WO2020095754A1 - 波長変換装置 - Google Patents

波長変換装置 Download PDF

Info

Publication number
WO2020095754A1
WO2020095754A1 PCT/JP2019/042304 JP2019042304W WO2020095754A1 WO 2020095754 A1 WO2020095754 A1 WO 2020095754A1 JP 2019042304 W JP2019042304 W JP 2019042304W WO 2020095754 A1 WO2020095754 A1 WO 2020095754A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
temperature
converter
wavelength converter
Prior art date
Application number
PCT/JP2019/042304
Other languages
English (en)
French (fr)
Inventor
毅伺 梅木
拓志 風間
圓佛 晃次
貴大 柏崎
忠永 修
笠原 亮一
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201980072993.4A priority Critical patent/CN112969960B/zh
Priority to US17/290,557 priority patent/US11385521B2/en
Publication of WO2020095754A1 publication Critical patent/WO2020095754A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification

Definitions

  • the present invention relates to a wavelength conversion device, and more particularly to a wavelength conversion device including an optical element using a nonlinear optical effect and used in an optical communication system, an optical measurement system, or the like.
  • periodically poled lithium niobate PPLN
  • SHG second harmonic generation
  • DFG difference frequency generation
  • SHG second harmonic generation
  • FDG difference frequency generation
  • the mid-infrared wavelength range of 2-5 ⁇ m there is a strong absorption line such as the standard vibration of various environmental gases in the mid-infrared wavelength range of 2-5 ⁇ m, so development of a small mid-infrared light source is desired.
  • a technically matured excitation light source in the vicinity of 1 ⁇ m and a DFG capable of using signal light in the communication wavelength band are considered promising.
  • an excitation light source near 1 ⁇ m is used, and visible light such as green light is emitted by SHG or SFG.
  • the wavelength conversion technology capable of generating the light is expected to be promising.
  • the wavelength conversion technology using DFG When the wavelength conversion technology using DFG is used, it is possible to convert light in the wavelength band of 1.55 ⁇ m, which is mainly used in optical fiber communication, into another wavelength band at once, and therefore, it is possible to perform optical routing and light in the wavelength division multiplexing system. It can be applied to avoiding collision of wavelengths in routing.
  • the wavelength conversion device is considered as one of the key devices for constructing a large capacity communication optical network.
  • signal distortion compensation can be performed by using the fact that the converted light becomes phase conjugate light with respect to the signal light.
  • the wavelength conversion device is considered as one of the key devices that can reduce dispersion and nonlinear signal distortion.
  • a wavelength conversion element By using a wavelength conversion element with high wavelength conversion efficiency, it is possible to configure a signal light amplifier called optical parametric amplification by transferring energy from pumping light power to signal light.
  • a phase sensitive amplifier having an amplification characteristic according to the phase relationship between pumping light and signal light is expected as a technology capable of low-noise optical amplification.
  • an optical waveguide type device In order to obtain high efficiency in PPLN, an optical waveguide type device is effective. This is because the wavelength conversion efficiency is proportional to the power density of the light propagating in the nonlinear medium, and the light can be confined in a limited range by forming the waveguide structure. Therefore, various waveguides using a nonlinear medium have been researched and developed.
  • a diffusion type waveguide called a Ti diffusion waveguide or a proton exchange waveguide.
  • these waveguides have problems from the viewpoint of optical damage resistance and long-term reliability, because impurities are diffused into the crystal during fabrication.
  • the diffusion type waveguide when high-intensity light is incident on the waveguide, the crystal is damaged by the photorefractive effect, so that the optical power that can be input to the waveguide is limited.
  • ridge-type optical waveguides that have features such as high optical damage resistance, long-term reliability, and easy device design.
  • a known method for manufacturing a ridge-type optical waveguide is to bond two substrates with an adhesive, thin one of the substrates, and then perform ridge processing to manufacture the ridge-type optical waveguide.
  • the method of adhering the substrates to each other with an adhesive has a problem in that the thin film is cracked when the temperature changes because the adhesive and the substrate have different thermal expansion coefficients.
  • the adhesive is deteriorated by the second harmonic light generated in the waveguide, there is a problem that the waveguide loss increases during operation and the efficiency of wavelength conversion deteriorates. Furthermore, there is also a problem that the film thickness of the single crystal film becomes non-uniform due to the non-uniformity of the adhesive layer, and the phase matching wavelength of the wavelength conversion element shifts.
  • the direct bonding technology is known as a technology for firmly bonding substrates without using an adhesive.
  • the direct bonding method is a method in which wafers that have been surface-treated with a chemical agent are first superposed on each other and bonded by surface attractive force. Bonding is performed at room temperature, but since the bonding strength of the wafer is small at this time, heat treatment is performed at high temperature to improve the bonding strength.
  • the direct bonding technology can avoid contamination of impurities and absorption of adhesives in the above-mentioned DFG light generation in the mid-infrared region. It is considered to be promising.
  • the direct bonding technology is expected not only for nonlinear optical devices but also for high-power optical modulator applications.
  • the oxide compound substrate such as LN has a large electro-optic constant in addition to the second-order nonlinear optical constant, and is widely used as an optical modulator using the electro-optic effect (EO effect).
  • EO effect electro-optic effect
  • the optical modulator using the direct bonding technique can also be used for watt-class optical input, and therefore, it can be expected to be applied to the generation of a high-intensity optical modulation signal and the laser processing technique.
  • the direct bonding method requires heat treatment at a high temperature of about 400 ° C., it is required that the wafers that can be bonded have good surface flatness and also have a close thermal expansion coefficient. Therefore, direct bonding has been studied using the same material substrate such as LN and LN to which additives such as lithium tantalate (LiTaO 3 ), Mg, Zn, Sc, In and Fe are added.
  • LN and LN additives such as lithium tantalate (LiTaO 3 ), Mg, Zn, Sc, In and Fe are added.
  • the ridge type optical waveguide has a core formed according to a waveguide pattern on a base substrate, and has a step type refractive index distribution (for example, see Non-Patent Document 1).
  • the core has three side surfaces that are not in contact with the base substrate and are in contact with the air layer.
  • the ridge type optical waveguide can operate even if the upper and side portions of the core are air layers (refractive index is 1).
  • an overclad layer that also serves as a protective film may be provided in consideration of the mechanical strength required for forming a film such as an AR coat on the end face of the optical waveguide.
  • the periodically poled structure is a structure for quasi-phase matching.It is a phase mismatch by inverting the crystal orientation for each coherence length of the fundamental wave and the wavelength-converted wave and inverting the sign of the nonlinear constant. This is a method of compensating for the quantity. Practical value is high in that wide wavelength conversion from the mid-infrared region to the visible region can be performed without using a special nonlinear optical crystal.
  • the refractive index of a nonlinear optical material has temperature dependence, and in order to strictly satisfy the quasi-phase matching condition in the second-order nonlinear optical element, it is necessary to keep the element temperature constant.
  • a temperature measuring element such as a thermistor or a thermocouple is provided in or near the second-order nonlinear optical element, and the resistance value or the like is monitored. The monitoring result is fed back and the temperature controller such as the heater and the Peltier element is controlled to operate the secondary nonlinear optical element while keeping it at a constant temperature.
  • the environmental temperature (outside air temperature) of the optical device changes, even if the temperature control is performed so that the secondary nonlinear optical element or the temperature sensing element installed in the vicinity thereof is constant, the light located on the element surface is In the propagating core, three side surfaces that are not in contact with the base substrate are in contact with the air layer, and the optimum operating point shifts due to a slight change in environmental temperature.
  • the optimum operating point shifts due to a slight change in environmental temperature.
  • the heat generation is local heat generation in the waveguide and cannot be monitored by the temperature sensor installed in the element or in the vicinity of it, and it is difficult to correctly compensate for the shift of the optimum operating point due to local heat generation. there were.
  • An object of the present invention is to stably operate a wavelength conversion device using a nonlinear optical medium having a periodically poled structure at an optimum temperature.
  • a wavelength conversion device including a wavelength converter using a nonlinear optical medium and a controller for controlling the temperature of the wavelength converter, A first optical branching coupler for branching a part of the output light of the wavelength converter, and a second optical branching coupler for separating two lights generated by parametric fluorescence in the wavelength converter from a part of the output light and outputting each of them. And a second wavelength separation filter, wherein the controller controls the temperature of the wavelength converter based on the difference between the light intensities of the two lights.
  • the temperature of the wavelength converter is controlled based on the difference between the light intensities of the two lights separated from a part of the output light. Therefore, the wavelength conversion device can be operated at the optimum temperature.
  • FIG. 1 is a diagram showing a configuration of a wavelength conversion device according to a first embodiment. It is a figure which shows the relationship of the frequency of excitation light, signal light, and conversion light. It is a figure which shows the mode of change of a wavelength conversion zone with respect to the change of operating temperature. It is a figure which shows the normalized light intensity in the 1st and 2nd light intensity detector with respect to temperature change.
  • FIG. 6 is a diagram showing a configuration of a wavelength conversion device according to a second embodiment.
  • FIG. 6 is a diagram showing a configuration of a wavelength conversion device according to a third embodiment.
  • a wavelength converter that includes a wavelength converter including a ridge-type optical waveguide using a nonlinear optical medium and performs wavelength conversion, phase conjugation, and converted optical parametric amplification will be described as an example.
  • FIG. 1 shows the configuration of the wavelength conversion device according to the first embodiment.
  • the first optical branching coupler 12 and the second optical branching coupler 13 are connected in cascade to the output of the wavelength converter 11, and the first output and the second output of the second optical branching coupler 13 are connected to each other.
  • the second wavelength separation filters 14 and 15 are connected to each other.
  • First and second light intensity detectors 16 and 17 are connected to the respective outputs of the first and second wavelength separation filters 14 and 15, and a controller (PID) 19 is connected via a difference unit 18.
  • PID controller
  • a temperature controller (TEC) 20 is thermally coupled to the wavelength converter 11, and the temperature of the wavelength converter 11 is controlled by a control current from a controller 19.
  • the wavelength converter 11 includes a lithium niobate (PPLN) waveguide 22 having a periodic polarization inversion structure that satisfies quasi phase matching between the input signal light and pumping light, and the output converted light, and the signal light.
  • a dichroic mirror type multiplexer 23 that multiplexes the pumping light and inputs it to the PPLN waveguide 22, and a dichroic mirror type duplexer 24 that splits the pumping light from the output of the PPLN waveguide 22.
  • the wavelength converter 11 is selected from LiNbO 3 , LiTaO 3 , LiNb (x) Ta (1-x) O 3 (0 ⁇ x ⁇ 1), or a group consisting of Mg, Zn, Sc and In.
  • a non-linear optical medium containing at least one of them as an additive is used.
  • the operation of the wavelength conversion device according to the first embodiment will be described with the functions of each unit.
  • an optical signal having a plurality of wavelengths is input.
  • a wavelength division multiplexed signal (WDM signal) is input.
  • the dichroic mirror type multiplexer 23 multiplexes the WDM signal and the pumping light from the pumping light source 21 and makes them incident on the PPLN waveguide 22.
  • the PPLN waveguide 22 generates converted light of a WDM signal by difference frequency generation (DFG).
  • DFG difference frequency generation
  • the conversion light of the frequency 2 ⁇ 0 - ⁇ s is generated by the difference frequency generation in the PPLN waveguide 22.
  • the optical phase if the phase of the pumping light is ⁇ p and the phase of the signal light is ⁇ s, ⁇ p ⁇ s is generated by the difference frequency generation, and the phase conjugate light of the signal light is generated with the phase of the pumping light as a reference.
  • the fundamental wavelength is a wavelength (frequency: ⁇ 0 ) that is twice the wavelength of the excitation light
  • the plurality of signal lights included in the WDM signal are generated as converted light having a wavelength that is folded back with the fundamental wavelength as the central wavelength axis.
  • energy is also transferred from the pump light to the WDM signal, and the signal light is amplified.
  • the converted light generated by the PPLN waveguide 22 is output to the dichroic mirror type demultiplexer 24 together with the WDM signal in which the excitation light is multiplexed.
  • the dichroic mirror type demultiplexer 24 separates the excitation light from the light output from the PPLN waveguide 22 and uses the separated light (amplified WDM signal + converted light of the WDM signal) as output light of the wavelength converter 11. The light is output to the first optical branching coupler 12.
  • a part (1% to 10%) of the light intensity of output light is branched by the first optical branching coupler 12.
  • the branched light is further branched into two by the second optical branching coupler 13.
  • the first and second wavelength separation filters 14 and 15 are band-pass filter (BPF) type optical filters that transmit light of only specific wavelength components, and the first and second wavelength separation filters 14 and 15 include Each transmission wavelength is different.
  • the light intensity of each output of the first and second wavelength separation filters 14 and 15 is detected by the first and second light intensity detectors 16 and 17.
  • the wavelength converter 10 becomes a wavelength converter and a phase conjugate converter when extracting “converted light of WDM signal” as the other output of the first optical branching coupler 12, and “amplified WDM signal light”. When taking out, it becomes an optical parametric amplifier.
  • FIG. 2 shows the relationship between the frequencies of the pump light, the signal light, and the converted light.
  • the wavelength conversion band of the PPLN waveguide 22 when the fundamental wave wavelength ⁇ 0 (frequency: ⁇ 0 ) is 1545 nm and the excitation light wavelength ⁇ p (frequency: 2 ⁇ 0 ) is 772.5 nm will be described.
  • the element length of the PPLN waveguide 22 was 42 mm.
  • the quasi-phase matching condition is satisfied between the three waves of pumping light, signal light, and converted light.
  • the shape of the band before and after the wavelength conversion is satisfied when the operating temperature of the wavelength converter 11 is correct, and the band shape changes when the operating temperature shifts.
  • each of the effective refractive indices np, ns, and nc changes, so that the wavelength conversion band obtained changes according to the change.
  • Figure 3 shows how the wavelength conversion band changes with changes in operating temperature. It is the figure which normalized the light intensity of the wavelength conversion zone of the above-mentioned conditions with the light intensity when temperature change is 0 ° C.
  • a method of optimizing the operating temperature by monitoring one converted light of the WDM signal is conceivable. However, since the temperature dependence of the light intensity differs depending on the wavelength of the converted light, should the temperature be simply raised? I don't know if it should be lowered.
  • a method of monitoring all the converted light and optimizing the operating temperature is also conceivable, but the number of parts increases and control becomes complicated. Further, if the power of the input signal light fluctuates, the converted light intensity also fluctuates, so that control becomes more complicated if it is premised on input from the outside.
  • the operation optimum temperature is controlled by using a phenomenon unique to the PPLN waveguide.
  • two lights converted from excitation light by parametric fluorescence are used.
  • Parametric fluorescence is a spontaneous parametric process in which spontaneous emission light (ASE light) from a medium is converted into two low-frequency lights by excitation light without inputting signal light.
  • ASE light spontaneous emission light
  • the first and second wavelength separation filters 14 and 15 are BPF-type optical filters that transmit only specific wavelength components, and are two lights generated by parametric fluorescence in the wavelength converter 11, which are WDM signals. Only light of two different wavelengths in the unconverted region is transmitted.
  • the two wavelengths should be the fundamental wavelength or the center wavelength (frequency: ⁇ 1 ) in the immediate vicinity and the wavelength (frequency: ⁇ 2 ) at the end of the conversion band of the converted light of the WDM signal with reference to the fundamental wavelength.
  • the shape of the wavelength conversion band can be controlled. Specifically, as shown in FIG.
  • the “converted light of the WDM signal” is converted to a wavelength of 1546 to 1562 nm, and the first wavelength separation filter 14 Has a central transmission wavelength ⁇ BPF1 of 1545 nm (that is, the same as the fundamental frequency ⁇ 0 ) and a central transmission wavelength ⁇ BPF2 of the second wavelength separation filter 15 of 1563 nm.
  • the central transmission wavelengths of the first and second wavelength separation filters 14 and 15 are set at both ends of the wavelength conversion band of the WDM signal as described above, and the light intensity of the two lights generated by the parametric fluorescence is set to the first. And the second light intensity detectors 16 and 17 detect. This makes it possible to correct the change in the shape of the wavelength conversion band due to the temperature change.
  • FIG. 4 shows the normalized light intensities of the first and second light intensity detectors with respect to temperature changes.
  • the light intensity of the first light intensity detector 16 decreases as the temperature increases or decreases.
  • the light intensity of the second light intensity detector 17 decreases as the temperature decreases, but increases once as the temperature increases. The maximum intensity is obtained at the high temperature side, and the light intensity decreases when the temperature becomes higher than that. From the state of this change, if the reference temperature is the temperature at which the light intensities of the first light intensity detector 16 and the second light intensity detector 17 become equal (0.14 ° C. in FIG. 4), The light intensity of the light intensity detector 16 decreases when the temperature is higher than the reference temperature, and increases when it is lower than the reference temperature.
  • the light intensity of the second light intensity detector 17 increases when the temperature is higher than the reference temperature and decreases when it is lower than the reference temperature.
  • the difference between these two detectors may be detected and feedback control may be performed so that the temperature of the wavelength converter 11 becomes the reference temperature.
  • the controller 19 calculated the PID control, and then fed back to the control current of the temperature controller 20.
  • the intensity of the wavelength-converted light could be stabilized within 0.2 dB over the entire band.
  • two wavelengths a wavelength near the center wavelength and a wavelength at the end of the wavelength conversion band
  • three or more wavelengths may be monitored.
  • a wavelength division multiplexed signal (WDM signal) is input as an optical signal having a plurality of wavelengths as input light, and there is no input light at the transmission wavelengths of the first and second wavelength separation filters. ..
  • WDM signal wavelength division multiplexed signal
  • a propagating WDM signal is repeatedly subjected to a loss due to a fiber transmission line and an optical amplification due to an optical amplifier, so that ASE light from the optical amplifier is superimposed.
  • the configuration described in Example 1 has a problem that correct control is difficult.
  • FIG. 5 shows the configuration of the wavelength conversion device according to the second embodiment.
  • the first optical branching coupler 32 and the second optical branching coupler 33 are connected in cascade to the output of the wavelength converter 31, and the two outputs of the second optical branching coupler 33 are connected to the first and second outputs.
  • the second wavelength separation filters 34 and 35 are connected to each other.
  • First and second light intensity detectors 36 and 37 are connected to the respective outputs of the first and second wavelength separation filters 34 and 35, and a controller (PID) 39 is connected via a difference unit 38.
  • PID controller
  • a temperature controller (TEC) 40 is thermally coupled to the wavelength converter 31, and the temperature of the wavelength converter 31 is controlled by a control current from a controller 39.
  • the wavelength conversion device 30 further includes first and second control light sources 45 and 46, a first optical multiplexer / demultiplexer 47 that multiplexes the outputs of the two control light sources, and signal light (WDM signal).
  • a second optical multiplexer / demultiplexer 48 is provided which multiplexes the output of the first optical multiplexer / demultiplexer 47 and inputs it to the wavelength converter 31.
  • the second optical multiplexer / demultiplexer 48 has a band-pass type optical filter characteristic having a band equivalent to the wavelength band of the WDM signal, and only the signal light within the WDM signal band of the input signal light is first. The light is combined with the output of the optical multiplexer / demultiplexer 47 to attenuate the light outside the band and the spontaneous emission light.
  • the wavelength converter 31 includes a PPLN waveguide 42 having a periodic polarization inversion structure that satisfies quasi phase matching between input signal light and pump light and output converted light, and a signal light and pump light source 41. And a dichroic mirror type demultiplexer 44 for demultiplexing the excitation light from the output of the PPLN waveguide 42 and a dichroic mirror type demultiplexer 44 for demultiplexing the excitation light from the output of the PPLN waveguide 42. ..
  • the wavelengths ( ⁇ i1 , ⁇ i2 ) of the first and second control light sources 45 and 46 match the transmission wavelengths of the first and second wavelength separation filters 34 and 35, respectively.
  • the optical frequencies corresponding to the transmission wavelengths of the first and second wavelength separation filters 34 and 35 are ⁇ 1 and ⁇ 2 , respectively, light that satisfies (Equation 2) with respect to the optical frequency 2 ⁇ 0 of the excitation light It is the wavelength corresponding to the frequency.
  • the control light wavelengths of the first and second control light sources 45 and 46 may be 1545.5 nm and 1563 nm, or 1544.5 nm and 1527 nm.
  • the light intensity of the control light or the light whose wavelength is converted from the control light is detected by the first and second light intensity detectors 36 and 37.
  • the difference between the light intensities of the two light intensity detectors was detected through the difference unit 38, and the controller 39 calculated the PID control and then fed back the control current of the temperature controller 40.
  • the intensity of the wavelength-converted light could be stabilized within 0.2 dB over the entire band.
  • a wavelength division multiplexed signal (WDM signal) was input as an optical signal composed of a plurality of wavelengths as input light, and wavelength conversion and optical parametric amplification based on generation of a difference frequency with pumping light were used. Since it can be used to stabilize the operation of wavelength conversion based on the sum frequency generation, the second harmonic generation, which is one of the sum frequency generation processes, will be described as an example.
  • FIG. 6 shows the configuration of the wavelength conversion device according to the third embodiment.
  • the first optical branching coupler 52 and the second optical branching coupler 53 are connected in cascade to the output of the wavelength converter 51, and the two outputs of the second optical branching coupler 53 are connected to the first and second outputs.
  • the second wavelength separation filters 54 and 55 are connected to each other.
  • First and second light intensity detectors 56 and 57 are connected to the respective outputs of the first and second wavelength separation filters 54 and 55, and a controller (PID) 59 is connected via a difference unit 58.
  • PID controller
  • a temperature controller (TEC) 60 is thermally coupled to the wavelength converter 51, and the temperature of the wavelength converter 51 is controlled by a control current from the controller 59.
  • TEC temperature controller
  • the wavelength converter 51 includes a PPLN waveguide 62 having a periodic polarization inversion structure that satisfies quasi phase matching between the fundamental wave light input from the fundamental wave light source 61 and the second harmonic light, and the fundamental wave light and the second harmonic light. And a dichroic mirror type demultiplexer 64 for demultiplexing.
  • the second harmonic generation in the PPLN waveguide 62 generates converted light of frequency 2 ⁇ 0 .
  • the dichroic mirror type demultiplexer 64 separates the light in the wavelength band of the fundamental wave light and the converted light (second harmonic light) from the output of the PPLN waveguide 62, and splits the light in the wavelength band of the fundamental wave light into the first optical branch. Output to the coupler 52.
  • the converted light (second harmonic light) generated in the PPLN waveguide 62 becomes excitation light and parametric fluorescence is generated.
  • the dichroic mirror type demultiplexer 64 separates the fundamental wave light and the parametric fluorescence from the converted light (second harmonic light).
  • the first optical branching coupler 52 has a bandpass filter (BPF) type optical filter characteristic having a band equivalent to the wavelength band of the fundamental wave light, and extracts the fundamental wave light from the output of the wavelength converter 51. be able to.
  • BPF bandpass filter
  • the first and second wavelength separation filters 54 and 55 are BPF type optical filters that transmit only specific wavelength components, and have different transmission wavelengths.
  • the first and second wavelength separation filters 54 and 55 have transmission wavelengths corresponding to the wavelengths of the two lights generated by the parametric fluorescence that are branched from the first optical branching coupler 52, and the first and second The light intensity detectors 16 and 17 detect the light intensities of these two lights.
  • the wavelength may be arranged in the same manner as in the first embodiment.
  • the difference between the light intensities of the two light intensity detectors is detected via the differentiator 58, the controller 59 calculates the PID control, and then the temperature is adjusted. By feeding back the control current of the wavelength converter 60, the band of the wavelength converter can be kept stable.
  • the third embodiment has been described using the second harmonic generation, but the same applies to the case of the sum frequency generation using the outputs from the two light sources as the first and second fundamental wave lights, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

周期分極反転構造を有する非線形光学媒質を用いた波長変換装置を、安定的に最適温度で動作させる。非線形光学媒質を用いた波長変換器と、前記波長変換器の温度を制御する制御器とを含む波長変換装置において、前記波長変換器の出力光の一部を分岐する第1の光分岐カプラと、前記出力光の一部から前記波長変換器においてパラメトリック蛍光により発生した2つの光を分離して、それぞれを出力する第1および第2の波長分離フィルタとを備え、前記制御器は、前記2つの光の光強度の差分に基づいて、前記波長変換器の温度を制御する。

Description

波長変換装置
 本発明は、波長変換装置に関し、より詳細には、非線形光学効果を用いた光学素子を含み、光通信システム、光計測システム等において用いられる波長変換素子装置に関する。
 光通信における光信号波長変換、光変調、光計測、または光加工、医療、生物工学などの分野に適用することができ、紫外域-可視域-赤外域-テラヘルツ域にわたるコヒーレント光の発生と変調のために、多くの非線形光学デバイス及び電気光学デバイスの開発が進められている。このような光デバイスに用いられる非線形光学媒質および電気光学媒質としては種々の材料が研究開発されており、ニオブ酸リチウム(LN:LiNbO3)などの酸化物系化合物基板は、2次非線形光学定数・電気光学定数が非常に高く有望な材料として知られている。LNの高い非線形性を用いた光デバイスの一例として、周期的に分極反転されたニオブ酸リチウム(PPLN)が知られており、このPPLNによる第二高調波発生(SHG)・差周波発生(DFG)・和周波発生(SFG)を利用した波長変換素子が知られている。
 例えば、2~5μmの中赤外の波長域には様々な環境ガスの基準振動などの強い吸収線が存在するため、小型の中赤外光源の開発が望まれている。このような中赤外域の光源には、技術的に成熟された1μm付近の励起光光源と、通信波長帯の信号光を用いることのできるDFGが有望だと考えられている。また、0.5μm付近の可視光の波長域には、半導体レーザでは実現の難しい波長域が存在することから、1μm付近の励起光光源を用いて、SHGまたはSFGにより、緑色光などの可視光の発生を行うことのできる波長変換技術が有望視されている。
 DFGを用いた波長変換技術を用いると、主に光ファイバ通信で用いられている波長1.55μm帯の光を一括で別の波長帯に変換できることから、波長分割多重方式における光のルーティング、光ルーティングにおける波長の衝突回避などへの適用が可能である。波長変換装置は、大容量通信光ネットワークを構築するキーデバイスの一つとして考えられている。DFGを用いた波長変換では、その変換光が信号光に対して位相共役光になることを用いて、信号歪補償を行うことができる。伝送路のおよそ中間地点で信号光を位相共役光に変換すると、位相共役光への変換前の伝送路で生じた分散とファイバ中の非線形光学効果によって生じる信号歪みとを、位相共役光への変換後の伝送路中で打消しあうように伝搬する。これにより、波長変換装置は、分散や非線形信号歪みを低減することができるキーデバイスの一つとして考えられている。
 高い波長変換効率を有する波長変換素子を用いると、励起光パワーから信号光へのエネルギーの移行により光パラメトリック増幅と呼ばれる、信号光の増幅器を構成することができる。特に、励起光と信号光の位相関係に応じた増幅特性を有する位相感応増幅器は、低雑音な光増幅が可能な技術として期待されている。PPLNにおいて高効率を得るためには、光導波路型のデバイスが有効である。これは波長変換効率が非線形媒質を伝搬する光のパワー密度に比例するためであり、導波路構造を形成することで限られた範囲に光を閉じ込めることができるからである。このため非線形媒質を用いた種々の導波路が研究開発されている。
 これまでは、Ti拡散導波路や、プロトン交換導波路と呼ばれる、拡散型の導波路を用いて検討がなされてきた。しかしながら、これらの導波路は作製において結晶内に不純物を拡散することから、光損傷耐性や長期信頼性の観点から課題があった。拡散型の導波路では、高強度の光を導波路に入射するとフォトリフラクティブ効果による結晶の損傷が発生してしまうため、導波路に入力できる光パワーに制限があった。
 近年、結晶のバルクの特性をそのまま利用できることから、高光損傷耐性、長期信頼性、デバイス設計が容易等の特徴を持つリッジ型の光導波路が研究開発されている。リッジ型の光導波路を作製する方法としては、2枚の基板を接着剤を用いて接着し、一方の基板を薄膜化した後にリッジ加工をすることで、リッジ型光導波路を作製することが知られている。しかしながら、基板同士を接着剤により張合わせる方法は、接着材と基板の熱膨張係数が異なるために、温度が変化したときに薄膜に割れが生じるという問題があった。加えて、導波路中で発生する第二高調波光によって接着剤が劣化するために、動作中に導波路損失が増加し、波長変換の効率が劣化するという問題もあった。さらにまた、接着層の不均一性のために単結晶膜の膜厚が不均一となり、波長変換素子の位相整合波長がずれるという問題もあった。
 一方、接着剤を用いずに、基板同士を強固に接合する技術として、直接接合技術が知られている。直接接合法は、初めに化学薬品を用いて表面処理を行ったウエハ同士を重ね合わせることにより、表面間引力により接合する方法である。接合は常温で行われるが、このときのウエハの接合強度は小さいため、接合強度を向上させるため高温での熱処理を行う。直接接合技術は、高光損傷耐性、長期信頼性、デバイス設計の容易性等の特徴以外にも、上述したDFGによる中赤外域の光発生において、不純物の混入や接着剤等の吸収を回避できる点からも有望視されている。
 さらに、直接接合技術は、非線形光学デバイスに留まらず、ハイパワーの光変調器応用にも期待されている。LNなどの酸化物系化合物基板は2次非線形光学定数に加え、電気光学定数も大きく、電気光学効果(EO効果)を用いた光変調器としても広く使われている。しかしながら、Ti拡散導波路を用いた従来の光変調器では、100mW以上のハイパワー光入力が困難であった。これに比べ、直接接合技術を用いたた光変調器は、ワット級の光入力も可能になることから、高光強度の光変調信号の生成、レーザ加工技術等への応用が期待できる。
 直接接合法においては400℃程度の高温での熱処理を必要とするために、接合できるウエハ間には表面の平坦性が良いことに加え、熱膨張率が近いことも要求される。このため、LNとタンタル酸リチウム(LiTaO3)、Mg、Zn、Sc、In、Fe等の添加物を付与したLNなど、同種の材料基板による直接接合形成が検討されてきた。
 リッジ型光導波路は、ベース基板上に導波路パターンに応じて形成されたコアを有しており、ステップ型の屈折率分布を有する(例えば、非特許文献1参照)。コアは、ベース基板に接していない3つの側面が空気層に接している。リッジ型光導波路は、コアの上部および側部が空気層(屈折率が1)であっても、動作することができる。しかし、実用上の問題点として、コア層を剥き出しにしていると、空気中に浮遊するゴミやほこりの付着等による特性の経時変化が懸念される。また、光導波路の端面にARコートなどの膜を形成するために必要な耐機械的強度を考慮して、保護膜を兼ねたオーバークラッド層を設ける場合もある。
 周期分極反転構造は、擬似位相整合を行うための構造であり、これは基本波と波長変換された波のコヒーレンス長ごとに結晶方位を反転し、非線形定数の符号を逆転することにより位相不整合量を補償していく手法である。特殊な非線形光学結晶を用いずに中赤外域から可視域まで幅広い波長変換が行えるという点で実用的な価値は高い。
T. Umeki, O. Tadanaga, and M. Asobe, ‘Highly Efficient Wavelength Converter Using Direct-Bonded PPZnLN Ridge Waveguide,’2010年 IEEE Journal of Quantum Electronics, Vol. 46, No. 8, pp. 1206-1213
 一般に非線形光学材料の屈折率は温度依存性を有しており、2次非線形光学素子において擬似位相整合条件を厳密に満たすためには、素子の温度を一定に保つ必要がある。通常は、2次非線形光学素子またはその近傍にサーミスタ、熱電対等の測温体を設け、その抵抗値等をモニタする。モニタ結果をフィードバックし、ヒータ、ペルチェ素子等の温度調節器を制御して、2次非線形光学素子を一定温度に保つたうえで動作させる。
 しかしながら、従来の測温体のモニタ値を一定にするよう温度調節器を制御する機構のみでは、2次非線形光学素子を精密に安定させるには課題があった。具体的には、サーミスタ、熱電対等の測温体でモニタできるのは、2次非線形光学素子全体の平均的な温度であり、非線形光学効果をもたらす導波路部分の温度をモニタしているわけではない。このため、測温体の温度をモニタしているだけでは、2次非線形光学素子を最適温度で動作させることは厳密にはできない場合があった。
 例えば、光デバイスの環境温度(外気温度)が変化した場合、2次非線形光学素子またはその近傍に設置した測温体が一定となるよう温度制御を行っていても、素子表面に位置する光が伝搬するコアは、ベース基板に接していない3つの側面が空気層に接しており、環境温度の変化をわずかながら受け最適動作点がシフトしてしまう。また、高い変換効率または高利得な光パラメトリック増幅を得るために、強い励起光を導波路に入射する場合、導波路内に入射された励起光の光吸収による発熱が生じる。この発熱は導波路部分の局所的な発熱であり、素子またはその近傍に設置した測温体ではモニタすることはできず、局所的な発熱による最適動作点のシフトを正しく補償することは困難であった。
 本発明の目的は、周期分極反転構造を有する非線形光学媒質を用いた波長変換装置を、安定的に最適温度で動作させることにある。
 本発明は、このような目的を達成するために、一実施態様は、非線形光学媒質を用いた波長変換器と、前記波長変換器の温度を制御する制御器とを含む波長変換装置において、前記波長変換器の出力光の一部を分岐する第1の光分岐カプラと、前記出力光の一部から前記波長変換器においてパラメトリック蛍光により発生した2つの光を分離して、それぞれを出力する第1および第2の波長分離フィルタとを備え、前記制御器は、前記2つの光の光強度の差分に基づいて、前記波長変換器の温度を制御することを特徴とする。
 以上説明したように、本発明によれば、出力光の一部から分離された2つの光の光強度の差分に基づいて、波長変換器の温度を制御するので、非線形光学媒質の温度を正確にモニタすることができるため、最適温度で波長変換装置を動作させることが可能となる。
実施例1にかかる波長変換装置の構成を示す図である。 励起光、信号光および変換光の周波数の関係を示す図である。 動作温度の変化に対する波長変換帯域の変化の様子を示す図である。 温度変化に対する第1および第2の光強度検出器における規格化光強度を示す図である。 実施例2にかかる波長変換装置の構成を示す図である。 実施例3にかかる波長変換装置の構成を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態では、非線形光学媒質を用いたリッジ型光導波路からなる波長変換器を含み、波長変換および位相共役と変換光パラメトリック増幅とを行う波長変換装置を例に説明する。
 図1に、実施例1にかかる波長変換装置の構成を示す。波長変換装置10は、波長変換器11の出力に、第1の光分岐カプラ12と第2の光分岐カプラ13とが縦続に接続され、第2の光分岐カプラ13の2出力に第1および第2の波長分離フィルタ14,15がそれぞれ接続されている。第1および第2の波長分離フィルタ14,15のそれぞれの出力には、第1および第2の光強度検出器16,17が接続され、差分器18を介して制御器(PID)19が接続されている。波長変換器11には温度調節器(TEC)20が熱的に結合されており、制御器19からの制御電流によって、波長変換器11の温度を制御する。
 波長変換器11は、入力される信号光および励起光と、出力される変換光との間で擬似位相整合を満たす周期分極反転構造を有するニオブ酸リチウム(PPLN)導波路22と、信号光と励起光を合波してPPLN導波路22に入力するダイクロイックミラー型合波器23と、PPLN導波路22の出力から励起光を分波するダイクロイックミラー型分波器24とを備えている。波長変換器11には、LiNbO3、LiTaO3、LiNb(x)Ta(1-x)3(0≦x≦1)、または、それらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有している非線形光学媒質が用いられる。
 次に、実施例1の波長変換装置の動作を、各部の機能を交えながら説明する。波長変換装置10に入力される信号光として、複数波長から成る光信号が入力される。実施例1では、波長多重信号(WDM信号)が入力される。波長変換器11において、ダイクロイックミラー型合波器23は、WDM信号と励起光光源21からの励起光とを合波し、PPLN導波路22に入射する。PPLN導波路22は、差周波発生(DFG)によりWDM信号の変換光を生成する。
 励起光の周波数を2ω0、WDM信号の1波長の周波数をωsとすれば、PPLN導波路22中の差周波発生により、周波数2ω0-ωsの変換光が生成される。光位相としては、励起光の位相をΦp、信号光の位相をΦsとすれば、差周波発生によりΦp-Φsとなり、励起光の位相を基準として信号光の位相共役光が生成される。励起光の倍の波長(周波数:ω0)を基本波波長としたとき、WDM信号に含まれる複数の信号光は、基本波波長を中心波長軸として折り返した波長の変換光として生成される。変換光が生成されるのと同時に、WDM信号にも励起光からエネルギーが移行し、信号光が増幅される。
 PPLN導波路22により生成された変換光は、励起光が合波されたWDM信号とともにダイクロイックミラー型分波器24に出力される。ダイクロイックミラー型分波器24は、PPLN導波路22から出力された光から励起光を分離し、分離された光(増幅されたWDM信号+WDM信号の変換光)を波長変換器11の出力光として第1の光分岐カップラ12に出力する。
 第1の光分岐カップラ12により、出力光(増幅されたWDM信号とWDM信号の変換光)の光強度の一部(1%~10%程度)を分岐する。分岐された光をさらに第2の光分岐カップラ13により2分岐する。第1および第2の波長分離フィルタ14,15は、特定の波長成分のみの光を透過させるバンドパスフィルタ(BPF)型の光学フィルタであり、第1および第2の波長分離フィルタ14,15のそれぞれの透過波長が異なっている。第1および第2の波長分離フィルタ14,15のそれぞれの出力は、その光強度を第1および第2の光強度検出器16,17により検出される。
 波長変換装置10は、第1の光分岐カップラ12の他方の出力として、「WDM信号の変換光」を取り出す場合には、波長変換器および位相共役変換器となり、「増幅されたWDM信号光」を取り出す場合には、光パラメトリック増幅器となる。
 図2に、励起光、信号光および変換光の周波数の関係を示す。基本波波長λ0(周波数:ω0)を1545nm、励起光波長λp(周波数:2ω0)を772.5nmとした場合の、PPLN導波路22の波長変換帯域について述べる。なお、PPLN導波路22の素子長は42mmとした。励起光および信号光を入力することにより、PPLN導波路22の差周波発生により、変換光が生成される。例えば、図2(a)に示すように、信号光波長λs(周波数:ωs)を1540nmとすれば、2ω0-ωsにより、波長λcが1550nmの変換光が生成される。基本波波長λ0を中心として波長軸上で折り返した形で変換光が生成される。
 PPLN導波路22中では励起光、信号光、変換光の3波の間で擬似位相整合条件が満たされている。励起光、信号光、変換光の導波路中の実効屈折率を、それぞれnp、ns、ncとすると、
   np/λp-ns/λs-nc/λc=1/Λ  (式1)
を満たす反転周期Λの分極反転構造を有する。
 (式1)を満たす限り、信号光波長を変化させても、周波数2ω0-ωsの変換光と励起光との間では、同じ変換効率が得られる。例えば、信号光波長λs(周波数:ωs)を1539nmとすれば、2ω0-ωsにより、波長1551nmの変換光が生成される。このとき、実効屈折率nsおよびncも変化するが、材料の分散によりnsが大きくなった分ncが小さくなることで信号光波長を変えても(式1)を満たすことができ、広い波長変換帯域が得ることができる利点を持つ。
 しかしながら、このような波長変換前後の帯域の形状は、波長変換器11の動作温度が正しいときに満たされ、動作温度がずれると帯域形状が変化する。温度変化の場合は、実効屈折率np、ns、ncのそれぞれが変化してしまうため、その変化に応じて得られる波長変換帯域が変化してしまう。
 図3に、動作温度の変化に対する波長変換帯域の変化の様子を示す。上述した条件の波長変換帯域の光強度を、温度変化が0℃のときの光強度で正規化した図である。WDM信号のうちの1つの変換光をモニタして、動作温度を最適化する方法が考えられるが、変換光の波長によって光強度の温度依存性が異なるので、単純には温度を上げればいいのか下げれば良いのかわからない。すべての変換光をモニタして動作温度を最適化する方法も考えられるが、部品点数が多くなり、制御が複雑になる。また、入力される信号光のパワーが変動すると、そのまま変換光強度が変動するため、外部からの入力を前提とすると制御がさらに複雑になってしまう。
 そこで、本実施形態では、PPLN導波路が有する固有の現象を使って、動作最適温度を制御する。具体的には、パラメトリック蛍光により励起光から変換された2つの光を利用する。パラメトリック蛍光は、信号光を入力しなくても、媒質からの自然放出光(ASE光)があると、励起光により2つの低い周波数の光に変換される自発パラメトリック過程であり、2次の非線形光学媒質に周波数2ω0の励起光を入射すると、ω1+ω2=2ω0を満たす2つの周波数の光に変換される。
 第1および第2の波長分離フィルタ14,15は、特定の波長成分のみを透過させるBPF型の光学フィルタであり、波長変換器11においてパラメトリック蛍光により発生した2つの光であって、WDM信号の変換のない領域の2つの異なる波長の光のみを透過させる。2つの波長は、基本波波長またはごく近傍の中心波長(周波数:ω1)と、基本波波長を基準としてWDM信号の変換光の変換帯域の端部の波長(周波数:ω2)とすることにより、波長変換帯域の形状を制御することができる。具体的には、図2(b)に示すように、入力WDM信号を波長1528~1544nmとしたとき、「WDM信号の変換光」は波長1546~1562nmに変換され、第1の波長分離フィルタ14の中心透過波長λBPF1を1545nm(すなわち、基本周波数λ0に同じ)、第2の波長分離フィルタ15の中心透過波長λBPF2を1563nmとした。
 第1および第2の波長分離フィルタ14,15の中心透過波長を、上述したようにWDM信号の波長変換帯域の両端に設定して、パラメトリック蛍光により発生した2つの光の光強度を、第1および第2の光強度検出器16,17により検出する。これにより、温度変化による波長変換帯域の形状の変化を補正することができる。
 図4に、温度変化に対する第1および第2の光強度検出器における規格化光強度を示す。第1の光強度検出器16の光強度は、温度が高くなっても低くなっても減少する。第2の光強度検出器17の光強度は、温度が低くなると減少するが、温度が高くなると一旦増加する。高温度側で最大強度が得られ、それ以上に温度が高くなると光強度は減少する。この変化の様子から、基準温度を第1の光強度検出器16と第2の光強度検出器17の光強度が等しくなる温度(図4においては0.14℃)とすれば、第1の光強度検出器16の光強度は、基準温度よりも高い場合には減少し、低い場合には増加する。逆に第2の光強度検出器17の光強度は、基準温度よりも高い場合には増加し、低い場合には減少する。これらの2つの検出器の差を検出して、波長変換器11の温度が基準温度になるようにフィードバック制御を行えばよい。
 差分器18を介して2つの光強度検出器の光強度の差を検出し、制御器19によりPID制御による計算の後、温度調節器20の制御電流にフィードバックを行った。これにより、全帯域に渡り波長変換光の強度が0.2dB以内で安定させることができた。実施例1では、2つの波長(中心波長付近と波長変換帯域の端部の波長)をモニタしたが、3つ以上の波長をモニタしてもよい。
 実施例1においては、入力光として複数波長から成る光信号として波長多重信号(WDM信号)が入力され、第1および第2の波長分離フィルタの透過波長には入力光がないことを前提としていた。しかしながら、実際には入力光が存在することも想定される。例えば、光ファイバ通信において、伝搬するWDM信号は、ファイバ伝送路による損失と光増幅器による光増幅とを繰り返し受けるために、光増幅器からのASE光が重畳される。重畳されたASE光の光量が、波長変換器におけるパラメトリック蛍光の光量に比べ十分小さいとはいえない場合、実施例1に記載した構成では、正しい制御が難しいという課題があった。
 図5に、実施例2にかかる波長変換装置の構成を示す。波長変換装置30は、波長変換器31の出力に、第1の光分岐カプラ32と第2の光分岐カプラ33とが縦続に接続され、第2の光分岐カプラ33の2出力に第1および第2の波長分離フィルタ34,35がそれぞれ接続されている。第1および第2の波長分離フィルタ34,35のそれぞれの出力には、第1および第2の光強度検出器36,37が接続され、差分器38を介して制御器(PID)39が接続されている。波長変換器31には温度調節器(TEC)40が熱的に結合されており、制御器39からの制御電流によって、波長変換器31の温度を制御する。
 さらに、波長変換装置30は、第1および第2の制御光光源45,46と、2つの制御光光源の出力を合波する第1の光合分波器47と、信号光(WDM信号)と第1の光合分波器47の出力とを合波して、波長変換器31に入力する第2の光合分波器48を備えている。第2の光合分波器48は、WDM信号の波長帯域と同等の帯域を有するバンドパス型の光学フィルタ特性を有し、入力される信号光のうちWDM信号帯域内の信号光のみを第1の光合分波器47の出力と合波して、帯域外の光および自然放出光を減衰させる。
 波長変換器31は、入力される信号光および励起光と、出力される変換光との間で擬似位相整合を満たす周期分極反転構造を有するPPLN導波路42と、信号光と励起光光源41からの励起光とを合波してPPLN導波路42に入力するダイクロイックミラー型合波器43と、PPLN導波路42の出力から励起光を分波するダイクロイックミラー型分波器44とを備えている。
 第1および第2の制御光光源45,46の波長(ωi1、ωi2)は、それぞれ第1および第2の波長分離フィルタ34,35の透過波長と一致している。または、第1および第2の波長分離フィルタ34,35の透過波長に対応した光周波数をそれぞれω1、ω2としたとき、励起光の光周波数2ω0に対して(式2)を満たす光周波数に対応する波長である。
   ωi1=2ω0-ω1
   ωi2=2ω0-ω2  (式2)
 具体的な波長配置の例としては、基本波波長λ0(周波数:ω0)を1545nm、第1および第2の波長分離フィルタ34,35の透過波長をそれぞれ1545.5nmと1563nmとした場合、第1および第2の制御光光源45,46の制御光の波長を、1545.5nmと1563nmとするか、または1544.5nmと1527nmとすればよい。
 このようにして、制御光または制御光から波長変換された光の光強度を、第1および第2の光強度検出器36,37により検出する。差分器38を介して2つの光強度検出器の光強度の差を検出し、制御器39によりPID制御による計算の後、温度調節器40の制御電流にフィードバックを行った。これにより、全帯域に渡り波長変換光の強度が0.2dB以内で安定させることができた。
 実施例1および2においては、入力光として複数波長から成る光信号として波長多重信号(WDM信号)が入力され、励起光との差周波発生に基づく波長変換及び光パラメトリック増幅を用いた。和周波発生に基づく波長変換の動作安定化にも用いることができるので、和周波発生過程の1つである第二高調波発生を例に説明する。
 図6に、実施例3にかかる波長変換装置の構成を示す。波長変換装置50は、波長変換器51の出力に、第1の光分岐カプラ52と第2の光分岐カプラ53とが縦続に接続され、第2の光分岐カプラ53の2出力に第1および第2の波長分離フィルタ54,55がそれぞれ接続されている。第1および第2の波長分離フィルタ54,55のそれぞれの出力には、第1および第2の光強度検出器56,57が接続され、差分器58を介して制御器(PID)59が接続されている。波長変換器51には温度調節器(TEC)60が熱的に結合されており、制御器59からの制御電流によって、波長変換器51の温度を制御する。
 波長変換器51は、基本波光光源61から入力される基本波光と第二高調波光との間で擬似位相整合を満たす周期分極反転構造を有するPPLN導波路62と、基本波光と第二高調波光を分波するダイクロイックミラー型分波器64とを備えている。
 基本波光の周波数をω0とすると、PPLN導波路62中の第二高調波発生により、周波数2ω0の変換光が生成される。ダイクロイックミラー型分波器64は、PPLN導波路62の出力から基本波光の波長帯の光と変換光(第二高調波光)とを分離し、基本波光の波長帯の光を第1の光分岐カプラ52へ出力する。
 PPLN導波路62中では、PPLN導波路62中で生成された変換光(第二高調波光)自信が励起光となりパラメトリック蛍光が生じる。ダイクロイックミラー型分波器64では、基本波光とこのパラメトリック蛍光とを、変換光(第二高調波光)から分離する。なお、第1の光分岐カプラ52は、基本波光の波長帯の帯域と同等の帯域を有するバンドパスフィルタ(BPF)型の光学フィルタ特性を有し、波長変換器51の出力から基本波光を取り出すことができる。
 第1および第2の波長分離フィルタ54,55は、特定の波長成分のみを透過させるBPF型の光学フィルタであり、その透過波長が異なっている。第1および第2の波長分離フィルタ54,55は、第1の光分岐カプラ52から分岐された、パラメトリック蛍光により発生した2つの光の波長に対応した透過波長を有し、第1および第2の光強度検出器16,17は、この2つの光の光強度を検出する。
 波長配置は、実施例1と同様の方法をとればよく、差分器58を介して2つの光強度検出器の光強度の差を検出し、制御器59によりPID制御による計算の後、温度調節器60の制御電流にフィードバックを行うことにより、波長変換器の帯域を安定に保つことができる。
 実施例3では、第二高調波発生を用いて説明したが、2つの光源からの出力をそれぞれ第1および第2の基本波光として用いた和周波発生の場合も同様である。
 10,30,50 波長変換装置
 11,31,51 波長変換器
 12,32,52 第1の光分岐カプラ
 13,33,53 第2の光分岐カプラ
 14,34,54 第1の波長分離フィルタ
 15,35,55 第2の波長分離フィルタ
 16,36,56 第1の光強度検出器
 17,37,57 第2の光強度検出器
 18,38,58 差分器
 19,39,59 制御器(PID)
 20,40,60 温度調節器(TEC)
 21,41 励起光光源
 22,42,62 PPLN導波路
 23,43 ダイクロイックミラー型合波器
 24,44,64 ダイクロイックミラー型分波器
 45 第1の制御光光源
 46 第2の制御光光源
 61 基本波光光源

Claims (8)

  1.  非線形光学媒質を用いた波長変換器と、前記波長変換器の温度を制御する制御器とを含む波長変換装置において、
     前記波長変換器の出力光の一部を分岐する第1の光分岐カプラと、
     前記出力光の一部から前記波長変換器においてパラメトリック蛍光により発生した2つの光を分離して、それぞれを出力する第1および第2の波長分離フィルタとを備え、
     前記制御器は、前記2つの光の光強度の差分に基づいて、前記波長変換器の温度を制御することを特徴とする波長変換装置。
  2.  前記2つの光の光強度のそれぞれを検出する第1および第2の光強度検出器をさらに備え、
     前記制御器は、前記第1および第2の光強度検出器により検出された光強度が等しくなる温度を基準温度とし、前記波長変換器の温度が前記基準温度となるように制御することを特徴とする請求項1に記載の波長変換装置。
  3.  前記波長変換器には、信号光として波長多重信号が入力され、励起光の波長の2倍の波長を基本波波長としたとき、前記2つの光の波長として、前記基本波波長またはごく近傍の波長と、前記基本波波長を基準として差周波発生より生成された前記波長多重信号の変換光の変換帯域の端部の波長とが選択されることを特徴とする請求項1または2に記載の波長変換装置。
  4.  非線形光学媒質を用いた波長変換器と、前記波長変換器の温度を制御する制御器とを含む波長変換装置において、
     前記波長変換器に信号光として入力される波長多重信号に合波する2つの制御光をそれぞれ出力する第1および第2の制御光光源と、
     前記波長変換器の出力光の一部を分岐する第1の光分岐カプラと、
     前記出力光の一部から、励起光の波長の2倍の波長を基本波波長としたとき、前記基本波波長またはごく近傍の波長の光と、前記基本波波長を基準として差周波発生より生成された前記波長多重信号の変換光の変換帯域の端部の波長の光とを分離して、それぞれを出力する第1および第2の波長分離フィルタとを備え、
     前記制御器は、前記第1および第2の波長分離フィルタから出力された2つの光の光強度の差分に基づいて、前記波長変換器の温度を制御することを特徴とする波長変換装置。
  5.  前記第1および第2の制御光光源の波長(ωi1、ωi2)は、前記第1および第2の波長分離フィルタの透過波長と一致しているか、または、前記第1および第2の波長分離フィルタの透過波長に対応した光周波数をそれぞれω1、ω2としたとき、前記励起光の光周波数2ω0に対して以下の式
       ωi1=2ω0-ω1
       ωi2=2ω0-ω2
    を満たしていることを特徴とする請求項4に記載の波長変換装置。
  6.  非線形光学媒質を用いた波長変換器と、前記波長変換器の温度を制御する制御器とを含む波長変換装置において、
     前記波長変換器に基本波光を出力する基本波光光源と、
     前記波長変換器の出力光の一部を分岐する第1の光分岐カプラと、
     前記出力光の一部から前記波長変換器においてパラメトリック蛍光により発生した2つの光を分離して、それぞれを出力する第1および第2の波長分離フィルタとを備え、
     前記制御器は、前記2つの光の光強度の差分に基づいて、前記波長変換器の温度を制御することを特徴とする波長変換装置。
  7.  前記2つの光の波長は、前記基本波光から第二高調波発生により生成された変換光から発生したパラメトリック蛍光の波長であることを特徴とする請求項6に記載の波長変換装置。
  8.  前記非線形光学媒質は、LiNbO3、LiTaO3、LiNb(x)Ta(1-x)3(0≦x≦1)、または、それらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有していることを特徴とする請求項1ないし7のいずれか1項に記載の波長変換装置。
PCT/JP2019/042304 2018-11-06 2019-10-29 波長変換装置 WO2020095754A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980072993.4A CN112969960B (zh) 2018-11-06 2019-10-29 波长转换装置
US17/290,557 US11385521B2 (en) 2018-11-06 2019-10-29 Wavelength conversion apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018209123A JP7087928B2 (ja) 2018-11-06 2018-11-06 波長変換装置
JP2018-209123 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020095754A1 true WO2020095754A1 (ja) 2020-05-14

Family

ID=70611146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042304 WO2020095754A1 (ja) 2018-11-06 2019-10-29 波長変換装置

Country Status (4)

Country Link
US (1) US11385521B2 (ja)
JP (1) JP7087928B2 (ja)
CN (1) CN112969960B (ja)
WO (1) WO2020095754A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3965323A1 (en) * 2020-09-04 2022-03-09 Fujitsu Limited Wavelength conversion device and wavelength conversion method
WO2023062791A1 (ja) * 2021-10-14 2023-04-20 日本電信電話株式会社 波長変換装置
WO2023084621A1 (ja) * 2021-11-09 2023-05-19 日本電信電話株式会社 波長変換装置
WO2023218667A1 (ja) * 2022-05-13 2023-11-16 日本電信電話株式会社 波長変換装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087928B2 (ja) * 2018-11-06 2022-06-21 日本電信電話株式会社 波長変換装置
JP7473789B2 (ja) * 2020-03-13 2024-04-24 富士通株式会社 波長変換装置および波長変換方法
JP2022128895A (ja) * 2021-02-24 2022-09-05 富士通株式会社 波長変換器、伝送装置及び伝送システム
EP4343421A1 (en) 2021-05-20 2024-03-27 Nippon Telegraph And Telephone Corporation Optical amplification device and optical amplification method
JP2022182293A (ja) * 2021-05-28 2022-12-08 富士通株式会社 波長変換器、光通信装置、及び光導波路基板
WO2024084592A1 (ja) * 2022-10-18 2024-04-25 日本電信電話株式会社 光増幅器
WO2024121937A1 (ja) * 2022-12-06 2024-06-13 日本電信電話株式会社 光増幅器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081557A1 (ja) * 2007-12-20 2009-07-02 Harada Industry Co., Ltd. パッチアンテナ装置
JP2011017911A (ja) * 2009-07-09 2011-01-27 Nippon Signal Co Ltd:The 光波長計測器及びそれを備えた光パラメトリック発振装置並びに光波長計測方法
JP2012048042A (ja) * 2010-08-27 2012-03-08 Oki Electric Ind Co Ltd 量子相関光子対発生方法及び量子相関光子対発生装置
CN103825182A (zh) * 2013-11-11 2014-05-28 南京信息工程大学 一种宽调谐中红外差频产生激光发生装置的控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942619B2 (ja) * 1990-11-15 1999-08-30 パイオニア株式会社 高調波発生装置
JPH05188421A (ja) * 1991-04-15 1993-07-30 Fuji Photo Film Co Ltd 光波長変換装置
KR100363237B1 (ko) * 1995-05-09 2003-02-05 삼성전자 주식회사 제2고조파 발생 방법 및 장치
JP4105678B2 (ja) * 2004-10-18 2008-06-25 日本電信電話株式会社 波長変換装置
KR100977048B1 (ko) * 2006-06-12 2010-08-20 삼성전자주식회사 비선형 광변조기
JP5180086B2 (ja) * 2006-10-10 2013-04-10 パナソニック株式会社 波長変換装置および画像表示装置
US8050302B2 (en) * 2007-12-07 2011-11-01 Panasonic Corporation Wavelength conversion laser light source, laser light source device and two-dimensional image display device adopting the same, and method of setting temperature of wavelength conversion element
US8199396B2 (en) 2007-12-26 2012-06-12 Panasonic Corporation Laser light source, and image display apparatus and processing apparatus using the same
CN103715596A (zh) * 2013-12-18 2014-04-09 合肥知常光电科技有限公司 一种固体紫外激光器三倍频晶体自动换点的装置及方法
JP2015176072A (ja) * 2014-03-17 2015-10-05 Nttエレクトロニクス株式会社 中赤外レーザ光発生装置及びガス検出装置並びに中赤外レーザ光発生方法及びガス検出方法
GB2528958B (en) * 2014-08-07 2021-08-04 Univ Bristol Spectroscopy apparatus and method
JP7087928B2 (ja) * 2018-11-06 2022-06-21 日本電信電話株式会社 波長変換装置
JP7473789B2 (ja) * 2020-03-13 2024-04-24 富士通株式会社 波長変換装置および波長変換方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081557A1 (ja) * 2007-12-20 2009-07-02 Harada Industry Co., Ltd. パッチアンテナ装置
JP2011017911A (ja) * 2009-07-09 2011-01-27 Nippon Signal Co Ltd:The 光波長計測器及びそれを備えた光パラメトリック発振装置並びに光波長計測方法
JP2012048042A (ja) * 2010-08-27 2012-03-08 Oki Electric Ind Co Ltd 量子相関光子対発生方法及び量子相関光子対発生装置
CN103825182A (zh) * 2013-11-11 2014-05-28 南京信息工程大学 一种宽调谐中红外差频产生激光发生装置的控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3965323A1 (en) * 2020-09-04 2022-03-09 Fujitsu Limited Wavelength conversion device and wavelength conversion method
US11368239B2 (en) 2020-09-04 2022-06-21 Fujitsu Limited Wavelength conversion device and wavelength conversion method
WO2023062791A1 (ja) * 2021-10-14 2023-04-20 日本電信電話株式会社 波長変換装置
WO2023084621A1 (ja) * 2021-11-09 2023-05-19 日本電信電話株式会社 波長変換装置
WO2023218667A1 (ja) * 2022-05-13 2023-11-16 日本電信電話株式会社 波長変換装置

Also Published As

Publication number Publication date
CN112969960A (zh) 2021-06-15
CN112969960B (zh) 2022-11-29
JP2020076834A (ja) 2020-05-21
US20210405502A1 (en) 2021-12-30
US11385521B2 (en) 2022-07-12
JP7087928B2 (ja) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2020095754A1 (ja) 波長変換装置
US7012740B2 (en) Optical parametric circuit
JP6204064B2 (ja) 光増幅装置
JP6110547B1 (ja) 光増幅装置
JP5421230B2 (ja) 波長変換デバイス及び波長変換装置
JP6871137B2 (ja) ハイブリッド光回路
JP2014222331A (ja) 波長変換素子
JP5814183B2 (ja) 波長変換デバイス
JP2011064895A (ja) 波長変換デバイス及び波長変換装置
JP2014211539A (ja) 波長変換素子
JP6533171B2 (ja) 光コム発生装置
WO2022157858A1 (ja) 波長変換装置
JP6306941B2 (ja) 波長変換装置
WO2023218646A1 (ja) 波長変換システム
JP7160194B2 (ja) 波長変換素子
WO2020240676A1 (ja) 波長変換光学素子
JP6774372B2 (ja) 光学素子
WO2022219687A1 (ja) 波長変換光学素子
JP6401107B2 (ja) 光増幅装置
WO2022249234A1 (ja) 波長変換装置及び波長変換装置の製造方法
WO2023037560A1 (ja) 波長変換器およびその制御方法
JP3575434B2 (ja) 光パラメトリック回路
WO2022254640A1 (ja) 波長変換装置
WO2023218667A1 (ja) 波長変換装置
Kazama et al. Single-chip parametric frequency up/down converter using parallel PPLN waveguides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883049

Country of ref document: EP

Kind code of ref document: A1