2 electrically connected to the second ohmic layer 208, and a third ohmic layer 308.
  • the third pad PD3 electrically connected to the first n-type semiconductor layer 102, the second n-type semiconductor layer 202, and the third n-type semiconductor layer 302 are electrically connected in common. It may further include a common pad (CPD).
  • the substrate 100 has a rectangular structure, and each of the first pad PD1, the second pad PD2, the third pad PD3, and the common pad CPD is a substrate. It may be disposed at each corner of (100).
  • the first n-type semiconductor layer 102, the second n-type semiconductor layer 202, and the third n-type semiconductor layer 302 is illustratively described as being connected to a common pad (CPD),
  • the first ohmic layer 108, the second ohmic layer 208, and the third ohmic layer 308 may be connected to a common pad (CPD).
  • the light emitting device includes a third light emitting part LE3, a second color filter CF2, a second adhesive part AD2, a second light emitting part LE2, and a first adhesive part AD1.
  • a first via pattern VA1 that penetrates the first color filter CF1 and electrically connects the first ohmic layer 108 and the first pad PD1, and a third light emitting part LE3,
  • the second ohmic layer penetrates the second color filter CF2, the second adhesive portion AD2, the second n-type semiconductor layer 202, the second active layer 204, and the second p-type semiconductor layer 206.
  • the light emitting element includes a third light emitting part LE3, a second color filter CF2, a second adhesive part AD2, a second light emitting part LE2, a first adhesive part AD1, and a first color filter CF1.
  • the second n-type semiconductor layer 202 and the common pad (CPD) pass through the fourth via pattern VA4, the third light emitting part LE3, the second color filter CF2, and the second adhesive part AD2.
  • a fifth via pattern VA5 electrically connecting to the third via-type semiconductor layer 302 and electrically connecting the third n-type semiconductor layer 302 and the common pad CPD to the sixth via
  • the pattern VA6 may be further included.
  • the sixth via pattern VA6 may be omitted.
  • the first light emitting unit LE1, the second light emitting unit LE2, and the third light emitting unit LE3 in which the light emitting structures (LEDs) are vertically stacked include the first light emitting unit LE1 and the first light emitting unit LE1.
  • the light emitting device including the second light emitting part LE2 and the via patterns VA1, VA2, VA3, VA4, VA5, and VA6 penetrating the third light emitting part LE3 is exemplarily described.
  • the first light emitting part LE1, the second light emitting part LE2, and the third light emitting part LE3 are etched to etch the first n-type semiconductor layer 102, the second n-type semiconductor layer 202, and the third n-type
  • the semiconductor layer 302, the first ohmic layer 108, the second ohmic layer 208, and the third ohmic layer 308 may be exposed.
  • the light emitting device may have a structure in which the first light emitting part LE1, the second light emitting part LE2, and the third light emitting part LE3 are horizontally arranged on the same plane. Meanwhile, the light emitting device may have one light emitting unit.
  • the light-emitting element, the light-emitting structure on the first surface SF1 of the substrate 100 may further include a first light blocking layer LS1 surrounding the outer wall and filling between adjacent light emitting structures (LEDs).
  • the first light blocking layer LS1 blocks, absorbs, or reflects light generated from each of the light emitting structures LED so that light generated from each of the light emitting structures LED does not mix with the light of the adjacent light emitting structures LED.
  • It may include a material having an insulating property.
  • the first light blocking layer LS1 may include materials such as photoresist, epoxy, polydimethylsiloxane (PDMS), and black matrix.
  • the light emitting device may further include a second light blocking layer LS2 having an opening exposing at least a portion of the uneven surface RGH on the second surface SF2 of the substrate 100.
  • the uneven surface RGH exposed by the opening may be the light extraction surface LEX.
  • the second light blocking layer LS2 may include metals such as Ti, Ni, Al, Ag, and Cr, or may include materials such as photoresist, epoxy, PDMS, and black matrix.
  • the light extraction surface LEX is illustrated as having a rectangular structure in plan view in FIGS. 1B and 2A, but the light extraction surface LEX may have a polygonal or circular structure such as a triangle.
  • the second light blocking layer LS2 exposes the uneven surface RGH, is disposed on the second surface SF2 of the substrate 100, and the substrate 100 It may not be formed on the sidewall (SDW) of the. That is, the second light blocking layer LS2 may not cover the uneven surface RRG.
  • the second light blocking layer LS2 is a sidewall SDW of the substrate 100 on the second surface SF2 of the substrate 100 It can be extended to cover the end of the uneven surface (RGH).
  • the opening may expose a portion of the uneven surface RGH.
  • the center of the opening may be concentric with the center of the concavo-convex surface (RGH).
  • the uneven surface RGH exposed by the opening of the second light blocking layer LS2 may be the light extraction surface LEX.
  • the second light blocking layer LS2 has the same thickness on the side surface SDW of the substrate 100, and the second light blocking layer LS2 is on the side surface SDW of the substrate 100. It can have an inclined side. As another example shown in FIG. 4B, the second light blocking layer LS2 has a smaller thickness from the side SDW of the substrate 100 to the inside of the substrate 100 from the second surface SF2 of the substrate 100 , The second light blocking layer LS2 may have a side surface perpendicular to a side portion of the substrate 100.
  • the second light blocking layer LS2 covering the sidewall SDW may have regions overlapping each other. Light mixed between adjacent light emitting structures LED may be prevented by the first light blocking layer LS1 and the second light blocking layer LS2 overlapping each other.
  • the second width W2 of the concavo-convex surface RGH is equal to or greater than the first width W1 of the light-emitting area LEA, and the second light blocking layer LS2 is the light-emitting area
  • the uneven surface RGH may be relatively thickly covered.
  • the light generated from the adjacent light emitting structure (LED) may be diffusely reflected by the uneven surfaces CC of the uneven surface RGH covered by the second light blocking layer LS2, and may be extinguished. 2 It can be absorbed, blocked, and reflected by the light blocking layer LS2 to prevent color mixing.
  • the uneven surfaces CC of the uneven surface RGH covered by the second light blocking film LS2 have a first roughness
  • the uneven surfaces exposed by the opening of the second light blocking film LS2 The irregularities CC of the surface RGH may have a second roughness different from the first roughness.
  • the first roughness may be greater than the second roughness.
  • the first roughness may be smaller than the second roughness.
  • the second light blocking layer LS2 may prevent light generated from neighboring light emitting structures LEDs from being mixed together with the first light blocking layer LS1, thereby preventing color mixing.
  • FIG. 6A is a plan view illustrating a light emitting device according to another embodiment of the present invention
  • FIG. 6B is a cross-sectional view of the light emitting device of FIG. 6A taken along line A-A '
  • 7A is a plan view illustrating a light emitting device according to another embodiment of the present invention
  • FIGS. 7B and 7C are cross-sectional views of the light emitting device of FIG. 7A taken along line A-A '.
  • 8A and 8B are enlarged views of B of the light emitting device of FIG. 6B.
  • FIGS. 6A and 7A are plan views seen from a substrate.
  • the light emitting device is a substrate 100 and a first light emitting part LE1 vertically stacked on the first surface SF1 of the substrate 100 ,
  • a blocking layer LS1 and a second light blocking layer LS2 disposed on the second surface SF2 facing the first surface SF1 of the substrate 100 may be included.
  • the first surface SF1 of the substrate 100 includes a light emitting area LEA in which a light emitting structure LED is disposed, and a light blocking area LSA in which the first light blocking layer LS1 except for the light emitting area LEA is disposed. It can contain.
  • the emission area LEA may have a first width W1.
  • the first surface SF1 of the substrate 100 may have a flat surface.
  • the first surface SF1 of the substrate 100 may include a plurality of first holes HL1.
  • the first holes HL1 disposed in the light blocking area LSA may be filled by the first light blocking layer LS1.
  • the first holes HL1 disposed in the light emitting area LEA on the first surface SF1 of the substrate 100 are also shown to be filled by the first light blocking layer LS1, the first holes SF1 are disposed in the light emitting area LEA.
  • One hole HL1 may be filled with air.
  • the first holes HL1 are shown to be formed on the front surface of the first surface SF1 of the substrate 100, but the first holes HL1 of the first surface SF1 of the substrate 100 It may be selectively formed only in the emission area LEA, or may be selectively formed only in the light blocking area LSA of the first surface SF1 of the substrate 100.
  • each of the first holes HL1 are regularly spaced from each other and are regularly arranged, and may have the same structure.
  • each of the first holes HL1 may be irregularly arranged and have different structures from each other.
  • each of the first holes HL1 filled with the first light blocking layer LS1 is illustrated as having a conical structure, but the first holes HL1 may have a cylindrical structure.
  • the second surface SF2 of the substrate 100 may include a plurality of second holes HL2.
  • each of the second holes HL2 may have a conical structure.
  • each of the second holes HL2 may have a cylindrical structure.
  • each of the second holes HL2 are regularly spaced from each other and are regularly arranged, and may have the same structure.
  • each of the second holes HL2 may be irregularly arranged and have different structures from each other.
  • the second holes HL2 are shown to be formed on the front surface of the second surface SF2 of the substrate 100, but the second holes HL2 are light extraction surfaces LEX ) Is selectively formed only in the section corresponding to, or is selectively formed only in the section corresponding to the light emitting area LEA of the first surface SF1 of the substrate 100, or of the first surface SF1 of the substrate 100 It may be selectively formed only in a section corresponding to the light blocking area LSA.
  • the second light blocking layer LS2 may be disposed while filling the second holes HL2, and the second light blocking layer LS2 may include an opening overlapping at least a portion of the emission area LEA.
  • the opening is disposed in the emission area LEA of the first surface SF1 of the substrate 100 and may have a third width W3 smaller than the first width W1 of the emission area LEA.
  • the second surface SF2 of the substrate 100 exposed by the opening may be a light extraction surface LEX.
  • the light extraction surface LEX may have a third width W3 smaller than the first width W1 of the emission area LEA.
  • the second holes HL2 disposed in the opening of the second light blocking layer LS2 may be exposed to the outside. That is, air may be filled in the second holes HL2 disposed in the opening.
  • the second light blocking layer LS2 may be filled inside the second holes HL2 disposed in the opening.
  • the second light blocking layer LS2 covers a portion of the light emitting area LEA to define a light extraction surface LEX having a small area, so that the contrast ratio of the light emitting device can be improved.
  • light is diffusely reflected by the plurality of second holes HL2 on the light extraction surface LEX, so that light extraction of the light emitting device may be improved.
  • the first holes HL1 filled with the first light blocking layer LS1 and the second light blocking layer LS2 disposed in an area other than the light extraction surface LEX fill to reflect light generated from neighboring light emitting structures (LEDs). , It can be absorbed and blocked to prevent color mixing, thereby improving color reproducibility.
  • FIGS. 6A, 6B, 7A, 7B, 7C, 8A, and 8B Components not described in FIGS. 6A, 6B, 7A, 7B, 7C, 8A, and 8B are illustrated in FIGS. 1A, 1B, 1C, 1D, 1E, 2A, 2B, and 3a, and the components described in FIG. 3b are substantially the same, and detailed description thereof will be omitted.
  • 9 to 13 are cross-sectional views illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • a first n-type semiconductor layer 102, a first active layer 104, a first p-type semiconductor layer 106, and a first ohmic layer 108 are formed on the first substrate 100. It can be formed sequentially.
  • the first n-type semiconductor layer 102, the first active layer 104, and the first p-type semiconductor layer 106 on the first substrate 100 are MOCVD (Metal-Organic Chemical Vapor Deposition), MBE (Molecular Beam) Epitaxy), HVPE (Hydride Vapor Phase Epitaxy), MOC (Metal-Organic Chloride) can be sequentially formed using growth methods.
  • MOCVD Metal-Organic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • HVPE Hydride Vapor Phase Epitaxy
  • MOC Metal-Organic Chloride
  • the first ohmic layer 108 may be formed on the first p-type semiconductor layer 106 through a chemical vapor deposition (CVD)
  • the second n-type semiconductor layer 202, the second active layer 204, the second p-type semiconductor layer 206, and the second ohmic layer 208 are sequentially formed on the second substrate (not shown).
  • the second light emitting part LE2 may be formed.
  • the second n-type semiconductor layer 202, the second active layer 204, and the second p-type semiconductor layer 206 are sequentially formed on the second substrate using growth methods such as MOCVD, MBE, HVPE, and MOC. can do.
  • the second ohmic layer 208 may be formed on the second p-type semiconductor layer 206 through a CVD or PVD process.
  • the second substrate is turned over and the second ohmic layer 208 is disposed to face the first ohmic layer 108, and the second light emitting part LE2 is attached to the first light emitting part LE1 through the first adhesive part AD1. Can be glued.
  • the second substrate is subjected to a laser lift-off (LLO) process or a chemical lift-off (CLO) process. Can be removed through.
  • LLO laser lift-off
  • CLO chemical lift-off
  • a third n-type semiconductor layer 302, a third active layer 304, a third p-type semiconductor layer 306, and a third ohmic layer 308 are sequentially formed on a third substrate (not shown).
  • the third light emitting part LE3 may be formed.
  • the third n-type semiconductor layer 302, the third active layer 304, and the third p-type semiconductor layer 306 are sequentially formed using growth methods such as MOCVD, MBE, HVPE, and MOC. can do.
  • the third ohmic layer 308 may be formed on the third p-type semiconductor layer 306 through a CVD or PVD process.
  • the third substrate is turned over so as to face the second n-type semiconductor layer 202 of the second light emitting part LE2 and the third ohmic layer 308 of the third light emitting part LE3, and the second adhesive part AD2 is disposed. Through this, the second light emitting part LE2 and the third light emitting part LE3 may be bonded. After bonding the second light emitting part LE2 and the third light emitting part LE3 with the second adhesive part AD2, the third substrate may be removed through an LLO or CLO process.
  • a first via hole (not shown) exposing the first n-type semiconductor layer 102 by etching the third light emitting part LE3, the second light emitting part LE2, and the first light emitting part LE1,
  • the second via hole exposing the second n-type semiconductor layer 202 (not shown), the third via hole exposing the third n-type semiconductor layer 302 (not shown), the first ohmic layer 108
  • a fourth via hole exposing (not shown), a fifth via hole exposing the second ohmic layer 208 (not shown), and a sixth via hole exposing the third ohmic layer 308 (not shown) Can form.
  • the first light emitting part LE1 while forming the first via hole, the second via hole, the third via hole, the fourth via hole, the fifth via hole, and the sixth via hole, the first light emitting part LE1, the second light emitting part LE2, And exposing the substrate 100 by etching the third light emitting part LE3 to separate the light emitting devices.
  • a passivation film that does not fill each of the first via hole, the second via hole, the third via hole, the fourth via hole, the fifth via hole, and the sixth via hole and extends to the upper surface of the third n-type semiconductor layer 302 is formed.
  • PVT passivation film
  • the first passivation layer is etched to expose the first n-type semiconductor layer 102 on the bottom surface of the first via hole, the second n-type semiconductor layer 202 is exposed on the bottom surface of the second via hole, and the third via hole bottom surface is exposed.
  • the ohmic layer 308 may be exposed.
  • the first via pattern VA1, the second via pattern VA2 filling the first via hole, the second via hole, the third via hole, the fourth via hole, the fifth via hole, and the sixth via hole on which the passivation film PVT is formed,
  • the third via pattern VA3, the fourth via pattern VA4, the fifth via pattern VA5, and the sixth via pattern VA6 may be formed, respectively.
  • the first via pattern VA1 fills the first via hole and is in electrical contact with the first n-type semiconductor layer 102
  • the second via pattern VA2 fills the second via hole and fills the second n-type semiconductor layer 202
  • the third via pattern VA3 fills the third via hole and electrically contacts the third n-type semiconductor layer 302
  • the fourth via pattern VA4 fills the fourth via hole
  • the fifth via pattern VA5 fills the fifth via hole and is in electrical contact with the second ohmic layer 208
  • the sixth via pattern VA6 fills the sixth via hole.
  • the ohmic layer 308 may be in electrical contact.
  • the first via pattern VA1, the second via pattern VA2, the third via pattern VA3, the fourth via pattern VA4, the fifth via pattern VA5, and the sixth via may be coplanar with the upper surface of the passivation film PVT.
  • the first pad PD1 in electrical contact with the first via pattern VA1 on the first via pattern VA1 and the second via pattern VA2 in electrical contact with the second via pattern VA2
  • the second pad PD2, the third pad PD3 in electrical contact with the third via pattern VA3 on the third via pattern VA3, the fourth via pattern VA4, and the fifth via pattern ( VA5), and a common pad CPD in electrical contact with the fourth via pattern VA4, the fifth via pattern VA5, and the sixth via pattern VA6 on the sixth via pattern VA6.
  • the third light emitting part LE3, the second light emitting part LE2, and the first light emitting part LE1 may be sequentially etched to separate the devices into each of the light emitting structures LED.
  • a part of the substrate 100 under the first light emitting part LE1 may be etched in the etching process.
  • the first surface SF1 of the substrate 100 may include a convex portion CNV covered by a light emitting structure LED and an etched concave portion CNC.
  • the substrate 100 may not be etched in the etching process as shown in the light emitting devices illustrated in FIGS. 1C, 1E, and 2B.
  • the light emitting structure (LED) may have an inclined side wall. According to another embodiment, the light emitting structure (LED) may have vertical sidewalls.
  • a first light blocking layer LS1 filling between the light emitting structures LED may be formed.
  • the first light blocking layer LS1 may be formed while filling the recessed portion CNC of the first surface SF1 of the substrate 100.
  • the first light blocking layer LS1 may cover sidewalls of the substrate 100.
  • the light emitting area LEA can be defined.
  • the light emitting structure (LED) has a width gradually increasing from the third light emitting part (LE3) to the first light emitting part (LE1)
  • the light emitting area (LEA) is the same as the largest width of the light emitting structure (LED) It may have a width (W1).
  • the first light blocking layer LS1 is the same as the upper surface of each of the first pad PD1, the second pad PD2, the third pad PD3, and the common pad CPD of the light emitting structure LED. It can have a top surface of the level.
  • each of the first pad PD1, the second pad PD2, the third pad PD3, and the common pad CPD is not formed in FIG. 9, and after forming the first light blocking layer LS1
  • Each of the first pad PD1, the second pad PD2, the third pad PD3, and the common pad CPD may be formed to extend above the first light blocking layer LS1.
  • the second surface SF2 of the substrate 100 may be etched to form an uneven surface RGH including uneven surfaces CC.
  • a mask pattern (not shown) is formed on the second surface SF2 of the substrate 100, and the second surface is formed using wet etching and / or dry etching using the mask pattern as an etching mask.
  • SF2 may be etched to form irregularities CC. After forming the uneven surface RGH, the mask pattern may be removed.
  • the uneven surface RGH including the uneven surfaces CC may be formed to overlap with at least a portion of the emission area LEA.
  • the uneven surface RGH is formed in the emission area LEA and may have a second width W2 smaller than the first width W1.
  • the center of the uneven surface RGH may be the same as the center of the light emitting area LEA.
  • the uneven surface RGH illustrated in FIG. 1E may have a second width W2 greater than or equal to the first width W1.
  • the center of the uneven surface RGH may be the same as the center of the light emitting area LEA.
  • a second light blocking layer LS2 may be formed on the second surface SF2 of the substrate 100.
  • the second light blocking layer LS2 may be continuously and thinly formed along the uneven surface RGH and the flat surface PLT of the second surface SF2 of the substrate 100.
  • the first light blocking layer LS1 formed on the recessed part CNC of the first surface SF1 of the substrate 100 and the uneven surface RG of the second surface SF2 of the substrate 100 may overlap.
  • the second light blocking layer LS2 may be etched to form an opening exposing the light extraction surface LEX having a third width W3 smaller than the second width W2.
  • the second light blocking layer LS2 may be second etched following the etching process of FIG. 12 in the uneven surface RGH portion from which the second light blocking layer LS2 is removed. Accordingly, as illustrated in FIGS. 5A and 5B, it may have a roughness different from that of the portion covered by the second light blocking layer LS2. As an example illustrated in FIG. 5A, a portion covered by the second light blocking layer LS2 has a first roughness, and a portion exposed by the second light blocking layer LS2 may have a second roughness greater than the first roughness. have. As another example illustrated in FIG. 5B, a portion covered by the second light blocking layer LS2 has a first roughness, and a portion exposed by the second light blocking layer LS2 may have a second roughness smaller than the first roughness. have.
  • an uneven surface RGH may be formed after forming the second light blocking layer LS2.
  • the light emitting devices illustrated in FIGS. 2A and 2B may be completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

발광 소자를 제공한다. 발광 소자는, 제1 면 및 상기 제1 면에 대향하는 제2 면을 갖는 기판, 기판의 제1 면 상에 배치되는 발광 구조물, 및 기판의 제2 면 상에, 발광 구조물이 배치된 발광 영역의 적어도 일부를 노출시키는 제1 광 차단막을 포함하되, 기판의 제2 면은 발광 영역과 적어도 일부가 중첩되는 요철면을 갖는다.

Description

발광 소자
본 발명은 발광 소자에 관한 것으로, 보다 상세하게는 복수의 발광부들을 포함하는 발광 소자에 관한 것이다.
발광 다이오드는 무기 광원으로서, 디스플레이 장치, 차량용 램프, 일반 조명과 같은 여러 분야에 다양하게 이용되고 있다. 발광 다이오드는 수명이 길고, 소비 전력이 낮으며, 응답속도가 빠른 장점이 있어 기존 광원을 빠르게 대체하고 있다.
최근, 발광 다이오드가 휴대폰을 비롯한 각종 표시장치의 배면 광원으로 이용되도록 경박단소화되어 있어, 이웃한 발광 셀들 사이 색이 혼합되는 등 문제가 대두되고 있다.
본원 발명이 해결하고자 하는 과제는 광효율 및 광추출이 향상된 발광 소자를 제공하는데 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
해결하고자 하는 일 과제를 달성하기 위하여 본 발명의 실시예들에 따른 발광 소자는, 제1 면 및 상기 제1 면에 대향하는 제2 면을 갖는 기판, 상기 기판의 제1 면 상에 배치되는 발광 구조물, 및 상기 기판의 제2 면 상에, 상기 발광 구조물이 배치된 발광 영역의 적어도 일부를 노출시키는 제1 광 차단막을 포함하되, 상기 기판의 제2 면은 상기 발광 영역과 적어도 일부가 중첩되는 요철면을 가질 수 있다.
실시예들에 따르면, 상기 기판은 상기 요철면 구간에서 두께가 상기 요철면을 제외한 구간에서 두께보다 작을 수 있다.
실시예들에 따르면, 상기 기판의 제2 면은 상기 요철면에 의해 형성된 측벽을 더 포함하되, 상기 제1 광 차단막은 상기 기판의 측벽으로 연장되어 상기 요철면의 단부를 덮어 상기 발광 구조물의 광 추출면을 정의할 수 있다.
실시예들에 따르면, 상기 광 추출면은 상기 요철면보다 작은 폭을 가지며, 상기 발광 영역보다 작은 폭을 가질 수 있다.
실시예들에 따르면, 상기 요철면은 복수의 요철들을 포함하되, 상기 광 추출면의 요철들과 상기 제1 광 차단막에 의해 덮인 요철들은 서로 거칠기가 상이할 수 있다.
실시예들에 따르면, 상기 제1 광 차단막은 상기 기판의 측벽을 따라 동일한 폭으로 형성될 수 있다.
실시예들에 따르면, 상기 기판의 측벽이 경사를 가지며, 상기 제1 광 차단막은 상기 기판의 제2 면에서 상기 기판의 내부로 갈수록 작아지는 폭을 가지며, 수직인 측면을 가질 수 있다.
실시예들에 따르면, 상기 요철면은 상기 발광 영역 내에 배치되며, 상기 발광 영역보다 작은 폭을 가질 수 있다.
실시예들에 따르면, 상기 요철면은 상기 발광 영역을 커버하며 상기 발광 영역과 동일하거나 큰 폭을 가질 수 있다.
실시예들에 따르면, 상기 발광 소자는, 상기 기판의 제1 면에서 상기 발광 구조물의 외측을 감싸는 제2 광 차단막을 더 포함할 수 있다.
실시예들에 따르면, 상기 기판의 제1 면은, 상기 발광 영역에 볼록부와 상기 발광 영역을 제외한 영역에 오목부를 가질 수 있다.
실시예들에 따르면, 상기 발광 소자는, 상기 오목부를 채우며 상기 발광 구조물의 외측을 감싸는 제2 광 차단막을 더 포함할 수 있다.
실시예들에 따르면, 상기 기판의 제1 면에서 상기 오목부를 채우는 상기 제2 광 차단막 부분과, 상기 기판의 제2 면에서 상기 요철면의 단부를 덮는 상기 제1 광 차단막 부분은 중첩될 수 있다.
실시예들에 따르면, 상기 요철면은 복수의 제1 홀들을 포함하되, 상기 제1 홀들은, 적어도 상기 발광 영역에 대응되는 영역에 형성될 수 있다.
실시예들에 따르면, 상기 제1 광 차단막은 상기 제1 홀들을 채우고, 상기 발광 영역의 적어도 일부를 덮도록 상기 기판의 제2 면으로 연장하여, 상기 발광 구조물의 광 추출면을 정의할 수 있다.
실시예들에 따르면, 상기 광 추출면은 상기 발광 영역보다 작은 폭을 가질 수 있다.
실시예들에 따르면, 상기 광 추출면에 형성된 제1 홀들은 공기로 채워질 수 있다.
실시예들에 따르면, 상기 광 추출면에 형성된 제1 홀들은 상기 제1 광 차단막으로 채워질 수 있다.
실시예들에 따르면, 상기 발광 소자는, 상기 기판의 제1 면 상에서 상기 발광 구조물의 외측을 감싸는 제2 광 차단막을 더 포함할 수 있다.
실시예들에 따르면, 상기 기판의 제1 면에 복수의 제2 홀들을 포함하되, 상기 제2 광 차단막은 상기 제2 홀들의 적어도 일부를 채울 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 따른 발광 소자에 따르면, 제1 및 제2 광 차단막에 의해 이웃한 발광 구조물로부터 발생된 광이 혼합되는 것을 방지하여 색재현성을 향상시킬 수 있다.
또한, 기판에서 요철면이 형성된 구간에서만 두께를 얇게 하고 나머지 구간에서는 기판의 두께를 유지함으로써, 기판이 복수의 발광 구조물들을 지지할 수 있으며 외부 충격에도 손상되지 않을 수 있다.
요철면에 의해 발광 구조물로부터 발생된 광이 난반사되어 광효율이 향상될 수 있다. 또한, 요철면의 단부를 광 차단막이 덮음으로써 광 추출면을 정의하여 발광 소자의 명암비를 향상시킬 수 있다.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 평면도들이다.
도 1c, 도 1d, 및 도 1e는 도 1a를 A-A'으로 절단한 단면도들이다.
도 2a는 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이다.
도 2b는 도 2a를 A-A'으로 절단한 단면도이다.
도 3a는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 3b는 도 3a의 발광 소자를 A-A' 및 B-B'으로 절단한 단면도들이다.
도 4a, 도 4b, 도 5a, 및 도 5b는 본 발명의 일 실시예에 따른 요철면 및 제2 광 차단막 구조를 설명하기 위한 단면도들이다.
도 6a는 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이다.
도 6b는 도 6a의 발광 소자를 A-A'으로 절단한 단면도이다.
도 7a는 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이다.
도 7b 및 도 7c는 도 7a의 발광 소자를 A-A'으로 절단한 단면도들이다.
도 8a 및 도 8b는 도 6b의 발광 소자의 B를 확대한 도면이다.
도 9 내지 도 13은 본 발명의 일 실시예에 따른 발광 소자의 제조 방법을 설명하기 위한 단면도들이다.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예들을 설명한다. 그러나 본 발명은, 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 여러 가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다.
또한, 본 발명의 실시예들에서 사용되는 용어들은 다르게 정의되지 않는 한, 해당 기술 분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하, 도면들을 참조하여 본 발명의 실시예들에 따른 발광 소자에 대하여 상세하게 설명한다.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 평면도들이고, 도 1c, 도 1d, 및 도 1e는 도 1a를 A-A'으로 절단한 단면도들이다. 도 2a는 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이고, 도 2b는 도 2a를 A-A'으로 절단한 단면도이다. 도 3a는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이고, 도 3b는 도 3a의 발광 소자를 A-A' 및 B-B'으로 절단한 단면도들이다. 도 4a, 도 4b, 도 5a, 및 도 5b는 본 발명의 일 실시예에 따른 요철면 및 제2 광 차단막 구조를 설명하기 위한 단면도들이다.
도 1a, 도 1b, 도 1c, 도 1d, 도 1e, 도 2a, 도 2b, 도 3a, 및 도 3b를 참조하면, 발광 소자는, 기판(100) 및 기판(100) 상에 적층된 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)를 포함하는 발광 구조물(LED)을 포함할 수 있다.
한편, 도 1a는 제3 발광부(LE3)에서 바라본 평면도이고, 도 1b는 기판(100) 방향에서 바라본 평면도이다. 도 2a는 기판(100) 방향에서 바라본 평면도이다. 도 3a 및 도 3b는 일 발광 소자를 보다 상세하게 도시한 도면들이다.
기판(100)은 질화갈륨계 반도체층을 성장시킬 수 있는 기판으로, 사파이어(Al2O3), 실리콘 카바이드(SiC), 질화갈륨(GaN), 질화인듐갈륨(InGaN), 질화알루미늄갈륨(AlGaN), 질화알루미늄(AlN), 갈륨 산화물(Ga2O3), 또는 실리콘을 포함할 수 있다. 또한, 기판(100)은 패터닝된(patterned) 사파이어 기판일 수 있다. 일 실시예에 따르면, 기판(100)은 가시광이 투과하는 물질을 포함할 수 있다.
기판(100)은 제1 면(SF1) 및 제1 면(SF1)에 대향하는 제2 면(SF2)을 포함할 수 있다. 기판(100)의 제1 면(SF1) 상에 복수의 발광 구조물들(LED)이 서로 이격되어 배치될 수 있다. 발광 구조물(LED)이 배치되는 영역을 발광 영역(LEA)이라 하고, 발광 구조물(LED)이 배치되지 않은 나머지 영역을 차광 영역(LSA)이라 한다.
도 1a, 도 1b, 도 1c, 도 1d, 도 1e, 도 2a 및 도 2b에 도시된 일 실시예에 따르면, 기판(100)의 제1 면(SF1)은 평평한 면일 수 있다. 도 1d에 도시된 다른 실시예에 따르면, 기판(100)의 제1 면(SF1)은 발광 영역(LEA)에서 볼록부(CNV)를 가지며, 차광 영역(LSA)에서 오목부(CNC)를 가질 수 있다. 제1 면(SF1)의 볼록부(CNV)의 상부면은 오목부(CNC)의 상부면보다 높은 레벨에 위치할 수 있다. 이로써, 제1 면(SF1)은 볼록부(CNV) 및 오목부(CNC) 사이에 단차부가 형성될 수 있다.
도 1a, 도 1b, 도 1c, 도 1d, 도 1e, 도 2a, 도 2b에 도시된 일 실시예에 따르면, 기판(100)의 제2 면(SF2)은 요철들(CC)을 갖는 요철면(RGH)과 요철면(RGH)을 제외한 평탄면(PLT)을 포함할 수 있다. 요철면(RGH)은 기판(100)의 제1 면(SF1)의 발광 영역(LEA)의 적어도 일부와 중첩될 수 있다.
도 1b, 도 1c, 도 1d, 도 2a, 도 2b에 도시된 일 예로, 발광 영역(LEA)은 제1 폭(W1)을 가지며 요철면(RGH)은 제1 폭(W1)보다 작은 제2 폭(W2)을 가질 수 있다. 또한, 발광 영역(LEA)의 중심은 요철면(RGH)의 중심과 동심일 수 있다. 도 1e에 도시된 다른 예로, 발광 영역(LEA)은 제1 폭(W1)을 가지며 요철면(RGH)은 제1 폭(W1)보다 크거나 동일한 제2 폭(W2)을 가질 수 있다. 또한, 발광 영역(LEA)의 중심은 요철면(RGH)의 중심과 동심일 수 있다.
이와 같이, 기판(100)의 제2 면(SF2)이 요철면들(RGH)을 가짐으로써, 발광 영역들(LEA)로부터 발생된 광이 요철면들(RGH)을 통해 난반사되어 발광 소자의 광추출 효율을 향상시킬 수 있다.
도 1c, 도 1d, 도 1e, 및 도 2b에 도시된 일 예로, 기판(100)의 제1 면(SF1)은 평평하고 제2 면(SF2)이 요철면(RGH) 및 평탄면(PLT)을 가지는 경우, 기판(100)의 제2 면(SF2)의 평탄면(PLT) 구간에서 기판(100)은 제1 두께(TH1)를 가지며, 기판(100)의 제2 면(SF2)의 요철면들(RGH) 각각의 구간에서는 제1 두께(TH1)보다 작은 제2 두께(TH2)를 가질 수 있다. 이러한 기판(100)의 두께 차이로 요철면들(RGH) 각각의 단부에 의해 기판(100)의 측벽(SDW)이 정의될 수 있다. 도 1d에 도시된 다른 예로, 기판(100)의 제1 면(SF1)은 볼록부(CNV) 및 오목부(CNC)를 가지며 제2 면(SF2)이 요철면(RGH) 및 평탄면(PLT)을 갖는 경우, 요철면(RGH)은 볼록부(CNV)에 대응되며 볼록부(CNV)의 적어도 일부와 중첩될 수 있다. 기판(100)의 제1 면(SF1)의 오목부(CNC)와 제2 면(SF2)의 평탄면(PLT) 구간에서 기판(100)은 제1 두께(TH1)를 가지며, 기판(100)의 제1 면(SF1)의 볼록부(CNV)와 제2 면(SF2)의 요철면(RGH) 구간에서 기판(100)은 제1 두께(TH1)보다 작은 제2 두께(TH2)를 가질 수 있다.
이와 같이, 요철면(RGH) 구간에서 기판(100)의 두께가 상대적으로 얇아져, 발광 영역(LEA)을 통해 방출되는 광이 기판(100)을 통과하는 거리가 감소될 수 있다. 따라서, 발광 구조물(LED)로부터 발생된 광 중에서 기판(100) 내에서 손실되는 광의 양이 감소될 수 있다. 또한, 평탄면(PLT) 구간에서 기판(100)의 두께가 상대적으로 두꺼워, 기판(100)이 발광 구조물(LED) 지지할 수 있으며, 외부 충격으로부터 기판(100)이 손상되는 것을 방지할 수 있다.
일 실시예에 따르면, 요철면(RGH)의 요철들(CC)은 서로 동일한 형상을 가지며, 규칙적으로 배열될 수 있다. 다른 실시예에 따르면, 요철면(RGH)의 요철들(CC)은 서로 상이한 형상을 가지며, 비규칙적으로 배열될 수 있다.
일 예로, 기판(100)의 제2 면(SF2)에서 요철면(RGH)에 의해 정의된 기판(100)의 측벽(SDW)은 경사를 가질 수 있다. 그래서, 기판(100)의 측벽(SDW)에 의해 한정되는 공간은 제2 면(SF2)으로부터 내부로 갈수록 좁아지는 폭을 가질 수 있다. 다른 예로, 기판(100)의 측벽(SDW)은 수직일 수 있다.
도 1a, 도 1b, 도 1c, 도 1d, 도 1e, 도 2a, 도 2b, 도 3a, 및 도 3b를 참조하면, 기판(100)의 제2 면(SF2)이 광 추출면일 경우, 제1 발광부(LE1)에서 발광되는 광의 파장이 가장 짧고, 제2 발광부(LE2)에서 발광되는 광의 파장이 제1 발광부(LE1)에서 발광되는 광의 파장보다 길고 제3 발광부(LE3)에서 발광되는 광의 파장보다 짧으며, 제3 발광부(LE3)에서 발광되는 광의 파장이 가장 길 수 있다. 예컨대, 제1 발광부(LE1)는 청색광을 발광시키며, 제2 발광부(LE2)는 녹색광을 발광시키며, 제3 발광부(LE3)는 적색광을 발광시킬 수 있다. 그러나 본 개시가 이에 한정되는 것은 아니다. 예를 들어, 제2 발광부(LE2)가 제1 발광부(LE1)보다 단파장의 광을 방출할 수 있다.
도 3a 및 도 3b를 참조하면, 제1 발광부(LE1)는 제1 n형 반도체층(102), 제1 활성층(104), 제1 p형 반도체층(106), 및 제1 오믹층(108)을 포함하고, 제2 발광부(LE2)는 제2 n형 반도체층(202), 제2 활성층(204), 제2 p형 반도체층(206), 및 제2 오믹층(208)을 포함하며, 제3 발광부(LE3)는 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 오믹층(308)을 포함할 수 있다.
제1 n형 반도체층(102), 제2 n형 반도체층(202), 및 제3 n형 반도체층(302) 각각은 Si이 도핑된 질화갈륨계 반도체층일 수 있다. 제1 p형 반도체층(106), 제2 p형 반도체층(206), 및 제3 p형 반도체층(306) 각각은 Mg가 도핑된 질화갈륨계 반도체층일 수 있다. 제1 활성층(104), 제2 활성층(204), 및 제3 활성층(304) 각각은 다중양자우물구조(Multi Quantum Well: MQW)을 포함할 수 있고, 원하는 피크 파장의 광을 방출하도록 그 조성비가 결정될 수 있다. 제1 오믹층(108), 제2 오믹층(208), 및 제3 오믹층(308) 각각은 산화주석(SnO), 산화인디움(InO2), 산화아연(ZnO), 산화인디움주석(ITO), 및 산화인디움주석아연(ITZO)과 같은 투명 산화물층(Transparent Conductive Oxide: TCO)이 사용될 수 있다.
제1 발광부(LE1)는 제2 발광부(LE2)와 이격되어 배치될 수 있다. 일 예로, 제1 발광부(LE1)의 제1 오믹층(108)은 제2 발광부(LE2)의 제2 오믹층(208)과 마주할 수 있다. 다른 예로, 제1 발광부(LE1)의 제1 오믹층(108)과 제2 발광부(LE2)의 제2 n형 반도체층(202)과 마주할 수 있다.
제2 발광부(LE2)는 제3 발광부(LE3)와 이격되어 배치될 수 있다. 일 예로, 제2 발광부(LE2)의 제2 오믹층(208)은 제3 발광부(LE3)의 제3 오믹층(308)과 마주할 수 있다. 다른 예로, 제2 발광부(LE2)의 제2 오믹층(208)이 제3 발광부(LE3)의 제3 n형 반도체층(302)과 마주할 수 있다.
발광 소자는, 서로 이격된 제1 발광부(LE1) 및 제2 발광부(LE2) 사이에서 제1 발광부(LE1) 및 제2 발광부(LE2) 사이를 접착시키는 제1 접착부(AD1) 및 서로 이격된 제2 발광부(LE2) 및 제3 발광부(LE3) 사이에서 제2 발광부(LE2) 및 제3 발광부(LE3) 사이를 접착시키는 제2 접착부(AD2)를 더 포함할 수 있다. 제1 접착부(AD1) 및 제2 접착부(AD2) 각각은 가시광을 투과시키며 절연성을 갖는 물질을 포함할 수 있다. 제1 접착부(AD1) 및 제2 접착부(AD2) 각각은 폴리머(polymer), 레지스트(resist) 또는 폴리이미드(polyimide)를 포함할 수 있다. 예컨대, 제1 접착부(AD1) 및 제2 접착부(AD2) 각각은 SOG(Spin-On-Glass), BCB(BenzoCycloButadiene), HSQ(Hydrogen SilsesQuioxanes), SU-8 포토레지스트(photoresist), epoxy, PAE(poly arylene ether) 계열인 FlareTM, MSSQ(methylsilsesquioxane), PMMA(polymethylmethacrylate), PDMS(polydimethylsiloxane), fluoropolymer, polyimide, PEEK(polyethereherketone), ATSP(Aromatic Thermosetting Poyester), PVDC(Polyvinylidene chloride), LCP(liquid-crystal polymer), 및 왁스(wax) 등으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
발광 소자는, 제1 발광부(LE1) 및 제2 발광부(LE2) 사이에 배치되는 제1 컬러 필터(CF1) 및 제2 발광부(LE2) 및 제3 발광부(LE3) 사이에 배치되는 제2 컬러 필터(CF2)를 더 포함할 수 있다. 제1 컬러 필터(CF1)는 제1 발광부(LE1)의 제1 오믹층(108) 또는 제2 발광부(LE2)의 제2 오믹층(208) 상에 배치될 수 있다. 제2 컬러 필터(CF2)는 제2 발광부(LE2)의 제2 n형 반도체층(202) 또는 제3 발광부(LE3)의 제3 오믹층(308) 상에 배치될 수 있다. 제1 컬러 필터(CF1)는 제1 발광부(LE1)로부터 발생된 광이 제2 발광부(LE2) 및 제3 발광부(LE3) 각각으로 영향을 미치지 않도록 제1 발광부(LE1)로부터 발생된 광은 반사시키고, 제2 발광부(LE2) 및 제3 발광부(LE3) 각각으로부터 발생된 광은 통과시킬 수 있다. 제2 컬러 필터(CF2)는 제1 발광부(LE1) 및 제2 발광부(LE2) 각각으로부터 발생된 광이 제3 발광부(LE3)로 영향을 미치지 않도록 제1 발광부(LE1) 및 제2 발광부(LE2)로부터 발생된 광은 반사시키고, 제3 발광부(LE3)로부터 발생된 광은 통과시킬 수 있다. 제1 컬러 필터(CF1) 및 제2 컬러 필터(CF2) 각각은 TiO2 및 SiO2가 교번 적층된 구조를 갖는 분산 드래그 반사경(Distributed Bragg Reflector, DBR)을 포함할 수 있다. 제1 컬러 필터(CF1)는 제2 컬러 필터(CF2)와 TiO2 및 SiO2가 교번된 횟수 및 두께가 상이할 수 있다. 일 실시예에 따르면, 선택적으로 제1 컬러 필터(CF1) 및 제2 컬러 필터(CF2)는 생략될 수 있다.
발광 소자는, 제1 오믹층(108)과 전기적으로 연결되는 제1 패드(PD1)와, 제2 오믹층(208)과 전기적으로 연결되는 제2 패드(PD2)와, 제3 오믹층(308)과 전기적으로 연결되는 제3 패드(PD3)와, 제1 n형 반도체층(102), 제2 n형 반도체층(202), 및 제3 n형 반도체층(302)과 전기적으로 공통으로 연결되는 공통 패드(CPD)를 더 포함할 수 있다. 도 3a를 참조하면, 평면적 관점에서, 기판(100)은 사각형 구조를 가지며, 제1 패드(PD1), 제2 패드(PD2), 제3 패드(PD3), 및 공통 패드(CPD) 각각은 기판(100)의 각 모서리에 배치될 수 있다.
본 실시예에서는 제1 n형 반도체층(102), 제2 n형 반도체층(202), 및 제3 n형 반도체층(302)이 공통 패드(CPD)에 연결되는 것을 예시적으로 설명하나, 제1 오믹층(108), 제2 오믹층(208), 및 제3 오믹층(308)이 공통 패드(CPD)에 연결될 수도 있다.
도 3a 및 도 3b를 참조하면, 발광 소자는, 제3 발광부(LE3), 제2 컬러 필터(CF2), 제2 접착부(AD2), 제2 발광부(LE2), 제1 접착부(AD1), 및 제1 컬러 필터(CF1)를 관통하며 제1 오믹층(108)과 제1 패드(PD1)를 사이를 전기적으로 연결하는 제1 비아 패턴(VA1)과, 제3 발광부(LE3), 제2 컬러 필터(CF2), 제2 접착부(AD2), 제2 n형 반도체층(202), 제2 활성층(204), 및 제2 p형 반도체층(206)을 관통하며 제2 오믹층(208)과 제2 패드(PD2) 사이를 전기적으로 연결하는 제2 비아 패턴(VA2)과, 제3 n형 반도체층(302), 제3 활성층(304), 및 제3 p형 반도체층(306)을 관통하며 제3 오믹층(308)과 제3 패드(PD3) 사이를 전기적으로 연결하는 제3 비아 패턴(VA3)을 더 포함할 수 있다. 또한, 발광 소자는, 제3 발광부(LE3), 제2 컬러 필터(CF2), 제2 접착부(AD2), 제2 발광부(LE2), 제1 접착부(AD1), 제1 컬러 필터(CF1), 제1 오믹층(108), 제1 p형 반도체층(106), 및 제1 활성층(104)을 관통하며 제1 n형 반도체층(102)과 공통 패드(CPD)를 전기적으로 연결하는 제4 비아 패턴(VA4)과, 제3 발광부(LE3), 제2 컬러 필터(CF2), 및 제2 접착부(AD2)를 관통하며 제2 n형 반도체층(202)과 공통 패드(CPD)를 전기적으로 연결하는 제5 비아 패턴(VA5)과, 제3 n형 반도체층(302)의 일부를 관통하며 제3 n형 반도체층(302)과 공통 패드(CPD)를 전기적으로 연결 제6 비아 패턴(VA6)을 더 포함할 수 있다. 제6 비아 패턴(VA6)은 생략될 수 있다.
본 실시예에서는 발광 구조물(LED)이 수직 적층된 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)를 포함하고, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)를 관통하는 비아 패턴들(VA1, VA2, VA3, VA4, VA5, VA6)을 포함하는 발광 소자를 예시적으로 설명하였으나, 수직 적층된 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)를 식각하여 제1 n형 반도체층(102), 제2 n형 반도체층(202), 제3 n형 반도체층(302), 제1 오믹층(108), 제2 오믹층(208), 및 제3 오믹층(308)을 노출시키는 구조를 가질 수 있다. 또한, 발광 소자는, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)가 동일 평면 상에 수평적으로 배치되는 구조를 가질 수도 있다. 한편, 발광 소자는 하나의 발광부를 가질 수도 있다.
도 1a, 도 1b, 도 1c, 도 1d, 도 1e, 도 2a, 도 2b, 도 3a, 및 도 3b을 참조하면, 발광 소자는, 기판(100)의 제1 면(SF1) 상에서 발광 구조물(LED)의 외측벽을 감싸며, 이웃하는 발광 구조물들(LED) 사이를 채우는 제1 광 차단막(LS1)을 더 포함할 수 있다. 제1 광 차단막(LS1)은 발광 구조물(LED) 각각으로부터 발생된 광이 이웃하는 발광 구조물(LED)의 광과 섞이지 않도록, 발광 구조물(LED) 각각으로부터 발생된 광을 차단, 흡수, 또는 반사시키며, 절연 특성을 갖는 물질을 포함할 수 있다. 일 예로, 제1 광 차단막(LS1)은 포토레지스트(photoresist), 에폭시(epoxy), PDMS(polydimethylsiloxane) 및 블랙매트릭스(black matrix)와 같은 물질을 포함할 수 있다.
발광 소자는, 기판(100)의 제2 면(SF2) 상에서 요철면(RGH)의 적어도 일부를 노출시키는 개구를 갖는 제2 광 차단막(LS2)을 더 포함할 수 있다. 개구에 의해 노출되는 요철면(RGH)이 광 추출면(LEX)일 수 있다. 제2 광 차단막(LS2)은 Ti, Ni, Al, Ag, Cr과 같은 금속을 포함하거나, 포토레지스트, 에폭시, PDMS 및 블랙매트릭스와 같은 물질을 포함할 수 있다.
일 실시예에 따르면, 광 추출면(LEX)은 도 1b 및 도 2a에서 평면적 관점에서, 사각형 구조를 가지는 것으로 도시하였으나, 광 추출면(LEX)은 삼각형 등 다각형 및 원형 구조를 가질 수 있다.
도 2a 및 도 2b에 도시된 일 실시예에 따르면, 제2 광 차단막(LS2)은 요철면(RGH)을 노출시키며, 기판(100)의 제2 면(SF2) 상부에 배치되고 기판(100)의 측벽(SDW)에는 형성되지 않을 수 있다. 즉, 제2 광 차단막(LS2)은 요철면(RGH)을 덮지 않을 수 있다.
도 1b, 도 1c, 도 1d, 및 도 1e에 도시된 다른 실시예에 따르면, 제2 광 차단막(LS2)은 기판(100)의 제2 면(SF2) 상에서 기판(100)의 측벽(SDW)으로 연장되어 요철면(RGH)의 단부를 덮을 수 있다. 개구는 요철면(RGH)의 일부를 노출시킬 수 있다. 이때, 개구의 중심은 요철면(RGH)의 중심과 동심일 수 있다. 제2 광 차단막(LS2)의 개구에 의해 노출되는 요철면(RGH)이 광 추출면(LEX)일 수 있다. 도 4a에 도시된 일 예로, 제2 광 차단막(LS2)은 기판(100)의 측면(SDW)에서 동일한 두께를 가지며, 제2 광 차단막(LS2)은 기판(100)의 측면(SDW) 부위에서 경사진 측면을 가질 수 있다. 도 4b에 도시된 다른 예로, 제2 광 차단막(LS2)은 기판(100)의 측면(SDW)에서 기판(100)의 제2 면(SF2)에서 기판(100)의 내부로 갈수록 작은 두께를 가지며, 제2 광 차단막(LS2)은 기판(100)의 측면 부위에서 수직인 측면을 가질 수 있다.
도 1d에 도시된 실시예에 따르면, 기판(100)의 제1 면(SF1)의 오목부(CNC)를 채우는 제1 광 차단막(LS1)과 요철면(RGH)에 의해 정의된 기판(100)의 측벽(SDW)을 덮는 제2 광 차단막(LS2)은 서로 중첩되는 영역을 가질 수 있다. 서로 중첩된 제1 광 차단막(LS1) 및 제2 광 차단막(LS2)에 의해 이웃하는 발광 구조물들(LED) 사이 광이 혼합되는 것을 방지할 수 있다.
도 1e에 도시된 실시예에 따르면, 요철면(RGH)의 제2 폭(W2)이 발광 영역(LEA)의 제1 폭(W1)과 동일하거나 크며, 제2 광 차단막(LS2)은 발광 영역(LEA)보다 작은 제3 폭(W3)의 광 추출면(LEX)을 노출시키기 위하여, 상대적으로 두껍게 요철면(RGH)을 덮을 수 있다. 이웃한 발광 구조물(LED)에서 발생된 광은 제2 광 차단막(LS2)에 의해 덮인 요철면(RGH)의 요철들(CC)에 의해 난반사되어 소멸될 수 있으며, 소멸되지 않고 잔류하는 광은 제2 광 차단막(LS2)에 의해 흡수, 차단, 및 반사되어 색혼합을 방지할 수 있다.
또한, 요철면(RGH)에서, 제2 광 차단막(LS2)이 덮인 요철면(RGH)의 요철들(CC)은 제1 거칠기를 가지며, 제2 광 차단막(LS2)의 개구에 의해 노출된 요철면(RGH)의 요철들(CC)은 제1 거칠기와 상이한 제2 거칠기를 가질 수 있다. 도 5a에 도시된 일 예로, 제1 거칠기는 제2 거칠기보다 더 클 수 있다. 도 5b에 도시된 다른 예로, 제1 거칠기는 제2 거칠기보다 작을 수 있다.
이와 같이, 발광 구조물(LED)로부터 발생된 광이 제2 광 차단막(LS2)에 의해 작은 면적으로 출광될 수 있다. 따라서, 발광 소자의 명암비(contrast)를 증가시켜 색 재현성을 향상시킬 수 있다. 또한, 제2 광 차단막(LS2)은 제1 광 차단막(LS1)과 함께, 이웃하는 발광 구조물(LED)로부터 발생된 광이 혼합되는 것을 방지할 수 있어, 색혼합을 방지할 수 있다.
도 6a는 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이고, 도 6b는 도 6a의 발광 소자를 A-A'으로 절단한 단면도이다. 도 7a는 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이고, 도 7b 및 도 7c는 도 7a의 발광 소자를 A-A'으로 절단한 단면도들이다. 도 8a 및 도 8b는 도 6b의 발광 소자의 B를 확대한 도면이다. 한편, 도 6a 및 도 7a는 기판에서 바라본 평면도들이다.
도 6a, 도 6b, 도 7a, 도 7b, 및 도 7c를 참조하면, 발광 소자는 기판(100), 기판(100)의 제1 면(SF1) 상에 수직 적층된 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)를 포함하는 발광 구조물(LED), 기판(100)의 제1 면(SF1) 상에서 발광 구조물들(LED) 사이를 채우는 제1 광 차단막(LS1), 및 기판(100)의 제1 면(SF1)에 대향하는 제2 면(SF2) 상에 배치되는 제2 광 차단막(LS2)을 포함할 수 있다.
기판(100)의 제1 면(SF1)은 발광 구조물(LED)이 배치된 발광 영역(LEA)과, 발광 영역(LEA)을 제외한 제1 광 차단막(LS1)이 배치된 차광 영역(LSA)을 포함할 수 있다. 일 예로, 발광 영역(LEA)은 제1 폭(W1)을 가질 수 있다.
도 6b 및 7b에 도시된 일 실시예에 따르면, 기판(100)의 제1 면(SF1)은 평탄한 면을 가질 수 있다.
도 7c에 도시된 다른 실시예에 따르면, 기판(100)의 제1 면(SF1)은 복수의 제1 홀들(HL1)을 포함할 수 있다. 도 7c에서, 차광 영역(LSA)에 배치된 제1 홀들(HL1)은 제1 광 차단막(LS1)에 의해 채워질 수 있다. 기판(100)의 제1 면(SF1)에서 발광 영역(LEA)에 배치된 제1 홀들(HL1)도 제1 광 차단막(LS1)에 의해 채워진 것으로 도시되었으나, 발광 영역(LEA)에 배치된 제1 홀들(HL1)은 공기로 채워질 수도 있다.
한편, 도 7c에서는 제1 홀들(HL1)이 기판(100)의 제1 면(SF1) 전면에 형성되는 것으로 도시되나, 제1 홀들(HL1)은 기판(100)의 제1 면(SF1)의 발광 영역(LEA)에만 선택적으로 형성되거나, 기판(100)의 제1 면(SF1)의 차광 영역(LSA)에만 선택적으로 형성될 수도 있다. 일 예로, 제1 홀들(HL1) 각각은 서로 등간격 이격되어 규칙적으로 배열되고, 서로 동일한 구조를 가질 수 있다. 다른 예로, 제1 홀들(HL1) 각각은 불규칙적으로 배열되고 서로 상이한 구조를 가질 수 있다.
도 7c에서, 제1 광 차단막(LS1)이 채워진 제1 홀들(HL1) 각각은 원뿔형 구조를 갖는 것으로 도시하였으나, 제1 홀들(HL1)은 원기둥 구조를 가질 수 있다.
도 6a, 도 6b, 도 7a, 도 7b, 및 도 7c를 참조하면, 기판(100)의 제2 면(SF2)은 복수의 제2 홀들(HL2)을 포함할 수 있다. 도 8a에 도시된 일 예에 따르면, 제2 홀들(HL2) 각각은 원뿔형 구조를 가질 수 있다. 도 8b에 도시된 다른 예에 따르면, 제2 홀들(HL2) 각각은 원기둥 구조를 가질 수 있다.
일 예로, 제2 홀들(HL2) 각각은 서로 등간격 이격되어 규칙적으로 배열되고, 서로 동일한 구조를 가질 수 있다. 다른 예로, 제2 홀들(HL2) 각각은 불규칙적으로 배열되고 서로 상이한 구조를 가질 수 있다.
한편, 도 6b, 도 7b, 및 도 7c에서는 제2 홀들(HL2)이 기판(100)의 제2 면(SF2) 전면에 형성되는 것으로 도시되나, 제2 홀들(HL2)은 광 추출면(LEX)에 대응되는 구간에만 선택적으로 형성되거나, 기판(100)의 제1 면(SF1)의 발광 영역(LEA)에 대응되는 구간에만 선택적으로 형성되거나, 기판(100)의 제1 면(SF1)의 차광 영역(LSA)에 대응되는 구간에만 선택적으로 형성될 수도 있다.
일 실시예에 따르면, 제2 광 차단막(LS2)은 제2 홀들(HL2)을 채우며 배치되고, 제2 광 차단막(LS2)은 발광 영역(LEA)과 적어도 일부 중첩되는 개구를 포함할 수 있다. 개구는 기판(100)의 제1 면(SF1)의 발광 영역(LEA) 내에 배치되며, 발광 영역(LEA)의 제1 폭(W1)보다 작은 제3 폭(W3)을 가질 수 있다. 개구에 의해 노출된 기판(100)의 제2 면(SF2)은 광 추출면(LEX)일 수 있다. 광 추출면(LEX)은 발광 영역(LEA)의 제1 폭(W1)보다 작은 제3 폭(W3)을 가질 수 있다.
도 6b에 도시된 일 실시예에 따르면, 제2 광 차단막(LS2)의 개구에 배치된 제2 홀들(HL2)은 외부로 노출될 수 있다. 즉, 개구에 배치된 제2 홀들(HL2) 내부에는 공기가 채워질 수 있다. 도 7b 및 도 7c에 도시된 다른 실시예에 따르면, 개구에 배치된 제2 홀들(HL2) 내부는 제2 광 차단막(LS2)이 채워질 수 있다
이와 같이, 제2 광 차단막(LS2)이 발광 영역(LEA)의 일부를 덮어 작은 면적의 광 추출면(LEX)을 정의함으로써, 발광 소자의 명암비가 향상될 수 있다. 또한, 광 추출면(LEX)에 복수의 제2 홀들(HL2)에 의해 광은 난반사되어 발광 소자의 광 추출이 향상될 수 있다. 제1 광 차단막(LS1) 및 제2 광 차단막(LS2)에 의해 이웃하는 발광 구조물(LED)로부터 발생된 광에 의해 광이 혼합되는 것을 방지할 수 있다. 제1 광 차단막(LS1)이 채워진 제1 홀들(HL1)과 광 추출면(LEX)을 제외한 영역에 배치된 제2 광 차단막(LS2)이 채워 이웃한 발광 구조물(LED)로부터 발생된 광을 반사, 흡수, 및 차단시킬 수 있어 색혼합을 방지하여, 색재현성을 향상시킬 수 있다.
도 6a, 도 6b, 도 7a, 도 7b, 도 7c, 도 8a, 및 도 8b에서 설명되지 않은 구성 요소들은 도 1a, 도 1b, 도 1c, 도 1d, 도 1e, 도 2a, 도 2b, 도 3a, 및 도 3b에서 설명된 구성요소들과 실질적으로 동일하여 그 상세한 설명을 생략하기로 한다.
이하, 본 발명의 실시예들에 따른 발광 소자를 제조하는 방법을 설명하기로 한다. 본 실시예에서는 도 1a, 도 1b, 및 도 1d에 도시된 발광 소자를 제조하는 방법을 예시적으로 설명하기로 한다.
도 9 내지 도 13은 본 발명의 일 실시예에 따른 발광 소자를 제조하는 방법을 설명하기 위한 단면도들이다.
도 9를 참조하면, 제1 기판(100) 상에 제1 n형 반도체층(102), 제1 활성층(104), 제1 p형 반도체층(106), 및 제1 오믹층(108)을 순차적으로 형성할 수 있다. 제1 기판(100) 상에 제1 n형 반도체층(102), 제1 활성층(104), 및 제1 p형 반도체층(106)을 MOCVD(Metal-Organic Chemical Vapor Deposition), MBE(Molecular Beam Epitaxy), HVPE(Hydride Vapor Phase Epitaxy), MOC(Metal-Organic Chloride) 등의 성장법을 이용하여 순차적으로 형성할 수 있다. 제1 p형 반도체층(106) 상에 화학적 기상 증착(Chemical Vapor Deposition: CVD) 공정, 물리적 기상 증착(Physical Vapour Deposition)공정 등을 통해 제1 오믹층(108)을 형성할 수 있다.
제2 기판(도시되지 않음) 상에 제2 n형 반도체층(202), 제2 활성층(204), 제2 p형 반도체층(206), 및 제2 오믹층(208)을 순차적으로 형성하여 제2 발광부(LE2)를 형성할 수 있다. 제2 기판 상에 제2 n형 반도체층(202), 제2 활성층(204), 및 제2 p형 반도체층(206)을 MOCVD, MBE, HVPE, MOC 등의 성장법을 이용하여 순차적으로 형성할 수 있다. 제2 p형 반도체층(206) 상에 CVD, PVD 공정 등을 통해 제2 오믹층(208)을 형성할 수 있다.
제2 기판을 뒤집어 제2 오믹층(208)을 제1 오믹층(108)과 마주하도록 배치하고, 제1 접착부(AD1)를 통해 제2 발광부(LE2)를 제1 발광부(LE1)에 접착시킬 수 있다. 제1 발광부(LE1) 및 제2 발광부(LE2)를 접착시킨 후, 제2 기판을 레이저 리프트 오프(Laser Lift-Off: LLO) 공정 또는 화학적 리프트 오프(Chemical Lift-Off, CLO) 공정을 통해 제거될 수 있다.
제3 기판(도시되지 않음) 상에 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 오믹층(308)을 순차적으로 형성하여 제3 발광부(LE3)를 형성할 수 있다. 제3 기판 상에 제3 n형 반도체층(302), 제3 활성층(304), 및 제3 p형 반도체층(306)을 MOCVD, MBE, HVPE, MOC 등의 성장법을 이용하여 순차적으로 형성할 수 있다. 제3 p형 반도체층(306) 상에 CVD, PVD 공정 등을 통해 제3 오믹층(308)을 형성할 수 있다.
제3 기판을 뒤집어 제2 발광부(LE2)의 제2 n형 반도체층(202)과 제3 발광부(LE3)의 제3 오믹층(308)을 마주보도록 배치하며 제2 접착부(AD2)를 통해 제2 발광부(LE2) 및 제3 발광부(LE3)를 접착시킬 수 있다. 제2 발광부(LE2) 및 제3 발광부(LE3)를 제2 접착부(AD2)로 접착한 후, 제3 기판은 LLO 또는 CLO 공정을 통해 제거될 수 있다.
이어서, 제3 발광부(LE3), 제2 발광부(LE2), 및 제1 발광부(LE1)를 식각하여 제1 n형 반도체층(102)을 노출시키는 제1 비아홀(도시되지 않음), 제2 n형 반도체층(202)을 노출시키는 제2 비아홀(도시되지 않음), 제3 n형 반도체층(302)을 노출시키는 제3 비아홀(도시되지 않음), 제1 오믹층(108)을 노출시키는 제4 비아홀(도시되지 않음), 제2 오믹층(208)을 노출시키는 제5 비아홀(도시되지 않음), 및 제3 오믹층(308)을 노출시키는 제6 비아홀(도시되지 않음)을 형성할 수 있다.
일 실시예에 따르면, 제1 비아홀, 제2 비아홀, 제3 비아홀, 제4 비아홀, 제5 비아홀, 및 제6 비아홀을 형성하는 동안 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)를 식각하여 기판(100)을 노출시켜, 발광 소자들 각각을 소자 분리할 수 있다.
제1 비아홀, 제2 비아홀, 제3 비아홀, 제4 비아홀, 제5 비아홀, 및 제6 비아홀 각각을 채우지 않으며 제3 n형 반도체층(302) 상부면으로 연장하는 패시베이션막(PVT)을 형성할 수 있다.
패시베이션막(PVT)을 식각하여 제1 비아홀 저면에 제1 n형 반도체층(102)을 노출시키고, 제2 비아홀 저면에 제2 n형 반도체층(202)을 노출시키고, 제3 비아홀 저면에 제3 n형 반도체층(302)을 노출시키고, 제4 비아홀 저면에 제1 오믹층(108)을 노출시키고, 제5 비아홀 저면에 제2 오믹층(208)을 노출시키며, 제6 비아홀 저면에 제3 오믹층(308)을 노출시킬 수 있다.
패시베이션막(PVT)이 형성된 제1 비아홀, 제2 비아홀, 제3 비아홀, 제4 비아홀, 제5 비아홀, 및 제6 비아홀 각각을 채우는 제1 비아 패턴(VA1), 제2 비아 패턴(VA2), 제3 비아 패턴(VA3), 제4 비아 패턴(VA4), 제5 비아 패턴(VA5), 및 제6 비아 패턴(VA6)을 각각 형성할 수 있다.
제1 비아 패턴(VA1)은 제1 비아홀을 채우며 제1 n형 반도체층(102)과 전기적으로 접촉하며, 제2 비아 패턴(VA2)은 제2 비아홀을 채우며 제2 n형 반도체층(202)과 전기적으로 접촉하며, 제3 비아 패턴(VA3)은 제3 비아홀을 채우며 제3 n형 반도체층(302)과 전기적으로 접촉하며, 제4 비아 패턴(VA4)은 제4 비아홀을 채우며 제1 오믹층(108)과 전기적으로 접촉하며, 제5 비아 패턴(VA5)은 제5 비아홀을 채우며 제2 오믹층(208)과 전기적으로 접촉하며, 제6 비아 패턴(VA6)은 제6 비아홀을 채우며 제3 오믹층(308)과 전기적으로 접촉할 수 있다.
일 실시예에 따르면, 제1 비아 패턴(VA1), 제2 비아 패턴(VA2), 제3 비아 패턴(VA3), 제4 비아 패턴(VA4), 제5 비아 패턴(VA5), 및 제6 비아 패턴(VA6) 각각의 상부면은 패시베이션막(PVT)의 상부면과 동일 평면일 수 있다.
제1 비아 패턴(VA1) 상에 제1 비아 패턴(VA1)과 전기적으로 접촉하는 제1 패드(PD1)와, 제2 비아 패턴(VA2) 상에 제2 비아 패턴(VA2)과 전기적으로 접촉하는 제2 패드(PD2)와, 제3 비아 패턴(VA3) 상에 제3 비아 패턴(VA3)과 전기적으로 접촉하는 제3 패드(PD3)와, 제4 비아 패턴(VA4), 제5 비아 패턴(VA5), 및 제6 비아 패턴(VA6) 상에 제4 비아 패턴(VA4), 제5 비아 패턴(VA5), 및 제6 비아 패턴(VA6)과 공통으로 전기적으로 접촉하는 공통 패드(CPD)를 형성할 수 있다.
도 10을 참조하면, 제3 발광부(LE3), 제2 발광부(LE2), 및 제1 발광부(LE1)를 순차적으로 식각하여 발광 구조물들(LED) 각각으로 소자 분리할 수 있다.
일 실시예에 따르면, 식각 공정에서 제1 발광부(LE1) 아래 기판(100)의 일부를 식각할 수 있다. 따라서, 기판(100)의 제1 면(SF1)은 발광 구조물(LED)에 의해 덮인 볼록부(CNV)와 식각된 오목부(CNC)를 포함할 수 있다. 다른 실시예예 따르면, 도 1c, 도 1e, 및 도 2b에 도시된 발광 소자에서 보는 바와 같이 상기 식각 공정에서 기판(100)을 식각하지 않을 수 있다.
일 실시예에 따르면, 발광 구조물(LED)은 경사진 측벽을 가질 수 있다. 다른 실시예에 따르면, 발광 구조물(LED)은 수직인 측벽을 가질 수 있다.
도 11을 참조하면, 발광 구조물들(LED) 사이를 채우는 제1 광 차단막(LS1)을 형성할 수 있다. 일 실시예에 따르면, 제1 광 차단막(LS1)은 기판(100)의 제1 면(SF1)의 오목부(CNC)를 채우며 형성될 수 있다. 제1 광 차단막(LS1)은 기판(100)의 측벽을 덮을 수 있다. 이로써, 발광 영역(LEA)이 정의될 수 있다. 발광 구조물(LED)이 제3 발광부(LE3)에서 제1 발광부(LE1)로 갈수록 점진적으로 증가되는 폭을 갖는 경우, 발광 영역(LEA)은 발광 구조물(LED)의 가장 큰 폭과 동일한 제1 폭(W1)을 가질 수 있다.
일 예로, 제1 광 차단막(LS1)은 발광 구조물(LED)의 제1 패드(PD1), 제2 패드(PD2), 제3 패드(PD3), 및 공통 패드(CPD) 각각의 상부면과 동일 레벨의 상부면을 가질 수 있다.
다른 예로, 제1 패드(PD1), 제2 패드(PD2), 제3 패드(PD3), 및 공통 패드(CPD) 각각은 도 9에서 형성되지 않고, 제1 광 차단막(LS1)을 형성한 후, 제1 패드(PD1), 제2 패드(PD2), 제3 패드(PD3), 및 공통 패드(CPD) 각각을 형성하여, 제1 광 차단막(LS1) 상부로 연장할 수도 있다.
도 12를 참조하면, 기판(100)의 제2 면(SF2)을 식각하여 요철들(CC)을 포함하는 요철면(RGH)을 형성할 수 있다.
구체적으로 설명하면, 기판(100)의 제2 면(SF2) 상에 마스크 패턴(도시되지 않음)을 형성하고, 마스크 패턴을 식각 마스크로 하여 습식 식각 및/또는 건식 식각을 이용하여 제2 면(SF2)을 식각하여 요철들(CC)을 형성할 수 있다. 요철면(RGH)을 형성한 후, 마스크 패턴은 제거될 수 있다.
요철들(CC)을 포함하는 요철면(RGH)은 발광 영역(LEA)의 적어도 일부와 중첩되며 형성될 수 있다. 일 실시예에 따르면, 요철면(RGH)은 발광 영역(LEA) 내에 형성되며, 제1 폭(W1)보다 작은 제2 폭(W2)을 가질 수 있다. 요철면(RGH)의 중심은 발광 영역(LEA)의 중심과 동일할 수 있다. 다른 실시예예 따르면, 도 1e에 도시된 요철면(RGH)과 같이, 요철면(RGH)은 제1 폭(W1)보다 크거나 동일한 제2 폭(W2)을 가질 수 있다. 요철면(RGH)의 중심은 발광 영역(LEA)의 중심과 동일할 수 있다.
도 13을 참조하면, 기판(100)의 제2 면(SF2) 상에 제2 광 차단막(LS2)을 형성할 수 있다. 제2 광 차단막(LS2)은 기판(100)의 제2 면(SF2)의 요철면(RGH) 및 평탄면(PLT)을 따라 연속적으로 얇게 형성될 수 있다.
일 실시예에 따르면, 기판(100)의 제1 면(SF1)의 오목부(CNC)에 형성된 제1 광 차단막(LS1)과 기판(100)의 제2 면(SF2)의 요철면(RGH)에 형성된 제2 광 차단막(LS2)은 중첩될 수 있다.
다시 도 1d를 참조하면, 제2 광 차단막(LS2)을 식각하여, 제2 폭(W2)보다 작은 제3 폭(W3)을 갖는 광 추출면(LEX)을 노출시키는 개구를 형성할 수 있다.
일 실시예에 따르면, 제2 광 차단막(LS2)을 식각하는 동안, 제2 광 차단막(LS2)이 제거되는 요철면(RGH) 부분에서는 도 12의 식각 공정에 이어 2차 식각될 수 있다. 따라서, 도 5a 및 도 5b에 도시된 바와 같이, 제2 광 차단막(LS2)에 의해 덮인 부분과 다른 거칠기를 가질 수 있다. 도 5a에 도시된 일 예로, 제2 광 차단막(LS2)에 의해 덮인 부분은 제1 거칠기를 가지며, 제2 광 차단막(LS2)에 의해 노출된 부분은 제1 거칠기보다 큰 제2 거칠기를 가질 수 있다. 도 5b에 도시된 다른 예로, 제2 광 차단막(LS2)에 의해 덮인 부분은 제1 거칠기를 가지며, 제2 광 차단막(LS2)에 의해 노출된 부분은 제1 거칠기보다 작은 제2 거칠기를 가질 수 있다.
도시되지 않았으나, 제2 광 차단막(LS2)을 형성한 후, 요철면(RGH)을 형성할 수도 있다. 제2 광 차단막(LS2)을 형성한 후, 요철면(RGH)을 형성하는 경우, 도 2a 및 도 2b에 도시된 발광 소자를 완성할 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (20)

  1. 제1 면 및 상기 제1 면에 대향하는 제2 면을 갖는 기판;
    상기 기판의 제1 면 상에 배치되는 발광 구조물; 및
    상기 기판의 제2 면 상에, 상기 발광 구조물이 배치된 발광 영역의 적어도 일부를 노출시키는 제1 광 차단막을 포함하되,
    상기 기판의 제2 면은 상기 발광 영역과 적어도 일부가 중첩되는 요철면을 갖는 발광 소자.
  2. 제1항에 있어서,
    상기 기판은 상기 요철면 구간에서 두께가 상기 요철면을 제외한 구간에서 두께보다 작은 발광 소자.
  3. 제1항에 있어서,
    상기 기판의 제2 면은 상기 요철면에 의해 형성된 측벽을 더 포함하되,
    상기 제1 광 차단막은 상기 기판의 측벽으로 연장되어 상기 요철면의 단부를 덮어 상기 발광 구조물의 광 추출면을 정의하는 발광 소자.
  4. 제3항에 있어서,
    상기 광 추출면은 상기 요철면보다 작은 폭을 가지며, 상기 발광 영역보다 작은 폭을 갖는 발광 소자.
  5. 제3항에 있어서,
    상기 요철면은 복수의 요철들을 포함하되,
    상기 광 추출면의 요철들과 상기 제1 광 차단막에 의해 덮인 요철들은 서로 거칠기가 상이한 발광 소자.
  6. 제3항에 있어서,
    상기 제1 광 차단막은 상기 기판의 측벽을 따라 동일한 폭으로 형성되는 발광 소자.
  7. 제3항에 있어서,
    상기 기판의 측벽이 경사를 가지며,
    상기 제1 광 차단막은 상기 기판의 제2 면에서 상기 기판의 내부로 갈수록 작아지는 폭을 가지며, 수직인 측면을 갖는 발광 소자.
  8. 제1항에 있어서,
    상기 요철면은 상기 발광 영역 내에 배치되며, 상기 발광 영역보다 작은 폭을 갖는 발광 소자.
  9. 제1항에 있어서,
    상기 요철면은 상기 발광 영역을 커버하며 상기 발광 영역과 동일하거나 큰 폭을 갖는 발광 소자.
  10. 제1항에 있어서,
    상기 기판의 제1 면에서 상기 발광 구조물의 외측을 감싸는 제2 광 차단막을 더 포함하는 발광 소자.
  11. 제1항에 있어서,
    상기 기판의 제1 면은, 상기 발광 영역에 볼록부와 상기 발광 영역을 제외한 영역에 오목부를 갖는 발광 소자.
  12. 제11항에 있어서,
    상기 오목부를 채우며 상기 발광 구조물의 외측을 감싸는 제2 광 차단막을 더 포함하는 발광 소자.
  13. 제12항에 있어서,
    상기 기판의 제1 면에서 상기 오목부를 채우는 상기 제2 광 차단막 부분과, 상기 기판의 제2 면에서 상기 요철면의 단부를 덮는 상기 제1 광 차단막 부분은 중첩되는 발광 소자.
  14. 제1항에 있어서,
    상기 요철면은 복수의 제1 홀들을 포함하되,
    상기 제1 홀들은, 적어도 상기 발광 영역에 대응되는 영역에 형성되는 발광 소자.
  15. 제14항에 있어서,
    상기 제1 광 차단막은 상기 제1 홀들을 채우고, 상기 발광 영역의 적어도 일부를 덮도록 상기 기판의 제2 면으로 연장하여, 상기 발광 구조물의 광 추출면을 정의하는 발광 소자.
  16. 제15항에 있어서,
    상기 광 추출면은 상기 발광 영역보다 작은 폭을 갖는 발광 소자.
  17. 제15항에 있어서,
    상기 광 추출면에 형성된 제1 홀들은 공기로 채워지는 발광 소자.
  18. 제15항에 있어서,
    상기 광 추출면에 형성된 제1 홀들은 상기 제1 광 차단막으로 채워지는 발광 소자.
  19. 제14항에 있어서,
    상기 기판의 제1 면 상에서 상기 발광 구조물의 외측을 감싸는 제2 광 차단막을 더 포함하는 발광 소자.
  20. 제19항에 있어서,
    상기 기판의 제1 면에 복수의 제2 홀들을 포함하되,
    상기 제2 광 차단막은 상기 제2 홀들의 적어도 일부를 채우는 발광 소자.
PCT/KR2019/015090 2018-11-07 2019-11-07 발광 소자 WO2020096384A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021523199A JP7500556B2 (ja) 2018-11-07 2019-11-07 発光ダイオード
CN201980073256.6A CN113056830A (zh) 2018-11-07 2019-11-07 发光元件
BR112021008898-9A BR112021008898A2 (pt) 2018-11-07 2019-11-07 dispositivo emissor de luz
KR1020217011686A KR20210074301A (ko) 2018-11-07 2019-11-07 발광 소자
EP19882208.2A EP3879584A4 (en) 2018-11-07 2019-11-07 LIGHT EMITTING DIODE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862756935P 2018-11-07 2018-11-07
US62/756,935 2018-11-07
US16/672,676 2019-11-04
US16/672,676 US11271136B2 (en) 2018-11-07 2019-11-04 Light emitting device

Publications (1)

Publication Number Publication Date
WO2020096384A1 true WO2020096384A1 (ko) 2020-05-14

Family

ID=70458746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015090 WO2020096384A1 (ko) 2018-11-07 2019-11-07 발광 소자

Country Status (7)

Country Link
US (3) US11271136B2 (ko)
EP (1) EP3879584A4 (ko)
JP (1) JP7500556B2 (ko)
KR (1) KR20210074301A (ko)
CN (2) CN113056830A (ko)
BR (1) BR112021008898A2 (ko)
WO (1) WO2020096384A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11282984B2 (en) * 2018-10-05 2022-03-22 Seoul Viosys Co., Ltd. Light emitting device
US11271136B2 (en) * 2018-11-07 2022-03-08 Seoul Viosys Co., Ltd Light emitting device
US11211528B2 (en) * 2019-03-13 2021-12-28 Seoul Viosys Co., Ltd. Light emitting device for display and display apparatus having the same
WO2024074702A1 (en) * 2022-10-06 2024-04-11 Ams-Osram International Gmbh Light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289357A (ja) * 2001-03-28 2002-10-04 Pioneer Electronic Corp 有機エレクトロルミネッセンス表示パネル
KR20050094561A (ko) * 2004-03-23 2005-09-28 엘지.필립스 엘시디 주식회사 유기전계발광 소자 및 그 제조방법
JP2008251561A (ja) * 2007-03-29 2008-10-16 Toyoda Gosei Co Ltd 表示装置
KR20150102179A (ko) * 2014-02-27 2015-09-07 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR101769048B1 (ko) * 2010-12-22 2017-08-17 엘지이노텍 주식회사 발광 소자, 이를 포함하는 발광소자 패키지 및 조명 장치

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432275B2 (ja) * 2000-07-13 2010-03-17 パナソニック電工株式会社 光源装置
US7413918B2 (en) * 2005-01-11 2008-08-19 Semileds Corporation Method of making a light emitting diode
US7524686B2 (en) * 2005-01-11 2009-04-28 Semileds Corporation Method of making light emitting diodes (LEDs) with improved light extraction by roughening
US8318519B2 (en) * 2005-01-11 2012-11-27 SemiLEDs Optoelectronics Co., Ltd. Method for handling a semiconductor wafer assembly
JP5310564B2 (ja) * 2007-12-28 2013-10-09 日亜化学工業株式会社 半導体発光素子およびその製造方法
TWI532214B (zh) 2010-10-12 2016-05-01 Lg伊諾特股份有限公司 發光元件及其封裝
JP5862354B2 (ja) * 2011-04-15 2016-02-16 三菱化学株式会社 窒化物系発光ダイオード素子とその製造方法
WO2013039344A2 (ko) * 2011-09-16 2013-03-21 서울옵토디바이스(주) 발광 다이오드 및 그것을 제조하는 방법
KR20140066397A (ko) * 2012-11-23 2014-06-02 서울바이오시스 주식회사 복수개의 단위 발광소자들을 갖는 발광다이오드
JP2014167948A (ja) * 2013-01-30 2014-09-11 Mitsubishi Chemicals Corp 発光ダイオード素子、発光ダイオード素子の製造方法および発光装置
US10003057B2 (en) * 2013-09-06 2018-06-19 Teijin Aramid B.V. Separator paper for electrochemical cells
JP2015056650A (ja) * 2013-09-13 2015-03-23 株式会社東芝 発光装置
DE102014106585A1 (de) * 2014-05-09 2015-11-12 Leonhard Kurz Stiftung & Co. Kg Mehrschichtkörper und Verfahren zu dessen Herstellung
US9608168B2 (en) * 2014-06-13 2017-03-28 Seoul Viosys Co., Ltd. Light emitting diode
JP2016046461A (ja) * 2014-08-26 2016-04-04 豊田合成株式会社 半導体発光素子ウエハ及び半導体発光素子並びに半導体発光素子の製造方法
KR102657885B1 (ko) * 2015-10-19 2024-04-17 루미리즈 홀딩 비.브이. 텍스처화된 기판을 갖는 파장 변환된 발광 디바이스
TWI588984B (zh) * 2016-03-14 2017-06-21 群創光電股份有限公司 顯示裝置
JP6564348B2 (ja) * 2016-06-06 2019-08-21 日機装株式会社 深紫外発光素子
JP6428730B2 (ja) * 2016-08-24 2018-11-28 日亜化学工業株式会社 発光装置
JP6871706B2 (ja) * 2016-09-30 2021-05-12 日機装株式会社 半導体発光素子の製造方法
US10340425B2 (en) * 2016-11-25 2019-07-02 Seoul Viosys Co., Ltd. Light emitting diode having light blocking layer
JP7255965B2 (ja) * 2017-08-24 2023-04-11 日機装株式会社 半導体発光素子の製造方法
US11121299B2 (en) * 2018-10-31 2021-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US11271136B2 (en) * 2018-11-07 2022-03-08 Seoul Viosys Co., Ltd Light emitting device
US11482650B2 (en) * 2018-11-07 2022-10-25 Seoul Viosys Co., Ltd. Light emitting device including light shielding layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289357A (ja) * 2001-03-28 2002-10-04 Pioneer Electronic Corp 有機エレクトロルミネッセンス表示パネル
KR20050094561A (ko) * 2004-03-23 2005-09-28 엘지.필립스 엘시디 주식회사 유기전계발광 소자 및 그 제조방법
JP2008251561A (ja) * 2007-03-29 2008-10-16 Toyoda Gosei Co Ltd 表示装置
KR101769048B1 (ko) * 2010-12-22 2017-08-17 엘지이노텍 주식회사 발광 소자, 이를 포함하는 발광소자 패키지 및 조명 장치
KR20150102179A (ko) * 2014-02-27 2015-09-07 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3879584A4 *

Also Published As

Publication number Publication date
US11271136B2 (en) 2022-03-08
US20200144448A1 (en) 2020-05-07
JP2022506047A (ja) 2022-01-17
EP3879584A4 (en) 2022-08-03
EP3879584A1 (en) 2021-09-15
JP7500556B2 (ja) 2024-06-17
US20240154061A1 (en) 2024-05-09
KR20210074301A (ko) 2021-06-21
US11916168B2 (en) 2024-02-27
CN210743973U (zh) 2020-06-12
US20220262982A1 (en) 2022-08-18
BR112021008898A2 (pt) 2021-08-10
CN113056830A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2020096384A1 (ko) 발광 소자
WO2020036421A1 (ko) 발광 소자
WO2015194804A1 (ko) 발광 소자 및 이를 포함하는 발광소자 패키지
WO2016153213A1 (ko) 발광 소자 패키지 및 조명 장치
WO2010095781A1 (ko) 발광소자 및 그 제조방법
WO2020096386A1 (ko) 발광 소자
WO2016064134A2 (en) Light emitting device and method of fabricating the same
WO2011145850A2 (en) High efficiency light emitting diode and method of fabricating the same
WO2020096304A1 (ko) 발광 소자
WO2012039555A2 (en) Wafer-level light emitting diode package and method of fabricating the same
WO2016153218A1 (ko) 발광 소자, 이를 포함하는 발광 소자 패키지 및 이 패키지를 포함하는 조명 장치
WO2020036423A1 (ko) 발광 소자
WO2016204482A1 (ko) 복수의 파장변환부를 포함하는 발광 소자 및 그 제조 방법
WO2013151387A1 (ko) 반도체 소자 구조물을 제조하는 방법
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2009154383A2 (ko) 반도체 발광소자
WO2017014512A1 (ko) 발광 소자
WO2016153214A1 (ko) 발광 소자 및 발광 소자 패키지
WO2021086026A1 (ko) Led 디스플레이 장치
WO2020091507A1 (ko) 발광 소자
WO2017138707A1 (ko) 고출력 발광 다이오드 및 그것을 갖는 발광 모듈
WO2020162687A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 디스플레이 장치
WO2020055143A1 (ko) 발광 소자
WO2021137654A1 (ko) 발광 소자 및 그것을 갖는 led 디스플레이 장치
WO2017014580A1 (ko) 발광 소자 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021008898

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019882208

Country of ref document: EP

Effective date: 20210607

ENP Entry into the national phase

Ref document number: 112021008898

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210506