WO2020095936A1 - 硫化物固体電解質及び電池 - Google Patents

硫化物固体電解質及び電池 Download PDF

Info

Publication number
WO2020095936A1
WO2020095936A1 PCT/JP2019/043449 JP2019043449W WO2020095936A1 WO 2020095936 A1 WO2020095936 A1 WO 2020095936A1 JP 2019043449 W JP2019043449 W JP 2019043449W WO 2020095936 A1 WO2020095936 A1 WO 2020095936A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
solid electrolyte
lithium
battery
sulfide solid
Prior art date
Application number
PCT/JP2019/043449
Other languages
English (en)
French (fr)
Inventor
高橋 司
崇広 伊藤
崇嗣 筑本
輝明 八木
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201980035530.0A priority Critical patent/CN112203975B/zh
Priority to EP19882819.6A priority patent/EP3763671B1/en
Priority to JP2020512630A priority patent/JP6738983B1/ja
Priority to US17/045,696 priority patent/US11108084B2/en
Priority to KR1020207025648A priority patent/KR102236003B1/ko
Publication of WO2020095936A1 publication Critical patent/WO2020095936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5152Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on halogenides other than fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to sulfide solid electrolytes.
  • all-solid-state batteries do not use flammable organic solvents, not only can the safety device be simplified, the manufacturing cost and productivity can be improved, but the cells can be stacked in series within the cells. It also has the feature that high voltage can be achieved. Further, in the solid electrolyte used in the all-solid-state battery, since only the lithium ions move, a side reaction due to the movement of anions does not occur, which is expected to improve safety and durability.
  • a sulfide solid electrolyte containing lithium (Li) element, phosphorus (P) element and sulfur (S) element has been attracting attention as a material used for a solid electrolyte of such an all-solid-state battery.
  • Patent Document 1 a compositional formula having a structural skeleton of Li 7 PS 6 and substituting a part of P with Si: Li 7 + x P 1-y Si y S 6 (where x is ⁇ 0. 6-0.6, y is 0.1-0.6) is disclosed.
  • Patent Document 2 discloses a composition formula: Li x Si y P z Sa H a w (wherein Ha includes one or more of Br, Cl, I, and F. 2.4 ⁇ (x ⁇ y) / (y + z) ⁇ 3.3), the S content is 55 to 73 mass%, the Si content is 2 to 11 mass%, and the Ha element content is Is 0.02 mass% or more, and a crystalline solid electrolyte characterized by the above is disclosed.
  • Patent Document 3 contains a compound having a cubic crystal structure belonging to the space group F-43m and represented by a composition formula: Li 7-x PS 6-x Ha x (Ha is Cl or Br). However, in the composition formula, x is 0.2 to 1.8, and the lightness L * value of the L * a * b * color system is 60.0 or more. Solid electrolytes are disclosed.
  • Patent Document 4 contains a compound having a cubic aldilodite type crystal structure and represented by a composition formula (1): Li 7-x-2y PS 6-xy Cl x , and Disclosed is a sulfide solid electrolyte for a lithium-ion battery characterized by satisfying 0.8 ⁇ x ⁇ 1.7 and 0 ⁇ y ⁇ ⁇ 0.25x + 0.5 in the formula (1).
  • a sulfide solid electrolyte containing a sulfur-containing compound as described above generally has high ionic conductivity, but has extremely high reactivity with water and oxygen. May generate hydrogen gas. Therefore, there has been a problem that it is necessary to handle in a limited environment such as a dry room where an ultra-low dew point inert gas is constantly supplied. Therefore, with respect to such a sulfide solid electrolyte, a proposal has been made to improve the moisture resistance.
  • Patent Document 6 discloses a new sulfide solid that can suppress generation of hydrogen sulfide due to reaction with moisture even when it is exposed to dry air in a dry room or the like, and yet ensure lithium ion conductivity.
  • An electrolyte is disclosed. Specifically, the surface of the compound containing lithium, phosphorus, sulfur and halogen and having a cubic aldilodite type crystal structure is coated with the compound having a non-aldyrodite type crystal structure containing lithium, phosphorus and sulfur.
  • Disclosed is a sulfide solid electrolyte for lithium secondary batteries.
  • Patent Document 7 discloses a sulfide solid electrolyte capable of suppressing generation of hydrogen sulfide due to reaction with water and ensuring lithium ion conductivity. Specifically, lithium, phosphorus, containing sulfur and halogen, the surface of the compound having a cubic aldilodite type crystal structure, lithium, phosphorus and sulfur is coated with a compound having a non-aldyrodite type crystal structure, Disclosed is a sulfide solid electrolyte for a lithium secondary battery, wherein the compound having a non-aldyrodite type crystal structure is a compound having an orthorhombic type or triclinic type crystal structure.
  • the present disclosure relates to a sulfide solid electrolyte containing an element of lithium (Li), an element of phosphorus (P), an element of sulfur (S), and an element of halogen (X), and generates hydrogen sulfide gas even when it is exposed to moisture in the atmosphere. It is intended to provide a new sulfide solid electrolyte that can be suppressed.
  • the present disclosure discloses a compound containing an element of lithium (Li), an element of phosphorus (P), an element of sulfur (S), and an element of halogen (X), which has an aldilodite type structure (referred to as “compound A”), and lithium (Li).
  • a compound consisting of an element, a chlorine (Cl) element, and a bromine (Br) element, in an X-ray diffraction pattern measured by an X-ray diffractometer (XRD) using CuK ⁇ 1 ray, 2 ⁇ 29.1 ° ⁇ 0
  • XRD X-ray diffractometer
  • the sulfide solid electrolyte proposed by the present disclosure includes a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element, and a halogen (X) element, and in addition to the compound A having an aldirodite type structure, lithium ( Li) element, chlorine (Cl) element and bromine (Br) element, and in the X-ray diffraction pattern measured by XRD using CuK ⁇ 1 ray, by containing compound B having a peak at a predetermined position, Even when exposed to water, the generation of hydrogen sulfide gas can be effectively suppressed as compared with the conventional solid electrolyte.
  • Compound B produced in the examples (LiCl 0.5 Br 0.5 in the figure), lithium chloride (LiCl) used in producing compound B, and also used in producing compound B 2 is an X-ray diffraction pattern obtained by measuring lithium bromide (LiBr) by an X-ray diffraction method.
  • 3 is an X-ray diffraction pattern obtained by measuring the sulfide solid electrolytes (samples) obtained in Examples 1 to 5 and Comparative Example 1 by an X-ray diffraction method. The result of having measured the hydrogen sulfide generation amount about the sulfide solid electrolyte (sample) obtained in Example 3 and the comparative example 1 is shown. It is an image figure which shows an example of the sulfide solid electrolyte of this indication.
  • XRD X-ray diffractometer
  • the solid electrolyte contains a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element, and a halogen (X) element, and in addition to the compound A having an aldyrodiite type structure, a lithium (Li) element, a chlorine ( Cl) element and bromine (Br) element, and the compound B having a peak at a predetermined position in the X-ray diffraction pattern measured by XRD using CuK ⁇ 1 ray, when exposed to moisture in the atmosphere Moreover, generation of hydrogen sulfide gas can be effectively suppressed. The reason why such an effect is obtained is not clear, but the following is presumed.
  • the present solid electrolyte can be obtained by further adding the compound B to the compound A having the aldilodite type structure. Therefore, in the present solid electrolyte, for example, as shown in FIG. 4, the compound A and the compound B are independently present.
  • the surface area of the present solid electrolyte in which the compound A and the compound B are independently present is the sum of the surface areas of the compound A and the compound B, respectively.
  • the amount of hydrogen sulfide generated per unit surface area can be suppressed by the compound B having moisture resistance as compared with the conventional solid electrolyte in which most of the surface area of the present solid electrolyte is attributed to the compound A. Presumed to be.
  • the lithium ion conduction path can be secured by the compound A contained in the present solid electrolyte, and the battery characteristics can be improved. It is speculated that can be maintained well.
  • the “sulfide solid electrolyte” means a compound containing sulfur, that is, a solid electrolyte containing a sulfur-containing compound.
  • the “solid electrolyte” is not a film (so-called SEI (Solid Electrolyte Interface)) that occurs at the electrode material interface during the initial charge / discharge reaction after battery production, but as an alternative to the electrolytic solution and the separator when designing the battery, for example. It refers to a solid having Li ion conductivity that can be used.
  • the solid electrolyte may be particles or powder.
  • the solid electrolyte is a crystalline material. However, it may contain a glass component, that is, an amorphous component.
  • the present solid electrolyte contains a compound A having an aldilodite type structure containing a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element and a halogen (X) element.
  • the present solid electrolyte has a peak at a predetermined position belonging to the compound A in the X-ray diffraction pattern measured by the X-ray diffractometer (XRD) using CuK ⁇ 1 ray.
  • the above-mentioned peak of the compound B is located in the middle of the peaks respectively attributed to LiCl and LiBr, as shown in FIG. 1 described later. Further, these peaks coincide with the peaks of a solid solution LiCl 0.5 Br 0.5 of LiCl and LiBr obtained by, for example, mixing LiCl and LiBr and heating at 500 ° C. in an argon gas atmosphere.
  • XRD X-ray diffractometer
  • the above-mentioned peaks belong to the crystal phase of aldyrodiite type structure.
  • the ratio of I A and I B (I A / I B ) is 0 ⁇ I A / I B ⁇ 3. 5 is preferably satisfied.
  • the ratio (I A / I B) for example, preferably from 0.1 ⁇ I A / I B, it is especially preferred 0.6 ⁇ I A / I B.
  • the ratio (I A / I B ) is preferably, for example, I A / I B ⁇ 3.5, more preferably I A / I B ⁇ 3.0, and I A / I It is more preferable that B ⁇ 2.5.
  • the peak intensity ratio has the predetermined lower limit, it is possible to more effectively suppress the generation of hydrogen sulfide. Further, when the peak intensity ratio has a predetermined upper limit, it is possible to secure a lithium ion conduction path and maintain the battery characteristics better.
  • the ratio (B / A) is, for example, 1.01 or more, 1.05 or more, and preferably 1.10. Or more, it can be determined that a peak exists. The same applies to the case of determining whether or not another peak exists in a predetermined area.
  • the method of measuring the X-ray intensity can be the same as the method described in the section of Examples below.
  • the ratio ((Cl + Br) / P) of the total content (mol) of chlorine (Cl) element and bromine (Br) element to the content (mol) of phosphorus (P) element is 1.6. It is preferable that ⁇ (Cl + Br) / P ⁇ 20.0. Among them, in the present disclosure, it is preferable that 1.7 ⁇ (Cl + Br) / P. Further, in the present disclosure, (Cl + Br) /P ⁇ 6.4 is preferable, (Cl + Br) /P ⁇ 2.4 is more preferable, and (Cl + Br) /P ⁇ 2.1. Is more preferable.
  • the content (mol) of the elemental phosphorus (P), elemental chlorine (Cl) and elemental bromine (Br) can be confirmed by, for example, completely dissolving the present solid electrolyte and measuring by the ICP method.
  • the present solid electrolyte may show that the compound A and the compound B exist independently as shown in FIG. 4, for example. it can.
  • (D 50A + D 50B ) / D 50A in the present disclosure is not particularly limited, for example, (D 50A + D 50B ) / D 50A ⁇ 1500 may be satisfied, and (D 50A + D 50B ) / D 50A ⁇ 1000 may be satisfied, and (D 50A + D 50B ) / D 50A ⁇ 500, (D 50A + D 50B ) / D 50A ⁇ 200, and (D 50A + D 50B ) / D 50A ⁇ 100 may be satisfied.
  • the particle size (D 50A ) of the compound A and the particle size (D 50B ) of the compound B are D according to the volume particle size distribution obtained by the laser diffraction scattering particle size distribution measurement method as described later. 50 .
  • Compound A The compound A containing an element of lithium (Li), an element of phosphorus (P), an element of sulfur (S) and an element of halogen (X) and having an aldilodite structure, even if it exists as a crystal phase in the present solid electrolyte. Alternatively, it may be present as a compound in the present solid electrolyte.
  • aldilodite type structure is a structure of a compound group derived from a mineral represented by the chemical formula: Ag 8 GeS 6 . Whether or not the present solid electrolyte has an aldyrodiite type structure can be confirmed by, for example, XRD measurement as described above.
  • the compound A is usually a crystalline material containing a crystalline phase of the above-mentioned aldilodite type structure. However, it may contain a glass component, that is, an amorphous component.
  • the crystal phase having an aldilodite type structure is usually a cubic crystal phase.
  • the compound A may include a crystal phase having the aldyrodiite type structure.
  • the term "compound A includes a crystal phase having an aldilodite-type structure” means that the compound A contains at least a crystal phase having an aldilodite-type structure, and a crystal different from the crystal phase having the aldilodite-type structure.
  • a phase also referred to as “heterogeneous phase”
  • the different phase may not be included. Examples of the compound forming the different phase include Li 3 PS 4 and lithium halide.
  • the ratio of the crystal phase having an aldilodite type structure to all the crystal phases constituting the compound A may be, for example, 10% by mass or more, 20% by mass or more, and 50% by mass or more. May be Above all, it is preferable that the compound A contains a crystal phase having an aldilodite type structure as a main phase.
  • the “main phase” refers to a phase having the largest ratio to the total amount of all the crystal phases constituting the compound A.
  • the ratio of the crystal phase having an aldylodite structure to all the crystal phases constituting the compound A is, for example, preferably 60% by mass or more, and more preferably 70% by mass or more, 80% by mass or more, It is more preferably 90% by mass or more.
  • the ratio of the crystal phase can be determined by calculating the content ratio (mass%) by analyzing the X-ray diffraction (XRD) pattern, for example.
  • halogen (X) element contained in the compound A examples include a fluorine (F) element, a chlorine (Cl) element, a bromine (Br) element, and an iodine (I) element.
  • the halogen (X) element contained in the compound A may be one kind or a combination of two or more kinds of the above-mentioned elements.
  • the halogen (X) element is preferably a chlorine (Cl) element or a bromine (Br) element, and is preferably a combination of a chlorine (Cl) element and a bromine (Br) element.
  • composition of the compound A examples include, for example, composition formula (1): Li 7-a PS 6-a X a (X is one or more halogen (X) elements. 2 ⁇ a ⁇ 2.0 is satisfied).
  • “a” indicating the molar ratio of the halogen (X) element is preferably larger than 0.2 and 2.0 or less, and particularly 0.4 or more or 1.7 or less, Among them, 0.5 or more or 1.65 or less is particularly preferable.
  • the aldyrodiite type structure is stable near room temperature, and high ionic conductivity can be secured.
  • the PS 4 structure which is the basic skeleton of the aldilodite type structure, can be easily generated, and the conductivity of lithium ions can be effectively increased.
  • “a” indicating the molar ratio of the halogen (X) element is preferably 1.4 or more, and among them, It is 1.5 or more, and more preferably 1.55 or more.
  • the halogen (X) element is a combination of a plurality of elements (for example, chlorine (Cl) element and bromine (Br) element)
  • “a” in the above composition formula (1) is the sum of the molar ratio of each element. It is a value.
  • the compound A may contain an element other than the lithium (Li) element, the phosphorus (P) element, the sulfur (S) element and the halogen (X) element.
  • the lithium (Li) element is replaced with another alkali metal element
  • part of the phosphorus (P) element is replaced with another pnictogen element
  • part of the sulfur (S) element is replaced with another chalcogen element.
  • the compound A may contain, for example, inevitable impurities in addition to the lithium (Li) element, the phosphorus (P) element, the sulfur (S) element and the halogen (X) element.
  • the content of the unavoidable impurities in the compound A can be, for example, less than 5 mol%, preferably less than 3 mol%, and particularly preferably less than 1 mol% from the viewpoint of reducing the influence on the performance.
  • the compound A has a D 50A (referred to as “average particle size (D 50A )” or “D 50A ”) according to a volume particle size distribution obtained by measurement by a laser diffraction / scattering particle size distribution measurement method, for example, 0.1 ⁇ m or more and 150 ⁇ m or more. It may be 0.0 ⁇ m or less.
  • the average particle size (D 50A ) of the compound A may be, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
  • the average particle size (D 50A ) of the compound A may be, for example, 50.0 ⁇ m or less, 10.0 ⁇ m or less, 5.0 ⁇ m or less, and further 1.0 ⁇ m or less. May be
  • the solid electrolyte contains a compound B composed of a lithium (Li) element, a chlorine (Cl) element, and a bromine (Br) element to suppress generation of hydrogen sulfide gas when exposed to moisture in the atmosphere.
  • Compound B may be present as compound particles in the present solid electrolyte.
  • the compound B may be, for example, a solid solution of LiCl and LiBr. This can be produced, for example, by mixing LiCl and LiBr and heating and reacting in an inert atmosphere.
  • the element ratio (molar ratio) of chlorine (Cl) element and bromine (Br) element in the compound B is not particularly limited.
  • Cl: Br may be 90:10 to 10:90, 80:20 to 20:80, or 75:25 to 25:75. Further, in the present disclosure, Cl: Br may be 50:50.
  • the compound B has a D 50B (referred to as “average particle size (D 50B )” or “D 50B ”) according to a volume particle size distribution obtained by measurement by a laser diffraction / scattering particle size distribution measurement method, for example, 0.1 ⁇ m or more 50 It may be 0.0 ⁇ m or less.
  • the average particle size (D 50B ) of the compound B may be, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
  • the average particle size (D 50B ) of the compound B may be, for example, 100.0 ⁇ m or less, 70.0 ⁇ m or less, 50.0 ⁇ m or less, or 10.0 ⁇ m or less. It may be present, may be 5.0 ⁇ m or less, and may be 1.0 ⁇ m or less.
  • the present solid electrolyte may or may not include “another phase or compound” other than the compound A and the compound B.
  • the “other phase or compound” include Li 3 PS 4 , LiX 2 (X is halogen), lithium halide and the like.
  • compositions of the present solid electrolyte for example, the composition formula: Li b P c S d Cl e Br f can be expressed as (e in the formula, f and c are, 1.6 ⁇ e + f / c ⁇ 7. 0 is satisfied, and b and d are arbitrary real numbers.).
  • e, f and c in the above formula preferably satisfy 1.7 ⁇ e + f / c.
  • e, f and c in the above formula preferably satisfy e + f / c ⁇ 6.4, more preferably e + f / c ⁇ 2.4, and more preferably e + f / c ⁇ 2.1. Is more preferable.
  • Such a composition can be obtained by using chlorine (Cl) element or bromine (Br) element, or both of them as the halogen (X) element of the compound A, and adjusting the mixing ratio of the compounds A and B appropriately.
  • the value of “e + f / c” in the above formula can also be measured, for example, by the ICP method after completely dissolving the present solid electrolyte.
  • the content of the compound B in the present solid electrolyte is not particularly limited as long as the effect of the present disclosure can be obtained.
  • the specific content of the compound B may be 1% by mass or more, 5% by mass or more, and 10% by mass or more.
  • the content of the compound B in the present solid electrolyte may be, for example, 100% by mass or less, 80% by mass or less, 50% by mass or less, and 20% by mass or less. It may be.
  • the content of the compounds A and B can be calculated from the XRD measurement result.
  • the form of the present solid electrolyte may be particles, and the particle size at that time will be described below.
  • the present solid electrolyte has a D 50 (referred to as “average particle size (D 50 ”) or “D 50 ”) of 0.1 ⁇ m or more and 150 ⁇ m or less according to a volume particle size distribution obtained by measurement by a laser diffraction / scattering particle size distribution measurement method. Is preferred.
  • D 50 of the present solid electrolyte is 0.1 ⁇ m or more, for example, the increase in the surface area of the entire powder comprising the present solid electrolyte is suppressed, and the increase in resistance and the difficulty in mixing with the active material occur. Can be suppressed.
  • the D 50 of the present solid electrolyte when the D 50 of the present solid electrolyte is 150 ⁇ m or less, the present solid electrolyte easily enters, for example, the gaps between other solid electrolytes or active materials used in combination with the present solid electrolyte. Therefore, the contact point and contact area of the solid electrolyte are increased, and the ionic conductivity can be improved.
  • the average particle diameter (D 50 ) of the present solid electrolyte is, for example, preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and particularly preferably 0.5 ⁇ m or more.
  • the average particle diameter (D 50 ) of the present solid electrolyte is, for example, preferably 150.0 ⁇ m or less, more preferably 70.0 ⁇ m or less, and particularly preferably 50.0 ⁇ m or less.
  • the average particle size of the solid electrolyte in the case of adding the solid electrolyte in the electrode (D 50) has an average particle size (D 50) of the positive electrode active material or negative electrode active average particle diameter (D 50) of material more than 1% It is preferably 100% or less, more preferably 3% or more or 50% or less, and further preferably 5% or more or 30% or less.
  • the average particle diameter (D 50 ) of the present solid electrolyte is within the above range, it is possible to fill the space between the positive electrode active material or the negative electrode active material (collectively referred to as “active material”) without any gap, and The filling rate can be increased.
  • the present solid electrolyte can be manufactured, for example, as described below.
  • the present solid electrolyte contains a compound (A) having an aldilodite type structure, containing a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element and a halogen (X) element, and a lithium (Li) element and chlorine (Cl). It can be produced by mixing the element B and the compound B composed of bromine (Br) element.
  • the compound A used in the above production method by mixing is a compound containing lithium (Li) element, phosphorus (P) element, sulfur (S) element and halogen (X) element, and is particularly limited as long as it is a compound having an aldyrodiite type structure. Therefore, generally known materials can be used.
  • a predetermined raw material is mixed to obtain a raw material mixture (“mixing step”), and the obtained raw material mixture is heated while circulating hydrogen sulfide gas (H 2 S) (
  • the "baking step" can be mentioned as a manufacturing method. However, it is not limited to such a manufacturing method.
  • the above-mentioned raw material is a substance containing an element constituting the present solid electrolyte, a substance containing a lithium (Li) element, a substance containing a sulfur (S) element, and a substance containing a phosphorus (P) element And a substance containing a halogen (X) element.
  • examples of the substance containing the lithium (Li) element include lithium compounds such as lithium sulfide (Li 2 S), lithium oxide (Li 2 O), and lithium carbonate (Li 2 CO 3 ), and a lithium metal simple substance. Etc. can be mentioned. Note that these substances can be used alone or in combination of two or more.
  • examples of the substance containing the elemental sulfur (S) include phosphorus sulfide such as phosphorus trisulfide (P 2 S 3 ) and phosphorus pentasulfide (P 2 S 5 ).
  • a simple substance of sulfur (S) can be used as the substance containing the element of sulfur (S).
  • Examples of the substance containing the phosphorus (P) element include phosphorus sulfide such as phosphorus trisulfide (P 2 S 3 ), phosphorus pentasulfide (P 2 S 5 ), sodium phosphate (Na 3 PO 4 ), and the like. And the phosphorus simple substance. Note that these substances can be used alone or in combination of two or more.
  • Examples of the substance containing the X (halogen) element include one or more elements selected from the group consisting of fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). , Sodium (Na), lithium (Li), boron (B), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), germanium (Ge), arsenic (As), selenium (Se).
  • bonded can be mentioned.
  • LiF, LiCl, LiBr, lithium halide such as LiI, PF 3, PF 5, PCl 3, PCl 5, POCl 3, PBr 3, POBr 3, PI 3, P 2 Cl 4, Phosphorus halide such as P 2 I 4 , sulfur halide such as SF 2 , SF 4 , SF 6 , S 2 F 10 , SCl 2 , S 2 Cl 2 and S 2 Br 2 , sulfur halide such as NaI, NaF, NaCl and NaBr.
  • sodium halides such as BCl 3 , BBr 3 , BI 3 and the like. Note that these substances can be used alone or in combination of two or more. Of these, lithium halide (LiX (X is halogen)) is preferably used.
  • the method for mixing the solid electrolyte raw materials is not particularly limited. For example, it may be mixed with a paint shaker, a ball mill, a bead mill, a homogenizer or the like. However, mixing by adopting the mechanical milling method and the melt quenching method, if the mixture is subjected to excess kinetic energy, part or all of the sulfur or sulfur compound added in the stage of the mixing step is vaporized, It is preferable not to employ the mechanical milling method and the melt quenching method.
  • Raw materials such as lithium sulfide and phosphorus sulfide, are extremely unstable in the atmosphere and decompose with reaction with water to generate hydrogen sulfide gas or oxidize, so inside a glove box replaced with an inert gas atmosphere. It is preferable to carry out the above-mentioned mixing step by, for example,
  • the raw material mixture obtained in the above mixing step may be subjected to treatments such as drying, stirring, washing, sizing, and classification, if necessary, and then supplied to the firing step.
  • the raw material mixture obtained in the mixing step is preferably heated and fired while circulating hydrogen sulfide gas (H 2 S).
  • the firing step may be a one-step firing step or a two-step firing step as in Examples described later.
  • the firing temperature that is, the highest temperature for reaching the product temperature during firing may be higher than 300 ° C., among which 700 ° C. or lower, among which 400 ° C. or higher or 600 ° C. or lower is the desired solid phase reaction and crystallization. It is more preferable from the viewpoint of causing a chemical reaction.
  • the firing time that is, the time of heating to a temperature higher than 300 ° C. may be such that the solid phase reaction or crystallization reaction of the mixture sufficiently proceeds, and it is preferably adjusted appropriately depending on the mixture state of the mixture or the firing temperature. It is typically preferably 1 hour or more and 10 hours or less, and more preferably 2 hours or more or 6 hours or less.
  • the firing temperature at this time means the product temperature, and can be measured, for example, by inserting a thermocouple into the fired product.
  • a crusher such as a planetary ball mill, a vibration mill, a rolling mill, or a kneader.
  • Compound B The compound B used in the above production method by mixing can be produced, for example, by mixing LiCl and LiBr and heating in an inert gas atmosphere.
  • the manufacturing method is not limited to this.
  • the heating temperature that is, the maximum reaching temperature of the product temperature and the heating time are not particularly limited as long as the desired compound B can be obtained.
  • the above heating reaction can be performed, for example, in an atmosphere of an inert gas such as argon gas.
  • the present solid electrolyte contains the compound A and the compound B by adjusting the conditions when the compound A is synthesized as described above to generate the compound B as a different phase together with the crystal phase of the compound A.
  • the solid electrolyte can also be produced.
  • the present solid electrolyte can be used as a material constituting any one layer of the solid electrolyte layer, the positive electrode layer and the negative electrode layer, or two or more layers thereof. Therefore, the present solid electrolyte can be used for, for example, a battery having a solid electrolyte layer, that is, an all-solid battery. More specifically, it can be used for a lithium all-solid-state battery.
  • the lithium all-solid-state battery may be a primary battery or a secondary battery.
  • present battery a battery using the present solid electrolyte (referred to as “present battery”) will be described.
  • the present battery is a battery having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer between the positive electrode layer and the negative electrode layer, and containing the present solid electrolyte.
  • the present battery for example, at least one of the negative electrode layer and the solid electrolyte layer preferably contains the present solid electrolyte.
  • This battery is a so-called all-solid-state battery. Examples of the shape of the battery include a laminate type, a cylindrical type, and a square type.
  • the solid electrolyte of the present invention has excellent moisture resistance, and its characteristics are less deteriorated even when it is handled in dry air. Therefore, it is possible to assemble an all-solid battery even in a dry room or the like.
  • the solid electrolyte layer is, for example, a method in which a slurry comprising the present solid electrolyte, a binder and a solvent is dropped on a substrate and scraped off with a doctor blade, a method in which the substrate and the slurry are contacted and then cut with an air knife, screen printing. It can be manufactured by a method in which a coating film is formed by a method or the like and then the solvent is removed through heating and drying. Alternatively, the powdery solid electrolyte may be formed into a green compact by pressing and then appropriately processed.
  • the solid electrolyte layer containing the present solid electrolyte preferably has a porosity of, for example, 50% or less, more preferably 30% or less, and further preferably 20% or less.
  • the porosity of the solid electrolyte layer can be adjusted by, for example, pressing pressure when the powdery solid electrolyte is formed into a green compact.
  • the pressing pressure is preferably 20 MPa or more, for example.
  • the porosity can be calculated, for example, from the true density and the apparent density of the solid electrolyte layer obtained by the liquid phase method (Archimedes method) by the following relational expression.
  • Porosity (%) (true density-apparent density) / true density x 100
  • the thickness of the layer containing the solid electrolyte is typically preferably 5 ⁇ m or more and 300 ⁇ m or less, and more preferably 10 ⁇ m or more or 100 ⁇ m or less, in view of the balance between prevention of short circuit and volumetric capacity density.
  • solid electrolyte layer in which the present solid electrolyte is mixed with another solid electrolyte. It can be used in combination with any of amorphous (glass), glass ceramics and crystalline materials.
  • sulfide solid electrolyte include Li 2 S—P 2 S 5 system, Li 4 P 2 S 6 , and Li 7 P 3 S 11 .
  • the solid electrolyte to be combined may be a non-sulfide, for example, an oxide solid electrolyte.
  • a positive electrode material used as a positive electrode active material of a lithium ion battery can be appropriately used.
  • examples thereof include a positive electrode active material containing lithium, specifically, a spinel type lithium transition metal oxide and a lithium metal oxide having a layered structure.
  • the energy density can be improved by using a high-voltage positive electrode material.
  • the positive electrode material may be a positive electrode material containing a conductive material or another material such as a solid electrolyte in addition to the positive electrode active material, and the present solid electrolyte may be used as the solid electrolyte.
  • a negative electrode material used as a negative electrode active material of a lithium ion battery can be appropriately used.
  • the present solid electrolyte is electrochemically stable, graphite, artificial graphite, natural graphite that is charged and discharged at lithium metal or a base potential (about 0.1 V vs Li + / Li) comparable to lithium metal is used.
  • a carbon-based material such as non-graphitizable carbon (hard carbon) can be used. Therefore, the energy density of the all-solid-state battery can be greatly improved. Further, silicon or tin, which is promising as a high capacity material, can be used as an active material.
  • the electrolytic solution and the active material react with each other during charging and discharging, and the surface of the active material is corroded, so that the battery characteristics are significantly deteriorated.
  • the present solid electrolyte is used instead of the electrolytic solution and silicon or tin is used as the negative electrode active material, such a corrosion reaction does not occur, so that the durability of the battery can be improved.
  • a conductive material or another material for example, a solid electrolyte may be included to serve as the negative electrode material, and the present solid electrolyte may be used as the solid electrolyte.
  • Compound A As the compound A, a compound having an aldilodite type structure was prepared.
  • the composition of compound A was Li 5.4 PS 4.4 Cl 0.8 Br 0.8 .
  • Example 1 The compound A and the compound B were mixed in a mortar to obtain a solid electrolyte (sample). At this time, the content of the compound B in the solid electrolyte (sample) was set to 1% by mass.
  • Example 2 A solid electrolyte (sample) was obtained in the same manner as in Example 1 except that the content of the compound B was 5% by mass.
  • Example 3 A solid electrolyte (sample) was obtained in the same manner as in Example 1 except that the content of the compound B was 10% by mass.
  • Example 4 A solid electrolyte (sample) was obtained in the same manner as in Example 1 except that the content of the compound B was 20% by mass.
  • Example 5 A solid electrolyte (sample) was obtained in the same manner as in Example 1 except that the content of the compound B was 50% by mass.
  • Example 1 A solid electrolyte (sample) was obtained in the same manner as in Example 1 except that the content of the compound B was 80% by mass.
  • Si powder manufactured by Wako Pure Chemical Industries, purity 99.9%
  • the X-ray source was a CuK ⁇ 1 ray using a Johansson type crystal, and the measurement was performed with a one-dimensional detector.
  • the compound A was analyzed by the X-ray diffraction method (XRD, Cu radiation source) in the same manner as above to obtain an X-ray diffraction pattern, and the peak intensity (counts) at each position was measured. I confirmed.
  • the data of PDF No. 00-034-0688 was used for the identification of the peak derived from the aldilodite type crystal structure.
  • the sealed bag containing the sample was opened in the constant temperature and humidity chamber, and the sample was quickly placed in the separable flask.
  • the sample was placed in a separable flask, and the hydrogen sulfide concentration was measured with a hydrogen sulfide sensor (GX-2009 manufactured by Riken Keiki Co., Ltd.) after 60 minutes from the hydrogen sulfide generated immediately after the flask was closed and 60 minutes later.
  • D 50A and D 50B were measured using an automatic sample feeder for a laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Nikkiso Co., Ltd.). Specifically, it was measured by the following method. First, a sample (powder) dispersed in toluene was irradiated with a 40 W ultrasonic wave for 360 seconds multiple times at a flow rate of 40%, and then a laser diffraction particle size distribution analyzer “MT3000II” manufactured by Nikkiso Co., Ltd. was used. The particle size distribution was measured. Next, D50 was measured from the obtained chart of the volume-based particle size distribution.
  • the number of times of ultrasonic wave irradiation was the number of times until the rate of change of D 50 before and after ultrasonic wave irradiation was 8% or less.
  • the water-soluble solvent used in the measurement was passed through a 60 ⁇ m filter.
  • the measurement conditions were as follows: solvent refractive index 1.33, particle permeability condition “transmission”, particle refractive index 2.46, shape “aspherical”, measurement range 0.133 to 704.0 ⁇ m, measurement time It was set to 30 seconds and the average value measured twice was used as each value.
  • the positive electrode material was prepared by mixing a positive electrode active material, a solid electrolyte and a conductive additive (acetylene black) in a mortar in a mass ratio of 60: 37: 3, and uniaxially press-molding at 20 MPa to form a positive electrode material pellet.
  • a conductive additive acetylene black
  • the negative electrode material was prepared by mixing graphite and a solid electrolyte at a mass ratio of 64:36 in a mortar.
  • the negative electrode electrode (made of SUS) was closed and uniaxially molded at 550 MPa to form a positive electrode material having a thickness of about 100 ⁇ m, a solid electrolyte layer having a thickness of about 300 ⁇ m, and a negative electrode material having a thickness of about 20 ⁇ m.
  • An all-solid-state battery cell having a three-layer structure was produced.
  • the above-mentioned all-solid-state battery cell was manufactured in a glove box which was replaced with argon gas having a dew point temperature of -60 ° C.
  • the battery characteristic measurement was evaluated by putting all the solid-state battery cells in an environmental tester kept at 60 ° C. and connecting them to a charge / discharge measuring device. The battery was charged and discharged at 1 mA as 1 C. The initial charge capacity was obtained by charging at 0.1 C to 4.5 V by the CC-CV method. The discharge was performed at 0.1 C up to 2.5 V by the CC method to obtain the initial discharge capacity.
  • the battery characteristics were evaluated by putting all solid-state battery cells in an environmental tester kept at 25 ° C. and connecting them to a charge / discharge measuring device. The battery was charged / discharged at 3 mA as 1C. The initial charge capacity was obtained by charging at 0.1 C to 4.5 V by the CC-CV method. The discharge was performed at 0.1 C up to 2.5 V by the CC method to obtain the initial discharge capacity. Next, after constant-current constant-potential charging at 0.2C to 4.5V, constant-current discharging at 5C to 2.5V was performed to obtain a discharge capacity at 5C. The ratio of the discharge capacity of 5C when the discharge capacity of 0.1C was taken as 100% was calculated, and the charge / discharge efficiency (%) and rate characteristics (5C / 0.1C (%)) were obtained.
  • Example 1 Each of the solid electrolytes (samples) obtained in Examples 1 to 5, Reference Examples 1 and 2 or Comparative Example 1 was used as a solid electrolyte in preparing a positive electrode material pellet to prepare a positive electrode layer, and as described above. All-solid-state battery cells were produced and battery characteristics were evaluated. The results are shown in Table 3.
  • the positive electrode layer was prepared as described above using the solid electrolytes (samples) obtained in Examples 1 to 5, Reference Examples 1 and 2 or Comparative Example 1, the solid electrolytes constituting the solid electrolyte layer were as described above.
  • the compound A was used, and the compound A was used as the solid electrolyte contained in the negative electrode layer.
  • Example 1 to 5 As shown in Table 3, even when the solid electrolytes obtained in Examples 1 to 5 were used for the positive electrode layer, the deterioration of the battery characteristics could be suppressed. Specifically, in Examples 1 to 5, the discharge capacities were all 160 mAh / g or more, and good results were obtained. In addition, the capacity retention rate was 20% or more, particularly in Examples 1 to 4, and better results were obtained.
  • each of the solid electrolytes (samples) obtained in Examples 1 to 5, Reference Examples 1 and 2 or Comparative Example 1 was used as a solid electrolyte in preparing a negative electrode material pellet to prepare a negative electrode layer, and As described above, an all-solid-state battery cell was prepared and battery characteristics were evaluated. The results are shown in Table 3.
  • the negative electrode layer was produced as described above using the solid electrolytes (samples) obtained in Examples 1 to 5, Reference Examples 1 and 2 or Comparative Example 1, the solid electrolytes constituting the solid electrolyte layer were as described above.
  • the compound A was used, and the compound A was used as the solid electrolyte contained in the positive electrode layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Li、P、S及びハロゲンを含有する硫化物固体電解質に関し、リチウム二次電池などの固体電解質として用いることができ、大気中の水分に触れても硫化水素ガスの発生を抑制することができる新たな硫化物固体電解質を提供する。 Li、P、S及びハロゲンを含有するアルジロダイト型構造を有する結晶相又は化合物と、Li、Cl及びBrからなる化合物であって、X線回折パターンにおいて、2θ=29.1°±0.5°、及び、33.7°±0.5°のそれぞれの位置にピークを有する化合物と、を含む硫化物固体電解質である。 

Description

硫化物固体電解質及び電池
 本開示は、硫化物固体電解質に関する。
 全固体電池は、可燃性の有機溶媒を用いないので、安全装置の簡素化を図ることができ、しかも製造コスト及び生産性に優れたものとすることができるばかりか、セル内で直列に積層して高電圧化を図れるという特徴も有している。また、全固体電池に用いられる固体電解質では、リチウムイオン以外は動かないため、アニオンの移動による副反応が生じないなど、安全性及び耐久性の向上につながることが期待される。
 このような全固体電池の固体電解質に用いる物質として、リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む硫化物固体電解質が注目されている。
 例えば特許文献1には、Li7PS6の構造骨格を有し、Pの一部をSiで置換してなる組成式:Li7+x1-ySi(但し、xは-0.6~0.6、yは0.1~0.6)を含有する硫化物固体電解質が開示されている。
 特許文献2には、組成式:LiSiHa(式中、HaはBr、Cl、I及びFのいずれか一種又は二種以上を含む。2.4<(x-y)/(y+z)<3.3)で示され、Sの含有量が55~73質量%であって、Siの含有量が2~11質量%であって、且つ、Ha元素の含有量が0.02質量%以上であることを特徴とする結晶性固体電解質が開示されている。
 特許文献3には、立方晶で空間群F-43mに属する結晶構造を有し、かつ組成式:Li7-xPS6-xHa(HaはCl若しくはBr)で表される化合物を含有し、前記組成式におけるxが0.2~1.8であり、かつL表色系の明度L値が60.0以上であることを特徴とするリチウムイオン電池用硫化物固体電解質が開示されている。
 特許文献4には、立方晶系アルジロダイト型結晶構造を有し、組成式(1):Li7-x-2yPS6-x-yClで表される化合物を含有し、且つ、前記組成式(1)において、0.8≦x≦1.7、0<y≦-0.25x+0.5を満足することを特徴とするリチウムイオン電池用硫化物固体電解質が開示されている。
 特許文献5には、リチウムと、リンと、硫黄と、塩素と、臭素と、を含み、CuKα線を使用したX線回折において、2θ=25.2±0.5degに回折ピークAを、2θ=29.7±0.5degに回折ピークBを有する硫化物固体電解質が開示されている。
 ところで、上記のような硫黄含有化合物を含有する硫化物固体電解質は、一般的に、イオン伝導率が高い反面、水分及び酸素との反応性が極めて高いため、例えば大気中の水分に触れると硫化水素ガスを発生する可能性がある。そのため、超低露点の不活性ガスが常時供給されるドライルームのような限られた環境下で扱う必要ある、という課題を抱えていた。そこで、このような硫化物固体電解質に関しては、耐湿性を高める提案がなされている。
 例えば特許文献6には、ドライルーム等の乾燥空気に触れても水分との反応によって硫化水素が発生するのを抑えることができ、それでいてリチウムイオン伝導性を確保することができる新たな硫化物固体電解質が開示されている。具体的には、リチウム、リン、硫黄及びハロゲンを含み、立方晶系アルジロダイト型結晶構造を有する化合物の表面が、リチウム、リン及び硫黄を含む非アルジロダイト型結晶構造を有する化合物で被覆されていることを特徴とするリチウム二次電池用硫化物固体電解質が開示されている。
 特許文献7には、水分との反応によって硫化水素が発生するのを抑えることができ、且つ、リチウムイオン伝導性を確保することができる硫化物固体電解質が開示されている。具体的には、リチウム、リン、硫黄及びハロゲンを含み、立方晶系アルジロダイト型結晶構造を有する化合物の表面が、リチウム、リン及び硫黄を含む非アルジロダイト型結晶構造を有する化合物で被覆されており、前記非アルジロダイト型結晶構造を有する化合物は、斜方晶型又は三斜晶型の結晶構造を有する化合物であることを特徴とするリチウム二次電池用硫化物固体電解質が開示されている。
特開2013-137889号公報 WO2015/001818号公報 WO2015/012042号公報 特開2016-24874号公報 WO2018/047566号公報 WO2018-003333号公報 特開2018-67552号公報
 本開示は、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含有する硫化物固体電解質に関し、大気中の水分に触れても硫化水素ガスの発生を抑制することができる、新たな硫化物固体電解質を提供せんとするものである。
 本開示は、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含み、アルジロダイト型構造を有する化合物(「化合物A」と称する)と、リチウム(Li)元素、塩素(Cl)元素及び臭素(Br)元素からなる化合物であって、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=29.1°±0.5°、及び、33.7°±0.5°のそれぞれの位置にピークを有する化合物(「化合物B」と称する)と、を含む硫化物固体電解質を提案する。
 本開示が提案する硫化物固体電解質は、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含み、アルジロダイト型構造を有する化合物Aのほかに、リチウム(Li)元素、塩素(Cl)元素及び臭素(Br)元素からなり、CuKα1線を用いたXRDにより測定されるX線回折パターンにおいて、所定の位置にピークを有する化合物Bを含むことにより、大気中の水分に触れても、従来の固体電解質に比べて硫化水素ガスの発生を効果的に抑制することができる。
実施例で作製した化合物B(図中のLiCl0.5Br0.5)と、該化合物Bを作製した際に用いた塩化リチウム(LiCl)と、同じく該化合物Bを作製した際に用いた臭化リチウム(LiBr)とについて、X線回折法で測定して得られたX線回折パターンである。 実施例1~5及び比較例1で得られた硫化物固体電解質(サンプル)について、X線回折法で測定して得られたX線回折パターンである。 実施例3及び比較例1で得られた硫化物固体電解質(サンプル)について硫化水素発生量を測定した結果を示す。 本開示の硫化物固体電解質の一例を示すイメージ図である。
 次に、実施の形態例に基づいて本開示を説明する。但し、本開示が次に説明する実施形態に限定されるものではない。
 <本固体電解質>
 本開示の実施形態の一例に係る硫化物固体電解質(「本固体電解質」と称する)は、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含み、アルジロダイト型構造を有する化合物Aと、リチウム(Li)元素、塩素(Cl)元素及び臭素(Br)元素からなる化合物であって、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=29.1°±0.5°、及び、33.7°±0.5°のそれぞれの位置にピークを有する化合物Bと、を含む。なお、上記ピークは、それぞれ他のピークと重複せずに、独立して存在することが好ましい。
 本固体電解質は、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含み、アルジロダイト型構造を有する化合物Aのほかに、リチウム(Li)元素、塩素(Cl)元素及び臭素(Br)元素からなり、CuKα1線を用いたXRDにより測定されるX線回折パターンにおいて、所定の位置にピークを有する化合物Bを含むことにより、大気中の水分に触れた際に硫化水素ガスの発生を効果的に抑制することができる。このような効果が得られる理由は明らかではないが、以下のことが推測される。すなわち、本固体電解質は、アルジロダイト型構造を有する化合物Aにさらに化合物Bを添加することで得られる。したがって、本固体電解質は、例えば図4に示すように、化合物A及び化合物Bがそれぞれ独立して存在することとなる。化合物A及び化合物Bがそれぞれ独立して存在する本固体電解質の表面積は、化合物A及び化合物Bそれぞれの表面積の和である。本開示においては、本固体電解質の表面積のほとんどが化合物Aに寄因する従来の固体電解質に比べて、耐水分性を有する化合物Bによって、単位表面積当たりの硫化水素発生量を抑制することができると推測される。また、本固体電解質は、化合物Bが独立して存在する一方で、化合物Aも独立して存在するため、本固体電解質に含まれる化合物Aによってリチウムイオン伝導パスを確保することができ、電池特性を良好に維持することができると推測される。
 ここで、「硫化物固体電解質」とは、硫黄を含有する化合物、すなわち硫黄含有化合物を含む固体電解質の意味である。また、当該「固体電解質」とは、電池製造後の初回充放電反応等で電極材界面に生じる膜(所謂SEI(Solid Electrolyte Interphase))ではなく、例えば電池設計に際し、電解液及びセパレーターの代替として用いることが可能なLiイオン伝導性を有する固体のことを指す。
 本固体電解質は、粒子であってもよく、粉末であってもよい。本固体電解質は、結晶性材料である。但し、ガラス成分すなわち非晶質成分を含んでいてもよい。
 本固体電解質は、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含むアルジロダイト型構造を有する化合物Aを含む。これにより、本固体電解質は、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、化合物Aに帰属する所定の位置にピークが存在する。
 具体的には、化合物A及び本固体電解質は、当該X線回折パターンにおいて、例えば2θ=15.34°±1.00°、17.74°±1.00°、25.19°±1.00°、29.62°±1.00°、30.97°±1.00°、44.37°±1.00°、47.22°±1.00°、51.70°±1.00°にピークを有することが好ましい。これらのピークは、アルジロダイト型構造に特徴的なピークであるということができる。
 さらに化合物A及び本固体電解質は、上記ピークに加えて、例えば2θ=54.26°±1.00°、58.35°±1.00°、60.72°±1.00°、61.50°±1.00°、70.46°±1.00°、72.61°±1.00°にもピークを有していてもよい。
 なお、上記ピークは、それぞれ他のピークと重複せずに、独立して存在することが好ましい。また、アルジロダイト型構造を有する結晶相を含まない場合は、上述したアルジロダイト型構造に特徴的なピークを有しないことで、確認することができる。
 また、本固体電解質は、リチウム(Li)元素、塩素(Cl)元素及び臭素(Br)元素からなる化合物Bを含む。これにより、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、化合物Bに帰属するピークが存在する。すなわち、化合物B及び本固体電解質は、当該X線回折パターンにおいて、2θ=29.1°±0.5°、及び、33.7°±0.5°のそれぞれの位置にピークが存在する。
 化合物Bの上記ピークは、例えば後述する図1に示すように、LiCl及びLiBrにそれぞれ帰属するピークの中間に位置する。また、これらのピークは、例えば、LiCl及びLiBrを混合してアルゴンガス雰囲気中で500℃に加熱して得られるLiCl及びLiBrの固溶体LiCl0.5Br0.5のピークと一致する。
 なお、2θ=29.1°±0.5°に存在する上記ピークは、2θ=29.1°±0.3°に存在することが好ましく、中でも2θ=29.1°±0.2°、その中でも2θ=29.1°±0.1°に存在することがさらに好ましい。
 2θ=33.7°±0.5°に存在する上記ピークは、2θ=33.7°±0.3°に存在することが好ましく、中でも2θ=33.7°±0.2°、その中でも2θ=33.7°±0.1°に存在することがさらに好ましい。
 さらに化合物B及び本固体電解質は、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、上記ピークに加えて、例えば、2θ=49.0°±0.5°、58.0°±0.5°、及び60.0°±0.5°のそれぞれの位置にピークを有することが好ましい。
 この際、2θ=49.0°±0.5°に存在する上記ピークは、2θ=49.0°±0.3°に存在することが好ましく、中でも2θ=49.0°±0.2°、その中でも2θ=49.0°±0.1°に存在することがさらに好ましい。
 また、2θ=58.0°±0.5°に存在する上記ピークは、2θ=58.0°±0.3°に存在することが好ましく、中でも2θ=58.0°±0.2°、その中でも2θ=58.0°±0.1°に存在することがさらに好ましい。
 さらに、2θ=60.0°±0.5°に存在する上記ピークは、2θ=60.0°±0.3°に存在することが好ましく、中でも2θ=60.0°±0.2°、その中でも2θ=60.0°±0.1°に存在することがさらに好ましい。
 本固体電解質は、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=30.2°±0.5°に位置するピークを有していてもよい。上記ピークは、アルジロダイト型構造の結晶相に帰属する。
 本固体電解質は、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=30.2°±0.5°に位置するピークの強度をIとし、2θ=29.1°±0.5°に位置するピークの強度をIとしたとき、前記I及び前記Iの比(I/I)が0<I/I≦3.5を満たすことが好ましい。中でも、上記比(I/I)は、例えば、0.1≦I/Iであることが好ましく、特に0.6≦I/Iであることが好ましい。一方、上記比(I/I)は、例えば、I/I≦3.5であることが好ましく、I/I≦3.0であることが更に好ましく、I/I≦2.5であることが一層好ましい。上記ピーク強度比が所定の下限を有することで、硫化水素の発生をより効果的に抑制することが可能となる。また、上記ピーク強度比が所定の上限を有することで、リチウムイオン伝導パスを確保し、電池特性をより良好に維持することが可能となる。
 なお、X線回折パターンにおいて、各領域にピークが存在するか否かは、次のようにして判定することができる。例えば、2θ=49.0°±0.5°の領域にピークが存在するか否かは、X線回折パターンにおいて、2θ=48.0°±0.5°及び2θ=50.0°±0.5°のX線強度(counts)の平均値をバックグラウンド(BG)の強度Aとし、2θ=49.0°±0.5°のX線強度(counts)の最大値をピーク強度Bとしたときに、その比(B/A)が、例えば1.01以上、中でも1.05以上、その中でも好ましくは1.10以上であれば、ピークが存在するものと判定することができる。他のピークが所定の領域に存在するか否かを判定する場合も同様である。なお、X線強度の測定方法については、後述する実施例の項に記載した方法と同様とすることができる。
 本固体電解質において、リン(P)元素の含有量(モル)に対する、塩素(Cl)元素及び臭素(Br)元素の合計含有量(モル)の比率((Cl+Br)/P)は、1.6<(Cl+Br)/P<20.0であることが好ましい。中でも、本開示においては、1.7≦(Cl+Br)/Pであることが好ましい。また、本開示においては、(Cl+Br)/P≦6.4であることが好ましく、(Cl+Br)/P≦2.4であることが更に好ましく、(Cl+Br)/P≦2.1であることが一層好ましい。
 なお、上記リン(P)元素、塩素(Cl)元素及び臭素(Br)元素の含有量(モル)は、例えば本固体電解質を全溶解させてICP法により測定することにより確認することができる。
 本固体電解質は、化合物Aの粒径をD50Aとし、化合物Bの粒径をD50Bとしたとき、D50A及びD50Bが、1<(D50A+D50B)/D50Aを満たすことが好ましい。本固体電解質における化合物A及び化合物Bの粒径が、上記式を満たすことにより、本固体電解質が、例えば図4に示すように、化合物A及び化合物Bが独立して存在することを示すことができる。本開示における(D50A+D50B)/D50Aの上限は特に限定されないが、例えば、(D50A+D50B)/D50A<1500を満たしていてもよく、(D50A+D50B)/D50A<1000を満たしていてもよく、(D50A+D50B)/D50A<500、(D50A+D50B)/D50A<200、(D50A+D50B)/D50A<100を満たしていてもよい。
 なお、化合物Aの上記粒径(D50A)及び化合物Bの上記粒径(D50B)はそれぞれ、後述するように、レーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布によるD50である。
 (化合物A)
 リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含み、アルジロダイト型構造を有する化合物Aは、本固体電解質中に結晶相として存在するものであってもよいし、又、本固体電解質中に化合物として存在するものであってもよい。
 上記「アルジロダイト型構造」とは、化学式:AgGeSで表される鉱物に由来する化合物群が有する構造である。本固体電解質がアルジロダイト型構造を有しているか否かは、例えば、前述したように、XRD測定などにより確認することができる。
 化合物Aは、通常、上記アルジロダイト型構造の結晶相を含む結晶性材料である。但し、ガラス成分すなわち非晶質成分を含んでいてもよい。
 アルジロダイト型構造を有する結晶相は、通常立方晶系の結晶相である。
 化合物Aは、上記アルジロダイト型構造を有する結晶相を含んでいてもよい。ここで、化合物Aが「アルジロダイト型構造を有する結晶相を含む」とは、化合物Aが少なくともアルジロダイト型構造を有する結晶相を含んでいれば足り、当該アルジロダイト型構造を有する結晶相とは異なる結晶相(「異相」とも称する)を含んでいてもよい。もちろん、当該異相を含んでいなくてもよい。当該異相を構成する化合物としては、例えばLiPS、ハロゲン化リチウムなどを挙げることができる。
 化合物Aにおいて、化合物Aを構成する全結晶相に対する、アルジロダイト型構造を有する結晶相の割合は、例えば10質量%以上であってもよく、20質量%以上であってもよく、50質量%以上であってもよい。中でも、化合物Aは、アルジロダイト型構造を有する結晶相を主相として含んでいることが好ましい。この際、「主相」とは、化合物Aを構成する全ての結晶相の総量に対して最も割合の大きい相を指す。よって、化合物Aにおいて、化合物Aを構成する全結晶相に対する、アルジロダイト型構造を有する結晶相の割合は、例えば、60質量%以上であることが好ましく、中でも70質量%以上、80質量%以上、90質量%以上であることがさらに好ましい。
 なお、結晶相の割合は、例えば、X線回折(XRD)パターンの解析によって含有割合(質量%)を算出して判定することができる。
 化合物Aが含有するハロゲン(X)元素としては、例えば、フッ素(F)元素、塩素(Cl)元素、臭素(Br)元素、ヨウ素(I)元素を挙げることができる。また、化合物Aが含有するハロゲン(X)元素は、上述した元素うちの一種又は二種以上の元素の組み合わせであってもよい。ハロゲン(X)元素は、中でも、塩素(Cl)元素、または臭素(Br)元素であることが好ましく、また、塩素(Cl)元素及び臭素(Br)元素の組みせであることが好ましい。
 化合物Aの組成例としては、例えば組成式(1):Li7-aPS6-a(Xは1種又は2種類以上のハロゲン(X)元素である。また、aは、0.2<a≦2.0を満たす。)を挙げることができる。
 前記組成式(1)において、ハロゲン(X)元素のモル比を示す「a」は0.2より大きく且つ2.0以下であることが好ましく、中でも0.4以上或いは1.7以下、その中でも0.5以上或いは1.65以下であることが特に好ましい。
 当該aがこのような範囲であれば、室温近傍でアルジロダイト型構造が安定であり、高いイオン伝導率を確保することができる。また、アルジロダイト型構造の基本骨格であるPS構造を生成しやすく、リチウムイオンの伝導性を効果的に高めることができる。
 他方、硫黄欠損をより一層低減することができるといった観点からは、前記組成式(1)において、ハロゲン(X)元素のモル比を示す「a」は1.4以上であることが好ましく、中でも1.5以上、その中でも1.55以上であることがさらに好ましい。
 なお、ハロゲン(X)元素が複数の元素(例えば塩素(Cl)元素、臭素(Br)元素)の組み合わせである場合、上記組成式(1)における「a」は、各元素のモル比の合計値である。
 また、化合物Aは、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素以外の元素を含んでいても構わない。例えば、リチウム(Li)元素の一部を他のアルカリ金属元素に置き換えたり、リン(P)元素の一部を他のプニクトゲン元素に置き換えたり、硫黄(S)元素の一部を他のカルコゲン元素に置き換えたりすることができる。
 上述のように、化合物Aは、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素以外に、例えば不可避不純物を含有していてもよい。化合物Aにおける不可避不純物の含有量は、性能への影響を低減するという観点から、例えば5mol%未満、好ましくは3mol%未満、特に好ましくは1mol%未満とすることができる。
 化合物Aは、レーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布によるD50A(「平均粒径(D50A)」又は「D50A」と称する)は、例えば0.1μm以上150.0μm以下であってもよい。化合物Aの平均粒径(D50A)は、例えば0.1μm以上であってもよく、0.3μm以上であってもよく、0.5μm以上であってもよい。一方、化合物Aの平均粒径(D50A)は、例えば50.0μm以下であってもよく、10.0μm以下であってもよく、5.0μm以下であってもよく、さらに1.0μm以下であってもよい。
 (化合物B)
 本固体電解質は、リチウム(Li)元素、塩素(Cl)元素及び臭素(Br)元素からなる化合物Bを含有することにより、大気中の水分に触れた際の硫化水素ガスの発生を抑制することができる。
 化合物Bは、本固体電解質中に化合物粒子として存在していてもよい。
 化合物Bとしては、例えばLiClとLiBrとの固溶体を挙げることができる。これは、例えばLiClとLiBrとを混合して不活性雰囲気中で加熱反応させて作製することができる。
 化合物Bにおける塩素(Cl)元素と臭素(Br)元素との元素比率(モル比)は特に限定されない。中でも、例えばCl:Brは、90:10~10:90であっても、80:20~20:80であっても、75:25~25:75であってもよい。また、本開示においては、Cl:Brが50:50であってもよい。
 化合物Bは、レーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布によるD50B(「平均粒径(D50B)」又は「D50B」と称する)は、例えば0.1μm以上50.0μm以下であってもよい。化合物Bの平均粒径(D50B)は、例えば0.1μm以上であってもよく、0.3μm以上であってもよく、0.5μm以上であってもよい。 一方、化合物Bの平均粒径(D50B)は、例えば100.0μm以下であってもよく、70.0μm以下であってもよく、50.0μm以下であってもよく、10.0μm以下であってもよく、5.0μm以下であってもよく、さらに1.0μm以下であってもよい。
 (その他の成分)
 本固体電解質は、化合物A及び化合物B以外の「他の相又は化合物」を含んでいてもよく、含んでいなくてもよい。
 当該「他の相又は化合物」としては、例えばLiPS、LiX(Xはハロゲンである。)、ハロゲン化リチウムなどを挙げることができる。
 (本固体電解質)
 本固体電解質の好ましい組成例として、例えば、組成式:LibcdCleBrfと表すことができる(上記式におけるe、f及びcは、1.6<e+f/c≦7.0を満たす。また、b、dは任意の実数である。)。
 上記式におけるe、f及びcは、中でも1.7≦e+f/cを満たすことが好ましい。一方、上記式におけるe、f及びcは、中でもe+f/c≦6.4を満たすことが好ましく、e+f/c≦2.4を満たすことが更に好ましく、e+f/c≦2.1を満たすことが一層好ましい。
 かかる組成は、化合物Aのハロゲン(X)元素として、塩素(Cl)元素又は臭素(Br)元素、或いは、これらの両方を使用し、且つ、化合物A及びBの混合比率を適宜調整することで得ることができる。上記式における「e+f/c」の値は、例えば、本固体電解質を全溶解させてICP法により測定することもできる。
 本固体電解質中の化合物Bの含有量は、本開示の効果が得られる程度であればよく、特に限定されない。具体的な化合物Bの含有量は、1質量%以上であってもよく、5質量%以上であってもよく、10質量%以上であってもよい。一方、本固体電解質中の化合物Bの含有量は、例えば100質量%以下であってもよく、80質量%以下であってもよく、50質量%以下であってもよく、20質量%以下であってもよい。
 なお、前記化合物A及びBの含有量は、XRD測定結果より算出することができる。
 (粒径)
 本固体電解質の形態は粒子であってもよく、そのときの粒径について以下説明する。
 本固体電解質は、レーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布によるD50(「平均粒径(D50)」又は「D50」と称する)が0.1μm以上150μm以下であることが好ましい。
 本固体電解質のD50が0.1μm以上である場合には、例えば本固体電解質からなる粉末全体の表面積が増えることを抑制し、抵抗増大及び活物質との混合が困難になるといった不具合の発生を抑制することができる。他方、本固体電解質のD50が150μm以下である場合には、例えば本固体電解質に組み合わせて用いる他の固体電解質や活物質の隙間等に、本固体電解質が入りやすくなる。そのため、固体電解質の接触点及び接触面積が大きくなり、イオン伝導性の向上を図ることができる。
 かかる観点から、本固体電解質の平均粒径(D50)は、例えば0.1μm以上であることが好ましく、中でも0.3μm以上であることが好ましく、特に0.5μm以上であることが好ましい。一方、本固体電解質の平均粒径(D50)は、例えば150.0μm以下であることが好ましく、中でも70.0μm以下であることが好ましく、特に50.0μm以下であることが好ましい。
 本固体電解質を電極内に加える場合の本固体電解質の平均粒径(D50)は、正極活物質の平均粒径(D50)又は負極活物質の平均粒径(D50)の1%以上100%以下であることが好ましく、中でも3%以上或いは50%以下、その中でも5%以上或いは30%以下であることがさらに好ましい。
 本固体電解質の平均粒径(D50)が、上記範囲内であることにより、正極活物質又は負極活物質(まとめて「活物質」とも称する)間等を隙間なく埋めることができ、電極の充填率を高めることができる。
 <本固体電解質の製造方法>
 次に、本固体電解質の製造方法の一例について説明する。但し、本固体電解質の製造方法は、ここで説明する本固体電解質の製造方法に限定されるものではない。
 (混合による製法)
 本固体電解質は、例えば、次に説明するようにして製造することができる。
 本固体電解質は、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含み、アルジロダイト型構造を有する化合物Aと、リチウム(Li)元素、塩素(Cl)元素及び臭素(Br)元素からなる化合物Bとを混合して作製することができる。
 (化合物A)
 混合による上記製法で用いる化合物Aは、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含み、アルジロダイト型構造を有する化合物であれば、特に限定するものではないから、一般的に公知の材料を用いることができる。
 化合物Aの製造方法としては、例えば、所定の原料を混合して原料混合物を得(「混合工程」)、得られた原料混合物を、硫化水素ガス(H2S)を流通させながら加熱する(「焼成工程」)ことにより、製造する方法を挙げることができる。但し、このような製造方法に限定するものではない。
 上記の原料とは、本固体電解質を構成する元素を含む物質であり、リチウム(Li)元素を含有する物質、硫黄(S)元素を含有する物質、及び、リン(P)元素を含有する物質、及び、ハロゲン(X)元素を含有する物質である。
 ここで、前記リチウム(Li)元素を含有する物質としては、例えば硫化リチウム(LiS)、酸化リチウム(LiO)、炭酸リチウム(LiCO)等のリチウム化合物、及びリチウム金属単体等を挙げることができる。なお、これらの物質は、一種又は二種以上を組み合わせて用いることができる。
 前記硫黄(S)元素を含有する物質としては、例えば三硫化二リン(P)、五硫化二リン(P)等の硫化リン等を挙げることができる。また、前記硫黄(S)元素を含有する物質として、硫黄(S)単体を用いることもできる。
 前記リン(P)元素を含有する物質としては、例えば三硫化二リン(P)、五硫化二リン(P)等の硫化リン、リン酸ナトリウム(NaPO)等のリン化合物、及びリン単体等を挙げることができる。なお、これらの物質は、一種又は二種以上を組み合わせて用いることができる。
 前記X(ハロゲン)元素を含有する物質としては、例えば、フッ素(F)、塩素(Cl)、臭素(Br)及びヨウ素(I)からなる群から選択される1種又は2種以上の元素と、ナトリウム(Na)、リチウム(Li)、ホウ素(B)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、ゲルマニウム(Ge)、ヒ素(As)、セレン(Se)、スズ(Sn)、アンチモン(Sb)、テルル(Te)、鉛(Pb)及びビスマス(Bi)からなる群から選択される1種又は2種以上の元素との化合物、又は、当該化合物にさらに酸素又は硫黄が結合した化合物を挙げることができる。より具体的には、例えば、LiF、LiCl、LiBr、LiI等のハロゲン化リチウム、PF、PF、PCl、PCl、POCl、PBr、POBr、PI、PCl、P等のハロゲン化リン、SF、SF、SF、S10、SCl、SCl、SBr等のハロゲン化硫黄、NaI、NaF、NaCl、NaBr等のハロゲン化ナトリウム、BCl、BBr、BI等のハロゲン化ホウ素などを挙げることができる。なお、これらの物質は、一種又は二種以上を組み合わせて用いることができる。中でも、ハロゲン化リチウム(LiX(Xはハロゲンである))を用いることが好ましい。
 固体電解質原料の混合方法は、特に制限するものではない。例えばペイントシェイカー、ボールミル、ビーズミル、ホモジナイザー等で混合すればよい。
 但し、メカニカルミリング法及び溶融急冷法を採用して混合し、混合物に過剰な運動エネルギーを掛けると、混合工程の段階で添加した硫黄もしくは硫黄化合物の一部、または全部が気化してしまうため、これらメカニカルミリング法及び溶融急冷法は採用しないことが好ましい。
 原料、例えば硫化リチウム及び硫化リンは、大気中で極めて不安定で、水分と反応して分解し、硫化水素ガスを発生したり、酸化したりするため、不活性ガス雰囲気に置換したグローブボックス内などで、上記混合工程を実施することが好ましい。
 上記混合工程で得られた原料混合物は、必要に応じて、乾燥、攪拌、洗浄、整粒、分級などの処理を施した後、焼成工程に供給するようにしてもよい。
 焼成工程では、混合工程で得られた原料混合物を、硫化水素ガス(HS)を流通させながら加熱して焼成することが好ましい。焼成工程は、1段階の焼成工程であってもよく、後述する実施例のような2段階の焼成工程であってもよい。
 焼成温度すなわち、焼成する際の品温の最高到達温度は、300℃より高温であればよく、中でも700℃以下、その中でも400℃以上或いは600℃以下とするのが所望の固相反応及び結晶化反応を起こさせる観点からより好ましい。
 焼成時間、すなわち、300℃より高温に加熱する時間は、混合物の固相反応又は結晶化反応が十分進行する程度であればよく、混合物の混合状態又は焼成温度により適宜調整することが好ましい。典型的には1時間以上10時間以下であることが好ましく、中でも2時間以上或いは6時間以下であることがさらに好ましい。
 なお、この際の焼成温度は、品温を意味し、例えば、焼成物中に熱電対を挿入して測定することができる。
 上記焼成後、必要に応じて解砕粉砕し、必要に応じて分級してもよい。例えば、遊星ボールミル、振動ミル、転動ミル等の粉砕機、混練機等を使用して、粉砕乃至解砕することが好ましい。
 (化合物B)
 混合による上記製法で用いる化合物Bは、例えば、LiCl及びLiBrを混合して不活性ガス雰囲気中で加熱して作製することができる。但し、かかる製造方法に限定するものではない。
 この際、加熱温度、すなわち品温の最高到達温度及び加熱時間は、所望の化合物Bが得られる程度であればよく、特に限定するものではない。
 上記加熱反応は、例えば、アルゴンガスなどの不活性ガス雰囲気中で行うことができる。
 (上記混合以外の方法による製法)
 本固体電解質は、例えば、上記のように化合物Aを合成する際、その条件を調整して、化合物Aの結晶相とともに、化合物Bを異相として生じさせることで、化合物A及び化合物Bを含有する本固体電解質を作製することもできる。
 <本固体電解質の用途>
 本固体電解質は、固体電解質層、正極層及び負極層のうちのいずれか1層又はこれらの2層以上を構成する材料として用いることができる。したがって、本固体電解質は、例えば固体電解質層を有する電池、いわゆる全固体電池に用いることができる。より具体的には、リチウム全固体電池に用いることができる。リチウム全固体電池は、一次電池であっても、二次電池であってもよい。
 <本電池>
 次に、本開示の実施形態の一例として、本固体電解質を用いた電池(「本電池」と称する)について説明する。
 本電池は、正極層と、負極層と、上記正極層及び上記負極層の間の固体電解質層とを有し、本固体電解質を含有する電池である。本電池は、例えば、前記負極層及び前記固体電解質層のうちの少なくとも一層が本固体電解質を含有することが好ましい。本電池は、いわゆる全固体電池である。
 本電池の形状としては、例えばラミネート型、円筒型及び角型等を挙げることができる。本固体電解質は、耐湿性に優れており、乾燥空気中で取り扱っても特性劣化が少ないため、例えばドライルームなどでも全固体電池の組立作業を行うことができる。
 ここで、固体電解質層は、例えば本固体電解質とバインダー及び溶剤からなるスラリーを基体上に滴下し、ドクターブレードなどで擦り切る方法、基体とスラリーを接触させた後にエアーナイフで切る方法、スクリーン印刷法等で塗膜を形成し、その後加熱乾燥を経て溶剤を除去する方法等で製造することができる。又、粉末状の本固体電解質をプレス等により圧粉体とした後、適宜加工して製造することもできる。
 リチウムイオン伝導性を高める観点から、本固体電解質を含む固体電解質層は、空隙率を例えば50%以下にすることが好ましく、中でも30%以下、その中でも20%以下にすることがさらに好ましい。固体電解質層の空隙率は、例えば粉末状の本固体電解質を圧粉体とする際のプレス圧により調整することができる。本開示においては、上記プレス圧が、例えば20MPa以上であることが好ましい。
 ここで、空隙率は、例えば液相法(アルキメデス法)で求めた、固体電解質層の真密度と見かけの密度から、下記に示す関係式により算出することができる。
 空隙率(%)=(真密度-見かけの密度)÷真密度×100
 また、本固体電解質を含む層の厚さは、短絡防止と体積容量密度のバランスから、典型的には5μm以上300μm以下であることが好ましく、中でも10μm以上或いは100μm以下であることがさらに好ましい。
 なお、本固体電解質と他の固体電解質を混ぜた固体電解質層として使用することも可能である。非晶質(ガラス)、ガラスセラミックス、結晶性材料の何れとも組み合わせて用いることが可能である。硫化物固体電解質として具体的には、LiS-P系、Li、Li11等を挙げることができる。また、組み合わせる固体電解質は非硫化物でもよく、例えば酸化物系固体電解質でも構わない。
 正極層を構成する正極材としては、リチウムイオン電池の正極活物質として使用されている正極材を適宜使用可能である。例えばリチウムを含む正極活物質、具体的にはスピネル型リチウム遷移金属酸化物及び層状構造を備えたリチウム金属酸化物等を挙げることができる。高電圧系正極材を使用することで、エネルギー密度の向上を図ることができる。
 正極材は、正極活物質のほかに、導電化材或いはさらに他の材料、例えば固体電解質を含ませて正極材としてもよく、当該固体電解質として本固体電解質を用いてもよい。
 負極層を構成する負極材としては、リチウムイオン電池の負極活物質として使用されている負極材を適宜使用可能である。例えば、本固体電解質は、電気化学的に安定であることから、リチウム金属又はリチウム金属に匹敵する卑な電位(約0.1V vs Li/Li)で充放電するグラファイト、人造黒鉛、天然黒鉛、難黒鉛化性炭素(ハードカーボン)などの炭素系材料を使用することができる。そのため、全固体電池のエネルギー密度を大きく向上させることができる。また、高容量材料として有望なケイ素又は錫を活物質として使用することもできる。一般的な電解液を用いたリチウム二次電池では、充放電に伴い電解液と活物質が反応し、活物質表面に腐食が生じるため、電池特性の劣化が著しい。一方、上記電解液の代わりに本固体電解質を用い、負極活物質にケイ素又は錫を用いると、このような腐食反応が生じないため、電池の耐久性の向上を図ることができる。
 負極材についても、負極活物質のほかに、導電化材或いはさらに他の材料、例えば固体電解質を含ませて負極材としてもよく、当該固体電解質として本固体電解質を用いてもよい。
 <用語の解説>
 本開示において「α以上」又は「α≦」(αは任意の数字)と記載した場合、「αより大きいことが好ましい」旨の意図を包含し、「β以下」又は「β≧」(βは任意の数字)と記載した場合、「βより小さいことが好ましい」旨の意図を包含する。
 以下、本開示を下記実施例及び比較例に基づいてさらに詳述する。
 (化合物A)
 化合物Aとして、アルジロダイト型構造を有する化合物を準備した。化合物Aの組成は、Li5.4PS4.4Cl0.8Br0.8であった。
 (化合物B)
 化合物Bについては、塩化リチウム(LiCl)粉末と、臭化リチウム(LiBr)粉末とを50:50の割合で加えて、遊星ボールミルで10時間粉砕混合を行い、得られた混合粉末を、アルゴンガス(Ar)雰囲気中で、500℃(品温)を2時間維持するように加熱して、化合物B(LiCl0.5Br0.5)を得た。
 <実施例1>
 上記化合物Aと上記化合物Bとを乳鉢で混合して固体電解質(サンプル)を得た。この際、固体電解質(サンプル)中の化合物Bの含有量を1質量%とした。
 <実施例2>
 上記化合物Bの含有量を5質量%混合したこと以外は、実施例1と同様にして固体電解質(サンプル)を得た。
 <実施例3>
 上記化合物Bの含有量を10質量%混合したこと以外は、実施例1と同様にして固体電解質(サンプル)を得た。
 <実施例4>
 上記化合物Bの含有量を20質量%混合したこと以外は、実施例1と同様にして固体電解質(サンプル)を得た。
 <実施例5>
 上記化合物Bの含有量を50質量%混合したこと以外は、実施例1と同様にして固体電解質(サンプル)を得た。
 <参考例1>
 上記化合物Bの含有量を80質量%混合したこと以外は、実施例1と同様にして固体電解質(サンプル)を得た。
 <参考例2>
 上記化合物Bのみを用いて固体電解質(サンプル)を得た。
 <比較例1>
 上記化合物Aを固体電解質(サンプル)として用いた。
 なお、実施例1~5、参考例1~2及び比較例1は、いずれも化合物A及び化合物Bの総量が同じとなるようにして調製した。
 <元素組成の測定>
 実施例1~5、比較例1及び参考例1~2で得られた固体電解質(サンプル)を、それぞれ全溶解してICP発光分析法により元素組成(P、Cl、Br)を測定した。測定結果は、表1に示す。
 <X線回折測定>
 上記化合物Bと、該化合物Bを作製した際に用いた塩化リチウム(LiCl)と、臭化リチウム(LiBr)とについて、X線回折法(XRD、Cu線源)で分析し、X線回折パターンを得て、各位置におけるピーク強度(counts)を測定した。結果を図1に示す。
 リガク社製のXRD装置「Smart Lab」を用いて、大気非曝露で走査軸:2θ/θ、走査範囲:10°以上140°以下、ステップ幅0.01°、走査速度1°/minの条件の下で行った。内部標準としてSi粉末(和光純薬工業製、純度99.9%)を5質量%混合し、角度補正に用いた。また、X線源はヨハンソン型結晶を用いてCuKα1線とし、1次元検出器にて測定を行った。
 図1のように、化合物Bは、2θ=29.1°±0.5°、及び、33.7°±0.5°のそれぞれの位置にピークが存在していた(図1の一番上のパターン)。これらのピークは、LiCl(図1の一番下のパターン)及びLiBr(図1の真中のパターン)にそれぞれ帰属するピークの中間に位置しており、LiCl及びLiBrの固溶体であると考えることができる。
 また、上記化合物Aについて、上記同様にX線回折法(XRD、Cu線源)で分析し、X線回折パターンを得て、各位置におけるピーク強度(counts)を測定した結果、アルジロダイト型構造からなることを確認した。
 この際、アルジロダイト型結晶構造に由来するピークの同定には、PDF番号00-034-0688のデータを用いた。
 さらに、実施例1~5及び比較例1で得られた固体電解質(サンプル)についても、上記同様にX線回折法(XRD、Cu線源)で分析し、X線回折パターンを得て、各位置におけるピーク強度(counts)を測定した(図2参照)。
 その結果、実施例1~5で得られた固体電解質(サンプル)については、アルジロダイト型構造に由来するピーク、すなわち、2θ=15.34°±1.00°、17.74°±1.00°、25.19°±1.00°、29.62°±1.00°、30.97°±1.00°、44.37°±1.00°、47.22°±1.00°及び51.70°±1.00°のほか、2θ=54.26°±1.00°、58.35°±1.00°、60.72°±1.00°、61.50°±1.00°、70.46°±1.00°及び72.61°±1.00°にピークを有すると共に、化合物Bに由来するピーク、すなわち、2θ=29.1°±0.5°及び33.7°±0.5°のほか、2θ=49.0°±0.5°、58.0°±0.5°及び60.0°±0.5°にピークを有することが確認された。
 また、得られたX線回折パターンにおいて、2θ=30.2°±0.5°に位置するピークの強度をIとし、2θ=29.1°±0.5°に位置するピークの強度をIとしたときの、I及びIの比(I/I)を求めた。結果は、表2に示す。
 <硫化水素(H2S)の発生量の測定>
 実施例1~5及び比較例1で得た固体電解質(サンプル)を、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で50mgずつ秤量し、ラミネートフィルムで密閉された袋に入れた。その後、乾燥空気と大気を混合することで調整した露点-30℃雰囲気で室温(25℃)に保たれた恒温恒湿槽の中に、容量1500cmのガラス製のセパラブルフラスコを入れ、セパラブルフラスコの内部が恒温恒湿槽内の環境と同一になるまで保持してから、サンプルが入った密閉袋を恒温恒湿槽の中で開封し、素早くセパラブルフラスコにサンプルを配置した。サンプルをセパラブルフラスコに配置し、前記フラスコを密閉した直後から60分経過までに発生した硫化水素について、60分後に硫化水素センサー(理研計器製GX-2009)にて硫化水素濃度を測定した。そして、60分経過後の硫化水素濃度から硫化水素の体積を算出して、60分経過後の硫化水素発生量を求めた。結果は、表1に示す。また、実施例3及び比較例1の結果は、図3に示す。
 上記実施例1~5の結果より、Li、P、S及びハロゲンを含むアルジロダイト型構造を有する化合物Aのほかに、Li、Cl及びBrからなる化合物Bを含む固体電解質は、化合物Aのみからなり、化合物Bを含まない比較例1に比べて、大気中の水分に触れた際に硫化水素ガスの発生を効果的に抑制することができることが分かった。
 <粒度分布(D50)の測定>
 化合物A及び化合物Bについて、レーザー回折粒子径分布測定装置用自動試料供給機(日機装株式会社製「Microtorac SDC」)を用い、D50A及びD50Bを測定した。具体的には、以下のような方法により測定した。
 まず、トルエン中に分散させたサンプル(粉体)を、40%の流速中、40Wの超音波を360秒間複数回照射した後、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定した。次に、得られた体積基準粒度分布のチャートからD50を測定した。超音波の照射回数は、超音波照射前後におけるD50の変化率が8%以下となるまでの回数とした。
 なお、測定の際の水溶性溶媒は60μmのフィルターを通した。測定条件は、溶媒屈折率を1.33、粒子透過性条件を「透過」、粒子屈折率2.46、形状を「非球形」とし、測定レンジを0.133~704.0μm、測定時間を30秒とし、2回測定した平均値をそれぞれの値とした。
 <イオン伝導率(mS/cm)の測定>
 実施例1~5及び比較例1で得た固体電解質(サンプル)について、イオン伝導率(mS/cm)の測定を行った。結果は、表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <全固体電池セルの作製と評価>
 実施例1~5、参考例1~2又は比較例1で得た固体電解質(サンプル)を配合した正極材又は負極材を調製し、全固体電池を作製して、電池特性評価(初回充放電容量)を行った。
 (材料)
 正極活物質として、層状化合物であるLiNi0.5Co0.2Mn0.3(NCM)粉末(D50=6.7μm)を用い、負極活物質としてグラファイト(D50=20μm)を用い、固体電解質として、実施例1~5、参考例1~2又は比較例1で得たサンプルを用いた。
 (電極材調製)
 正極材は、正極活物質、固体電解質及び導電助剤(アセチレンブラック)を、質量比で60:37:3の割合で乳鉢混合することで調製し、20MPaで1軸プレス成型して正極材ペレットを得た。
 負極材は、グラファイトと固体電解質を、質量比で64:36の割合で乳鉢混合することで調製した。
 (全固体電池セルの作製)
 上下を開口したポリプロピレン製の円筒(開口径10.5mm、高さ18mm)の下側開口部を正極電極(SUS製)で閉塞し、正極電極上に正極材ペレットを載せた。その上から固体電解質を載せて、180MPaにて1軸プレスし正極材と固体電解質層を形成した。その上から負極材を載せた後、負極電極(SUS製)で閉塞して550MPaにて1軸成形し、およそ100μm厚の正極材、およそ300μm厚の固体電解質層、およそ20μm厚の負極材の3層構造からなる全固体電池セルを作製した。この際、上記全固体電池セルの作製においては、露点温度-60℃のアルゴンガスで置換されたグローブボックス内で行った。
 (電池特性評価(初回充放電容量))
 電池特性測定は、60℃に保たれた環境試験機内に全固体電池セルを入れて充放電測定装置に接続して評価した。1mAを1Cとして電池の充放電を行った。0.1Cで4.5VまでCC-CV方式で充電し、初回充電容量を得た。放電は0.1Cで2.5VまでCC方式で行い、初回放電容量を得た。
 (電池特性評価(0.1C放電容量、5C/0.1C容量維持率))
 電池特性評価は、25℃に保たれた環境試験機内に全固体電池セルを入れて充放電測定装置に接続して評価した。3mAを1Cとして電池の充放電を行った。0.1Cで4.5VまでCC-CV方式で充電し、初回充電容量を得た。放電は0.1Cで2.5VまでCC方式で行い初回放電容量を得た。
 次に0.2Cで4.5Vまで定電流定電位充電した後に、5Cで2.5Vまで定電流放電し、5Cにおける放電容量を得た。0.1Cの放電容量を100%としたときの5Cの放電容量の割合を算出し、充放電効率(%)及びレート特性(5C/0.1C(%))を得た。
 実施例1~5、参考例1~2又は比較例1で得た固体電解質(サンプル)をそれぞれ、正極材ペレットを作製する際の固体電解質として使用して正極層を作製し、上記のように全固体電池セルを作製して電池特性評価を行った。結果を表3に示す。
 なお、実施例1~5、参考例1~2又は比較例1で得た固体電解質(サンプル)を用いて上記のように正極層を作製した際、固体電解質層を構成する固体電解質としては前記化合物Aを用い、負極層に含まれる固体電解質としては前記化合物Aを用いた。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1~5で得られた固体電解質を正極層に用いた場合であっても、電池特性の低下を抑制することができた。具体的には、実施例1~5では、放電容量がいずれも160mAh/g以上であり、良好な結果が得られた。また、容量維持率は、特に実施例1~4で20%以上となり、より良好な結果が得られた。
 次に、実施例1~5、参考例1~2又は比較例1で得た固体電解質(サンプル)をそれぞれ、負極材ペレットを作製する際の固体電解質として使用して負極層を作製し、上記のように全固体電池セルを作製して電池特性評価を行った。結果を表3に示す。
 なお、実施例1~5、参考例1~2又は比較例1で得た固体電解質(サンプル)を用いて上記のように負極層を作製した際、固体電解質層を構成する固体電解質としては前記化合物Aを用い、正極層に含まれる固体電解質としては前記化合物Aを用いた。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例1~5及び参考例1~2で得られた固体電解質を負極層に用いた場合であっても、電池特性の低下を抑制することができた。具体的には、実施例1~5及び参考例1~2では、初回電池特性及びレート特性のいずれにおいても、良好な結果が得られた。
 
 
 

Claims (7)

  1.  リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含み、アルジロダイト型構造を有する化合物(「化合物A」と称する)と、
     リチウム(Li)元素、塩素(Cl)元素及び臭素(Br)元素からなる化合物であって、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=29.1°±0.5°、及び、33.7°±0.5°のそれぞれの位置にピークを有する化合物(「化合物B」と称する)と、を含む硫化物固体電解質。
  2.  前記化合物Bは、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=49.0°±0.5°、58.0°±0.5°、及び60.0°±0.5°のそれぞれの位置にピークを有する、請求項1に記載の硫化物固体電解質。
  3.  前記化合物Aの粒径をD50Aとし、前記化合物Bの粒径をD50Bとしたとき、前記D50A及び前記D50Bが、1<(D50A+D50B)/D50Aを満たす、請求項1または請求項2に記載の硫化物固体電解質。
  4.  前記硫化物固体電解質中の前記化合物Bの含有量が、1質量%以上50質量%以下である、請求項1から請求項3までのいずれかの請求項に記載の硫化物固体電解質。
  5.  リン(P)元素の含有量(モル)に対する、塩素(Cl)元素及び臭素(Br)元素の合計含有量(モル)の比率((Cl+Br)/P)が、1.6<(Cl+Br)/P<20.0を満たす、請求項1から請求項4までのいずれかの請求項に記載の硫化物固体電解質。
  6.  CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=30.2°±0.5°に位置するピークの強度をIとし、2θ=29.1°±0.5°に位置するピークの強度をIとしたとき、前記I及び前記Iの比(I/I)が0<I/I≦3.5を満たす、請求項1から請求項5までのいずれかの請求項に記載の硫化物固体電解質。
  7.  正極層と、負極層と、前記正極層及び前記負極層の間の固体電解質層とを有する電池であって、
     請求項1から請求項6までのいずれかの請求項に記載の硫化物固体電解質を含有する、電池。
     
PCT/JP2019/043449 2018-11-08 2019-11-06 硫化物固体電解質及び電池 WO2020095936A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980035530.0A CN112203975B (zh) 2018-11-08 2019-11-06 硫化物固体电解质和电池
EP19882819.6A EP3763671B1 (en) 2018-11-08 2019-11-06 Sulfide solid electrolyte and battery
JP2020512630A JP6738983B1 (ja) 2018-11-08 2019-11-06 硫化物固体電解質及び電池
US17/045,696 US11108084B2 (en) 2018-11-08 2019-11-06 Sulfide solid electrolyte and battery
KR1020207025648A KR102236003B1 (ko) 2018-11-08 2019-11-06 황화물 고체 전해질 및 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-210466 2018-11-08
JP2018210466 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020095936A1 true WO2020095936A1 (ja) 2020-05-14

Family

ID=70612068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043449 WO2020095936A1 (ja) 2018-11-08 2019-11-06 硫化物固体電解質及び電池

Country Status (6)

Country Link
US (1) US11108084B2 (ja)
EP (1) EP3763671B1 (ja)
JP (1) JP6738983B1 (ja)
KR (1) KR102236003B1 (ja)
CN (1) CN112203975B (ja)
WO (1) WO2020095936A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190940A1 (ja) * 2021-03-11 2022-09-15 三井金属鉱業株式会社 固体電解質及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950585A4 (en) * 2019-03-29 2023-01-25 Furukawa Co., Ltd. DIPHOSPHORPENTASULFIDE COMPOSITION FOR SULPHIDE-BASED INORGANIC SOLID ELECTROLYTE MATERIALS
EP4220801A1 (en) * 2020-09-28 2023-08-02 Posco Jk Solid Solution Co., Ltd. Sulfide-based solid electrolyte for all-solid lithium secondary battery and method for preparing sulfide-based solid electrolyte
CN117936882B (zh) * 2024-03-25 2024-06-04 四川新能源汽车创新中心有限公司 一种硫化物电解质的改性方法、硫化物电解质及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137889A (ja) 2011-12-28 2013-07-11 Mitsui Mining & Smelting Co Ltd 硫化物系固体電解質
WO2015001818A1 (ja) 2013-07-04 2015-01-08 三井金属鉱業株式会社 結晶性固体電解質及びその製造方法
WO2015012042A1 (ja) 2013-07-25 2015-01-29 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP2016024874A (ja) 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
WO2016104702A1 (ja) * 2014-12-26 2016-06-30 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物
WO2018003333A1 (ja) 2016-07-01 2018-01-04 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
WO2018047566A1 (ja) 2016-09-12 2018-03-15 出光興産株式会社 硫化物固体電解質

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888609B2 (ja) 2012-02-06 2016-03-22 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5561383B2 (ja) 2013-01-11 2014-07-30 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
CN107710346A (zh) * 2015-06-17 2018-02-16 出光兴产株式会社 固体电解质的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137889A (ja) 2011-12-28 2013-07-11 Mitsui Mining & Smelting Co Ltd 硫化物系固体電解質
WO2015001818A1 (ja) 2013-07-04 2015-01-08 三井金属鉱業株式会社 結晶性固体電解質及びその製造方法
WO2015012042A1 (ja) 2013-07-25 2015-01-29 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP2016024874A (ja) 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
WO2016104702A1 (ja) * 2014-12-26 2016-06-30 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物
WO2018003333A1 (ja) 2016-07-01 2018-01-04 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
JP2018067552A (ja) 2016-07-01 2018-04-26 三井金属鉱業株式会社 リチウム二次電池用硫化物系固体電解質
WO2018047566A1 (ja) 2016-09-12 2018-03-15 出光興産株式会社 硫化物固体電解質

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NATARAJAN, V. ET AL.: "A STUDY ON THE COMPOSITION OF A BINARY MIXED CRYSTAL", JOURNAL OF CRYSTAL GROWTH, vol. 79, 1986, pages 1001 - 1004, XP024739750, DOI: 10.1016/0022-0248(86)90586-5 *
RAMONDO, F. ET AL.: "MODEL CALCULATIONS FOR MIXED ALKALI METAL HALIDE MICROCLUSTERS", JOURNAL OF MOLECULAR STRUCTURE, vol. 193, 1989, pages 203 - 210, XP055706025 *
See also references of EP3763671A4
UKAWA, YOSUKE ET AL.: "Characterization of solid electrolyte argyrodite-type Li6PS5Cll-xBrx", LECTURE ABSTRACT OF 82ND CONFERENCE IN THE ELECTROCHEMICAL SOCIETY OF JAPAN, 9 March 2015 (2015-03-09), XP009513841 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190940A1 (ja) * 2021-03-11 2022-09-15 三井金属鉱業株式会社 固体電解質及びその製造方法

Also Published As

Publication number Publication date
EP3763671A1 (en) 2021-01-13
US11108084B2 (en) 2021-08-31
JP6738983B1 (ja) 2020-08-12
US20210028486A1 (en) 2021-01-28
EP3763671A4 (en) 2021-07-07
KR102236003B1 (ko) 2021-04-05
JPWO2020095936A1 (ja) 2021-02-15
KR20200108487A (ko) 2020-09-18
CN112203975B (zh) 2021-07-23
EP3763671B1 (en) 2022-04-13
CN112203975A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
JP6703216B1 (ja) 硫黄含有化合物、固体電解質及び電池
JP6997216B2 (ja) 固体電解質
JP6704098B1 (ja) 硫化物系化合物粒子、固体電解質及びリチウム二次電池
JP6738983B1 (ja) 硫化物固体電解質及び電池
JP7329062B2 (ja) 固体電解質、電極合剤及び電池
US20230038374A1 (en) Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer and battery using same
CN113508484A (zh) 硫化物固体电解质
US20240154155A1 (en) Solid electrolyte and method for producing same
JP7105133B2 (ja) 結晶性硫化物系固体電解質の製造方法
TWI829873B (zh) 硫化物固體電解質及電池
WO2022210471A1 (ja) 固体電解質
TWI829867B (zh) 含硫化合物、固體電解質及電池
WO2022186303A1 (ja) 固体電解質、並びに固体電解質を用いた電極合剤、固体電解質層及び電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020512630

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207025648

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019882819

Country of ref document: EP

Effective date: 20201007

NENP Non-entry into the national phase

Ref country code: DE