WO2020036423A1 - 발광 소자 - Google Patents

발광 소자 Download PDF

Info

Publication number
WO2020036423A1
WO2020036423A1 PCT/KR2019/010326 KR2019010326W WO2020036423A1 WO 2020036423 A1 WO2020036423 A1 WO 2020036423A1 KR 2019010326 W KR2019010326 W KR 2019010326W WO 2020036423 A1 WO2020036423 A1 WO 2020036423A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
type semiconductor
semiconductor layer
emitting part
layer
Prior art date
Application number
PCT/KR2019/010326
Other languages
English (en)
French (fr)
Inventor
장종민
김창연
양명학
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Priority to BR112021002851-0A priority Critical patent/BR112021002851A2/pt
Priority to KR1020217002548A priority patent/KR20210033480A/ko
Priority to EP19850087.8A priority patent/EP3840066B1/en
Priority to JP2021506742A priority patent/JP7288041B2/ja
Priority to CN201980052127.9A priority patent/CN112585768B/zh
Publication of WO2020036423A1 publication Critical patent/WO2020036423A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0016Devices characterised by their operation having p-n or hi-lo junctions having at least two p-n junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a light emitting device, and more particularly, to a light emitting device in which a plurality of light emitting layers are stacked.
  • the light emitting diode is an inorganic light source, and is used in various fields such as a display device, a vehicle lamp, and general lighting.
  • Light-emitting diodes have a long life, low power consumption, and fast response times, and are rapidly replacing conventional light sources.
  • the display device generally implements a variety of colors using a mixture of blue, green, and red colors.
  • Each pixel of the display device includes blue, green, and red subpixels, and the color of these subpixels determines the color of a particular pixel, and the image is realized by the combination of these pixels.
  • Light emitting diodes have been used primarily as backlight sources in display devices. Recently, however, micro LEDs have been developed as next-generation displays that directly implement images using light emitting diodes.
  • the problem to be solved by the present invention is to provide a light emitting device excellent in light reproducibility.
  • the light emitting device includes a first adhesive portion.
  • the second active layer, the second p-type semiconductor layer, and the second transparent electrode are vertically stacked to form a second mesa structure.
  • a portion of the second n-type semiconductor layer may be exposed on the second n-type semiconductor layer.
  • the light emitting device is disposed on the exposed second n-type semiconductor layer, and includes a third n-type semiconductor layer, a third active layer, a third p-type semiconductor layer, and a third transparent electrode.
  • the display device may further include a third light emitting part, and a second adhesive part bonding and electrically connecting the second and third light emitting parts between the second n-type semiconductor layer and the third n-type semiconductor layer.
  • the second adhesive part may include at least one selected from the group consisting of Au, Al, Ti, Ni, Sn, In, Cr, and Be.
  • a thickness of the second adhesive part may be greater than a thickness of the second active layer.
  • the first mesa structure, the second mesa structure, and the third light emitting part may have the same size.
  • the first pad is electrically connected to the first transparent electrode
  • the second pad is electrically connected to the second transparent electrode
  • the third pad is electrically connected to the third transparent electrode
  • the The semiconductor device may further include a common pad electrically connected to the first to third n-type semiconductor layers.
  • the common pad may be disposed on the other surface of the first n-type semiconductor layer facing the one surface of the first n-type semiconductor layer.
  • the common pad may be disposed on the exposed first n-type semiconductor layer.
  • the common pad may be disposed on the exposed second n-type semiconductor layer.
  • the third active layer, the third p-type semiconductor layer, and the third transparent electrode are vertically stacked to form a third mesa structure, and the third mesa structure is A portion of the third n-type semiconductor layer is exposed on the third n-type semiconductor layer, and the common pad may be disposed on the exposed third n-type semiconductor layer.
  • the light emitting device may be spaced apart from the second light emitting part on the exposed first n-type semiconductor layer, and may include a third n-type semiconductor layer, a third active layer, a third p-type semiconductor layer, And a third light emitting part including a third transparent electrode.
  • the semiconductor device may further include a second adhesive part that bonds and electrically connects the first and third light emitting parts between the first n-type semiconductor layer and the third n-type semiconductor layer.
  • the second adhesive part may include at least one selected from the group consisting of Au, Al, Ti, Ni, Sn, In, Cr, and Be.
  • the first adhesive part may extend between the first n-type semiconductor layer and the third n-type semiconductor layer to bond and electrically connect the first and third light emitting parts.
  • the first mesa structure, the second light emitting part, and the third light emitting part may have the same size.
  • the light emitting device may further include a light blocking layer disposed between the second and third light emitting parts on the exposed first n-type semiconductor layer.
  • the first adhesive part may include at least one selected from the group consisting of Au, Al, Ti, Ni, Sn, In, Cr, and Be.
  • a thickness of the first adhesive part may be greater than a thickness of the first active layer.
  • the second adhesive part may be integrated with the first adhesive part.
  • the first light emitting layer, the second light emitting layer, and the third light emitting layer are vertically stacked, but the first active layer, the second active layer, and the third active layer do not overlap, and the first to the Since the size of each of the third active layers is substantially the same, the light generated from each of the first to third light emitting parts may not interfere with each other, and thus color reproduction may be excellent.
  • 1A is a plan view illustrating a light emitting device according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along line AA ′ of the light emitting device of FIG. 1A.
  • FIG. 1C is a perspective view for explaining a part of the light emitting device shown in FIG. 1A.
  • FIG. 1D is a cross-sectional view for describing modifications of the light emitting device illustrated in FIG. 1A.
  • FIGS. 2A to 2C are cross-sectional views illustrating a light emitting device according to an embodiment of the present invention.
  • 3A is a plan view illustrating a light emitting device according to still another embodiment of the present invention.
  • 3B is a cross-sectional view taken along line AA ′ of the light emitting device of FIG. 3A.
  • 4A to 16A are plan views illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • FIGS. 4A through 16B are cross-sectional views taken along the line AA ′ of the light emitting device of FIGS. 4A through 16A.
  • FIG. 1A is a plan view illustrating a light emitting device according to an embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along line AA ′ of the light emitting device of FIG. 1A
  • FIG. 1C is a view of the light emitting device shown in FIG. It is a perspective view for demonstrating a part
  • 1D is a cross-sectional view for describing modifications of the light emitting device illustrated in FIG. 1A.
  • the light emitting device includes a vertically stacked first light emitting part LE1, a first adhesive part AC1, a second light emitting part LE2, a second adhesive part AC2, and a third light emitting part. (LE3) may be included.
  • the first light emitting part LE1 may include a first n-type semiconductor layer 102, a first active layer 104, a first p-type semiconductor layer 106, and a first transparent electrode 108.
  • the second light emitting part LE2 may include a second n-type semiconductor layer 202, a second active layer 204, a second p-type semiconductor layer 206, and a second transparent electrode 208.
  • the third light emitting part LE3 may include a third n-type semiconductor layer 302, a third active layer 304, a third p-type semiconductor layer 306, and a third transparent electrode 308.
  • each of the first n-type semiconductor layer 102, the second n-type semiconductor layer 202, and the third n-type semiconductor layer 302 may be a Si-doped gallium nitride-based semiconductor layer.
  • Each of the first p-type semiconductor layer 106, the second p-type semiconductor layer 206, and the third p-type semiconductor layer 306 may be a gallium nitride based semiconductor layer doped with Mg.
  • Each of the first active layer 104, the second active layer 204, and the third active layer 304 may include a multi quantum well structure (MQW), and may have a composition ratio to emit light having a desired peak wavelength. Can be determined.
  • MQW multi quantum well structure
  • Each of the first transparent electrode 108, the second transparent electrode 208, and the third transparent electrode 308 includes tin oxide (SnO), indium oxide (InO 2), zinc oxide (ZnO), and indium tin oxide ( ITO), and transparent oxide layers such as indium tin oxide (ITZO) can be used.
  • the first light emitting part LE1, the second light emitting part LE2, and the third light emitting part LE3 may emit light having different wavelengths.
  • the stacking order of the first light emitting part LE1, the second light emitting part LE2, and the third light emitting part LE3 may be arbitrary and may be arbitrary. The description thereof will be described later in detail.
  • the first light emitting part LE1 a portion of the first n-type semiconductor layer 102 is exposed on the first n-type semiconductor layer 102, and the first active layer 104 and the first p-type semiconductor layer 106 are exposed. ), And the first mesa structure MS1 in which the first transparent electrode 108 is vertically stacked.
  • the first mesa structure MS1 extends in the first direction DR1, hereinafter, 'width' means a distance extending in the second direction DR2 perpendicular to the first direction DR1, and 'thickness'. Denotes a distance extending in the third direction DR3 perpendicular to each of the first and second directions DR1 and DR2.
  • the first light emitting part LE1 may include a first mesa region MSA1 in which the first mesa structure MS1 is disposed, and a first adhesion region ACA1 spaced a predetermined distance from the first mesa region MSA1. have.
  • the first mesa region MSA1 may have a first width WD1
  • the first adhesion region ACA1 may have a second width WD2 greater than the first width WD1.
  • the first mesa structure MS1 including the first active layer 104 may have a first thickness TH1.
  • One sidewall of the first mesa structure MS1 is substantially the same plane as the one sidewall of the first n-type semiconductor and may be vertical.
  • the other sidewall facing the sidewall of the first mesa structure MS1 may be disposed on the middle upper surface of the first n-type semiconductor layer 102 and may have an inclined structure.
  • the first active layer 104 may have a larger width than the first p-type semiconductor layer 106 and the first p-type semiconductor layer 106 than the first transparent electrode 108.
  • the first width WD1 of the first mesa structure MS1 refers to the width of the first active layer 104.
  • the first adhesive part AC1 may be disposed on the first adhesive region ACA1. Since the first adhesive region ACA1 has the second width WD2, the first adhesive part AC1 may also have the second width WD2. The first adhesive part AC1 may be disposed to be spaced apart from the first mesa structure MS1 by a predetermined distance.
  • the first adhesive part AC1 may electrically connect the first light emitting part LE1 and the second light emitting part LE2 to each other.
  • the first adhesive part AC1 is formed of a material having electrical conductivity and adhesive properties such as Al, Au, In, Sn, Ti, Ni, Ag, Cr, W, TiW, Mo, Cu, TiCu, AuSn, InSn, and the like. It may include at least one selected from.
  • the first adhesive part AC1 may include a first adhesive region ACA1 (that is, a surface facing the second light emitting part LE2) of the first n-type semiconductor layer 102 of the first light emitting part LE1, and The back surface of the second n-type semiconductor layer 202 of the second light emitting part LE2 (that is, the surface facing the first light emitting part LE1) may be electrically connected.
  • the first adhesive part AC1 may have a second thickness TH2, and the second thickness TH2 may be greater than or equal to the first thickness TH1.
  • the first thickness TH1 is the thickness of the first mesa structure MS1, and the first mesa structure MS1 includes the first active layer 104, and the first adhesive part AC1 is formed in the first mesa structure MS1.
  • the first adhesive part AC1 may be thicker than the first active layer 104.
  • the first active layer 104 faces one sidewall of the first adhesive part AC1 and the first adhesive part AC1 includes a metal, the first active layer 104 is not provided without additional installation of a color filter or light blocking film. The light generated from the light reflected by the first adhesive part AC1 may be prevented from entering the second active layer 204 or the third active layer 304.
  • the second light emitting part LE2 may be positioned on the first adhesive region ACA1 of the first light emitting part LE1 on which the first adhesive part AC1 is disposed. Since the first adhesive region ACA1 has the second width WD2, the entire width of the second light emitting part LE2 may have the second width WD2.
  • the second mesa structure MS2 in which the second transparent electrode 208 is vertically stacked.
  • the second mesa structure MS2 extends in the first direction DR1 and may be disposed to be parallel to the first mesa structure MS1 at a predetermined distance.
  • the second mesa structure MS2 does not overlap the first mesa structure MS1 in the third direction DR3
  • light is emitted in the third direction DR3 among the light generated from the first active layer 104.
  • the light does not affect the second active layer 204 of the second mesa structure MS2. Therefore, a color filter or a light blocking film is not required between the first light emitting part LE1 and the second light emitting part LE2 in the third direction DR3.
  • the first active layer 104 is included in the first mesa structure MS1, and is spaced apart from the second mesa structure MS2 in a second direction DR2 by a predetermined distance, and the first light emitting part LE1 and the second light emitting part LE1 are disposed.
  • the light emitting part LE2 may be disposed to be spaced apart in the third direction DR3 by the first adhesive part AC1. Therefore, the second active layer 204 is sufficiently spaced vertically and horizontally from the first active layer 104, so that light emitted from the second active layer 204 is hard to affect the first active layer 104.
  • the light emitting device may have a structure in which the second light emitting part LE2 is vertically stacked on the first light emitting part LE1 such that the first active layer 104 and the second active layer 204 overlap each other.
  • the wavelength of the light generated by the second light emitting part LE2 should be longer than the wavelength of the light generated by the first light emitting part LE1.
  • the stacking order of the first light emitting part LE1 and the second light emitting part LE2 is involved in the short and long wavelengths. I never do that. That is, the first light emitting portion LE1 having the long wavelength and the second light emitting portion LE2 having the short wavelength, the first light emitting portion LE1 having the short wavelength and the second light emitting portion LE2 having the long wavelength
  • the structure is irrelevant in the present invention.
  • the second light emitting part LE2 may include a second mesa region MSA2 in which the second mesa structure MS2 is located, and a second adhesion region ACA2 spaced apart from the second mesa region MSA2 by a predetermined distance. have.
  • the second mesa structure MS2 including the second active layer 204 may have a third thickness TH3.
  • the second mesa region MSA2 may have the same first width WD1 as the first mesa region MSA1, and the second adhesion region ACA2 may also have the first width WD1.
  • One sidewall of the second mesa structure MS2 may be substantially planar and perpendicular to one sidewall of the second n-type semiconductor layer 202.
  • the other sidewall facing the sidewall of the second mesa structure MS2 may have a middle upper surface of the second n-type semiconductor layer 202 and may have an inclined structure.
  • the second active layer 204 may have a larger width than the second p-type semiconductor layer 206 and the second p-type semiconductor layer 206 than the second transparent electrode 208.
  • the first width WD1 refers to the width of the second active layer 204.
  • the second adhesive part AC2 may be disposed on the second adhesive area ACA2. As the second adhesive region ACA2 has the first width WD1, the second adhesive part AC2 may also have the first width WD1. The second adhesive part AC2 may be disposed to be spaced apart from the second mesa structure MS2 by a predetermined distance.
  • the second adhesive part AC2 may adhere and electrically connect the second light emitting part LE2 and the third light emitting part LE3 to each other.
  • the second adhesive part AC2 may be formed of a material having electrical conductivity and adhesive properties such as Al, Au, In, Sn, Ti, Ni, Ag, Cr, W, TiW, Mo, Cu, TiCu, AuSn, InSn, or the like. It may include at least one selected from the group consisting of.
  • the second adhesive part AC2 may include a second adhesive region ACA2 (that is, a surface facing the third light emitting part LE3) and a third of the second n-type semiconductor layer 202 of the second light emitting part LE2.
  • the back surface of the third n-type semiconductor layer 302 of the light emitting part LE3 may be electrically connected to each other.
  • the first adhesive part AC1 electrically connects the first n-type semiconductor layer 102 of the first light emitting part LE1 and the second n-type semiconductor layer 202 of the second light emitting part LE2 to each other.
  • the second adhesive part AC2 may electrically connect the second n-type semiconductor layer 202 of the second light emitting part LE2 and the third n-type semiconductor layer 302 of the third light emitting part LE3 to each other.
  • the first n-type semiconductor layer 102, the second n-type semiconductor layer 202, and the third n-type semiconductor layer 302 are electrically connected to each other by the first adhesive part AC1 and the second adhesive part AC2. Can be connected.
  • the second adhesive part AC2 may have a fourth thickness TH4, and the fourth thickness TH4 may be greater than or equal to the third thickness TH3. Since the second active layer 204 faces one sidewall of the second adhesive part AC2 and the second adhesive part AC2 includes a metal, the second active layer 204 may be formed from the second active layer 204 without the addition of a color filter or a light blocking film. Light may be prevented from being reflected by the second adhesive part AC2 and incident on the third light emitting layer.
  • the third light emitting part LE3 has a structure in which the third n-type semiconductor layer 302, the third active layer 304, the third p-type semiconductor layer 306, and the third transparent electrode 308 are stacked in the same width. It can have That is, the third light emitting part LE3 does not have a mesa structure.
  • the light emitting area of the third light emitting part LE3 may be substantially the same as the entire area of the third light emitting part LE3.
  • the third light emitting part LE3 may extend in the first direction DR1 and may be disposed to be parallel to the second mesa structure MS2 and the first mesa structure MS1 at a predetermined distance.
  • the third light emitting part LE3 does not overlap with each of the second mesa structure MS2 including the second active layer 204 and the first mesa structure MS1 including the first active layer 104.
  • Light generated from the active layer 104 and light generated from the second active layer 204 do not affect the third active layer 304 of the third light emitting part LE3. Therefore, a color filter or a light blocking film is not required between the first light emitting part LE1, the second light emitting part LE2, and the third light emitting part LE3.
  • the second adhesive region ACA2 is disposed on the third active layer 304 and the second mesa region MSA2 disposed on the second adhesive region ACA2 by a distance spaced from the second mesa region MSA2.
  • the second active layer 204 is spaced apart in the second direction DR2, and the third active layer 304 is formed by the fourth thickness TH4 of the second adhesive part AC2 and the thickness of the third n-type semiconductor layer 302.
  • the second active layer 204 may be spaced apart from the third direction DR3.
  • the third active layer 304 is sufficiently spaced apart from the second active layer 204 in the vertical and horizontal directions so that light generated from the third active layer 304 is hard to affect the second active layer 204.
  • the second light emitting part LE2 and the third light emitting part LE3 are vertically stacked on the first light emitting part LE1 to form the first active layer 104, the second active layer 204, And the third active layer 304 may overlap.
  • the wavelength of the light generated by the first light emitting part LE1 is greater than the wavelength of the light generated by the second light emitting part LE2.
  • the wavelength of the light generated at is greater than the wavelength of the light generated at the third light emitting part LE3.
  • the first active layer 104, the second active layer 204, and the third active layer 304 By not overlapping, the stacking order of the first light emitting part LE1, the second light emitting part LE2, and the third light emitting part LE3 is performed by the first light emitting part LE1, the second light emitting part LE2, And a wavelength of each of the third light emitting units LE3.
  • the third light emitting part LE3 may be positioned on the second adhesive region ACA2 of the second light emitting part LE2 on which the second adhesive part AC2 is disposed. Since the second adhesive region ACA2 has the first width WD1, the entire width of the third light emitting part LE3 may have the first width WD1. As described above, the light emitting area of the first light emitting part LE1 has the first width WD1, the light emitting area of the second light emitting part LE2 also has the first width WD1, and the third light emitting part LE1 includes the first light emitting part LE1. The light emitting region of LE3 may also have a first width WD1.
  • the light emitting regions of the first light emitting part LE1, the second light emitting part LE2, and the third light emitting part LE3 have the same size, and thus, the first light emitting part LE1 and the second light emitting part.
  • the amount of light generated from each of the LE2 and the third light emitting portion LE3 is substantially the same, so that the color can be more reliable.
  • the light emitting device is electrically connected to the first pad P1 electrically connected to the first transparent electrode 108 of the first light emitting part LE1, and to the second transparent electrode 208 of the second light emitting part LE2.
  • the second pad P2, the third pad P3 electrically connected to the third transparent electrode 308 of the third light emitting part LE3, the first n-type semiconductor layer 102, and the second n.
  • the semiconductor device may further include a type semiconductor layer 202 and a common pad CP electrically connected to the third n-type semiconductor layer 302.
  • the light emitting device may have a light extraction direction in the direction of the third light emitting portion LE3.
  • each of the first pad P1, the second pad P2, and the third pad P3 has a minimum area.
  • the common pad CP may be disposed on the other surface of the first n-type semiconductor layer 102. As illustrated, the common pad CP may cover the entire first n-type semiconductor layer 102. Alternatively, the common pad CP may have a structure partially covering the first n-type semiconductor layer 102.
  • the third light emitting unit LE3 is stacked on the second light emitting unit LE2, and the second light emitting unit LE2 is stacked on the first light emitting unit LE1, thereby providing the first light emitting unit.
  • the surface level of each of the first and second light emitting parts LE1 and LE2 may be different. Therefore, in order to arrange the first pad P1, the second pad P2, and the third pad P3 at the same level, the first light emitting part LE1, the second light emitting part LE2, and the third light emission.
  • the passivation layer PAL may be further included to cover the portion LE3 and have a top surface substantially the same as a top surface of the third transparent electrode 308.
  • the passivation layer PAL may include SOG (Silicon On Glass), epoxy, polyimide, SU8, or benzocyclo butene (BCB) having high light transmittance and having flowable properties.
  • SOG Silicon On Glass
  • BBCB benzocyclo butene
  • Each of the first pad P1, the second pad P2, and the third pad P3 is disposed on the passivation layer PAL, and the first pad P1 is formed through the first via structure VS1. 1 is electrically connected to the transparent electrode 108, the second pad (P2) is electrically connected to the second transparent electrode 208 through the second via structure VS2, the third pad (P3) is a third It may be in direct electrical contact with the transparent electrode 308.
  • Each of the first via structure VS1 and the second via structure VS2 may have a narrower width toward the bottom and have an inclined sidewall.
  • Each of the first pad P1, the second pad P2, and the third pad P3 may include Au.
  • each of the first via structure VS1 and the second via structure VS2 is selected from the group consisting of Au, Al, Ni, Ti, Cr, Cu, W, TiW, Mo, Cu, TiCu, AuSn, InSn, and the like. It may include at least one.
  • FIGS. 2A to 2C are cross-sectional views illustrating a light emitting device according to an embodiment of the present invention.
  • the light emitting device includes a first light emitting part LE1, a first adhesive part AC1, a second light emitting part LE2, a second adhesive part AC2, which are sequentially disposed on a substrate, and
  • the third light emitting part LE3 may be included.
  • the substrate 100 is a substrate capable of growing a gallium nitride-based semiconductor layer, sapphire (Al2O3), silicon carbide (SiC), gallium nitride (GaN), indium gallium nitride (InGaN), aluminum gallium nitride (AlGaN), nitride It may include aluminum (AlN), gallium oxide (Ga 2 O 3), or silicon.
  • the substrate 100 may be a patterned sapphire substrate.
  • the first light emitting part LE1 is disposed on one surface of the substrate 100, and the first light emitting part LE1 is formed on the first n-type semiconductor layer 102 and the first n-type semiconductor layer 102.
  • a first mesa structure MS1 including a first active layer 104, a first p-type semiconductor layer 106, and a first transparent electrode 108 that are vertically stacked while exposing a portion of the 1 n-type semiconductor layer 102. ) May be included.
  • the second light emitting part LE2 exposes a portion of the second n-type semiconductor layer 202 on the second n-type semiconductor layer 202 and vertically stacks a second active layer ( 204, a second p-type semiconductor layer 206, and a second mesa structure MS2 including a second transparent electrode 208.
  • the third light emitting part LE3 may include a third n-type semiconductor layer 302, a third active layer 304, a third p-type semiconductor layer 306, and a third transparent electrode 308.
  • the third light emitting part LE3 does not have a mesa structure, and the third n-type semiconductor layer 302, the third active layer 304, the third p-type semiconductor layer 306, and the third Each of the three transparent electrodes 308 may have substantially the same width.
  • the third light emitting part LE3 exposes a portion of the third n-type semiconductor layer 302 on the third n-type semiconductor layer 302 and vertically stacks the third active layer 304 and the third p-type.
  • the third mesa structure MS3 including the semiconductor layer 306 and the third transparent electrode 308 may be included.
  • the light emitting device includes a first pad P1 electrically connected to the first transparent electrode 108, a second pad P2 electrically connected to the second transparent electrode 208, And a third pad P3 electrically connected to the third transparent electrode 308.
  • first n-type semiconductor layer 102 of the first light emitting part LE1 and the second n-type semiconductor layer 202 of the second light emitting part LE2 are electrically connected to each other by the first adhesive part AC1.
  • the second n-type semiconductor layer 202 of the second light emitting part LE2 and the third n-type semiconductor layer 302 of the third light emitting part LE3 may be electrically connected to each other by the second adhesive part AC2.
  • the apparatus may further include a common pad CP electrically connecting the first n-type semiconductor layer 102, the second n-type semiconductor layer 202, and the third n-type semiconductor layer 302.
  • the common pad CP may be in electrical contact with the first n-type semiconductor layer 102 on the first light emitting part LE1. Therefore, the common pad CP may be electrically connected to the second n-type semiconductor layer 202 and the third n-type semiconductor layer 302 through the first n-type semiconductor layer 102.
  • the first n-type semiconductor layer 102 of the first light emitting part LE1 may have the first n-type semiconductor layer 102 of the first light emitting part LE1 of FIG. 1A in order to arrange the common pad CP.
  • Other features are substantially the same as the features described in FIG. 1A except that the width is greater than the width of the detailed description.
  • the common pad CP may be in electrical contact with the second n-type semiconductor layer 202 on the second light emitting part LE2. Therefore, the common pad CP may be electrically connected to the first n-type semiconductor layer 102 and the third n-type semiconductor layer 302 through the second n-type semiconductor layer 202.
  • the second n-type semiconductor layer 202 of the second light emitting part LE2 is disposed in the second n-type semiconductor layer 202 of the second light emitting part LE2 of FIG. 1A in order to arrange the common pad CP.
  • Other features are substantially the same as the features described in FIG. 1A except that the width is greater than the width of the detailed description.
  • the common pad CP may be in electrical contact with the third n-type semiconductor layer 302 on the third light emitting part LE3. Therefore, the common pad CP may be in electrical contact with the first n-type semiconductor layer 102 and the second n-type semiconductor layer 202 through the third n-type semiconductor layer 302.
  • the third light emitting part LE3 may include the third n-type semiconductor layer 302 such that the common pad CP is disposed on the third n-type semiconductor layer 302 of the third light emitting part LE3.
  • Other features are substantially the same as the features described in FIG. 1A except for a structure including the third mesa structure MS3 exposing C), and thus the detailed description thereof may be omitted.
  • the first light emitting part LE1, the first adhesive part AC1, the second light emitting part LE2, the second adhesive part AC2, the third light emitting part LE3, the first pad P1, and the first light emitting part LE1 are formed.
  • Detailed descriptions of the second pad P2, the third pad P3, and the common pad CP are substantially the same as those described with reference to FIGS. 1A to 1D and will be omitted.
  • FIG. 3A is a plan view illustrating a light emitting device according to still another embodiment of the present invention
  • FIG. 3B is a cross-sectional view taken along line AA ′ of the light emitting device of FIG.
  • the light emitting device includes a first light emitting part LE1, a second light emitting part LE2, a third light emitting part LE3, an adhesive part, a first pad P1, and a second pad P2. ), And the third pad P3.
  • the first light emitting part LE1 exposes a portion of the first n-type semiconductor layer 102 on the first n-type semiconductor layer 102, and the first active layer 104,
  • the first p-type semiconductor layer 106 and the first transparent electrode 108 may include a first mesa structure MS1 sequentially stacked.
  • the first mesa structure MS1 may extend in the first direction DR1 and have a first width WD1 in the second direction DR2.
  • the second light emitting part LE2 may include a vertically stacked second n-type semiconductor layer 202, a second active layer 204, a second p-type semiconductor layer 206, and a second transparent electrode 208. have.
  • the second light emitting part LE2 does not have a mesa structure.
  • the second light emitting part LE2 may extend in the second direction DR2 and have a first width WD1 in the first direction DR1.
  • the third light emitting part LE3 may include a third n-type semiconductor layer 302, a third active layer 304, a third p-type semiconductor layer 306, and a third transparent electrode 308 stacked vertically. have.
  • the third light emitting part LE3 does not have a mesa structure.
  • the third light emitting part LE3 may extend in the second direction DR2 and have a first width WD1 in the first direction DR1.
  • the second light emitting part LE2 and the third light emitting part LE3 may be spaced apart from each other on the first light emitting part LE1.
  • the second light emitting part LE2 and the third light emitting part LE3 may be spaced apart from the first n-type semiconductor layer 102, and may be spaced apart from the first mesa structure MS1.
  • the second light emitting part LE2 and the third light emitting part LE3 may be bonded and electrically connected to each other by an adhesive part on the first n-type semiconductor layer 102 of the first light emitting part LE1.
  • the first n-type semiconductor layer 102 is in contact with and electrically connected to the second n-type semiconductor layer 202 of the second light emitting part LE2 by the adhesive part, and the third n-type semiconductor layer of the third light emitting part LE3 is connected.
  • 302 may be in contact and electrically connected.
  • the adhesive part may include a first pattern that bonds and electrically connects the second light emitting part LE2 and the first n-type semiconductor layer 102 of the first light emitting part LE1 to be spaced apart from the first pattern.
  • the third light emitting part LE3 and the first n-type semiconductor layer 102 may be bonded to each other and may include a second pattern electrically connected to each other.
  • the light blocking film BL may be further provided so that light does not enter the second light emitting part LE2.
  • a black matrix may be used as the light blocking film BL.
  • the first pad P1 is in electrical contact with the first transparent electrode 108 of the first light emitting part LE1
  • the second pad P2 is the second transparent electrode 208 of the second light emitting part LE2.
  • the third pad P3 may be in electrical contact with the third transparent electrode 308 of the third light emitting part LE3.
  • the common pad CP may be disposed on the bottom surface of the first n-type semiconductor layer 102 of the first light emitting part LE1.
  • the common pad CP may be disposed to completely cover the bottom surface of the first n-type semiconductor layer 102 of the first light emitting part LE1.
  • the common pad CP may be disposed to partially contact the first n-type semiconductor layer 102 of the first light emitting part LE1.
  • the common pad CP may be in electrical contact with the first n-type semiconductor layer 102 or may be in electrical contact with the second n-type semiconductor layer 202.
  • the third n-type semiconductor layer 302 may be in electrical contact.
  • the structure of the first light emitting part LE1, the second light emitting part LE2, and the third light emitting part LE3 may be changed as described with reference to FIGS. 2A to 2C.
  • FIGS. 4A to 16A are plan views illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention
  • FIGS. 4B to 16B are cross-sectional views taken along the line A-A 'of the light emitting device of FIGS. 4A to 16A. admit.
  • a plurality of first light emitting parts LE1 may be formed on the first substrate 100.
  • the first n-type semiconductor layer 102, the first active layer 104, the first p-type semiconductor layer 106, and the first transparent electrode 108 are sequentially disposed on the first substrate 100. It can be formed as.
  • the first transparent electrode 108, the first p-type semiconductor layer 106, and the first active layer 104 are etched to etch the first active layer 104, the first p-type semiconductor layer 106, and the first transparent electrode. 108 may form first light emitting parts LE1 including the first mesa structure MS1 stacked vertically.
  • the first light emitting part LE1 may include a first mesa region MSA1 in which the first mesa structure MS1 is disposed, and a first adhesive region ACA1 spaced a predetermined distance from the first mesa region MSA1. have.
  • the first mesa region MSA1 may have a first width WD1
  • the first adhesion region ACA1 may have a second width WD2 greater than the first width WD1.
  • the first insulating layer 110 may be formed on the first substrate 100 on which the first light emitting parts LE1 are formed.
  • the first insulating layer 110 may include SiO 2, SiN x, Al 2 O 3, or the like.
  • the first insulating layer 110 may be etched to form first openings OP1 exposing the first transparent electrodes 108 and second openings OP2 exposing the first adhesive regions ACA1. have.
  • a plurality of through holes may be formed in the first insulating layer 110 disposed on the first transparent electrodes 108 instead of forming the first opening OP1.
  • the plurality of through holes may be arranged uniformly.
  • the first pads P1 and the first contact patterns 114 may be formed on the first openings OP1 and the second openings OP2, respectively.
  • a first metal film (not shown) may be formed on the first light emitting parts LE1 having the first openings OP1 and the second openings OP2.
  • the first metal film may include at least one metal material such as Ni, Ag, Au, Pt, Ti, Al, Cr, W, TiW, Mo, Cu, TiCu, and the like.
  • the first metal layer may be patterned to form first pads P1 formed on the first openings OP1 and first contact patterns 114 formed on the second openings OP2, respectively. have.
  • Each of the first transparent electrodes 108 may receive a positive voltage through each of the first pads P1.
  • the first contact patterns 114 may be adhered to the second light emitting parts LE2 to electrically connect the first light emitting part LE1 and the second light emitting part LE2.
  • a plurality of second light emitting parts LE2 may be formed on the second substrate 200.
  • the second n-type semiconductor layer 202, the second active layer 204, the second p-type semiconductor layer 206, and the second transparent electrode 208 are sequentially disposed on the second substrate 200. It can be formed as.
  • the second transparent electrode 208, the second p-type semiconductor layer 206, and the second active layer 204 are etched to form a second active layer 204 and a second p-type on the second n-type semiconductor layer 202.
  • the second mesa structures MS2 in which the semiconductor layer 206 and the second transparent electrode 208 are vertically stacked may be formed.
  • the parts LE2 may be formed.
  • the second light emitting part LE2 may include a second mesa region MSA2 in which the second mesa structure MS2 is disposed, and a second adhesion region ACA2 spaced apart from the second mesa region MSA2 by a predetermined distance. have.
  • the second mesa region MSA2 may have a first width WD1 that is substantially the same as the first mesa region MSA1, and the second adhesion region ACA2 may also have a first width WD1.
  • each of the second light emitting units LE2 may be the first light emitting unit () of the first substrate 100. It may be formed on the second substrate 200 to correspond to the first adhesive region ACA1 of the LE1.
  • a second insulating layer 210 may be formed on the second substrate 200 on which the second light emitting parts LE2 are formed.
  • the second insulating layer 210 may include SiO 2, SiN x , Al 2 O 3, or the like.
  • the second insulating layer 210 may be etched to form third openings OP3 exposing the second transparent electrodes 208 and fourth openings OP4 exposing the second adhesive regions ACA2. Can be.
  • a plurality of through holes may be formed instead of forming the third openings OP3 in the second insulating layer 210 disposed on the second transparent electrodes 208.
  • the plurality of through holes may be arranged uniformly.
  • second pads P2 and second contact patterns 214 may be formed on the third openings OP3 and the fourth openings OP4, respectively.
  • a second metal film (not shown) may be formed on the second light emitting parts LE2 on which the third openings OP3 and the fourth openings OP4 are formed.
  • the second metal film may include at least one metal material of Ni, Ag, Au, Pt, Ti, Al, and Cr, W, TiW, Mo, Cu, and TiCu.
  • the second metal layer may be patterned to form second pads P2 on the third openings OP3 and second contact patterns 214 on the fourth openings OP4, respectively. have.
  • the second pads P2 may perform a function of applying a positive voltage to each of the second transparent electrodes 208.
  • the second contact patterns 214 may be adhered to the third light emitting units LE3, respectively, to electrically connect the second light emitting units LE2 and the third light emitting units LE3.
  • the first removable carrier 216 may be removed on the second light emitting parts LE2 on which the second pads P2 and the second contact patterns 214 are formed. I can attach it.
  • the first carrier 216 may include one of a blue tape, a thermal release tape, a UV tape, a photoresist, or a wax.
  • the second substrate 200 may be removed using a laser lift-off.
  • third contact patterns 218 and first adhesive patterns 220 may be sequentially formed on each of the second n-type semiconductor layers 202 from which the second substrate 200 is removed.
  • Each of the third contact patterns 218 may include Au.
  • Each of the first adhesive patterns 220 may include at least one selected from the group consisting of In, Sn, Ti, and Ni.
  • each of the second light emitting parts LE2 may be adhered to the first light emitting parts LE1.
  • each of the first light emitting units may be bonded to each of the first contact patterns 114 of the first light emitting units LE1 and the first adhesive patterns 220 formed on the second light emitting units LE2.
  • a first adhesive part AC1 including the first contact pattern 114, the first adhesive pattern 220, and the third contact pattern 218 may be formed between the LE1 and each of the second light emitting parts LE2. Can be.
  • the first adhesive part AC1 may be electrically connected to each other between the first light emitting parts LE1 and the second light emitting parts LE2.
  • the first carrier 216 may be removed.
  • a plurality of third light emitting parts LE3 may be formed on the third substrate 300.
  • the third n-type semiconductor layer 302, the third active layer 304, the third p-type semiconductor layer 306, and the third transparent electrode 308 are sequentially disposed on the third substrate 300. It can be formed as.
  • the third transparent electrode 308, the third p-type semiconductor layer 306, the third active layer 304, and the third n-type semiconductor layer 302 are etched to form the third n-type semiconductor layer 302,
  • the third light emitting parts LE3 may be formed by sequentially stacking the third active layer 304, the third p-type semiconductor layer 306, and the third transparent electrode 308.
  • Each of the third light emitting units LE3 may have a first width WD1.
  • each of the third light emitting parts LE3 may be the second substrate 200. May be formed on the third substrate 300 to correspond to the second adhesive region ACA2 of the second light emitting part LE2.
  • a third insulating layer 310 may be formed on the third substrate 300 on which the third light emitting parts LE3 are formed.
  • the third insulating layer 310 is SiO 2, SiN x , Al 2 O 3 And the like.
  • the third insulating layer 310 may be etched to form fifth openings OP5 exposing the third transparent electrodes 308.
  • a plurality of through holes may be formed instead of the fifth openings OP5 in the third insulating layer 310 disposed on the third transparent electrodes 308.
  • the plurality of through holes may be arranged uniformly.
  • third pads P3 may be formed on the fifth openings OP5.
  • the third pads P3 may include at least one metal material among Ni, Ag, Au, Pt, Ti, Al, Cr, W, TiW, Mo, Cu, and TiCu.
  • the third pads P3 may perform a function of applying a positive voltage to the third transparent electrode 308.
  • a removable second carrier 314 may be attached onto the third light emitting parts LE3 on which the third pads P3 are formed.
  • the second carrier 314 may comprise one of a blue tape, a heat release tape, a UV tape, a photoresist, or a wax. After attaching the second carrier 314, the third substrate 300 may be removed using a laser lift-off.
  • fourth contact patterns 316 and second adhesive patterns 318 may be sequentially formed on each of the third n-type semiconductor layers 302 from which the third substrate 300 is removed.
  • Each of the fourth contact patterns 316 may include at least one of Ni, Ag, Au, Pt, Ti, Al, Cr, W, TiW, Mo, Cu, and TiCu.
  • Each of the second adhesive patterns 318 may include at least one selected from the group consisting of In, Sn, Ti, and Ni.
  • each of the third light emitting units LE3 may be attached onto the second light emitting units LE2.
  • the second contact patterns 214 of the second light emitting parts LE2 and the second adhesive patterns 318 of the third light emitting parts LE3 are adhered to each other to form a second light emitting part (
  • the second adhesive part AC2 including the second contact pattern 214, the second adhesive pattern 318, and the fourth contact pattern 316 may be formed between the LE2 and the third light emitting part LE3.
  • the second adhesive part AC2 may be electrically connected to each other between the second light emitting parts LE2 and the third light emitting parts LE3.
  • the second carrier 314 may be removed.
  • the common pad CP may be formed on the bottom surface of the first n-type semiconductor layer 102.
  • the common pad CP may include at least one of Ni, Ag, Au, Pt, Ti, Al, Cr, W, TiW, Mo, Cu, TiCu, Sn, In, InSn, and AuSn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

발광 소자를 제공한다. 발광 소자는, 제1 n형 반도체층과, 제1 n형 반도체층의 일 면의 일부를 노출시키며 수직 적층된 제1 활성층, 제1 p형 반도체층 및 제1 투명 전극을 포함하는 제1 메사 구조물을 포함하는 제1 발광부와, 노출된 제1 n형 반도체층 상에 배치되며, 제2 n형 반도체층, 제2 활성층, 제2 p형 반도체층, 및 제2 투명 전극을 포함하는 제2 발광부, 및 제1 n형 반도체층 및 제2 n형 반도체층 사이를 접착하고 전기적으로 연결하는 제1 접착부를 포함한다.

Description

발광 소자
본 발명은 발광 소자에 관한 것으로, 보다 상세하게는 복수의 발광층들이 적층된 발광 소자에 관한 것이다.
발광 다이오드는 무기 광원으로서, 디스플레이 장치, 차량용 램프, 일반 조명과 같은 여러 분야에 다양하게 이용되고 있다. 발광 다이오드는 수명이 길고, 소비 전력이 낮으며, 응답속도가 빠른 장점이 있어 기존 광원을 빠르게 대체하고 있다.
특히, 디스플레이 장치는 일반적으로 청색, 녹색 및 적색의 혼합색을 이용하여 다양한 색상을 구현한다. 디스플레이 장치의 각 픽셀은 청색, 녹색 및 적색의 서브 픽셀을 구비하며, 이들 서브 픽셀들의 색상을 통해 특정 픽셀의 색상이 정해지고, 이들 픽셀들의 조합에 의해 이미지가 구현된다.
발광 다이오드는 디스플레이 장치에서 백라이트 광원으로 주로 사용되어 왔다. 그러나 최근 발광 다이오드를 이용하여 직접 이미지를 구현하는 차세대 디스플레이로서 마이크로 LED(micro LED)가 개발되고 있다.
본 발명이 해결하고자 하는 과제는 광재현성이 우수한 발광 소자를 제공하는데 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
해결하고자 하는 일 과제를 달성하기 위하여 본 발명의 실시예들에 따른 발광 소자는, 제1 n형 반도체층, 상기 제1 n형 반도체층의 일 면의 일부를 노출시키며 수직 적층된 제1 활성층, 제1 p형 반도체층 및 제1 투명 전극을 포함하는 제1 메사 구조물을 포함하는 제1 발광부, 상기 노출된 제1 n형 반도체층 상에서 상기 제1 메사 구조물과 이격되며, 제2 n형 반도체층, 제2 활성층, 제2 p형 반도체층, 및 제2 투명 전극을 포함하는 제2 발광부, 및 상기 제1 n형 반도체층 및 상기 제2 n형 반도체층 사이를 접착하고 전기적으로 연결하는 제1 접착부를 포함한다.
실시예들에 따르면, 상기 제2 발광부에서, 상기 제2 활성층, 상기 제2 p형 반도체층, 및 상기 제2 투명 전극이 수직 적층되어 제2 메사 구조물을 형성하고, 상기 제2 메사 구조물은 상기 제2 n형 반도체층 상에서 상기 제2 n형 반도체층의 일부를 노출시킬 수 있다.
실시예들에 따르면, 상기 발광 소자는 상기 노출된 제2 n형 반도체층 상에 배치되며, 제3 n형 반도체층, 제3 활성층, 제3 p형 반도체층 및 제3 투명 전극을 포함하는 제3 발광부, 및 상기 제2 n형 반도체층 및 상기 제3 n형 반도체층 사이에서, 상기 제2 및 제3 발광부들 사이를 접착하고 전기적으로 연결하는 제2 접착부를 더 포함할 수 있다.
실시예들에 따르면, 상기 제2 접착부는 Au, Al, Ti, Ni, Sn, In, Cr, 및 Be으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
실시예들에 따르면, 상기 제2 접착부의 두께는 상기 제2 활성층의 두께보다 클 수 있다.
실시예들에 따르면, 상기 제1 메사 구조물, 상기 제2 메사 구조물, 및 상기 제3 발광부는 서로 동일한 크기를 가질 수 있다.
실시예들에 따르면, 상기 제1 투명 전극과 전기적으로 연결되는 제1 패드, 상기 제2 투명 전극과 전기적으로 연결되는 제2 패드, 상기 제3 투명 전극과 전기적으로 연결되는 제3 패드, 및 상기 제1 내지 제3 n형 반도체층들과 전기적으로 연결되는 공통 패드를 더 포함할 수 있다.
실시예들에 따르면, 상기 공통 패드는 상기 제1 n형 반도체층의 일 면에 대향하는 타 면에 배치될 수 있다.
실시예들에 따르면, 상기 공통 패드는 상기 노출된 제1 n형 반도체층 상에 배치될 수 있다.
실시예들에 따르면, 상기 공통 패드는 상기 노출된 제2 n형 반도체층 상에 배치될 수 있다.
실시예들에 따르면, 상기 제3 발광부에서, 상기 제3 활성층, 상기 제3 p형 반도체층, 및 상기 제3 투명 전극이 수직 적층되어 제3 메사 구조물을 형성하고, 상기 제3 메사 구조물은 상기 제3 n형 반도체층 상에서 상기 제3 n형 반도체층의 일부를 노출시키며, 상기 공통 패드는 상기 노출된 제3 n형 반도체층 상에 배치될 수 있다.
실시예들에 따르면, 상기 발광 소자는, 상기 노출된 제1 n형 반도체층 상에서 상기 제2 발광부와 이격되어 배치되며, 제3 n형 반도체층, 제3 활성층, 제3 p형 반도체층, 및 제3 투명 전극을 포함하는 제3 발광부를 더 포함할 수 있다.
실시예들에 따르면, 상기 제1 n형 반도체층 및 상기 제3 n형 반도체층 사이에서, 상기 제1 및 제3 발광부들 사이를 접착하고 전기적으로 연결하는 제2 접착부를 더 포함할 수 있다.
실시예들에 따르면, 상기 제2 접착부는 Au, Al, Ti, Ni, Sn, In, Cr, 및 Be으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
실시예들에 따르면, 상기 제1 접착부는 상기 제1 n형 반도체층 및 상기 제3 n형 반도체층 사이로 연장되어, 상기 제1 및 제3 발광부들 사이를 접착하고 전기적으로 연결할 수 있다.
실시예들에 따르면, 상기 제1 메사 구조물, 상기 제2 발광부, 및 상기 제3 발광부는 서로 동일한 크기를 가질 수 있다.
실시예들에 따르면, 상기 발광 소자는 상기 노출된 제1 n형 반도체층 상에서 상기 제2 및 제3 발광부들 사이에 배치되는 광차단막을 더 포함할 수 있다.
실시예들에 따르면, 상기 제1 접착부는 Au, Al, Ti, Ni, Sn, In, Cr, 및 Be으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
실시예들에 따르면, 상기 제1 접착부의 두께는 상기 제1 활성층의 두께보다 클 수 있다.
실시예들에 따르면, 상기 제2 접착부는 상기 제1 접착부와 일체형일 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 따른 발광 소자에 따르면, 제1 발광층, 제2 발광층, 및 제3 발광층이 수직 적층되되, 제1 활성층, 제2 활성층, 및 제3 활성층이 오버랩되지 않으며, 제1 내지 제3 활성층들 각각의 크기가 실질적으로 동일하여, 제1 내지 제3 발광부들 각각으로부터 발생된 광이 서로 간섭되지 않아 색 재현성이 우수할 수 있다.
도 1a는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 평면도이다.
도 1b는 도 1a의 발광 소자를 A-A'으로 절단한 단면도이다.
도 1c는 도 1a에 도시된 발광 소자의 일부를 설명하기 위한 사시도이다.
도 1d는 도 1a에 도시된 발광 소자의 변형예들을 설명하기 위한 단면도이다.
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도들이다.
도 3a는 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이다.
도 3b는 도 3a의 발광 소자를 A-A'로 절단한 단면도이다.
도 4a 내지 도 16a는 본 발명의 일 실시예에 따른 발광 소자를 제조하는 방법을 설명하기 위한 평면도들이다.
도 4a 내지 도 16b는 도 4a 내지 도 16a의 발광 소자를 A-A'으로 절단한 단면도들이다.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예들을 설명한다. 그러나 본 발명은, 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 여러 가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다.
또한, 본 발명의 실시예들에서 사용되는 용어들은 다르게 정의되지 않는 한, 해당 기술 분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하, 도면들을 참조하여 본 발명의 실시예들에 따른 발광 소자에 대하여 상세하게 설명한다.
도 1a는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 평면도이고, 도 1b는 도 1a의 발광 소자를 A-A'으로 절단한 단면도이며, 도 1c는 도 1a에 도시된 발광 소자의 일부를 설명하기 위한 사시도이다. 또한, 도 1d는 도 1a에 도시된 발광 소자의 변형예들을 설명하기 위한 단면도들이다.
도 1a 내지 도 1d를 참조하면, 발광 소자는 수직 적층된 제1 발광부(LE1), 제1 접착부(AC1), 제2 발광부(LE2), 제2 접착부(AC2), 및 제3 발광부(LE3)를 포함할 수 있다.
제1 발광부(LE1)는 제1 n형 반도체층(102), 제1 활성층(104), 제1 p형 반도체층(106), 및 제1 투명 전극(108)을 포함할 수 있다. 제2 발광부(LE2)는 제2 n형 반도체층(202), 제2 활성층(204), 제2 p형 반도체층(206), 및 제2 투명 전극(208)을 포함할 수 있다. 제3 발광부(LE3)는 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 투명 전극(308)을 포함할 수 있다.
일 실시예에 따르면, 제1 n형 반도체층(102), 제2 n형 반도체층(202), 및 제3 n형 반도체층(302) 각각은 Si이 도핑된 질화갈륨계 반도체층일 수 있다. 제1 p형 반도체층(106), 제2 p형 반도체층(206), 및 제3 p형 반도체층(306) 각각은 Mg가 도핑된 질화갈륨계 반도체층일 수 있다. 제1 활성층(104), 제2 활성층(204), 및 제3 활성층(304) 각각은 다중양자우물구조(Multi Quantum Well: MQW)을 포함할 수 있고, 원하는 피크 파장의 광을 방출하도록 그 조성비가 결정될 수 있다. 제1 투명 전극(108), 제2 투명 전극(208), 및 제3 투명 전극(308) 각각은 산화주석(SnO), 산화인디움(InO2), 산화아연(ZnO), 산화인디움주석(ITO), 및 산화인디움주석아연(ITZO)과 같은 투명 산화물층이 사용될 수 있다.
일 실시예에 따르면, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)는 서로 다른 파장의 광을 발광시킬 수 있다. 또한, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3) 적층 순서는 정해지지 않고 임의적일 수 있다. 이에 대한 설명은 후속하여 상세하게 하기로 한다.
제1 발광부(LE1)에서, 제1 n형 반도체층(102) 상에 제1 n형 반도체층(102)의 일부를 노출시키며, 제1 활성층(104), 제1 p형 반도체층(106), 및 제1 투명 전극(108)이 수직 적층된 제1 메사 구조물(MS1)을 포함할 수 있다.
제1 메사 구조물(MS1)은 제1 방향(DR1)으로 연장하되, 이하, '폭'은 제1 방향(DR1)에 수직인 제2 방향(DR2)으로 연장하는 거리를 의미하고, '두께'는 제1 방향(DR1) 및 제2 방향(DR2) 각각에 대하여 수직인 제3 방향(DR3)으로 연장하는 거리를 의미한다.
제1 발광부(LE1)는 제1 메사 구조물(MS1)이 배치되는 제1 메사 영역(MSA1)과, 제1 메사 영역(MSA1)으로부터 소정 거리 이격된 제1 접착 영역(ACA1)을 포함할 수 있다. 제1 메사 영역(MSA1)은 제1 폭(WD1)을 가지며, 제1 접착 영역(ACA1)은 제1 폭(WD1)보다 큰 제2 폭(WD2)을 가질 수 있다. 또한, 제1 활성층(104)을 포함하는 제1 메사 구조물(MS1)은 제1 두께(TH1)를 가질 수 있다.
제1 메사 구조물(MS1)의 일 측벽은 제1 n형 반도체의 일 측벽과 실질적으로 동일한 평면이며, 수직일 수 있다. 제1 메사 구조물(MS1)의 일 측벽에 대향하는 타 측벽은 제1 n형 반도체층(102) 중간 상부면에 배치되며, 경사진 구조를 가질 수 있다. 이 경우, 제1 활성층(104)이 제1 p형 반도체층(106)보다, 제1 p형 반도체층(106)이 제1 투명 전극(108)보다 더 큰 폭을 가질 수 있다. 이때, 제1 메사 구조물(MS1)의 제1 폭(WD1)은 제1 활성층(104)의 폭을 의미한다.
제1 접착부(AC1)는 제1 접착 영역(ACA1) 상에 배치될 수 있다. 제1 접착 영역(ACA1)이 제2 폭(WD2)을 가짐으로써, 제1 접착부(AC1)도 제2 폭(WD2)을 가질 수 있다. 제1 접착부(AC1)는 제1 메사 구조물(MS1)과 소정 거리 이격되어 배치될 수 있다.
제1 접착부(AC1)는 제1 발광부(LE1) 및 제2 발광부(LE2)를 서로 접착시키며 전기적으로 연결시킬 수 있다. 제1 접착부(AC1)는 전기 전도성 및 접착 특성을 갖는 물질 예컨대, Al, Au, In, Sn, Ti, Ni, Ag, Cr, W, TiW, Mo, Cu, TiCu, AuSn, InSn 등으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. 제1 접착부(AC1)는 제1 발광부(LE1)의 제1 n형 반도체층(102)의 제1 접착 영역(ACA1) (즉, 제2 발광부(LE2)와 마주하는 면)과, 제2 발광부(LE2)의 제2 n형 반도체층(202)의 배면(즉, 제1 발광부(LE1)와 마주하는 면)을 전기적으로 연결시킬 수 있다.
일 실시예에 따르면, 제1 접착부(AC1)는 제2 두께(TH2)를 가지며, 제2 두께(TH2)는 제1 두께(TH1)보다 크거나 동일할 수 있다. 제1 두께(TH1)는 제1 메사 구조물(MS1)의 두께이며, 제1 메사 구조물(MS1)은 제1 활성층(104)을 포함하는데, 제1 접착부(AC1)가 제1 메사 구조물(MS1)보다 큰 두께를 가짐으로써, 제1 접착부(AC1)는 제1 활성층(104)보다 두꺼울 수 있다. 또한, 제1 활성층(104)이 제1 접착부(AC1)의 일 측벽에 마주하고 제1 접착부(AC1)가 금속을 포함하기 때문에, 컬러 필터 또는 광차단막 등의 추가 설치 없이 제1 활성층(104)으로부터 발생된 광이 제1 접착부(AC1)에 의해 반사되어 제2 활성층(204) 또는 제3 활성층(304)으로 입사되는 것을 방지할 수 있다.
제2 발광부(LE2)는 제1 접착부(AC1)가 배치된 제1 발광부(LE1)의 제1 접착 영역(ACA1) 상에 위치할 수 있다. 제1 접착 영역(ACA1)이 제2 폭(WD2)을 가짐으로써, 제2 발광부(LE2)의 전체 폭은 제2 폭(WD2)을 가질 수 있다.
제2 발광부(LE2)에서, 제2 n형 반도체층(202) 상에 제2 n형 반도체층(202)의 일부를 노출시키며, 제2 활성층(204), 제2 p형 반도체층(206), 및 제2 투명 전극(208)이 수직 적층된 제2 메사 구조물(MS2)을 포함할 수 있다. 제2 메사 구조물(MS2)은 제1 방향(DR1)으로 연장하며, 제1 메사 구조물(MS1)과 소정 거리 이격되어 나란하게 배치될 수 있다.
이와 같이, 제2 메사 구조물(MS2)이 제1 메사 구조물(MS1)과 제3 방향(DR3)으로 오버랩되지 않기 때문에, 제1 활성층(104)으로부터 발생된 광 중에서 제3 방향(DR3)으로 발광하는 광은 제2 메사 구조물(MS2)의 제2 활성층(204)에 영향을 미치지 않는다. 따라서, 제3 방향(DR3)으로 제1 발광부(LE1) 및 제2 발광부(LE2) 사이에는 컬러 필터 또는 광차단막 등이 필요하지 않는다. 또한, 제1 활성층(104)은 제1 메사 구조물(MS1)에 포함되어, 제2 메사 구조물(MS2)과 제2 방향(DR2)으로 소정거리 이격되며, 제1 발광부(LE1) 및 제2 발광부(LE2)는 제1 접착부(AC1)에 의해 제3 방향(DR3)으로 이격되어 배치될 수 있다. 따라서, 제2 활성층(204)은 제1 활성층(104)과 수직 및 수평적으로 충분히 이격되어, 제2 활성층(204)으로부터 발광된 광이 제1 활성층(104)으로 영향을 미치기 어렵다.
한편, 통상적으로 발광 소자는 제1 발광부(LE1) 상에 제2 발광부(LE2)가 수직 적층되어 제1 활성층(104)과 제2 활성층(204)이 오버랩되는 구조를 가질 수 있다. 이때, 제2 발광부(LE2) 방향이 광추출 방향인 경우 제2 발광부(LE2)에서 발생된 광의 파장이 제1 발광부(LE1)에서 발생된 광의 파장보다 길어야 한다. 본 실시예에 따르면, 제1 활성층(104) 및 제2 활성층(204)이 오버랩되지 않게 배치됨으로써, 제1 발광부(LE1) 및 제2 발광부(LE2)의 적층 순서는 파장의 장단에 관여하지 않는다. 즉, 긴 파장을 갖는 제1 발광부(LE1)와 짧은 파장을 갖는 제2 발광부(LE2) 구조이든, 짧은 파장을 갖는 제1 발광부(LE1)와 긴 파장을 갖는 제2 발광부(LE2) 구조이든 본 발명에서는 무관하다.
제2 발광부(LE2)는 제2 메사 구조물(MS2)이 위치하는 제2 메사 영역(MSA2)과, 제2 메사 영역(MSA2)으로부터 소정 거리 이격된 제2 접착 영역(ACA2)을 포함할 수 있다. 제2 활성층(204)을 포함하는 제2 메사 구조물(MS2)은 제3 두께(TH3)를 가질 수 있다. 또한, 제2 메사 영역(MSA2)은 제1 메사 영역(MSA1)과 동일한 제1 폭(WD1)을 가지며, 제2 접착 영역(ACA2)도 제1 폭(WD1)을 가질 수 있다.
제2 메사 구조물(MS2)의 일 측벽은 제2 n형 반도체층(202)의 일 측벽과 실질적으로 동일한 평면이고, 수직일 수 있다. 제2 메사 구조물(MS2)의 일 측벽에 대향하는 타 측벽은 제2 n형 반도체층(202) 중간 상부면이 배치되며, 경사진 구조를 가질 수 있다. 이 경우, 제2 활성층(204)이 제2 p형 반도체층(206)보다, 제2 p형 반도체층(206)이 제2 투명 전극(208)보다 더 큰 폭을 가질 수 있다. 이때, 제1 폭(WD1)은 제2 활성층(204)의 폭을 의미한다.
제2 접착부(AC2)는 제2 접착 영역(ACA2) 상에 배치될 수 있다. 제2 접착 영역(ACA2)이 제1 폭(WD1)을 가짐으로써, 제2 접착부(AC2)도 제1 폭(WD1)을 가질 수 있다. 제2 접착부(AC2)는 제2 메사 구조물(MS2)과 소정 거리 이격되어 배치될 수 있다.
제2 접착부(AC2)는 제2 발광부(LE2) 및 제3 발광부(LE3)를 서로 접착시키며 전기적으로 연결시킬 수 있다. 따라서, 제2 접착부(AC2)는 전기 전도성 및 접착 특성을 갖는 물질 예컨대, Al, Au, In, Sn, Ti, Ni, Ag, Cr, W, TiW, Mo, Cu, TiCu, AuSn, InSn 등으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. 제2 접착부(AC2)는 제2 발광부(LE2)의 제2 n형 반도체층(202)의 제2 접착 영역(ACA2)(즉, 제3 발광부(LE3)와 마주하는 면)과 제3 발광부(LE3)의 제3 n형 반도체층(302)의 배면(즉, 제2 발광부(LE2)와 마주하는 면)을 서로 전기적으로 연결시킬 수 있다. 이때, 제1 접착부(AC1)는 제1 발광부(LE1)의 제1 n형 반도체층(102)과 제2 발광부(LE2)의 제2 n형 반도체층(202)을 서로 전기적으로 연결하며, 제2 접착부(AC2)는 제2 발광부(LE2)의 제2 n형 반도체층(202)과 제3 발광부(LE3)의 제3 n형 반도체층(302)을 서로 전기적으로 연결시킬 수 있다. 따라서, 제1 접착부(AC1) 및 제2 접착부(AC2)에 의해 제1 n형 반도체층(102), 제2 n형 반도체층(202), 및 제3 n형 반도체층(302)은 서로 전기적으로 연결될 수 있다.
일 실시예에 따르면, 제2 접착부(AC2)는 제4 두께(TH4)를 가지며, 제4 두께(TH4)는 제3 두께(TH3)보다 크거나 동일할 수 있다. 제2 활성층(204)이 제2 접착부(AC2)의 일 측벽에 마주하고 제2 접착부(AC2)가 금속을 포함하기 때문에, 컬러 필터 또는 광차단막 등의 추가 없이 제2 활성층(204)으로부터 발생된 광이 제2 접착부(AC2)에 의해 반사되어 제3 발광층으로 입사되는 것을 방지할 수 있다.
제3 발광부(LE3)는 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 투명 전극(308)이 동일 폭으로 적층된 구조를 가질 수 있다. 즉, 제3 발광부(LE3)는 메사 구조를 갖지 않는다. 그리고, 제3 발광부(LE3)의 발광 영역은 제3 발광부(LE3)의 전체 영역과 실질적으로 동일할 수 있다.
제3 발광부(LE3)는 제1 방향(DR1)으로 연장하고, 제2 메사 구조물(MS2) 및 제1 메사 구조물(MS1)과 각각 소정 거리 이격되어 나란하게 배치될 수 있다. 제3 발광부(LE3)는 제2 활성층(204)을 포함하는 제2 메사 구조물(MS2) 및 제1 활성층(104)을 포함하는 제1 메사 구조물(MS1) 각각과 오버랩되지 않기 때문에, 제1 활성층(104)으로부터 발생된 광과 제2 활성층(204)으로부터 발생된 광이 제3 발광부(LE3)의 제3 활성층(304)에 영향을 미치지 않는다. 따라서, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3) 사이에 컬러 필터 또는 광차단막 등이 필요하지 않다. 또한, 제2 접착 영역(ACA2)이 제2 메사 영역(MSA2)과 이격된 거리만큼 제2 접착 영역(ACA2)에 상에 배치된 제3 활성층(304)과 제2 메사 영역(MSA2)에 배치된 제2 활성층(204)이 제2 방향(DR2)으로 이격되며, 제2 접착부(AC2)의 제4 두께(TH4)와 제3 n형 반도체층(302) 두께만큼 제3 활성층(304)은 제2 활성층(204)으로부터 제3 방향(DR3) 이격될 수 있다. 이처럼, 제3 활성층(304)이 제2 활성층(204)과 수직 및 수평 방향으로 충분히 이격되어 제3 활성층(304)으로부터 발생된 광이 제2 활성층(204)으로 영향을 주기 어렵다.
한편, 통상적인 발광 소자는, 제1 발광부(LE1) 상에 제2 발광부(LE2) 및 제3 발광부(LE3)가 수직 적층되어 제1 활성층(104), 제2 활성층(204), 및 제3 활성층(304)이 오버랩되는 구조를 가질 수 있다. 그리고, 제3 발광부(LE3) 방향이 광추출 방향인 경우 제1 발광부(LE1)에서 발생된 광의 파장이 제2 발광부(LE2)에서 발생된 광의 파장보다, 제2 발광부(LE2)에서 발생된 광의 파장이 제3 발광부(LE3)에서 발생된 광의 파장보다 길어야 하는데, 본 실시예에 따르면, 제1 활성층(104), 제2 활성층(204), 및 제3 활성층(304)이 오버랩되지 않게 배치됨으로써, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)의 적층 순서는 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3) 각각의 파장과는 무관할 수 있다.
제3 발광부(LE3)는 제2 접착부(AC2)가 배치된 제2 발광부(LE2)의 제2 접착 영역(ACA2) 상에 위치할 수 있다. 제2 접착 영역(ACA2)이 제1 폭(WD1)을 가짐으로써, 제3 발광부(LE3)의 전체 폭은 제1 폭(WD1)을 가질 수 있다. 전술한 바와 같이, 제1 발광부(LE1)의 발광 영역은 제1 폭(WD1)을 가지며, 제2 발광부(LE2)의 발광 영역도 제1 폭(WD1)을 가지며, 제3 발광부(LE3)의 발광 영역도 제1 폭(WD1)을 가질 수 있다. 이와 같이 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3) 각각의 발광 영역은 서로 동일한 크기를 가짐으로써, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3) 각각으로부터 발생되는 광의 양이 실질적으로 동일하여, 색을 발현하는데 있어서 더욱 신뢰성을 가질 수 있다.
발광 소자는 제1 발광부(LE1)의 제1 투명 전극(108)과 전기적으로 연결되는 제1 패드(P1)와, 제2 발광부(LE2)의 제2 투명 전극(208)과 전기적으로 연결되는 제2 패드(P2)와, 제3 발광부(LE3)의 제3 투명 전극(308)과 전기적으로 연결되는 제3 패드(P3)와, 제1 n형 반도체층(102), 제2 n형 반도체층(202), 및 제3 n형 반도체층(302)과 전기적으로 연결되는 공통 패드(CP)를 더 포함할 수 있다.
본 실시예에 따르면, 발광 소자는 제3 발광부(LE3) 방향이 광추출 방향일 수 있다. 광추출면으로부터 광이 최대로 발광하기 위하여, 제1 패드(P1), 제2 패드(P2), 및 제3 패드(P3) 각각이 최소한의 면적을 갖는 것이 바람직하다. 또한, 공통 패드(CP)는 제1 n형 반도체층(102)의 타 면에 배치될 수 있다. 도시된 바와 같이 공통 패드(CP)는 제1 n형 반도체층(102)을 전체적으로 덮을 수 있다. 이와는 다르게, 공통 패드(CP)는 제1 n형 반도체층(102)을 부분적으로 덮는 구조를 가질 수 있다.
도 1d에 도시된 바와 같이, 제3 발광부(LE3)가 제2 발광부(LE2) 상에, 제2 발광부(LE2)가 제1 발광부(LE1) 상에 적층됨으로써, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3) 각각의 표면 레벨이 상이할 수 있다. 따라서, 제1 패드(P1), 제2 패드(P2), 및 제3 패드(P3)를 동일 레벨에 배치하기 위하여 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)를 덮으며, 제3 투명 전극(308)의 상부면과 실질적으로 동일한 상부면을 갖는 패시베이션막(PAL)을 더 포함할 수 있다. 패시베이션막(PAL)은 높은 광 투과율을 가지며 유동적(flowable) 특성을 갖는 SOG(Silicon On Glass), 에폭시, 폴리이미드, SU8, 또는 BCB(benzo cyclo butene) 등을 포함할 수 있다. 제1 패드(P1), 제2 패드(P2), 및 제3 패드(P3) 각각은 패시베이션막(PAL) 상에 배치되며, 제1 패드(P1)는 제1 비아 구조물(VS1)을 통해 제1 투명 전극(108)과 전기적으로 연결되며, 제2 패드(P2)는 제2 비아 구조물(VS2)을 통해 제2 투명 전극(208)과 전기적으로 연결되며, 제3 패드(P3)는 제3 투명 전극(308)과 직접적으로 전기적으로 접촉할 수 있다. 제1 비아 구조물(VS1) 및 제2 비아 구조물(VS2) 각각은 아래로 갈수록 좁은 폭을 가지며 경사진 측벽을 가질 수 있다. 제1 패드(P1), 제2 패드(P2), 및 제3 패드(P3) 각각은 Au를 포함할 수 있다. 또한, 제1 비아 구조물(VS1) 및 제2 비아 구조물(VS2) 각각은 Au, Al, Ni, Ti, Cr, Cu, W, TiW, Mo, Cu, TiCu, AuSn, InSn 등으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도들이다.
도 2a 내지 도 2c를 참조하면, 발광 소자는 기판 상에 순차적으로 배치된 제1 발광부(LE1), 제1 접착부(AC1), 제2 발광부(LE2), 제2 접착부(AC2), 및 제3 발광부(LE3)를 포함할 수 있다.
기판(100)은 질화갈륨계 반도체층을 성장시킬 수 있는 기판으로, 사파이어(Al2O3), 실리콘 카바이드(SiC), 질화갈륨(GaN), 질화인듐갈륨(InGaN), 질화알루미늄갈륨(AlGaN), 질화알루미늄(AlN), 갈륨산화물(Ga2O3), 또는 실리콘을 포함할 수 있다. 또한, 기판(100)은 패터닝된 사파이어 기판일 수 있다.
기판(100)의 일 면 상에 제1 발광부(LE1)가 배치되는데, 제1 발광부(LE1)는 제1 n형 반도체층(102)과, 제1 n형 반도체층(102) 상에서 제1 n형 반도체층(102)의 일부를 노출시키며 수직 적층된 제1 활성층(104), 제1 p형 반도체층(106), 및 제1 투명 전극(108)을 포함하는 제1 메사 구조물(MS1)을 포함할 수 있다.
제2 발광부(LE2)는 제2 n형 반도체층(202)과, 제2 n형 반도체층(202) 상에서 제2 n형 반도체층(202)의 일부를 노출시키며 수직 적층된 제2 활성층(204), 제2 p형 반도체층(206), 및 제2 투명 전극(208)을 포함하는 제2 메사 구조물(MS2)을 포함할 수 있다.
제3 발광부(LE3)는 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 투명 전극(308)을 포함할 수 있다. 도 2a 및 도 2b에서, 제3 발광부(LE3)는 메사 구조를 갖지 않으며, 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 투명 전극(308) 각각이 실질적으로 동일한 폭을 가질 수 있다. 도 2c에서, 제3 발광부(LE3)는 제3 n형 반도체층(302) 상에서 제3 n형 반도체층(302)의 일부를 노출시키며 수직 적층된 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 투명 전극(308)을 포함하는 제3 메사 구조물(MS3)을 포함할 수 있다.
도 2a 내지 도 2c를 참조하면, 발광 소자는 제1 투명 전극(108)과 전기적으로 연결되는 제1 패드(P1), 제2 투명 전극(208)과 전기적으로 연결되는 제2 패드(P2), 및 제3 투명 전극(308)과 전기적으로 연결되는 제3 패드(P3)를 더 포함할 수 있다.
또한, 제1 발광부(LE1)의 제1 n형 반도체층(102)과 제2 발광부(LE2)의 제2 n형 반도체층(202)은 제1 접착부(AC1)에 의해 전기적으로 연결되고, 제2 발광부(LE2)의 제2 n형 반도체층(202)과 제3 발광부(LE3)의 제3 n형 반도체층(302)이 제2 접착부(AC2)에 의해 전기적으로 연결될 수 있다. 제1 n형 반도체층(102), 제2 n형 반도체층(202), 및 제3 n형 반도체층(302)을 전기적으로 연결하는 공통 패드(CP)를 더 포함할 수 있다
도 2a에서, 공통 패드(CP)는 제1 발광부(LE1) 상에서, 제1 n형 반도체층(102)과 전기적으로 접촉할 수 있다. 따라서 공통 패드(CP)는 제1 n형 반도체층(102)을 통해 제2 n형 반도체층(202) 및 제3 n형 반도체층(302)과 전기적으로 연결될 수 있다. 이 경우, 제1 발광부(LE1)의 제1 n형 반도체층(102)은 공통 패드(CP)를 배치하기 위하여 도 1a의 제1 발광부(LE1)의 제1 n형 반도체층(102)의 폭보다 더 크다는 점을 제외하고는 다른 특징들은 도 1a에서 설명된 특징들과 실질적으로 동일하여 상세한 설명을 생략할 수 있다.
도 2b에서, 공통 패드(CP)는 제2 발광부(LE2) 상에서, 제2 n형 반도체층(202)과 전기적으로 접촉할 수 있다. 따라서, 공통 패드(CP)는 제2 n형 반도체층(202)을 통해 제1 n형 반도체층(102) 및 제3 n형 반도체층(302)과 전기적으로 연결될 수 있다. 이 경우, 제2 발광부(LE2)의 제2 n형 반도체층(202)은 공통 패드(CP)를 배치하기 위하여 도 1a의 제2 발광부(LE2)의 제2 n형 반도체층(202)의 폭보다 더 크다는 점을 제외하고는 다른 특징들은 도 1a에서 설명된 특징들과 실질적으로 동일하여 상세한 설명을 생략할 수 있다.
도 2c에서 공통 패드(CP)는 제3 발광부(LE3) 상에서 제3 n형 반도체층(302)과 전기적으로 접촉할 수 있다. 따라서, 공통 패드(CP)는 제3 n형 반도체층(302)을 통해 제1 n형 반도체층(102)과 제2 n형 반도체층(202)과 전기적으로 접촉할 수 있다. 도 2c에 도시된 바와 같이 공통 패드(CP)가 제3 발광부(LE3)의 제3 n형 반도체층(302) 상에 배치되도록 제3 발광부(LE3)는 제3 n형 반도체층(302)을 노출시키는 제3 메사 구조물(MS3)을 포함하는 구조라는 것을 제외하고는 다른 특징들은 도 1a에서 설명된 특징들과 실질적으로 동일하여 상세한 설명을 생략할 수 있다.
본 실시예에서 제1 발광부(LE1), 제1 접착부(AC1), 제2 발광부(LE2), 제2 접착부(AC2), 제3 발광부(LE3), 제1 패드(P1), 제2 패드(P2), 제3 패드(P3), 및 공통 패드(CP)의 상세한 설명은 도 1a 내지 도 1d에서 설명된 것과 실질적으로 동일하여 생략하기로 한다.
도 3a는 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 평면도이고, 도 3b는 도 3a의 발광 소자를 A-A'으로 절단한 단면도이다.
도 3a 및 도 3b를 참조하면, 발광 소자는 제1 발광부(LE1), 제2 발광부(LE2), 제3 발광부(LE3), 접착부, 제1 패드(P1), 제2 패드(P2), 및 제3 패드(P3)를 포함할 수 있다.
제1 발광부(LE1)는 제1 n형 반도체층(102)과, 제1 n형 반도체층(102) 상에서 제1 n형 반도체층(102)의 일부를 노출시키며 제1 활성층(104), 제1 p형 반도체층(106), 및 제1 투명 전극(108)이 순차적으로 적층된 제1 메사 구조물(MS1)을 포함할 수 있다. 제1 메사 구조물(MS1)은 제1 방향(DR1)으로 연장하며, 제2 방향(DR2)으로 제1 폭(WD1)을 가질 수 있다.
제2 발광부(LE2)는 수직 적층된 제2 n형 반도체층(202), 제2 활성층(204), 제2 p형 반도체층(206), 및 제2 투명 전극(208)을 포함할 수 있다. 제2 발광부(LE2)는 메사 구조를 갖지 않는다. 제2 발광부(LE2)는 제2 방향(DR2)으로 연장하며 제1 방향(DR1)으로 제1 폭(WD1)을 가질 수 있다.
제3 발광부(LE3)는 수직 적층된 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 투명 전극(308)을 포함할 수 있다. 제3 발광부(LE3)는 메사 구조를 갖지 않는다. 제3 발광부(LE3)는 제2 방향(DR2)으로 연장하며 제1 방향(DR1)으로 제1 폭(WD1)을 가질 수 있다.
제1 발광부(LE1) 상에 제2 발광부(LE2) 및 제3 발광부(LE3)가 서로 이격되어 배치되는 구조를 가질 수 있다. 특히, 제2 발광부(LE2) 및 제3 발광부(LE3)는 제1 n형 반도체층(102) 상에서 이격되어 배치되며, 제1 메사 구조물(MS1)과도 이격되어 배치될 수 있다.
일 예로, 제2 발광부(LE2) 및 제3 발광부(LE3)는 제1 발광부(LE1)의 제1 n형 반도체층(102) 상에서 접착부에 의해 접착되고 전기적으로 연결될 수 있다. 제1 n형 반도체층(102)이 접착부에 의해 제2 발광부(LE2)의 제2 n형 반도체층(202)이 접하고 전기적으로 연결되며 제3 발광부(LE3)의 제3 n형 반도체층(302)이 접하고 전기적으로 연결될 수 있다.
다른 예로, 접착부는 제2 발광부(LE2)와 제1 발광부(LE1)의 제1 n형 반도체층(102) 사이를 접착시키며 전기적으로 연결시키는 제1 패턴과, 제1 패턴으로부터 이격되어 제3 발광부(LE3)와 제1 n형 반도체층(102) 사이를 각각 접착시키며 전기적으로 연결시키는 제2 패턴을 포함할 수 있다.
제2 발광부(LE2) 및 제3 발광부(LE3) 사이에는 제2 활성층(204)으로부터 발생된 광이 제3 발광부(LE3)로 입사되지 않도록, 또는 제3 활성층(304)으로부터 발생된 광이 제2 발광부(LE2)로 입사되지 않도록, 광차단막(BL)을 더 제공할 수 있다. 광차단막(BL)으로는 예컨대, 블랙 매트릭스(black matrix)가 사용될 수 있다.
제1 패드(P1)는 제1 발광부(LE1)의 제1 투명 전극(108)과 전기적으로 접촉하며, 제2 패드(P2)는 제2 발광부(LE2)의 제2 투명 전극(208)과 전기적으로 접촉하며, 제3 패드(P3)는 제3 발광부(LE3)의 제3 투명 전극(308)과 전기적으로 접촉할 수 있다. 공통 패드(CP)는 제1 발광부(LE1)의 제1 n형 반도체층(102) 저면에 배치될 수 있다. 일 예로, 공통 패드(CP)는 제1 발광부(LE1)의 제1 n형 반도체층(102) 저면을 완전하게 덮도록 배치될 수 있다. 다른 예로, 공통 패드(CP)는 제1 발광부(LE1)의 제1 n형 반도체층(102)과 부분적으로 접촉하도록 배치될 수 있다. 또한, 도 2a 내지 도 2c에 도시된 바와 같이, 공통 패드(CP)는 제1 n형 반도체층(102)과 전기적으로 접촉할 수도 있고, 제2 n형 반도체층(202)과 전기적으로 접촉할 수도 있으며, 제3 n형 반도체층(302)과 전기적으로 접촉할 수도 있다. 각 경우, 제1 발광부(LE1), 제2 발광부(LE2), 및 제3 발광부(LE3)는 도 2a 내지 도 2c에서 설명된 바와 같이 그 구조가 변경될 수 있다.
이하, 도 1a 내지 도 1c에서 설명된 발광 소자를 제조하는 방법을 예시적으로 설명하기로 한다.
도 4a 내지 도 16a는 본 발명의 일 실시예에 따른 발광 소자를 제조하는 방법을 설명하기 위한 평면도들이며, 도 4b 내지 도 16b는 도 4a 내지 도 16a의 발광 소자를 A-A'으로 절단한 단면도들이다.
도 4a 및 도 4b를 참조하면, 제1 기판(100) 상에 복수의 제1 발광부(LE1)들을 형성할 수 있다.
상세하게 설명하면, 제1 기판(100) 상에 제1 n형 반도체층(102), 제1 활성층(104), 제1 p형 반도체층(106), 및 제1 투명 전극(108)을 순차적으로 형성할 수 있다. 제1 투명 전극(108), 제1 p형 반도체층(106), 및 제1 활성층(104)을 식각하여 제1 활성층(104), 제1 p형 반도체층(106), 및 제1 투명 전극(108)이 수직 적층된 제1 메사 구조물(MS1)을 각각 포함하는 제1 발광부(LE1)들을 형성할 수 있다.
제1 발광부(LE1)는 제1 메사 구조물(MS1)이 배치되는 제1 메사 영역(MSA1)과, 제1 메사 영역(MSA1)으로부터 소정거리 이격된 제1 접착 영역(ACA1)을 포함할 수 있다. 제1 메사 영역(MSA1)은 제1 폭(WD1)을 가지며, 제1 접착 영역(ACA1)은 제1 폭(WD1)보다 큰 제2 폭(WD2)을 가질 수 있다.
도 5a 및 도 5b를 참조하면, 제1 발광부(LE1)들이 형성된 제1 기판(100) 상에 제1 절연막(110)을 형성할 수 있다. 제1 절연막(110)은 SiO2, SiNx, Al2O3 등을를 포함할 수 있다. 제1 절연막(110)을 식각하여, 제1 투명 전극(108)들을 노출시키는 제1 개구들(OP1)과, 제1 접착 영역(ACA1)들을 노출시키는 제2 개구들(OP2)을 형성할 수 있다.
선택적으로, 제1 투명 전극(108)들 상에 배치된 제1 절연막(110)에 제1 개구(OP1)를 형성하는 대신 다수의 관통 홀들(도시되지 않음)을 형성할 수 있다. 다수의 관통 홀들은 균일하게 배열될 수 있다.
도 6a 및 도 6b를 참조하면, 제1 개구들(OP1) 및 제2 개구들(OP2)상에 제1 패드(P1)들 및 제1 콘택 패턴들(114)을 각각 형성할 수 있다.
상세하게 설명하면, 제1 개구들(OP1) 및 제2 개구들(OP2)이 형성된 제1 발광부(LE1)들 상에 제1 금속막(도시되지 않음)을 형성할 수 있다. 제1 금속막은 Ni, Ag, Au, Pt, Ti, Al, Cr, W, TiW, Mo, Cu, TiCu 등 적어도 하나의 금속물질을 포함할 수 있다. 제1 금속막을 패터닝하여 제1 개구들(OP1) 상에 형성되는 제1 패드(P1)들과, 제2 개구들(OP2) 상에 형성되는 제1 콘택 패턴들(114)을 각각 형성할 수 있다. 제1 투명 전극(108)들 각각은 제1 패드(P1)들 각각을 통해 양의 전압을 인가 받을 수 있다. 제1 콘택 패턴들(114)은 제2 발광부(LE2)들과 각각 접착되어 제1 발광부(LE1) 및 제2 발광부(LE2)를 전기적으로 연결시키는 기능을 수행할 수 있다.
도 7a 및 도 7b를 참조하면, 제2 기판(200) 상에 복수의 제2 발광부(LE2)들을 형성할 수 있다.
상세하게 설명하면, 제2 기판(200) 상에 제2 n형 반도체층(202), 제2 활성층(204), 제2 p형 반도체층(206), 및 제2 투명 전극(208)을 순차적으로 형성할 수 있다. 제2 투명 전극(208), 제2 p형 반도체층(206), 및 제2 활성층(204)을 식각하여 제2 n형 반도체층(202) 상에 제2 활성층(204), 제2 p형 반도체층(206), 및 제2 투명 전극(208)이 수직 적층된 제2 메사 구조물들(MS2)을 형성할 수 있다.
제2 n형 반도체층(202)을 식각하여, 제2 n형 반도체층(202)과 제2 n형 반도체층(202)의 일부를 노출시키는 제2 메사 구조물(MS2)을 포함하는 제2 발광부들(LE2)을 형성할 수 있다. 제2 발광부(LE2)는 제2 메사 구조물(MS2)이 배치되는 제2 메사 영역(MSA2)과, 제2 메사 영역(MSA2)으로부터 소정거리 이격된 제2 접착 영역(ACA2)을 포함할 수 있다. 제2 메사 영역(MSA2)은 제1 메사 영역(MSA1)과 실질적으로 동일한 제1 폭(WD1)을 가지며, 제2 접착 영역(ACA2)도 제1 폭(WD1)을 가질 수 있다.
일 실시예에 따르면, 제2 기판(200)이 제1 기판(100)과 그 구조 및 크기가 동일하면, 제2 발광부(LE2)들 각각은 제1 기판(100)의 제1 발광부(LE1)의 제1 접착 영역(ACA1)에 대응되도록 제2 기판(200) 상에 형성될 수 있다.
도 8a 및 도 8b를 참조하면, 제2 발광부(LE2)들이 형성된 제2 기판(200) 상에 제2 절연막(210)을 형성할 수 있다. 제2 절연막(210)은 SiO2, SiNx, Al2O3등을 포함할 수 있다. 제2 절연막(210)을 식각하여, 제2 투명 전극(208)들을 노출시키는 제3 개구들(OP3)과, 제2 접착 영역들(ACA2)을 노출시키는 제4 개구들(OP4)을 형성할 수 있다.
선택적으로, 제2 투명 전극들(208) 상에 배치된 제2 절연막(210)에 제3 개구들(OP3)을 형성하는 대신 다수의 관통 홀들(도시되지 않음)을 형성할 수 있다. 다수의 관통 홀들은 균일하게 배열될 수 있다.
도 9a 및 도 9b를 참조하면, 제3 개구들(OP3) 및 제4 개구들(OP4) 상에, 제2 패드(P2)들 및 제2 콘택 패턴들(214)을 각각 형성할 수 있다.
상세하게 설명하면, 제3 개구들(OP3) 및 제4 개구들(OP4)이 형성된 제2 발광부(LE2)들 상에 제2 금속막(도시되지 않음)을 형성할 수 있다. 제2 금속막은 Ni, Ag, Au, Pt, Ti, Al, and Cr, W, TiW, Mo, Cu, TiCu 중 적어도 하나의 금속물질을 포함할 수 있다. 제2 금속막을 패터닝하여, 제3 개구들(OP3) 상에 위치하는 제2 패드(P2)들 및 제4 개구들(OP4) 상에 위치하는 제2 콘택 패턴들(214)을 각각 형성할 수 있다. 제2 패드들(P2)은 제2 투명 전극들(208) 각각으로 양의 전압을 인가하는 기능을 수행할 수 있다. 제2 콘택 패턴들(214)은 제3 발광부(LE3)들과 각각 접착되어 제2 발광부(LE2) 및 제3 발광부(LE3)를 전기적으로 연결시키는 기능을 수행할 수 있다.
도 10a 및 도 10b를 참조하면, 제2 패드(P2)들 및 제2 콘택 패턴들(214)이 형성된 제2 발광부(LE2)들 상에 제거가능한 제1 케리어(first removable carrier, 216)를 부착할 수 있다. 예컨대, 제1 케리어(216)는 블루 테이프(blue tape), 열 박리 테이프(thermal release tape), UV 테이프, 포토레지스, 또는 왁스(wax) 중 하나를 포함할 수 있다. 제1 케리어(216)를 부착한 후, 제2 기판(200)을 레이저 리프트 오프(laser lift-off)를 이용하여 제거할 수 있다.
이어서, 제2 기판(200)이 제거된 제2 n형 반도체층(202)들 각각에 제3 콘택 패턴들(218) 및 제1 접착 패턴들(220)을 순차적으로 형성할 수 있다. 제3 콘택 패턴들(218) 각각은 Au를 포함할 수 있다. 제1 접착 패턴들(220) 각각은 In, Sn, Ti, 및 Ni으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
도 11a 및 도 11b를 참조하면, 제1 발광부들(LE1) 상에 제2 발광부들(LE2) 각각을 접착시킬 수 있다.
더욱 상세하게 설명하면, 제1 발광부들(LE1)의 제1 콘택 패턴들(114)과 제2 발광부들(LE2)에 형성된 제1 접착 패턴들(220) 각각을 접착시켜, 각 제1 발광부(LE1) 및 각 제2 발광부(LE2) 사이에 제1 콘택 패턴(114), 제1 접착 패턴(220), 및 제3 콘택 패턴(218)을 포함하는 제1 접착부(AC1)를 형성할 수 있다. 이로써, 제1 접착부(AC1)는 제1 발광부들(LE1) 및 제2 발광부들(LE2) 사이를 각각 접착시키며 전기적으로 연결시킬 수 있다.
제1 발광부들(LE1) 및 제2 발광부들(LE2)을 전기적으로 접착시킨 후, 제1 케리어(216)를 제거할 수 있다.
도 12a 및 도 12b를 참조하면, 제3 기판(300) 상에 복수의 제3 발광부들(LE3)을 형성할 수 있다.
상세하게 설명하면, 제3 기판(300) 상에 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 투명 전극(308)을 순차적으로 형성할 수 있다. 제3 투명 전극(308), 제3 p형 반도체층(306), 제3 활성층(304), 및 제3 n형 반도체층(302)을 식각하여, 제3 n형 반도체층(302), 제3 활성층(304), 제3 p형 반도체층(306), 및 제3 투명 전극(308)이 순차적으로 적층된 제3 발광부들(LE3)을 형성할 수 있다. 제3 발광부들(LE3) 각각은 제1 폭(WD1)을 가질 수 있다.
일 실시예에 따르면, 제3 기판(300)이 제1 기판(100) 및 제2 기판(200) 각각과 그 구조 및 크기가 동일하면, 제3 발광부들(LE3) 각각은 제2 기판(200)의 제2 발광부(LE2)의 제2 접착 영역(ACA2)에 대응되도록 제3 기판(300) 상에 형성될 수 있다.
도 13a 및 도 13b를 참조하면, 제3 발광부들(LE3)이 형성된 제3 기판(300) 상에 제3 절연막(310)을 형성할 수 있다. 제3 절연막(310)은 SiO2, SiNx, Al2O3 등을 포함할 수 있다. 제3 절연막(310)을 식각하여, 제3 투명 전극들(308)을 노출시키는 제5 개구들(OP5)을 형성할 수 있다.
선택적으로, 제3 투명 전극들(308) 상에 배치되는 제3 절연막(310)에 제5 개구들(OP5)을 형성하는 대신 다수의 관통 홀들(도시되지 않음)을 형성할 수 있다. 다수의 관통 홀들은 균일하게 배열될 수 있다.
도 14a 및 도 14b를 참조하면, 제5 개구들(OP5)상에 제3 패드들(P3)을 형성할 수 있다. 제3 패드들(P3)은 Ni, Ag, Au, Pt, Ti, Al, Cr, W, TiW, Mo, Cu, TiCu 중에 적어도 하나의 금속물질을 를 포함할 수 있다. 제3 패드들(P3)은 제3 투명 전극(308)으로 양의 전압을 인가하는 기능을 수행할 수 있다.
도 15a 및 도 15b를 참조하면, 제3 패드들(P3)이 형성된 제3 발광부들(LE3) 상에 제거가능한 제2 케리어(314)를 부착할 수 있다. 예컨대, 제2 케리어(314)는 블루 테이프, 열 박리 테이프, UV 테이프, 포토레지스트, 또는 왁스 중 하나를 포함할 수 있다. 제2 케리어(314)를 부착한 후, 제3 기판(300)을 레이저 리프트 오프를 이용하여 제거할 수 있다.
이어서, 제3 기판(300)이 제거된 제3 n형 반도체층(302) 각각에 제4 콘택 패턴들(316) 및 제2 접착 패턴들(318)을 순차적으로 형성할 수 있다. 제4 콘택 패턴들(316) 각각은 Ni, Ag, Au, Pt, Ti, Al, Cr, W, TiW, Mo, Cu, TiCu 중 적어도 하나를 포함할 수 있다. 제2 접착 패턴들(318) 각각은 In, Sn, Ti, 및 Ni으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
도 16a 및 도 16b를 참조하면, 제2 발광부들(LE2) 상에 제3 발광부들(LE3) 각각을 접착시킬 수 있다.
더욱 상세하게 설명하면, 제2 발광부들(LE2)의 제2 콘택 패턴들(214)과 제3 발광부(LE3)들의 제2 접착 패턴들(318) 각각을 접착시켜, 각 제2 발광부(LE2) 및 각 제3 발광부(LE3) 사이에 제2 콘택 패턴(214), 제2 접착 패턴(318), 및 제4 콘택 패턴(316)을 포함하는 제2 접착부(AC2)를 형성할 수 있다. 제2 접착부(AC2)는 제2 발광부들(LE2) 및 제3 발광부들(LE3) 사이를 각각 접착시키면서 전기적으로 연결시킬 수 있다.
제2 발광부들(LE2) 및 제3 발광부들(LE3)을 전기적으로 접착시킨 후, 제2 케리어(314)를 제거할 수 있다.
도 1a를 다시 참조하면, 제1 기판(100)을 레이저 리프트 오프 공정을 제거한 후, 제1 n형 반도체층(102)의 저면에 공통 패드(CP)를 형성할 수 있다. 공통 패드(CP)는 Ni, Ag, Au, Pt, Ti, Al, Cr, W, TiW, Mo, Cu, TiCu, Sn, In, InSn, AuSn 중 적어도 하나 포함할 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (16)

  1. 제1 n형 반도체층, 상기 제1 n형 반도체층의 일 면의 일부를 노출시키며 수직 적층된 제1 활성층, 제1 p형 반도체층 및 제1 투명 전극을 포함하는 제1 메사 구조물을 포함하는 제1 발광부;
    상기 노출된 제1 n형 반도체층 상에서 상기 제1 메사 구조물과 이격되며, 제2 n형 반도체층, 제2 활성층, 제2 p형 반도체층, 및 제2 투명 전극을 포함하는 제2 발광부; 및
    상기 제1 n형 반도체층 및 상기 제2 n형 반도체층 사이를 접착하고 전기적으로 연결하는 제1 접착부를 포함하는 발광 소자.
  2. 제1항에 있어서,
    상기 제2 발광부에서, 상기 제2 활성층, 상기 제2 p형 반도체층, 및 상기 제2 투명 전극이 수직 적층되어 제2 메사 구조물을 형성하고, 상기 제2 메사 구조물은 상기 제2 n형 반도체층 상에서 상기 제2 n형 반도체층의 일부를 노출시키는 발광 소자.
  3. 제2항에 있어서,
    상기 노출된 제2 n형 반도체층 상에 배치되며, 제3 n형 반도체층, 제3 활성층, 제3 p형 반도체층 및 제3 투명 전극을 포함하는 제3 발광부; 및
    상기 제2 n형 반도체층 및 상기 제3 n형 반도체층 사이에서, 상기 제2 및 제3 발광부들 사이를 접착하고 전기적으로 연결하는 제2 접착부를 더 포함하는 발광 소자.
  4. 제3항에 있어서,
    상기 제2 접착부의 두께는 상기 제2 활성층의 두께보다 큰 발광 소자.
  5. 제3항에 있어서,
    상기 제1 메사 구조물, 상기 제2 메사 구조물, 및 상기 제3 발광부는 서로 동일한 크기를 갖는 발광 소자.
  6. 제3항에 있어서,
    상기 제1 투명 전극과 전기적으로 연결되는 제1 패드;
    상기 제2 투명 전극과 전기적으로 연결되는 제2 패드;
    상기 제3 투명 전극과 전기적으로 연결되는 제3 패드; 및
    상기 제1 내지 제3 n형 반도체층들과 전기적으로 연결되는 공통 패드를 더 포함하는 발광 소자.
  7. 제6항에 있어서,
    상기 공통 패드는 상기 제1 n형 반도체층의 일 면에 대향하는 타 면에 배치되는 발광 소자.
  8. 제6항에 있어서,
    상기 공통 패드는 상기 노출된 제1 n형 반도체층 상에 배치되는 발광 소자.
  9. 제6항에 있어서,
    상기 공통 패드는 상기 노출된 제2 n형 반도체층 상에 배치되는 발광 소자.
  10. 제6항에 있어서,
    상기 제3 발광부에서, 상기 제3 활성층, 상기 제3 p형 반도체층, 및 상기 제3 투명 전극이 수직 적층되어 제3 메사 구조물을 형성하고, 상기 제3 메사 구조물은 상기 제3 n형 반도체층 상에서 상기 제3 n형 반도체층의 일부를 노출시키며,
    상기 공통 패드는 상기 노출된 제3 n형 반도체층 상에 배치되는 발광 소자.
  11. 제1항에 있어서,
    상기 노출된 제1 n형 반도체층 상에서 상기 제2 발광부와 이격되어 배치되며, 제3 n형 반도체층, 제3 활성층, 제3 p형 반도체층, 및 제3 투명 전극을 포함하는 제3 발광부를 더 포함하는 발광 소자.
  12. 제11항에 있어서,
    상기 제1 n형 반도체층 및 상기 제3 n형 반도체층 사이에서, 상기 제1 및 제3 발광부들 사이를 접착하고 전기적으로 연결하는 제2 접착부를 더 포함하는 발광 소자.
  13. 제11항에 있어서,
    상기 제1 접착부는 상기 제1 n형 반도체층 및 상기 제3 n형 반도체층 사이로 연장되어, 상기 제1 및 제3 발광부들 사이를 접착하고 전기적으로 연결하는 발광 소자.
  14. 제11항에 있어서,
    상기 제1 메사 구조물, 상기 제2 발광부, 및 상기 제3 발광부는 서로 동일한 크기를 갖는 발광 소자.
  15. 제11항에 있어서,
    상기 노출된 제1 n형 반도체층 상에서 상기 제2 및 제3 발광부들 사이에 배치되는 광차단막을 더 포함하는 발광 소자.
  16. 제1항에 있어서,
    상기 제1 접착부의 두께는 상기 제1 활성층의 두께보다 큰 발광 소자.
PCT/KR2019/010326 2018-08-17 2019-08-13 발광 소자 WO2020036423A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112021002851-0A BR112021002851A2 (pt) 2018-08-17 2019-08-13 dispositivo emissor de luz
KR1020217002548A KR20210033480A (ko) 2018-08-17 2019-08-13 발광 소자
EP19850087.8A EP3840066B1 (en) 2018-08-17 2019-08-13 Light-emitting device
JP2021506742A JP7288041B2 (ja) 2018-08-17 2019-08-13 発光素子
CN201980052127.9A CN112585768B (zh) 2018-08-17 2019-08-13 发光元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862764961P 2018-08-17 2018-08-17
US62/764,961 2018-08-17
US16/536,627 US10879419B2 (en) 2018-08-17 2019-08-09 Light emitting device
US16/536,627 2019-08-09

Publications (1)

Publication Number Publication Date
WO2020036423A1 true WO2020036423A1 (ko) 2020-02-20

Family

ID=69523469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010326 WO2020036423A1 (ko) 2018-08-17 2019-08-13 발광 소자

Country Status (7)

Country Link
US (3) US10879419B2 (ko)
EP (1) EP3840066B1 (ko)
JP (1) JP7288041B2 (ko)
KR (1) KR20210033480A (ko)
CN (2) CN112585768B (ko)
BR (1) BR112021002851A2 (ko)
WO (1) WO2020036423A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211528B2 (en) * 2019-03-13 2021-12-28 Seoul Viosys Co., Ltd. Light emitting device for display and display apparatus having the same
US11798974B2 (en) * 2019-09-27 2023-10-24 Seoul Viosys Co., Ltd. Light emitting device for display and display apparatus having the same
WO2021202521A1 (en) * 2020-03-30 2021-10-07 Jade Bird Display (shanghai) Limited Systems and methods for multi-color led with stacked bonding structures
JP7478947B2 (ja) * 2020-04-13 2024-05-08 日亜化学工業株式会社 発光装置の製造方法
GB2596570B (en) * 2020-07-01 2023-07-19 Plessey Semiconductors Ltd Light emitting array
US11626538B2 (en) 2020-10-29 2023-04-11 Lumileds Llc Light emitting diode device with tunable emission
US20220173159A1 (en) * 2020-11-30 2022-06-02 Facebook Technologies, Llc Low resistance current spreading to n-contacts of micro-led array
WO2022193295A1 (zh) * 2021-03-19 2022-09-22 苏州晶湛半导体有限公司 半导体发光器件及其制备方法
CN116825910B (zh) * 2023-08-29 2023-11-10 季华实验室 阵列基板的制备方法、阵列基板、显示面板及显示装置
CN117153971B (zh) * 2023-10-30 2024-01-23 盐城鸿石智能科技有限公司 一种高亮度MicroLED及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047742A1 (en) * 2001-09-11 2003-03-13 Hen Chang Hsiu Package structure of full color LED form by overlap cascaded die bonding
KR20170000893A (ko) * 2015-06-24 2017-01-04 주식회사 세미콘라이트 반도체 발광소자
US20170250311A1 (en) * 2013-03-07 2017-08-31 Xiamen Sanan Optoelectronics Technology Co., Ltd. Led for plant illumination
WO2017191923A1 (ko) * 2016-05-03 2017-11-09 서울바이오시스주식회사 발광 다이오드
US20180160496A1 (en) * 2015-06-26 2018-06-07 Seoul Semiconductor Co., Ltd. Backlight unit using multi-cell light emitting diode

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298390B2 (ja) * 1995-12-11 2002-07-02 日亜化学工業株式会社 窒化物半導体多色発光素子の製造方法
TW569474B (en) * 2002-10-25 2004-01-01 Nat Univ Chung Hsing Superluminent light emitting diode with plated substrate having reflecting mirror and the manufacturing method thereof
JP4569859B2 (ja) * 2003-11-19 2010-10-27 信越半導体株式会社 発光素子の製造方法
JP4636501B2 (ja) * 2005-05-12 2011-02-23 株式会社沖データ 半導体装置、プリントヘッド及び画像形成装置
KR100716645B1 (ko) 2005-10-31 2007-05-09 서울옵토디바이스주식회사 수직으로 적층된 발광 다이오드들을 갖는 발광 소자
JP2009152297A (ja) * 2007-12-19 2009-07-09 Rohm Co Ltd 半導体発光装置
JP2011249460A (ja) * 2010-05-25 2011-12-08 Meijo University 白色発光ダイオード
KR101742617B1 (ko) * 2010-11-02 2017-06-01 엘지이노텍 주식회사 발광소자
JP5854419B2 (ja) * 2011-03-18 2016-02-09 国立大学法人山口大学 多波長発光素子及びその製造方法
KR101091048B1 (ko) 2011-06-20 2011-12-08 (주)더리즈 반도체 발광 소자
US10170668B2 (en) * 2011-06-21 2019-01-01 Micron Technology, Inc. Solid state lighting devices with improved current spreading and light extraction and associated methods
KR20130009373A (ko) * 2011-07-15 2013-01-23 엘지이노텍 주식회사 발광소자
JP2013149898A (ja) * 2012-01-23 2013-08-01 Toshiba Corp 半導体発光装置
US20130264587A1 (en) * 2012-04-04 2013-10-10 Phostek, Inc. Stacked led device using oxide bonding
JP5983125B2 (ja) * 2012-07-18 2016-08-31 日亜化学工業株式会社 半導体発光素子の製造方法
KR101584201B1 (ko) * 2014-01-13 2016-01-13 삼성전자주식회사 반도체 발광소자 및 이의 제조방법
JP2016162876A (ja) * 2015-03-02 2016-09-05 ウシオ電機株式会社 半導体発光素子、及び、半導体発光素子の製造方法
US9873170B2 (en) * 2015-03-24 2018-01-23 Nichia Corporation Method of manufacturing light emitting element
KR20160143430A (ko) * 2015-06-05 2016-12-14 서울바이오시스 주식회사 발광 다이오드
KR20180091700A (ko) * 2016-01-05 2018-08-16 엘지이노텍 주식회사 발광 소자
CN109417082B (zh) * 2016-03-18 2023-08-01 Lg伊诺特有限公司 半导体器件以及包括半导体器件的显示装置
KR101712519B1 (ko) 2016-04-29 2017-03-07 서울바이오시스 주식회사 전극패드들을 갖는 발광 다이오드
CN109417111B (zh) * 2016-06-20 2021-10-26 苏州乐琻半导体有限公司 半导体器件
US10340415B2 (en) * 2016-09-01 2019-07-02 Lg Innotek Co., Ltd. Semiconductor device and semiconductor device package including the same
JP6853882B2 (ja) * 2016-10-24 2021-03-31 グロ アーベーGlo Ab 発光ダイオード、ディスプレイデバイス、および、直視型ディスプレイデバイス
KR101873259B1 (ko) * 2017-02-02 2018-07-02 순천대학교 산학협력단 마이크로 어레이 발광다이오드 제조방법 및 조명 장치
KR102503578B1 (ko) * 2017-06-30 2023-02-24 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
US11282981B2 (en) * 2017-11-27 2022-03-22 Seoul Viosys Co., Ltd. Passivation covered light emitting unit stack
US20190164945A1 (en) 2017-11-27 2019-05-30 Seoul Viosys Co., Ltd. Light emitting diode for display and display apparatus having the same
KR102666539B1 (ko) * 2017-12-13 2024-05-17 삼성전자주식회사 자외선 반도체 발광소자
US11552057B2 (en) * 2017-12-20 2023-01-10 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US11522006B2 (en) * 2017-12-21 2022-12-06 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US10340308B1 (en) * 2017-12-22 2019-07-02 X Development Llc Device with multiple vertically separated terminals and methods for making the same
US11114499B2 (en) * 2018-01-02 2021-09-07 Seoul Viosys Co., Ltd. Display device having light emitting stacked structure
US10770620B2 (en) * 2018-06-14 2020-09-08 Glo Ab Epitaxial gallium nitride based light emitting diode and method of making thereof
US10862006B2 (en) * 2018-08-17 2020-12-08 Seoul Viosys Co., Ltd. Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047742A1 (en) * 2001-09-11 2003-03-13 Hen Chang Hsiu Package structure of full color LED form by overlap cascaded die bonding
US20170250311A1 (en) * 2013-03-07 2017-08-31 Xiamen Sanan Optoelectronics Technology Co., Ltd. Led for plant illumination
KR20170000893A (ko) * 2015-06-24 2017-01-04 주식회사 세미콘라이트 반도체 발광소자
US20180160496A1 (en) * 2015-06-26 2018-06-07 Seoul Semiconductor Co., Ltd. Backlight unit using multi-cell light emitting diode
WO2017191923A1 (ko) * 2016-05-03 2017-11-09 서울바이오시스주식회사 발광 다이오드

Also Published As

Publication number Publication date
US20200058824A1 (en) 2020-02-20
US10879419B2 (en) 2020-12-29
EP3840066C0 (en) 2023-08-02
EP3840066B1 (en) 2023-08-02
US20230025374A1 (en) 2023-01-26
CN112585768B (zh) 2024-04-02
BR112021002851A2 (pt) 2021-05-18
US20210091256A1 (en) 2021-03-25
CN112585768A (zh) 2021-03-30
US11469342B2 (en) 2022-10-11
JP2021534574A (ja) 2021-12-09
KR20210033480A (ko) 2021-03-26
EP3840066A1 (en) 2021-06-23
EP3840066A4 (en) 2022-06-01
CN210129519U (zh) 2020-03-06
US11804566B2 (en) 2023-10-31
JP7288041B2 (ja) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2020036423A1 (ko) 발광 소자
WO2019093533A1 (ko) 복수의 픽셀들을 포함하는 디스플레이용 발광 다이오드 유닛 및 그것을 갖는 디스플레이 장치
WO2020036421A1 (ko) 발광 소자
WO2014092448A1 (ko) 광추출 효율이 향상된 발광다이오드
WO2021085935A1 (ko) 디스플레이용 발광 소자 및 그것을 갖는 led 디스플레이 장치
WO2018143682A1 (ko) 발광 다이오드 유닛
WO2021086026A1 (ko) Led 디스플레이 장치
WO2014025195A1 (ko) 웨이퍼 레벨의 발광 다이오드 어레이 및 그의 제조방법
WO2020231131A1 (en) Light emitting package
WO2020162687A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 디스플레이 장치
WO2012023662A1 (ko) 멀티셀 구조를 갖는 발광다이오드 및 그 제조방법
WO2019132050A1 (ko) Led 디스플레이 장치 및 그 제조 방법
WO2021054702A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 발광 패키지
WO2020166985A1 (ko) 디스플레이용 발광 소자 전사 방법 및 디스플레이 장치
WO2020055143A1 (ko) 발광 소자
WO2020091507A1 (ko) 발광 소자
WO2014182104A1 (ko) 광원 모듈 및 이를 구비한 백라이트 유닛
WO2020080837A1 (ko) 발광 소자 및 이를 제조하는 방법
WO2016148424A1 (ko) 금속 벌크를 포함하는 발광 소자
WO2021080311A1 (ko) Led 디스플레이 장치
WO2020096304A1 (ko) 발광 소자
WO2020096386A1 (ko) 발광 소자
WO2016195286A1 (ko) 발광 다이오드
WO2021137654A1 (ko) 발광 소자 및 그것을 갖는 led 디스플레이 장치
WO2020096384A1 (ko) 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217002548

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021506742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021002851

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019850087

Country of ref document: EP

Effective date: 20210317

ENP Entry into the national phase

Ref document number: 112021002851

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210216