WO2020095348A1 - 電源回路 - Google Patents

電源回路 Download PDF

Info

Publication number
WO2020095348A1
WO2020095348A1 PCT/JP2018/041052 JP2018041052W WO2020095348A1 WO 2020095348 A1 WO2020095348 A1 WO 2020095348A1 JP 2018041052 W JP2018041052 W JP 2018041052W WO 2020095348 A1 WO2020095348 A1 WO 2020095348A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
supply circuit
semiconductor element
regulator
Prior art date
Application number
PCT/JP2018/041052
Other languages
English (en)
French (fr)
Inventor
和久 松田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020556376A priority Critical patent/JP6949246B2/ja
Priority to CN201880099241.2A priority patent/CN112969980B/zh
Priority to PCT/JP2018/041052 priority patent/WO2020095348A1/ja
Publication of WO2020095348A1 publication Critical patent/WO2020095348A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/618Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series and in parallel with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to a step-down regulator type power supply circuit.
  • a step-down regulator type power supply circuit is known.
  • Patent Document 1 a series in which the input voltage is stepped down by converting the electric power of the difference between the input voltage and the output voltage into heat energy with a semiconductor element such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the present invention has been made in view of the above, and an object thereof is to obtain a power supply circuit that can use a semiconductor element having a small rated power in a power supply circuit including a series regulator.
  • the power supply circuit of the present invention includes a rectifier circuit, a shunt regulator, a series regulator, and a smoothing capacitor.
  • the rectifier circuit rectifies the AC voltage supplied from the AC power supply.
  • the shunt regulator is connected in parallel with the rectifier circuit and reduces the voltage output from the rectifier circuit.
  • the series regulator is connected in parallel with the rectifier circuit and reduces the voltage output from the rectifier circuit.
  • the smoothing capacitor is connected to the output terminal of the series regulator via the first diode and is connected to the output terminal of the shunt regulator via the second diode.
  • FIG. 3 is a diagram showing a specific configuration of the power supply circuit according to the first embodiment.
  • a power supply circuit according to an embodiment of the present invention will be described below in detail with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • FIG. 1 is a diagram showing a configuration example of a power supply circuit according to the first exemplary embodiment of the present invention.
  • the power supply circuit 1 according to the first embodiment is a step-down regulator type power supply circuit and is connected to an AC power supply 2.
  • An input voltage Vin which is an AC voltage, is supplied to the power supply circuit 1 from an AC power supply 2.
  • the power supply circuit 1 includes a rectifier circuit 10, a series regulator 20, a shunt regulator 30, a first diode 41, a second diode 42, and a smoothing capacitor 50.
  • the rectifier circuit 10 rectifies the input voltage Vin supplied from the AC power supply 2.
  • the rectifier circuit 10 is, for example, a diode bridge, and full-wave rectifies the input voltage Vin supplied from the AC power supply 2.
  • the voltage output from the rectifier circuit 10 is referred to as a full-wave rectified voltage V1.
  • the series regulator 20 is connected in parallel to the rectifier circuit 10, and the full-wave rectified voltage V1 is applied to the input terminal T11.
  • the series regulator 20 converts the full-wave rectified voltage V1 into a voltage lower than the peak value of the full-wave rectified voltage V1, and outputs the converted voltage as the output voltage V2 from the output terminal T12.
  • the series regulator 20 has a semiconductor element such as a MOSFET (not shown) arranged between the rectifier circuit 10 and the smoothing capacitor 50, and causes a power loss due to the semiconductor element to reduce the voltage.
  • the shunt regulator 30 is connected in parallel to the rectifier circuit 10, and the full-wave rectified voltage V1 is applied to the input terminal T21.
  • the shunt regulator 30 converts the full-wave rectified voltage V1 into a voltage lower than the peak value of the full-wave rectified voltage V1, and outputs the converted voltage as the output voltage V3 from the output terminal T22.
  • the shunt regulator 30 has a resistor (not shown) arranged between the rectifier circuit 10 and the smoothing capacitor 50, and causes a power loss due to the resistor to reduce the voltage.
  • the first diode 41 is connected between the output terminal T12 of the series regulator 20 and the smoothing capacitor 50. Specifically, the anode of the first diode 41 is connected to the output terminal T12 of the series regulator 20, and the cathode of the first diode 41 is connected to the smoothing capacitor 50.
  • the second diode 42 is connected between the output terminal T22 of the shunt regulator 30 and the smoothing capacitor 50. Specifically, the anode of the second diode 42 is connected to the output terminal T22 of the shunt regulator 30, and the cathode of the second diode 42 is connected to the smoothing capacitor 50.
  • the smoothing capacitor 50 smoothes the output voltage V2 of the series regulator 20 supplied via the first diode 41, and smoothes the output voltage V3 of the shunt regulator 30 supplied via the second diode 42.
  • the voltage smoothed by the smoothing capacitor 50 is output from the output terminal To of the power supply circuit 1 as the output voltage Vo of the power supply circuit 1.
  • the shunt regulator 30 and the series regulator 20 are connected in parallel. Therefore, when the input voltage Vin is used in a wide range, when the difference between the input voltage Vin and the output voltage Vo becomes large, a resistor (not shown) in the shunt regulator 30 is mainly used to supply power from the shunt regulator 30.
  • the power loss of the series regulator 20 can be suppressed by adjusting the resistance value of.
  • the semiconductor element in the series regulator 20 can be selected as a small package having a small rated power.
  • the voltage of the smoothing capacitor 50 immediately increases due to the first supply current I1 of the series regulator 20. Therefore, the rise time of the output voltage Vo can be significantly shortened as compared with the circuit of the shunt regulator 30 alone.
  • FIG. 2 is a diagram illustrating a specific configuration of the power supply circuit according to the first embodiment.
  • the rectifier circuit 10 shown in FIG. 2 is a diode bridge.
  • the series regulator 20 includes a semiconductor element 21 that is a MOSFET, a resistance element 22, and a Zener diode 23.
  • the gate of the semiconductor element 21 is an example of a control terminal of the semiconductor element.
  • the drain of the semiconductor element 21 is an example of an input terminal of the semiconductor element.
  • the source of the semiconductor element 21 is an example of the output terminal of the semiconductor element.
  • the resistance element 22 is an example of a first resistance.
  • the Zener diode 23 is an example of a first Zener diode.
  • a resistance element 22 is connected between the gate of the semiconductor element 21 and the drain of the semiconductor element 21.
  • the Zener diode 23 is connected between the gate of the semiconductor element 21 and the ground. Specifically, the cathode of the Zener diode 23 is connected to the gate of the semiconductor element 21, and the anode of the Zener diode 23 is connected to the ground.
  • the semiconductor element 21 is not limited to the MOSFET and may be a junction FET or a bipolar transistor.
  • a voltage obtained by subtracting the gate-source voltage of the semiconductor element 21 from the Zener voltage of the Zener diode 23 is output as the output voltage V2.
  • the electric power due to the difference between the drain voltage and the source voltage of the semiconductor element 21 is converted into heat energy in the semiconductor element 21.
  • the series regulator 20 is connected to the smoothing capacitor 50 via the first diode 41, and the current I1 is supplied from the series regulator 20 to the smoothing capacitor 50 via the first diode 41.
  • the current I1 is referred to as the first supply current I1.
  • the shunt regulator 30 also includes a resistance element 31 and a zener diode 32.
  • the resistance element 31 and the Zener diode 32 are connected in series, and the series body of the resistance element 31 and the Zener diode 32 is connected in parallel with the rectifier circuit 10.
  • the resistance element 31 is an example of a second resistance.
  • Zener diode 32 is an example of a second Zener diode.
  • the Zener voltage of the Zener diode 23 and the Zener voltage of the Zener diode 32 are expressed by equations (1) and (2) so that the output current Io can be mainly supplied from the shunt regulator 30 when the input voltage Vin is maximum. Is set to meet.
  • Vz2 Vz2 ⁇ V1max-R31 ⁇ Io (1)
  • V1max is the full-wave rectified voltage V1 at the maximum of the input voltage Vin
  • R31 is the resistance value of the resistance element 31
  • Vz1 is the zener voltage of the zener diode 23
  • Vz2 is the Zener voltage of the Zener diode 32
  • Vgs is the gate-source voltage of the semiconductor element 21
  • Vd1 is the forward voltage of the first diode 41
  • Vd2 is the forward voltage of the second diode 42. Is.
  • the series regulator 20 mainly supplies the output current Io.
  • the output voltage Vo at this time is determined by being controlled by the output voltage V2 of the series regulator 20. Therefore, the current I2 supplied from the shunt regulator 30 shown in FIG.
  • the current I2 will be referred to as the second supply current I2. Since the resistance element 22 is for flowing a current in which the Zener voltage Vz1 of the Zener diode 23 is stable, the resistance value of the resistance element 22 may be a relatively large resistance value.
  • FIG. 3 is a diagram showing the power consumption of the semiconductor element of the power supply circuit when the input voltage is maximum and minimum, assuming that there is no shunt regulator of the power supply circuit according to the first embodiment.
  • FIG. 4 is a diagram showing the gate voltage of the semiconductor element and the output voltage of the power supply circuit when it is assumed that there is no shunt regulator of the power supply circuit according to the first embodiment.
  • P1max is the power consumption P1 of the semiconductor element 21 when the input voltage Vin is the maximum
  • P1min is the power consumption P1 of the semiconductor element 21 when the input voltage Vin is the minimum.
  • Vg is the gate voltage of the semiconductor element 21.
  • FIG. 5 is a diagram showing the gate voltage of the semiconductor element, the output voltage of the shunt regulator, and the output voltage of the power supply circuit when the input voltage of the power supply circuit according to the first embodiment is the maximum.
  • FIG. 6 is a diagram showing the gate voltage of the semiconductor element, the output voltage of the shunt regulator, and the output voltage of the power supply circuit when the input voltage of the power supply circuit according to the first embodiment is minimum.
  • Vg is the gate voltage of the semiconductor element 21
  • Vb is the voltage of the anode of the second diode 42.
  • the Zener voltage Vz2 of the Zener diode 32 is selected so that the voltage difference ⁇ V is as small as possible.
  • the reason why the voltage difference ⁇ V is set to about 1 V to 3 V is that the above conditions (1) and (2) are always satisfied in consideration of variations in the Zener voltage and the gate-source voltage.
  • the output voltage Vo changes from the Zener voltage Vz1 of the Zener diode 23 to the gate-source of the semiconductor element 21 as shown in FIG. It is constant at the voltage shown in the above equation (5) obtained by subtracting the voltage Vgs and the forward voltage Vd1 of the first diode 41.
  • the second supply current I2 which is the output current of the shunt regulator 30 is the current obtained by the above equation (4).
  • the Zener diode 23 is set so that the output voltage V3 of the shunt regulator 30 when the input voltage Vin is the maximum becomes slightly higher than the output voltage V2 of the series regulator 20 alone assuming that the shunt regulator 30 is not provided. , 32 of the Zener voltages Vz1 and Vz2, the fluctuation of the output voltage Vo can be suppressed.
  • FIG. 7 is a diagram showing the relationship between the input voltage, the first supply current, and the second supply current in the power supply circuit according to the first embodiment
  • FIG. 8 shows the input voltage of the power supply circuit according to the first embodiment. It is a figure which shows the power consumption of a semiconductor element and resistance at the time of maximum and minimum.
  • P1max is the power consumption P1 of the semiconductor element 21 when the input voltage Vin is maximum
  • P1min is the power consumption P1 of the semiconductor element 21 when the input voltage Vin is minimum
  • P3max is the power consumption P3 of the resistance element 31 when the input voltage Vin is the maximum
  • P3min is the power consumption P3 of the resistance element 31 when the input voltage Vin is the minimum.
  • the first supply current I1 and the second supply current I2 increase or decrease as the input voltage Vin increases or decreases.
  • the second supply current I2 has a current value represented by the equation (4), and the remaining current obtained by subtracting the second supply current I2 from the output current Io becomes the first supply current I1.
  • the first supply current I1 decreases as the input voltage Vin increases, and when the input voltage Vin becomes maximum, the second supply current I2 decreases and Vo decreases near the zero cross of the input voltage Vin, and the semiconductor element Only when the gate voltage Vg of 21 reaches the Zener voltage Vz1 of the Zener diode 23, the voltage is reduced to the extent that the first supply current I1 flows. That is, when the input voltage Vin becomes maximum, the series regulator 20 supplies current only near the zero cross of the input voltage Vin, and operates so as to maintain the output voltage Vo constant.
  • the semiconductor element 21 is a small package with a small rated power.
  • the product can be selected.
  • FIG. 9 is a diagram showing how the output voltage of the power supply circuit according to the first embodiment rises.
  • the waveform of the output voltage of the power supply circuit 1 at startup and the output voltage of the power supply circuit excluding the series regulator are started. And the time waveform.
  • “Vo1” indicates the output voltage of the power supply circuit having the circuit configuration of the power supply circuit 1 excluding the series regulator 20.
  • the first diode 41 is not provided in the power supply circuit having a circuit configuration other than the series regulator 20.
  • the power supply circuit 1 can quickly raise the output voltage Vo immediately after the application of the input voltage Vin is started, as compared with the case of the power supply circuit having a circuit configuration excluding the series regulator 20. Further, the power supply circuit 1 outputs the output voltage V2 of the series regulator 20 as the output voltage Vo when the input voltage Vin is near the zero crossing and when the input voltage Vin decreases. Therefore, as compared with the power supply circuit using only the shunt regulator 30, it is possible to suppress a decrease in the output voltage Vo near the zero cross of the input voltage Vin and when the input voltage Vin decreases.
  • the series regulator 20 and the shunt regulator 30 are not limited to the configuration shown in FIG.
  • the series regulator 20 is not limited to the configuration shown in FIG. 2 as long as it is a series regulator that reduces the voltage by the power consumption of the semiconductor element 21.
  • the shunt regulator 30 is, for example, a configuration shown in FIG. 2 if it is a shunt regulator configured to step down by power consumption by a resistor and clip an upper limit so that the output voltage V3 does not become too high.
  • the shunt regulator 30 may have a circuit configuration in which an upper limit voltage is defined by an operational amplifier and a transistor.
  • the shunt regulator 30 may be a shunt regulator capable of stepping down by power consumption by a resistor and outputting the same voltage as the output voltage V2 as the output voltage V3.
  • the power supply circuit 1 shown in FIGS. 1 and 2 mainly uses the output power from the shunt regulator 30 at the maximum input voltage, while the input voltage Vin is near zero cross and the input voltage Vin is reduced.
  • the output power from the series regulator 20 is used to suppress the decrease in the output voltage Vo. That is, the power supply circuit 1 shown in FIGS. 1 and 2 uses the series regulator 20 complementarily in the power supply circuit including the shunt regulator 30, but the characteristics of the power supply circuit 1 are shown in FIGS. It is not limited to the characteristics shown in FIG.
  • the power supply circuit 1 includes the rectifier circuit 10, the series regulator 20, the shunt regulator 30, and the smoothing capacitor 50.
  • the rectifier circuit 10 rectifies the input voltage Vin, which is an AC voltage supplied from the AC power supply 2.
  • the series regulator 20 is connected in parallel to the rectifier circuit 10 and reduces the voltage output from the rectifier circuit 10.
  • the shunt regulator 30 is connected in parallel to the rectifier circuit 10 and reduces the voltage output from the rectifier circuit 10.
  • the smoothing capacitor 50 is connected to the output terminal T12 of the series regulator 20 via the first diode 41 and to the output terminal T22 of the shunt regulator 30 via the second diode 42. As a result, the rise time of the output voltage can be shortened in the power supply circuit 1 including the shunt regulator 30.
  • the power loss of the series regulator 20 can be suppressed, and the semiconductor element 21 used as the step-down element in the series regulator 20 can use a small packaged product with a small rated power.
  • the power supply circuit 1 outputs the output voltage V2 of the series regulator 20 as the output voltage Vo when the input voltage Vin is near the zero crossing or when the input voltage Vin decreases. Can be suppressed.
  • the voltage rectified by the rectifier circuit 10 is used by both the shunt regulator 30 and the series regulator 20, the power loss by the series regulator 20 and the power loss by the shunt regulator 30 can be dispersed.
  • the series regulator 20 includes a semiconductor element 21 whose input terminal is connected to the rectifier circuit 10, a resistor element 22 connected between the rectifier circuit 10 and a control terminal of the semiconductor element 21, and a control terminal of the semiconductor element 21. And a Zener diode 23 connected to. Then, the voltage is output from the output terminal of the semiconductor element 21.
  • the shunt regulator 30 includes a series body of a resistance element 31 and a Zener diode 32 connected in parallel to the rectifier circuit 10, and outputs a voltage from a connection point of the resistance element 31 and the Zener diode 32.
  • the shunt regulator 30 increases the ratio of the second supply current I2 supplied to the smoothing capacitor 50 to the first supply current I1 supplied from the series regulator 20 to the smoothing capacitor 50 as the input voltage Vin increases. As a result, even when the input voltage Vin becomes high, the power consumption P1 of the semiconductor element 21 of the series regulator 20 can be suppressed, and the semiconductor element 21 can be prevented from increasing in size.
  • the shunt regulator 30 subtracts the forward voltage Vd2 of the second diode 42 from the Zener voltage Vz2 of the Zener diode 32 so that the output voltage V3 becomes larger than the output voltage V2 of the series regulator 20 when the input voltage Vin is maximum. Is obtained by subtracting the gate-source voltage Vgs, which is the voltage between the control terminal and the output terminal of the semiconductor element 21, from the Zener voltage Vz1 of the Zener diode 23 and the forward voltage Vd1 of the first diode 41. Is also selected as a large value. As a result, the fluctuation of the output voltage Vo can be suppressed.
  • Embodiment 2 The power supply circuit according to the second embodiment differs from the power supply circuit according to the first embodiment in that the shunt regulator has a plurality of resistance elements.
  • constituent elements having the same functions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 10 is a diagram showing a configuration example of a power supply circuit according to the second exemplary embodiment of the present invention.
  • the power supply circuit 1A according to the second embodiment includes a shunt regulator 30A instead of the shunt regulator 30 shown in FIG.
  • the shunt regulator 30A includes, in place of the resistance element 31, serially connected resistance elements 33 and 34 as a first resistance.
  • the potential difference between the Zener diode 32 and the rectifier circuit 10 is a voltage obtained by subtracting the Zener voltage Vz2 of the Zener diode 32 from the input voltage Vin from the full-wave rectified voltage V1 and becomes a high voltage.
  • the series body of the two resistance elements 33 and 34 is the second resistance, but the series body of three or more resistance elements may be the second resistance.
  • one end of the resistance element 22 of the series regulator 20 is connected to a connection point between the resistance element 33 and the resistance element 34. Therefore, in the power supply circuit 1A, the voltage applied to the resistance element 22 is a voltage divided by the resistance element 33 and the resistance element 34, and the consumption of the resistance element 22 is higher than that in the power supply circuit 1 shown in FIG. Electric power can be reduced. As a result, the power consumption of the series regulator 20 can be reduced. Since a larger current flows through the resistance element 33 than the resistance element 22, even if a current flowing through the resistance element 22 is applied, there is no substantial effect.
  • the power supply circuit 1A includes the plurality of resistance elements 33 and 34 connected in series. That is, the second resistance is formed by the plurality of resistance elements 33 and 34 connected in series. As a result, for example, even when one of the resistance elements 33 and 34 is short-circuited, the full-wave rectified voltage V1 is not directly applied to the Zener diode 32, and the Zener diode 32 is insulated from the AC power supply 2. It is possible to easily secure the sex.
  • the resistance element 22 of the series regulator 20 is connected between the connection point between the two resistance elements 33 and 34 out of two or more connected in series and the control terminal of the semiconductor element 21, the resistance element 22 of FIG. Compared to the case shown, the power consumption of the resistance element 22 can be reduced.

Abstract

電源回路(1)は、整流回路(10)と、シャントレギュレータ(30)と、シリーズレギュレータ(20)と、平滑コンデンサ(50)とを備える。整流回路(10)は、交流電源(2)から供給される交流電圧を整流する。シャントレギュレータ(30)は、整流回路(10)に並列に接続され、整流回路(10)から出力される電圧を降圧する。シリーズレギュレータ(20)は、整流回路(10)に並列に接続され、整流回路(10)から出力される電圧を降圧する。平滑コンデンサ(50)は、シリーズレギュレータ(20)の出力端子(T12)に第1ダイオード(41)を介して接続され且つシャントレギュレータ(30)の出力端子(T22)に第2ダイオード(42)を介して接続される。

Description

電源回路
 本発明は、降圧レギュレータ方式の電源回路に関する。
 従来、降圧レギュレータ方式の電源回路が知られている。例えば、特許文献1には、入力電圧と出力電圧との差分の電力をMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの半導体素子で熱エネルギーに変換することで、入力電圧を降圧するシリーズレギュレータを含む電源回路が開示されている。
特開平9-322540号公報
 しかしながら、従来のシリーズレギュレータを含む電源回路は、入力電圧が幅広い範囲で使用される場合、入力電圧と出力電圧の差が大きくなり、半導体素子の発熱エネルギーが大きくなるため、定格電力の大きい大型なパッケージの半導体素子を選定する必要があるという課題がある。
 本発明は、上記に鑑みてなされたものであって、シリーズレギュレータを含む電源回路において定格電力の小さな半導体素子を使用することができる電源回路を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の電源回路は、整流回路と、シャントレギュレータと、シリーズレギュレータと、平滑コンデンサとを備える。整流回路は、交流電源から供給される交流電圧を整流する。シャントレギュレータは、整流回路に並列に接続され、整流回路から出力される電圧を降圧する。シリーズレギュレータは、整流回路に並列に接続され、整流回路から出力される電圧を降圧する。平滑コンデンサは、シリーズレギュレータの出力端子に第1ダイオードを介して接続され且つシャントレギュレータの出力端子に第2ダイオードを介して接続される。
 本発明によれば、シリーズレギュレータを含む電源回路において定格電力の小さな半導体素子を使用することができる、という効果を奏する。
本発明の実施の形態1にかかる電源回路の構成例を示す図 実施の形態1にかかる電源回路の具体的構成を示す図 実施の形態1にかかる電源回路のシャントレギュレータが無いと仮定した場合の入力電圧が最大時および最小時の電源回路の半導体素子の消費電力を示す図 実施の形態1にかかる電源回路のシャントレギュレータが無いと仮定した場合の半導体素子のゲート電圧と電源回路の出力電圧とを示す図 実施の形態1にかかる電源回路の入力電圧が最大時の半導体素子のゲート電圧とシャントレギュレータの出力電圧と電源回路の出力電圧とを示す図 実施の形態1にかかる電源回路の入力電圧が最小時の半導体素子のゲート電圧とシャントレギュレータの出力電圧と電源回路の出力電圧とを示す図 実施の形態1にかかる電源回路における入力電圧、第1供給電流、および第2供給電流の関係を示す図 実施の形態1にかかる電源回路の入力電圧が最大時および最小時の半導体素子および抵抗の消費電力を示す図 実施の形態1にかかる電源回路の出力電圧の立ち上がりの様子を示す図 本発明の実施の形態2にかかる電源回路の構成例を示す図
 以下に、本発明の実施の形態にかかる電源回路を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる電源回路の構成例を示す図である。図1に示すように、実施の形態1にかかる電源回路1は、降圧レギュレータ方式の電源回路であり、交流電源2に接続される。電源回路1には、交流電源2から交流電圧である入力電圧Vinが供給される。
 電源回路1は、整流回路10と、シリーズレギュレータ20と、シャントレギュレータ30と、第1ダイオード41と、第2ダイオード42と、平滑コンデンサ50とを備える。
 整流回路10は、交流電源2から供給される入力電圧Vinを整流する。かかる整流回路10は、例えば、ダイオードブリッジであり、交流電源2から供給される入力電圧Vinを全波整流する。以下、便宜上、整流回路10から出力される電圧を全波整流電圧V1と記載する。
 シリーズレギュレータ20は、整流回路10に並列に接続され、入力端子T11に全波整流電圧V1が印加される。かかるシリーズレギュレータ20は、全波整流電圧V1を全波整流電圧V1の波高値よりも低い電圧に変換し、変換した電圧を出力電圧V2として出力端子T12から出力する。かかるシリーズレギュレータ20は、整流回路10と平滑コンデンサ50との間に配置される不図示のMOSFETなどの半導体素子を有し、かかる半導体素子による電力損失を生じさせて降圧を行う。
 シャントレギュレータ30は、整流回路10に並列に接続され、入力端子T21に全波整流電圧V1が印加される。かかるシャントレギュレータ30は、全波整流電圧V1を全波整流電圧V1の波高値よりも低い電圧に変換し、変換した電圧を出力電圧V3として出力端子T22から出力する。かかるシャントレギュレータ30は、整流回路10と平滑コンデンサ50との間に配置される不図示の抵抗を有し、かかる抵抗による電力損失を生じさせて降圧を行う。
 第1ダイオード41は、シリーズレギュレータ20の出力端子T12と平滑コンデンサ50との間に接続される。具体的には、第1ダイオード41のアノードがシリーズレギュレータ20の出力端子T12に接続され、第1ダイオード41のカソードが平滑コンデンサ50に接続される。
 第2ダイオード42は、シャントレギュレータ30の出力端子T22と平滑コンデンサ50との間に接続される。具体的には、第2ダイオード42のアノードがシャントレギュレータ30の出力端子T22に接続され、第2ダイオード42のカソードが平滑コンデンサ50に接続される。
 平滑コンデンサ50は、第1ダイオード41を介して供給されるシリーズレギュレータ20の出力電圧V2を平滑し、第2ダイオード42を介して供給されるシャントレギュレータ30の出力電圧V3を平滑する。かかる平滑コンデンサ50によって平滑された電圧が電源回路1の出力電圧Voとして電源回路1の出力端子Toから出力される。
 このように、実施の形態1にかかる電源回路1は、シャントレギュレータ30にシリーズレギュレータ20が並列に接続される。そのため、入力電圧Vinが幅広い範囲で使用される場合において、入力電圧Vinと出力電圧Voの差が大きくなる時には、シャントレギュレータ30から電力供給を主に行うようにシャントレギュレータ30内の不図示の抵抗の抵抗値を調整することで、シリーズレギュレータ20の電力損失を抑えることができる。これにより、シリーズレギュレータ20内の半導体素子は定格電力の小さい小型のパッケージ品を選定可能である。また、電源回路1では、入力電圧Vinの印加が開始された時に、シリーズレギュレータ20の第1供給電流I1によって平滑コンデンサ50の電圧がすぐに高くなる。したがって、シャントレギュレータ30単独の回路よりも出力電圧Voの立ち上がり時間を大幅に短縮することができる。
 以下、実施の形態1にかかる電源回路1の構成についてさらに具体的に説明する。図2は、実施の形態1にかかる電源回路の具体的構成を示す図である。図2に示す整流回路10は、ダイオードブリッジである。
 図2に示すように、シリーズレギュレータ20は、MOSFETである半導体素子21と、抵抗素子22と、ツェナーダイオード23とを備える。半導体素子21のゲートは、半導体素子の制御端子の一例である。半導体素子21のドレインは、半導体素子の入力端子の一例である。半導体素子21のソースは、半導体素子の出力端子の一例である。抵抗素子22は、第1抵抗の一例である。ツェナーダイオード23は、第1ツェナーダイオードの一例である。
 半導体素子21のゲートと半導体素子21のドレインとの間には、抵抗素子22が接続される。半導体素子21のゲートとグランドとの間には、ツェナーダイオード23が接続される。具体的には、半導体素子21のゲートには、ツェナーダイオード23のカソードが接続され、グランドにはツェナーダイオード23のアノードが接続される。なお、半導体素子21は、MOSFETに限定されず、接合型FETまたはバイポーラトランジスタであってもよい。
 図2に示すシリーズレギュレータ20では、ツェナーダイオード23のツェナー電圧から半導体素子21のゲート-ソース間電圧を差し引いた電圧が出力電圧V2として出力される。半導体素子21のドレイン電圧とソース電圧との差分による電力は、半導体素子21において熱エネルギーに変換される。
 シリーズレギュレータ20は、第1ダイオード41を介して平滑コンデンサ50に接続されており、シリーズレギュレータ20から第1ダイオード41を介して平滑コンデンサ50へ電流I1が供給される。以下、便宜上、電流I1を第1供給電流I1と記載する。
 また、シャントレギュレータ30は、抵抗素子31と、ツェナーダイオード32とを備える。抵抗素子31とツェナーダイオード32とは直列に接続され、抵抗素子31とツェナーダイオード32との直列体は整流回路10と並列に接続される。抵抗素子31は、第2抵抗の一例である。ツェナーダイオード32は、第2ツェナーダイオードの一例である。
 ここで、入力電圧Vinの最大時はシャントレギュレータ30から主に出力電流Ioが供給できるように、ツェナーダイオード23のツェナー電圧と、ツェナーダイオード32のツェナー電圧とは、式(1),(2)を満たすように設定される。
 Vz2<V1max-R31×Io      ・・・(1)
 Vz2-Vd2>Vz1-Vgs-Vd1   ・・・(2)
 上記式(1),(2)において、「V1max」は入力電圧Vinの最大時の全波整流電圧V1、「R31」は抵抗素子31の抵抗値、「Vz1」はツェナーダイオード23のツェナー電圧、「Vz2」はツェナーダイオード32のツェナー電圧、「Vgs」は半導体素子21のゲート-ソース間電圧、「Vd1」は第1ダイオード41の順方向電圧、「Vd2」は第2ダイオード42の順方向電圧である。
 入力電圧Vinが幅広い範囲で使用される場合の電源回路においては、入力電圧Vinの最小時の全波整流電圧V1をV1minとすると、V1maxに対してV1minの電圧はかなり小さい値となる。このため、V1minと各電圧の関係は式(3)で示される関係になり、入力電圧Vinの最小時はシリーズレギュレータ20から主に出力電流Ioが供給されるようになる。
 V1min-R31×Io-Vd2<Vz1-Vgs-Vd1  ・・・(3)
 このときの出力電圧Voは、シリーズレギュレータ20の出力電圧V2に支配され決定される。そのため、図2に示すシャントレギュレータ30から平滑コンデンサ50へ供給される電流I2は、全波整流電圧V1の瞬時値から出力電圧Voと第2ダイオード42の順方向電圧Vd2を引いた電圧を抵抗素子31の抵抗値R31で割った以下の式(4)で決定される。
 I2={V1-Vo-Vd2}/R31   ・・・(4)
 以下、便宜上、電流I2を第2供給電流I2と記載する。なお、抵抗素子22はツェナーダイオード23のツェナー電圧Vz1が安定する電流を流すためのものなので、抵抗素子22の抵抗値は比較的大きな抵抗値で構わない。
 図3は、実施の形態1にかかる電源回路のシャントレギュレータが無いと仮定した場合の入力電圧が最大時および最小時の電源回路の半導体素子の消費電力を示す図である。図4は、実施の形態1にかかる電源回路のシャントレギュレータが無いと仮定した場合の半導体素子のゲート電圧と電源回路の出力電圧とを示す図である。図3において、「P1max」は、入力電圧Vinが最大時の半導体素子21の消費電力P1であり、「P1min」は、入力電圧Vinが最小時の半導体素子21の消費電力P1である。また、図4において、「Vg」は、半導体素子21のゲート電圧である。
 図3に示すように、仮にシャントレギュレータ30と第2ダイオード42がない回路の場合は、半導体素子21の消費電力P1は入力電圧Vinが高くなるほど大きくなる。そのため、入力電圧Vinが最大時の消費電力から半導体素子21を選定すると、定格電力が大きい大型なパッケージ品を選定する必要がある。また、図4のように、シャントレギュレータ30と第2ダイオード42がない回路の場合は、出力電圧Voは入力電圧Vinの大小に関わらず、ツェナーダイオード23のツェナー電圧から半導体素子21のゲート-ソース間電圧Vgsと第1ダイオード41の順方向電圧Vd1とを引いた下記式(5)で示す電圧で一定となる。
 Vo=Vz1-Vgs-Vd1  ・・・(5)
 図5は、実施の形態1にかかる電源回路の入力電圧が最大時の半導体素子のゲート電圧とシャントレギュレータの出力電圧と電源回路の出力電圧とを示す図である。図6は、実施の形態1にかかる電源回路の入力電圧が最小時の半導体素子のゲート電圧とシャントレギュレータの出力電圧と電源回路の出力電圧とを示す図である。なお、図5および図6において、「Vg」は、半導体素子21のゲート電圧であり、図6において、「Vb」は、第2ダイオード42のアノードの電圧である。
 実施の形態1にかかる電源回路1において、入力電圧Vinが最大時に図5に示すようにシャントレギュレータ30の出力電圧V3から第2ダイオード42の順方向電圧Vd2を引いた値が、上記式(5)で示した出力電圧Voよりも大きい電圧であり、かつシャントレギュレータ30の出力電圧V3から第2ダイオード42の順方向電圧Vd2を引いた値と上記式(5)で示した出力電圧Voとの電圧差ΔVがなるべく小さくなるようにツェナーダイオード32のツェナー電圧Vz2を選定する。つまり、下記式(6)における電圧差ΔVが1V~3V程度になるように、ツェナーダイオード23,32、半導体素子21、第1ダイオード41、および第2ダイオード42として用いる複数の部品が選択される。
 ΔV=(Vz2-Vd2)-(Vz1-Vgs-Vd1)   ・・・(6)
 電圧差ΔVを1V~3V程度とする理由は、ツェナー電圧やゲート-ソース間電圧などのばらつきを考慮し常に上述の式(1),式(2)の条件を満足するためである。
 上述した回路定数で入力電圧Vinが最小時となった場合、図6に示すように、出力電圧Voは、図4と同じようにツェナーダイオード23のツェナー電圧Vz1から半導体素子21のゲート-ソース間電圧Vgsと第1ダイオード41の順方向電圧Vd1とを引いた上記式(5)で示した電圧で一定となる。この時、シャントレギュレータ30の出力電圧V3の電圧は、ツェナーダイオード32のツェナー電圧Vz2まで達していないため、シャントレギュレータ30の出力電流である第2供給電流I2は上記式(4)で求められる電流となる。
 このように、シャントレギュレータ30が無いと仮定した場合のシリーズレギュレータ20単独の出力電圧V2に対して、入力電圧Vinが最大時のシャントレギュレータ30の出力電圧V3がわずかに大きくなるようにツェナーダイオード23,32のツェナー電圧Vz1,Vz2を決定することにより、出力電圧Voの変動を抑えることができる。
 図7は、実施の形態1にかかる電源回路における入力電圧、第1供給電流、および第2供給電流の関係を示す図であり、図8は、実施の形態1にかかる電源回路の入力電圧が最大時および最小時の半導体素子および抵抗の消費電力を示す図である。図8において、「P1max」は、入力電圧Vinが最大時の半導体素子21の消費電力P1であり、「P1min」は、入力電圧Vinが最小時の半導体素子21の消費電力P1である。また、図8において、「P3max」は、入力電圧Vinが最大時の抵抗素子31の消費電力P3であり、「P3min」は、入力電圧Vinが最小時の抵抗素子31の消費電力P3である。
 図7に示すように、入力電圧Vinの増減に対して第1供給電流I1と第2供給電流I2とが増減する。入力電圧Vinが最小時において第2供給電流I2は式(4)で示される電流値となり、出力電流Ioから第2供給電流I2を引いた残りの電流が第1供給電流I1となる。第1供給電流I1は入力電圧Vinの増加に伴い減少し、入力電圧Vinが最大となった時は、入力電圧Vinのゼロクロス近辺で第2供給電流I2が減少してVoが低下し、半導体素子21のゲート電圧Vgがツェナーダイオード23のツェナー電圧Vz1に達した時のみ第1供給電流I1が流れる程度まで減少する。つまり、入力電圧Vinが最大となった時は、シリーズレギュレータ20は入力電圧Vinのゼロクロス近辺のみ電流供給し、出力電圧Voを一定に維持するような動作を行う。
 このため、図8に示すように、入力電圧Vinが大きい時は、第1供給電流I1が小さくなり半導体素子21の消費電力P1を抑えることができ、半導体素子21に定格電力の小さい小型なパッケージ品を選定することができる。
 次に、電源回路1のうちシリーズレギュレータ20を除いた回路構成の電源回路における出力電圧の起動時の波形について具体的に説明する。図9は、実施の形態1にかかる電源回路の出力電圧の立ち上がりの様子を示す図であり、電源回路1の出力電圧の起動時の波形と、シリーズレギュレータを除いた電源回路の出力電圧の起動時の波形とを示す。図9において、「Vo1」は、電源回路1のうちシリーズレギュレータ20を除いた回路構成の電源回路の出力電圧を示す。なお、シリーズレギュレータ20を除いた回路構成の電源回路には第1ダイオード41は設けられない。
 図9に示すように、電源回路1からシリーズレギュレータ20を除いた回路構成の電源回路の場合、入力電圧Vinの印加を開始した直後は抵抗素子31と平滑コンデンサ50の時定数によって、出力電圧Vo1の立ち上りが遅くなるが、電源回路1では、出力電圧Voはすぐに立ち上がる。これは、電源回路1では、シャントレギュレータ30からの第2供給電流I2が少ない場合であっても、シリーズレギュレータ20からの第1供給電流I1によってすぐに増加するためである。
 このように、電源回路1は、シリーズレギュレータ20を除いた回路構成の電源回路の場合に比べ、入力電圧Vinの印加を開始した直後において出力電圧Voを早く立ち上げることができる。また、電源回路1は、入力電圧Vinのゼロクロス付近、および入力電圧Vinが低下した場合などにおいて、シリーズレギュレータ20の出力電圧V2が出力電圧Voとして出力される。そのため、シャントレギュレータ30のみを用いた電源回路に比べ、入力電圧Vinのゼロクロス付近、および入力電圧Vinが低下した場合などにおける出力電圧Voの低下を抑制することができる。
 シリーズレギュレータ20およびシャントレギュレータ30は、図2に示す構成に限定されない。シリーズレギュレータ20は、半導体素子21での電力消費によって降圧を行うシリーズレギュレータであればよく、図2に示す構成に限定されない。また、シャントレギュレータ30は、例えば、抵抗での電力消費によって降圧を行い、かつ出力電圧V3が高くなりすぎないように上限をクリップするように構成されたシャントレギュレータであれば、図2に示す構成に限定されない。例えば、シャントレギュレータ30は、オペアンプとトランジスタなどによって上限電圧を規定する回路構成であってもよい。なお、シャントレギュレータ30は、抵抗での電力消費によって降圧を行い、かつ出力電圧V3として出力電圧V2と同じ電圧が出力できるシャントレギュレータであってもよい。
 なお、図1および図2に示す電源回路1は、入力電圧の最大時はシャントレギュレータ30からの出力電力を主に用い、一方で、入力電圧Vinのゼロクロス付近、および入力電圧Vinが低下した場合などにシリーズレギュレータ20からの出力電力を用いて出力電圧Voの低下を抑制する。すなわち、図1および図2に示す電源回路1は、シャントレギュレータ30を含む電源回路において、シリーズレギュレータ20を補完的に用いているが、電源回路1の特性は、図5,図6,および図8に示す特性に限定されない。
 以上のように、実施の形態1にかかる電源回路1は、整流回路10と、シリーズレギュレータ20と、シャントレギュレータ30と、平滑コンデンサ50とを備える。整流回路10は、交流電源2から供給される交流電圧である入力電圧Vinを整流する。シリーズレギュレータ20は、整流回路10に並列に接続され、整流回路10から出力される電圧を降圧する。シャントレギュレータ30は、整流回路10に並列に接続され、整流回路10から出力される電圧を降圧する。平滑コンデンサ50は、シリーズレギュレータ20の出力端子T12に第1ダイオード41を介して接続され且つシャントレギュレータ30の出力端子T22に第2ダイオード42を介して接続される。これにより、シャントレギュレータ30を含む電源回路1において出力電圧の立ち上がり時間を短縮することができる。また、入力電圧Vinが最大時にはシリーズレギュレータ20の電力損失を抑制することができ、シリーズレギュレータ20内の降圧素子として使用する半導体素子21は定格電力の小さく小型なパッケージ品が使用可能となる。加えて、電源回路1は、入力電圧Vinのゼロクロス付近である場合および入力電圧Vinが低下した場合などにおいてシリーズレギュレータ20の出力電圧V2が出力電圧Voとして出力されるため、出力電圧Voの変動を抑えることができる。また、整流回路10によって整流した電圧をシャントレギュレータ30およびシリーズレギュレータ20を共に用いているため、シリーズレギュレータ20による電力損失とシャントレギュレータ30での電力損失とに分散させることができる。
 また、シリーズレギュレータ20は、入力端子が整流回路10に接続された半導体素子21と、整流回路10と半導体素子21の制御端子との間に接続された抵抗素子22と、半導体素子21の制御端子に接続されたツェナーダイオード23とを含む。そして、半導体素子21の出力端子から電圧を出力する。また、シャントレギュレータ30は、整流回路10に並列に接続された抵抗素子31とツェナーダイオード32との直列体を含み、抵抗素子31とツェナーダイオード32との接続点から電圧を出力する。これにより、比較的簡単な構成のシリーズレギュレータ20およびシャントレギュレータ30を用いて電源回路1を構成することができる。
 また、シャントレギュレータ30は、入力電圧Vinが高くなるほど、シリーズレギュレータ20から平滑コンデンサ50へ供給される第1供給電流I1に対して平滑コンデンサ50へ供給する第2供給電流I2の比率を増加させる。これにより、入力電圧Vinが高くなった場合であっても、シリーズレギュレータ20の半導体素子21の消費電力P1を抑制することができ、半導体素子21の大型化を抑制することができる。
 また、シャントレギュレータ30は、入力電圧Vinが最大時にシリーズレギュレータ20の出力電圧V2よりも出力電圧V3が大きくなるように、ツェナーダイオード32のツェナー電圧Vz2から第2ダイオード42の順方向電圧Vd2を引いた電圧が、ツェナーダイオード23のツェナー電圧Vz1から半導体素子21の制御端子と出力端子との間の電圧であるゲート-ソース間電圧Vgsと第1ダイオード41の順方向電圧Vd1とを引いた値よりも大きい値に選定される。これにより、出力電圧Voの変動を抑えることができる。
実施の形態2.
 実施の形態2にかかる電源回路は、シャントレギュレータが複数の抵抗素子を有する点で、実施の形態1にかかる電源回路と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の電源回路1と異なる点を中心に説明する。
 図10は、本発明の実施の形態2にかかる電源回路の構成例を示す図である。図10に示すように、実施の形態2にかかる電源回路1Aは、図2に示すシャントレギュレータ30に代えて、シャントレギュレータ30Aを備える。シャントレギュレータ30Aは、抵抗素子31に代えて、直列接続された抵抗素子33,34を第1抵抗として備える。
 ツェナーダイオード32と整流回路10との間の電位差は、全波整流電圧V1からの入力電圧Vinからツェナーダイオード32のツェナー電圧Vz2を差し引いた電圧であり、高圧になるため、複数の抵抗素子33,34を直列接続することにより、絶縁の確保を容易にしている。なお、図10に示す例では、2つの抵抗素子33,34の直列体を第2抵抗としたが、3以上の抵抗素子の直列体を第2抵抗としてもよい。
 また、シリーズレギュレータ20の抵抗素子22の一端は、抵抗素子33と抵抗素子34との接続点に接続されている。そのため、電源回路1Aにおいては、抵抗素子22に印加される電圧は、抵抗素子33と抵抗素子34とにより分圧された電圧になり、図2に示す電源回路1に比べ、抵抗素子22の消費電力を削減することができる。これにより、シリーズレギュレータ20の消費電力を削減することができる。なお、抵抗素子33には、抵抗素子22に比べ大きな電流が流れるため、抵抗素子22へ流れる電流が加えられても実質的な影響はない。
 以上のように、実施の形態2にかかる電源回路1Aは、直列に接続された複数の抵抗素子33,34を備える。すなわち、第2抵抗は、直列に接続された複数の抵抗素子33,34で形成される。これにより、例えば、複数の抵抗素子33,34のうち1つの抵抗がショートした場合であっても、ツェナーダイオード32に全波整流電圧V1が直接印加されることがなく、交流電源2との絶縁性の確保を容易に行うことができる。
 また、シリーズレギュレータ20の抵抗素子22は、直列に接続された2以上のうち2つの抵抗素子33,34間の接続点と半導体素子21の制御端子との間に接続されるため、図2に示す場合に比べ、抵抗素子22の消費電力を低減することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1A 電源回路、2 交流電源、10 整流回路、20 シリーズレギュレータ、21 半導体素子、22,31,33,34 抵抗素子、23,32 ツェナーダイオード、30,30A シャントレギュレータ、41 第1ダイオード、42 第2ダイオード、50 平滑コンデンサ、T11,T21 入力端子、T12,T22,To 出力端子。

Claims (6)

  1.  交流電源から供給される交流電圧を整流する整流回路と、
     前記整流回路に並列に接続され、前記整流回路から出力される電圧を降圧するシャントレギュレータと、
     前記整流回路に並列に接続され、前記整流回路から出力される電圧を降圧するシリーズレギュレータと、
     前記シリーズレギュレータの出力端子に第1ダイオードを介して接続され且つ前記シャントレギュレータの出力端子に第2ダイオードを介して接続された平滑コンデンサと、を備える
     ことを特徴とする電源回路。
  2.  前記シリーズレギュレータは、
     入力端子が前記整流回路に接続された半導体素子と、前記整流回路と前記半導体素子の制御端子との間に接続された第1抵抗と、前記半導体素子の制御端子に接続された第1ツェナーダイオードとを含み、前記半導体素子の出力端子から電圧を出力し、
     前記シャントレギュレータは、
     前記整流回路に並列に接続された第2抵抗と第2ツェナーダイオードとの直列体を含み、前記第2抵抗と前記第2ツェナーダイオードとの接続点から電圧を出力する
     ことを特徴とする請求項1に記載の電源回路。
  3.  前記シャントレギュレータは、
     前記交流電圧が高くなるほど、前記シリーズレギュレータから前記平滑コンデンサへ供給される電流に対して前記平滑コンデンサへ供給する電流の比率を増加させる
     ことを特徴とする請求項2に記載の電源回路。
  4.  前記シャントレギュレータは、
     入力電圧が最大時に前記シリーズレギュレータの出力電圧よりも出力電圧が大きくなるように、前記第2ツェナーダイオードのツェナー電圧から前記第2ダイオードの順方向電圧を引いた電圧が、前記第1ツェナーダイオードのツェナー電圧から前記半導体素子の前記制御端子と前記出力端子との間の電圧および前記第1ダイオードの順方向電圧を引いた値よりも大きい値に選定される
     ことを特徴とする請求項3に記載の電源回路。
  5.  前記第2抵抗は、直列に接続された複数の抵抗素子で形成される
     ことを特徴とする請求項2から4のいずれか一つに記載の電源回路。
  6.  前記第2抵抗は、
     前記複数の抵抗素子のうち2つの抵抗素子の接続点と前記半導体素子の制御端子との間に接続される
     ことを特徴とする請求項5に記載の電源回路。
PCT/JP2018/041052 2018-11-05 2018-11-05 電源回路 WO2020095348A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020556376A JP6949246B2 (ja) 2018-11-05 2018-11-05 電源回路
CN201880099241.2A CN112969980B (zh) 2018-11-05 2018-11-05 电源电路
PCT/JP2018/041052 WO2020095348A1 (ja) 2018-11-05 2018-11-05 電源回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041052 WO2020095348A1 (ja) 2018-11-05 2018-11-05 電源回路

Publications (1)

Publication Number Publication Date
WO2020095348A1 true WO2020095348A1 (ja) 2020-05-14

Family

ID=70611830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041052 WO2020095348A1 (ja) 2018-11-05 2018-11-05 電源回路

Country Status (3)

Country Link
JP (1) JP6949246B2 (ja)
CN (1) CN112969980B (ja)
WO (1) WO2020095348A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132751A (en) * 1977-04-23 1978-11-18 Omron Tateisi Electronics Co Constant voltages source circuit with indicator
JPS5468130U (ja) * 1977-10-24 1979-05-15
JPH11250211A (ja) * 1998-03-05 1999-09-17 Dainippon Printing Co Ltd Icカードおよび電源回路
JP2003244938A (ja) * 2002-02-19 2003-08-29 Nec Saitama Ltd 電源並列接続制御方法および装置
US20080181340A1 (en) * 2007-01-31 2008-07-31 Silicon Laboratories, Inc. Spur Rejection Techniques for an RF Receiver

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1008184A3 (nl) * 1994-03-18 1996-02-06 Empsen Patrick Gestabiliseerde stroomvoeding met lage impedantie.
JPH09322540A (ja) * 1996-05-29 1997-12-12 Yaskawa Electric Corp 直流定電圧電源回路
JPH1167471A (ja) * 1997-08-26 1999-03-09 Tec Corp 照明装置
JP2001061277A (ja) * 1999-08-20 2001-03-06 Sony Corp 電源装置
JP2004215376A (ja) * 2002-12-27 2004-07-29 Sony Corp スイッチング電源回路
JP2008295237A (ja) * 2007-05-25 2008-12-04 Nec Electronics Corp スイッチングパルス生成回路およびスイッチングパルス生成回路を用いたレギュレータ
CN101436756B (zh) * 2008-11-20 2010-07-07 武汉凌云光电科技有限责任公司 大功率半导体激光器电源驱动装置
KR101348526B1 (ko) * 2011-04-27 2014-01-06 미쓰비시덴키 가부시키가이샤 전원회로 및 이 전원회로를 이용한 누전 차단기
JP5942350B2 (ja) * 2011-07-07 2016-06-29 富士電機株式会社 スイッチング電源装置およびその制御装置
JP2013038930A (ja) * 2011-08-08 2013-02-21 Toshiba Corp スイッチング回路及びdc−dcコンバータ
JP2014206861A (ja) * 2013-04-12 2014-10-30 富士電機株式会社 レギュレータ回路およびレギュレータを形成した半導体集積回路装置
JP2015065082A (ja) * 2013-09-25 2015-04-09 東芝ライテック株式会社 電源装置および照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132751A (en) * 1977-04-23 1978-11-18 Omron Tateisi Electronics Co Constant voltages source circuit with indicator
JPS5468130U (ja) * 1977-10-24 1979-05-15
JPH11250211A (ja) * 1998-03-05 1999-09-17 Dainippon Printing Co Ltd Icカードおよび電源回路
JP2003244938A (ja) * 2002-02-19 2003-08-29 Nec Saitama Ltd 電源並列接続制御方法および装置
US20080181340A1 (en) * 2007-01-31 2008-07-31 Silicon Laboratories, Inc. Spur Rejection Techniques for an RF Receiver

Also Published As

Publication number Publication date
CN112969980B (zh) 2022-11-11
JPWO2020095348A1 (ja) 2021-04-30
CN112969980A (zh) 2021-06-15
JP6949246B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
US10790748B2 (en) Soft-start circuit and buck converter comprising the same
US9429970B2 (en) Power supply system, associated current ripple suppression circuit and method
US10079542B2 (en) High voltage current source with short circuit protection
US9998022B2 (en) Current limit peak regulation circuit for power converter with low standby power dissipation
KR20170120592A (ko) 전원 제어용 반도체 장치
US10924023B2 (en) Control circuit having power limit for an AC-DC converter and integrated circuits thereof
JP2017184598A (ja) スイッチング電源装置
US20180145242A1 (en) Power supply circuit and ac adaptor
US20220038009A1 (en) Integrated circuit and power supply circuit
TWI513165B (zh) 具改善過電流保護的返馳式轉換器及其控制電路
TW201328152A (zh) 輔助電源產生電路
US10658943B2 (en) Power conditioning circuit with hybrid full wave rectifiction using matched virtual junction rectifier
WO2020095348A1 (ja) 電源回路
US8116107B2 (en) Synchronous rectification control circuit assembly
CN111343768A (zh) Led驱动装置及led驱动方法
US20150171765A1 (en) Ultra high voltage regulator
TWI749824B (zh) 用於改善開關電源的輸出電壓負載調整率的裝置和方法
JP6409171B2 (ja) スイッチング電源装置、電子機器及び双方向dcdcコンバータ
TWI746929B (zh) 點燈裝置
US20230216403A1 (en) Systems and methods for reducing power loss of power converters
JP2012249466A (ja) スイッチング電源装置
US20220200472A1 (en) Voltage converter
JP6708480B2 (ja) 電源装置
JP2024027768A (ja) 電源制御装置、および絶縁型dc/dcコンバータ
JP2013172516A (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556376

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939684

Country of ref document: EP

Kind code of ref document: A1