WO2020090889A1 - Laser device and laser processing device - Google Patents

Laser device and laser processing device Download PDF

Info

Publication number
WO2020090889A1
WO2020090889A1 PCT/JP2019/042584 JP2019042584W WO2020090889A1 WO 2020090889 A1 WO2020090889 A1 WO 2020090889A1 JP 2019042584 W JP2019042584 W JP 2019042584W WO 2020090889 A1 WO2020090889 A1 WO 2020090889A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
laser
light
optical
output
Prior art date
Application number
PCT/JP2019/042584
Other languages
French (fr)
Japanese (ja)
Inventor
次郎 海老原
剛志 坂本
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to JP2020553978A priority Critical patent/JP7402813B2/en
Publication of WO2020090889A1 publication Critical patent/WO2020090889A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/351Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the present disclosure relates to a laser device and a laser processing device.
  • Patent Document 1 describes a laser processing apparatus that includes a holding mechanism that holds a work, and a laser irradiation mechanism that irradiates the work held by the holding mechanism with laser light.
  • a laser irradiation mechanism having a condenser lens is fixed to a base, and movement of a work along a direction perpendicular to the optical axis of the condenser lens is performed by a holding mechanism. Be implemented.
  • the optical isolator in the laser processing apparatus.
  • the optical isolator can be provided at the final stage of the laser output unit such as the laser irradiation mechanism, that is, at the rear side (work side) of the condenser lens. The return of reflected light is suppressed.
  • the laser output section will become larger.
  • the laser output unit is fixed in the above laser processing apparatus, it is required to move the laser output unit. In this case, it is necessary to avoid increasing the size of the laser output unit.
  • an object of the present disclosure is to provide a laser device and a laser processing device that can suppress the influence of return light from the outside while avoiding an increase in the size of the laser output unit.
  • a laser device includes a light source unit that outputs laser light, an amplification unit that includes an amplification unit that amplifies the laser light output from the light source unit, and an output that outputs the laser light amplified by the amplification unit to the outside.
  • a unit and an optical isolator for blocking return light from the outside to the amplification unit are provided, the output unit is configured separately from the light source unit and the amplification unit, and the light source unit, the amplification unit, and the output unit,
  • the optical isolators are optically connected to each other by an optical transmission line including a plurality of optical fibers, and the optical isolator is provided on the optical transmission line between the amplification unit and the output unit.
  • the output unit that outputs the laser light to the outside is configured separately from the light source unit and the amplification unit.
  • Each unit is optically connected via an optical transmission line including an optical fiber.
  • An optical isolator for blocking return light from the outside is provided in the optical transmission line between the amplification section and the output unit. Therefore, the propagation of the return light from the outside is blocked by the optical isolator before reaching the amplification unit. Therefore, it is possible to suppress the influence of the return light from the outside on the amplification section.
  • the optical isolator is provided closer to the amplification section than the output unit as described above. Therefore, it is possible to avoid increasing the size of the output unit (laser output unit).
  • the beam profile of the laser light that has passed through the optical isolator may change depending on the output value of the laser light.
  • the beam diameter of the laser light may be smaller than that when the output value is small. It is considered that this is partly due to the thermal lens effect in the optical element forming the optical isolator. Therefore, if the optical isolator is provided at the final stage of the laser output section, there is a possibility that laser light having a different beam profile may be output to the outside depending on the output value of the laser light.
  • the laser device according to the present disclosure can solve such a problem.
  • the optical isolator is connected to one optical fiber of the plurality of optical fibers and another optical fiber of the plurality of optical fibers. Can input the laser light amplified by the amplification unit from the amplification unit via one optical fiber and output the laser light to the output unit via another optical fiber.
  • the laser light transmitted by one optical fiber is further transmitted by another optical fiber toward the output unit after passing through the optical isolator.
  • the laser light that has passed through the optical isolator propagates through the optical fiber again, so that the change in the beam profile is suppressed. Therefore, it is possible to prevent the laser beam having a different beam profile depending on the output value of the laser beam from being output to the outside. Further, this effect reduces the machine difference of the beam profile.
  • the optical isolator outputs an optical branching unit that branches a part of the laser light propagating in the space inside the optical isolator and a branched light that is branched by the optical branching unit to the outside. And an output unit for doing so.
  • the output of the laser light can be monitored via the output section.
  • this branching part branches the laser light propagating in the space inside the optical isolator. Therefore, for example, compared with the case where the output of the laser light is monitored using the fused portion of the optical fiber or the optical coupler provided in the optical fiber, the influence of the higher-order mode light generated in the optical fiber is Suppressed, high-precision monitoring is possible.
  • the amplification unit is provided in the optical transmission line on the output unit side of the pumping light source that outputs the pumping light for pumping the amplification unit, and outputs the pumping light to the optical unit.
  • the optical isolator may be provided in the optical transmission line between the optical coupling unit and the output unit. In this way, when the pumping light coupling section for the amplification section is provided closer to the output unit than the amplification section, an optical isolator can be provided between the coupling section and the output unit.
  • the laser processing apparatus is a laser processing apparatus for forming a modified region on an object by irradiating the object with laser light, and the laser apparatus according to any one of the above.
  • the laser processing apparatus may include a plurality of sets of laser devices and laser processing heads. As described above, when a plurality of laser processing heads are moved and used, the size of the output unit can be prevented from increasing, and as a result, the laser processing heads can be brought close to each other. Therefore, as compared with the case where the output unit is upsized, the area that can be processed by using a plurality of laser processing heads simultaneously is expanded.
  • the present disclosure it is possible to provide a laser device and a laser processing device that can suppress the influence of return light from the outside while avoiding an increase in the size of the laser output unit.
  • FIG. 1 It is a perspective view of the laser processing apparatus of one embodiment. It is a front view of a part of laser processing apparatus shown by FIG. It is a front view of the laser processing head of the laser processing apparatus shown by FIG. 4 is a side view of the laser processing head shown in FIG. 3.
  • FIG. It is a block diagram of the optical system of the laser processing head shown in FIG. It is a schematic diagram which shows the laser apparatus which concerns on one Embodiment. It is a schematic diagram which shows the structure of an optical isolator. It is a figure which shows the beam profile of the output light in the laser apparatus which concerns on a comparative example. It is a figure which shows the beam profile of the output light in the laser apparatus shown in FIG.
  • the laser processing apparatus 1 includes a plurality of moving mechanisms 5 and 6, a supporting unit 7, a plurality (here, a pair) of laser processing heads 10A and 10B, a light source unit 8, and a control unit. And a part 9.
  • the first direction will be referred to as the X direction
  • the second direction perpendicular to the first direction will be referred to as the Y direction
  • the third direction perpendicular to the first and second directions will be referred to as the Z direction.
  • the X direction and the Y direction are horizontal directions
  • the Z direction is a vertical direction.
  • the moving mechanism 5 has a fixed portion 51, a moving portion 53, and a mounting portion 55.
  • the fixed portion 51 is attached to the device frame 1a.
  • the moving unit 53 is attached to a rail provided on the fixed unit 51, and can move along the Y direction.
  • the attachment portion 55 is attached to a rail provided on the moving portion 53 and can move along the X direction.
  • the moving mechanism 6 includes a fixed part 61, a pair of moving parts (first moving part, second moving part) 63, 64, and a pair of mounting parts (first mounting part, second mounting part) 65, 66. And have.
  • the fixed portion 61 is attached to the device frame 1a.
  • Each of the pair of moving portions 63 and 64 is attached to a rail provided on the fixed portion 61, and each of them can move independently along the Y direction.
  • the attachment portion 65 is attached to a rail provided on the moving portion 63 and can move along the Z direction.
  • the attachment portion 66 is attached to a rail provided on the moving portion 64 and can move along the Z direction. That is, with respect to the device frame 1a, each of the pair of mounting portions 65 and 66 can move along the Y direction and the Z direction.
  • the support portion 7 is attached to a rotary shaft provided on the attachment portion 55 of the moving mechanism 5, and can rotate about an axis parallel to the Z direction as a center line. That is, the support part 7 can move along each of the X direction and the Y direction, and can rotate about the axis parallel to the Z direction as the center line.
  • the support unit 7 supports the object 100 along the X direction and the Y direction.
  • the object 100 is, for example, a wafer.
  • the laser processing head 10A is attached to the attachment portion 65 of the moving mechanism 6.
  • the laser processing head 10A is for irradiating the object 100 supported by the supporting portion 7 with the laser light L1 while facing the supporting portion 7 in the Z direction (arranged so as to face the supporting portion 7). is there.
  • the laser processing head 10B is attached to the attachment portion 66 of the moving mechanism 6.
  • the laser processing head 10B is for irradiating the object 100 supported by the support 7 with the laser beam L2 while facing the support 7 in the Z direction (arranged so as to face the support 7). is there.
  • the light source unit 8 has a pair of light sources 81 and 82.
  • the light source 81 outputs laser light L1.
  • the laser light L1 is emitted from the emitting portion 81a of the light source 81 and guided to the laser processing head 10A by the optical fiber 2.
  • the light source 82 outputs laser light L2.
  • the laser light L2 is emitted from the emitting portion 82a of the light source 82, and is guided to the laser processing head 10B by another optical fiber 2.
  • the control unit 9 controls each unit of the laser processing apparatus 1 (a plurality of moving mechanisms 5, 6, a pair of laser processing heads 10A, 10B, a light source unit 8, etc.).
  • the control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
  • the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 9 realizes various functions.
  • An example of processing by the laser processing apparatus 1 configured as above will be described.
  • An example of the processing is an example in which a modified region is formed inside the object 100 along each of a plurality of lines set in a grid pattern in order to cut the object 100, which is a wafer, into a plurality of chips. is there. That is, the laser processing apparatus 1 is, for example, for forming a modified region on the object 100 by irradiating the object 100 with the laser beams L1 and L2.
  • the moving mechanism 5 moves the supporting portion 7 along the X direction and the Y direction so that the supporting portion 7 supporting the object 100 faces the pair of laser processing heads 10A and 10B in the Z direction. To move. Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in one direction on the object 100 are along the X direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser beam L1 is located on one line extending in one direction.
  • the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focal point of the laser light L2 is located on the other line extending in one direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100.
  • the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
  • the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100.
  • the light L2 is emitted.
  • the condensing point of the laser light L1 relatively moves along one line extending in one direction (the laser light L1 is scanned), and the laser beam extends along another line extending in one direction.
  • the moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in one direction on the object 100.
  • the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in the other direction orthogonal to the one direction in the object 100 are along the X direction. ..
  • the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser light L1 is located on one line extending in the other direction.
  • the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focus point of the laser light L2 is located on another line extending in the other direction.
  • the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100.
  • the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
  • the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100.
  • the light L2 is emitted.
  • the focal point of the laser light L1 relatively moves along one line extending in the other direction (the laser light L1 is scanned), and the laser beam extends along the other line extending in the other direction.
  • the moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in the other direction orthogonal to the one direction in the object 100.
  • the light source 81 outputs the laser light L1 that is transmissive to the target object 100, for example, by the pulse oscillation method, and the light source 82 outputs the laser light L1 to the target object 100, for example, by the pulse oscillation method.
  • the laser beam L2 having transparency is output.
  • the laser light is condensed inside the object 100, the laser light is particularly absorbed in a portion corresponding to the condensing point of the laser light, and a modified region is formed inside the object 100.
  • the modified region is a region where the density, refractive index, mechanical strength, and other physical properties are different from the surrounding unmodified region.
  • the modified region includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
  • a plurality of modified spots are lined up. Are formed so as to be lined up in a row along the line.
  • One modified spot is formed by irradiation with one pulse of laser light.
  • the one-row reforming region is a set of a plurality of reforming spots arranged in one row. Adjacent modified spots may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point of the laser light with respect to the object 100 and the repetition frequency of the laser light.
  • the laser processing head 10A includes a housing 11, an incident section 12, an adjusting section 13, and a condensing section 14.
  • the housing 11 has a first wall portion 21 and a second wall portion 22, a third wall portion 23 and a fourth wall portion 24, and a fifth wall portion 25 and a sixth wall portion 26.
  • the first wall portion 21 and the second wall portion 22 face each other in the X direction.
  • the third wall portion 23 and the fourth wall portion 24 face each other in the Y direction.
  • the fifth wall portion 25 and the sixth wall portion 26 face each other in the Z direction.
  • the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22.
  • the distance between the first wall portion 21 and the second wall portion 22 is smaller than the distance between the fifth wall portion 25 and the sixth wall portion 26.
  • the distance between the first wall portion 21 and the second wall portion 22 may be equal to the distance between the fifth wall portion 25 and the sixth wall portion 26, or alternatively, the fifth wall portion 25 and the sixth wall portion 26. It may be larger than the distance to the portion 26.
  • the first wall portion 21 is located on the fixed portion 61 side of the moving mechanism 6, and the second wall portion 22 is located on the opposite side to the fixed portion 61.
  • the third wall portion 23 is located on the mounting portion 65 side of the moving mechanism 6, and the fourth wall portion 24 is located on the side opposite to the mounting portion 65 and on the laser processing head 10B side (FIG. 2). That is, the fourth wall portion 24 is a facing wall portion that faces the housing (second housing) of the laser processing head 10B along the Y direction.
  • the fifth wall portion 25 is located on the side opposite to the support portion 7, and the sixth wall portion 26 is located on the support portion 7 side.
  • the housing 11 is configured such that the housing 11 is attached to the mounting portion 65 with the third wall portion 23 arranged on the mounting portion 65 side of the moving mechanism 6. Specifically, it is as follows.
  • the mounting portion 65 has a base plate 65a and a mounting plate 65b.
  • the base plate 65a is attached to a rail provided on the moving unit 63 (see FIG. 2).
  • the mounting plate 65b is erected on the end of the base plate 65a on the laser processing head 10B side (see FIG. 2).
  • the casing 11 is attached to the attachment portion 65 by screwing the bolt 28 to the attachment plate 65b via the pedestal 27 while the third wall portion 23 is in contact with the attachment plate 65b.
  • the pedestal 27 is provided on each of the first wall portion 21 and the second wall portion 22.
  • the housing 11 is attachable to and detachable from the mounting portion 65.
  • the incident part 12 is attached to the fifth wall part 25.
  • the incident unit 12 causes the laser light L1 to enter the housing 11.
  • the incident portion 12 is offset to the second wall portion 22 side (one wall portion side) in the X direction and is offset to the fourth wall portion 24 side in the Y direction. That is, the distance between the incident portion 12 and the second wall portion 22 in the X direction is smaller than the distance between the incident portion 12 and the first wall portion 21 in the X direction, and the incident portion 12 and the fourth wall portion 24 in the Y direction. Is smaller than the distance between the incident portion 12 and the third wall portion 23 in the X direction.
  • the incident portion 12 is configured so that the connection end portion 2a of the optical fiber 2 can be connected.
  • the connection end portion 2a of the optical fiber 2 is provided with a collimator lens that collimates the laser light L1 emitted from the emission end of the fiber, and is not provided with an isolator that suppresses return light.
  • the isolator is provided in the middle of the fiber on the light source 81 side with respect to the connection end portion 2a. As a result, the connection end portion 2a is downsized, and the incident portion 12 is downsized.
  • the connection end portion 2a is an output unit 260 of the laser device 200 described later.
  • the adjusting unit 13 is arranged in the housing 11.
  • the adjusting unit 13 adjusts the laser light L1 incident from the incident unit 12. Details of the adjusting unit 13 will be described later.
  • the light collector 14 is arranged on the sixth wall 26. Specifically, the light collecting section 14 is arranged in the sixth wall section 26 in a state of being inserted into the hole 26 a formed in the sixth wall section 26.
  • the condensing unit 14 condenses the laser light L1 adjusted by the adjusting unit 13 and emits it to the outside of the housing 11.
  • the light collecting section 14 is offset to the second wall section 22 side (one wall section side) in the X direction and is biased to the fourth wall section 24 side in the Y direction. That is, the light condensing unit 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
  • the distance between the light collecting section 14 and the second wall section 22 in the X direction is smaller than the distance between the light collecting section 14 and the first wall section 21 in the X direction, and the light collecting section 14 and the fourth wall in the Y direction are fourth.
  • the distance from the wall portion 24 is smaller than the distance between the light collecting portion 14 and the third wall portion 23 in the X direction.
  • the adjusting unit 13 has an attenuator 31, a beam expander 32, and a mirror 33.
  • the incident unit 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting unit 13 are arranged on a straight line (first straight line) A1 extending along the Z direction.
  • the attenuator 31 and the beam expander 32 are arranged between the incident part 12 and the mirror 33 on the straight line A1.
  • the attenuator 31 adjusts the output of the laser light L1 incident from the incident unit 12.
  • the beam expander 32 expands the diameter of the laser light L1 whose output is adjusted by the attenuator 31.
  • the mirror 33 reflects the laser light L1 whose diameter has been expanded by the beam expander 32.
  • the adjusting unit 13 further includes a reflective spatial light modulator 34 and an image forming optical system 35.
  • the reflective spatial light modulator 34 of the adjustment unit 13, the imaging optical system 35, and the condensing unit 14 are arranged on a straight line (second straight line) A2 extending along the Z direction.
  • the reflective spatial light modulator 34 modulates the laser light L1 reflected by the mirror 33.
  • the reflective spatial light modulator 34 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
  • the image forming optical system 35 constitutes a double-sided telecentric optical system in which the reflecting surface 34a of the reflective spatial light modulator 34 and the entrance pupil surface 14a of the condensing unit 14 are in an image forming relationship.
  • the image forming optical system 35 is composed of three or more lenses.
  • the straight line A1 and the straight line A2 are located on a plane perpendicular to the Y direction.
  • the straight line A1 is located on the second wall portion 22 side (one wall portion side) with respect to the straight line A2.
  • the laser beam L1 enters the housing 11 from the incident part 12, travels on the straight line A1, is sequentially reflected by the mirror 33 and the reflective spatial light modulator 34, and then the straight line A2.
  • the light travels upward and is emitted from the light collecting unit 14 to the outside of the housing 11.
  • the order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
  • the attenuator 31 may be arranged between the mirror 33 and the reflective spatial light modulator 34.
  • the adjusting unit 13 may have other optical components (for example, a steering mirror arranged in front of the beam expander 32).
  • the laser processing head 10A further includes a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19.
  • the dichroic mirror 15 is arranged on the straight line A2 between the imaging optical system 35 and the condensing unit 14. That is, the dichroic mirror 15 is arranged in the housing 11 between the adjusting unit 13 and the light collecting unit 14. The dichroic mirror 15 is attached to the optical base 29 on the side of the fourth wall portion 24. The dichroic mirror 15 transmits the laser light L1. From the viewpoint of suppressing astigmatism, the dichroic mirror 15 may be, for example, a cube type or two plate types arranged so as to have a twist relationship.
  • the measuring unit 16 is arranged inside the housing 11 with respect to the adjusting unit 13 on the first wall 21 side (the side opposite to the one wall side).
  • the measuring unit 16 is attached to the optical base 29 on the fourth wall 24 side.
  • the measurement unit 16 outputs measurement light L10 for measuring the distance between the surface of the object 100 (for example, the surface on the side on which the laser light L1 is incident) and the light condensing unit 14, and through the light condensing unit 14.
  • the measurement light L10 reflected by the surface of the object 100 is detected. That is, the measurement light L10 output from the measurement unit 16 is applied to the surface of the object 100 via the light condensing unit 14, and the measurement light L10 reflected on the surface of the object 100 passes through the light condensing unit 14. And is detected by the measuring unit 16.
  • the measurement light L10 output from the measurement unit 16 is sequentially reflected by the beam splitter 20 and the dichroic mirror 15 attached to the optical base 29 on the side of the fourth wall 24, and then the light collection unit 14 outputs the light. It goes out of the housing 11.
  • the measurement light L10 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is sequentially reflected by the dichroic mirror 15 and the beam splitter 20, enters the measuring unit 16, and then the measuring unit 16 Detected in.
  • the observing unit 17 is arranged in the housing 11 on the first wall 21 side (the side opposite to the one wall side) with respect to the adjusting unit 13.
  • the observation section 17 is attached to the optical base 29 on the side of the fourth wall section 24.
  • the observation unit 17 outputs the observation light L20 for observing the surface of the object 100 (for example, the surface on the side where the laser light L1 is incident), and is reflected by the surface of the object 100 via the light condensing unit 14.
  • the observation light L20 thus generated is detected. That is, the observation light L20 output from the observation unit 17 is applied to the surface of the object 100 via the light condensing unit 14, and the observation light L20 reflected by the surface of the object 100 passes through the light condensing unit 14. And is detected by the observation unit 17.
  • the observation light L20 output from the observation unit 17 passes through the beam splitter 20, is reflected by the dichroic mirror 15, and is emitted from the condensing unit 14 to the outside of the housing 11.
  • the observation light L20 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is reflected by the dichroic mirror 15, passes through the beam splitter 20, and enters the observation unit 17, Detected at 17.
  • the wavelengths of the laser light L1, the measurement light L10, and the observation light L20 are different from each other (at least the respective central wavelengths are deviated from each other).
  • the drive section 18 is attached to the optical base 29 on the side of the fourth wall section 24.
  • the driving unit 18 moves the condensing unit 14 arranged on the sixth wall unit 26 along the Z direction by the driving force of the piezoelectric element, for example.
  • the circuit portion 19 is arranged on the third wall portion 23 side with respect to the optical base 29 in the housing 11. That is, the circuit unit 19 is arranged on the third wall 23 side with respect to the adjustment unit 13, the measurement unit 16, and the observation unit 17 in the housing 11.
  • the circuit unit 19 is, for example, a plurality of circuit boards.
  • the circuit unit 19 processes the signal output from the measurement unit 16 and the signal input to the reflective spatial light modulator 34.
  • the circuit unit 19 controls the drive unit 18 based on the signal output from the measurement unit 16.
  • the circuit unit 19 maintains the distance between the surface of the object 100 and the light condensing unit 14 constant based on the signal output from the measurement unit 16 (that is, the surface of the object 100).
  • the drive unit 18 is controlled so that the distance from the condensing point of the laser light L1 is kept constant).
  • the housing 11 is provided with a connector (not shown) to which wiring for electrically connecting the circuit unit 19 to the control unit 9 (see FIG. 1) and the like is connected.
  • the laser processing head 10B includes a housing 11, an incident section 12, an adjusting section 13, a condensing section 14, a dichroic mirror 15, a measuring section 16, and an observing section 17,
  • the drive unit 18 and the circuit unit 19 are provided.
  • each configuration of the laser processing head 10B has a laser processing head 10A with respect to a virtual plane that passes through the midpoint between the pair of mounting portions 65 and 66 and is perpendicular to the Y direction. Are arranged so as to have a plane-symmetrical relationship with each of the components.
  • the fourth wall portion 24 is located on the laser processing head 10B side with respect to the third wall portion 23, and the sixth wall portion 26 is supported with respect to the fifth wall portion 25. It is attached to the attachment portion 65 so as to be located on the side of the portion 7.
  • the fourth wall portion 24 is located on the laser processing head 10A side with respect to the third wall portion 23, and the sixth wall portion 26 is with respect to the fifth wall portion 25. Is attached to the attachment portion 66 so as to be located on the support portion 7 side. That is, also in the laser processing head 10B, the fourth wall portion 24 is a facing wall portion that faces the housing of the laser processing head 10A along the Y direction.
  • the light converging portion 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
  • the housing 11 of the laser processing head 10B is configured such that the housing 11 is attached to the mounting portion 66 with the third wall portion 23 arranged on the mounting portion 66 side. Specifically, it is as follows.
  • the mounting portion 66 has a base plate 66a and a mounting plate 66b.
  • the base plate 66a is attached to a rail provided on the moving unit 63.
  • the mounting plate 66b is erected at the end of the base plate 66a on the laser processing head 10A side.
  • the housing 11 of the laser processing head 10B is attached to the attachment portion 66 with the third wall portion 23 in contact with the attachment plate 66b.
  • the housing 11 of the laser processing head 10B can be attached to and detached from the mounting portion 66. [Configuration of laser device]
  • FIG. 6 is a schematic diagram showing a laser device according to one embodiment.
  • the laser device 200 includes a light source unit 210, an amplification unit 220, an amplification unit 240, an optical isolator 250, and an output unit 260 (connection end portion 2a).
  • the light source unit 210, the amplification units 220 and 240, and the optical isolator 250 correspond to the light source 81 and the light source 82 of the light source unit 8 described above, respectively. Therefore, the laser processing device 1 described above includes a plurality (here, a pair) of the laser devices 200. That is, the laser processing apparatus 1 includes a plurality of sets (two sets here) of the laser device 200 and the laser processing heads (laser processing heads 10A and 10B). 6 and 7 show the laser device 200 corresponding to the light source 81.
  • the light source unit 210 has a seed light source 211.
  • the seed light source 211 is, for example, a laser diode.
  • the seed light source 211 is driven by a pulse generator and pulse-oscillates the laser light L1 that is seed light.
  • the laser light L1 emitted from the seed light source 211 is coupled to the optical transmission line P1 formed of, for example, an optical fiber.
  • the laser light L1 propagates through the optical transmission line P1 and is output from the light source unit 210.
  • the amplification unit 220 is, for example, a preamplifier unit.
  • the amplification unit 220 includes an optical isolator 221, a cladding mode stripper 222, an amplification unit 223, optical couplers 224 and 228, an optical combiner 225, a pumping light source 226, a bandpass filter 229, and an optical isolator 230.
  • an optical transmission line P2 that includes a plurality of optical fibers and is optically connected to the optical transmission line P1 is configured, and the above optical elements are arranged in the optical transmission line P2. That is, the light source unit 210 and the amplification unit 220 are optically connected to each other by the optical transmission lines P1 and P2.
  • the laser light L1 is output from the amplification unit 220 after being amplified while propagating through the optical transmission path P2.
  • the amplification unit 223 is, for example, a fiber laser.
  • the pumping light source 226 is a laser diode, for example, and outputs pumping light for pumping the amplifying unit 223.
  • the optical combiner 225 is provided on the optical transmission line P2 in the latter stage of the amplification unit 223, and couples the pumping light output from the pumping light source 226 to the optical transmission line P2.
  • the pumping light output from the pumping light source 226 is input to the amplification unit 223.
  • the amplification unit 220 employs a backward pumping configuration in which the pumping light travels in the direction opposite to the traveling direction of the laser light L1. Accordingly, the amplification unit 223 inputs the laser light L1 from the light source unit 210 via the optical transmission paths P1 and P2, amplifies and outputs the laser light L1.
  • the optical isolator 221 is provided on the optical transmission line P2 between the light source unit 210 and the amplification unit 223, and blocks the return light to the seed light source 211.
  • the clad mode stripper 222 is provided in the optical transmission line P2 in the preceding stage of the amplification section 223, and removes the pumping light not absorbed by the amplification section 223.
  • the optical coupler 224 is provided on the optical transmission line P2 between the optical isolator 221 and the cladding mode stripper 222.
  • a detector such as a photodiode is connected to the optical coupler 224 via an optical fiber.
  • the optical isolator 230 is provided on the optical transmission line P2 in the latter stage of the optical combiner 225, and blocks the return light to the amplification unit 223.
  • the bandpass filter 229 removes ASE (Amplified Spontaneous Emission) light generated in the amplification unit 223.
  • the optical coupler 228 is provided on the optical transmission line P2 at a stage subsequent to the bandpass filter 229.
  • a detector such as a photodiode is connected to the optical coupler 224 via an optical fiber. As a result, the laser light L1 amplified by the amplifier 223 can be detected and monitored by the detector.
  • the amplifying unit 240 is, for example, a power amplifier unit, and is an amplifying unit provided closest to the output unit 260 side of the laser device 200.
  • the amplification unit 240 has a cladding mode stripper 241, an amplification section 242, a plurality of pumping light sources 243, an optical combiner (optical coupling section) 244, and a detector 245.
  • an optical transmission line P2 including a plurality of optical fibers is formed continuously from the amplification unit 220, and the above optical elements are arranged in the optical transmission line P2. That is, the light source unit 210, the amplification unit 220, and the amplification unit 240 are optically connected to each other by the optical transmission lines P1 and P2.
  • the amplification unit 240 inputs the laser beam L1 from the amplification unit 220 via the optical transmission line P2, amplifies and outputs the laser beam L1.
  • the amplifier 242 is, for example, a fiber laser.
  • the pumping light source 243 is, for example, a laser diode and outputs pumping light for pumping the amplifying unit 242.
  • the optical combiner 244 is provided on the optical transmission line P2 in the latter stage of the amplification unit 242, and couples the pumping light output from the pumping light source 243 to the optical transmission line P2.
  • the pumping light output from the pumping light source 243 is input to the amplification unit 242. That is, the amplification unit 240 also employs a backward pumping configuration in which the pumping light travels in the direction opposite to the traveling direction of the laser light L1.
  • the amplification unit 242 inputs, amplifies and outputs the laser light L1 from the amplification unit 220 (that is, the light source unit 210) via the optical transmission line P2.
  • the clad mode stripper 241 is provided in the optical transmission line P2 in the preceding stage of the amplification section 242, and removes the pumping light not absorbed by the amplification section 242.
  • the output unit 260 outputs the laser beam L1 output from the amplification unit 220 (that is, the laser beam L1 amplified by the amplification section 223 and the amplification section 242) to the outside. As described above, the output unit 260 constitutes the connection end portion 2a for connecting the laser device 200 to the laser processing heads 10A and 10B. Therefore, the output unit 260 provides the laser light L1 to the laser processing heads 10A and 10B.
  • an optical transmission line P2 is formed following the amplification unit 240. That is, the light source unit 210, the amplification units 220 and 240, and the output unit 260 are optically connected to each other by an optical transmission path.
  • the output unit 260 includes the output end 261 of the optical fiber 2 at the final stage of the optical transmission line P2.
  • the output unit 260 also includes a collimator lens 262 that collimates the laser light L1 output from the output end 261.
  • the laser beam L1 emitted from the collimator lens 262 is output to the laser processing heads 10A and 10B (outside the laser device 200).
  • the output unit 260 is configured separately from the light source unit 210 and the amplification units 220 and 240.
  • the light source unit 210 and the amplification units 220 and 240 are housed as the light source 81 (or the light source 82) in one housing, and the output unit 260 is housed in another housing.
  • the respective housings are connected to each other by an optical fiber 2 forming a part of the optical transmission line P2.
  • the optical isolator 250 is for blocking the return light from the outside to the amplification section 242 (the amplification section on the side of the output unit 260 closest).
  • the return light from the outside is here the reflected light of the laser light with which the object 100 is irradiated.
  • the optical isolator 250 is provided on the optical transmission line P2 between the amplification unit 242 and the output unit 260. More specifically, the optical isolator 250 is provided between the optical combiner 244 and the output unit 260. As an example, the optical isolator 250 is provided in the same housing as the amplification unit 240.
  • FIG. 7 is a schematic diagram showing the configuration of the optical isolator.
  • the optical isolator 250 includes a housing 251, lenses 252, 256, polarizers 253, 255, a polarization rotation element 254, a beam sampler (optical branching unit) 257, and an output window (output unit). Has 258.
  • the optical isolator 250 is connected to one optical fiber 2A of the plurality of optical fibers forming the optical transmission line P2 and another optical fiber 2 of the plurality of optical fibers.
  • a ferrule F2A for example, is provided at the end of the optical fiber 2A, and is disposed inside the housing 251 of the optical isolator 250.
  • a ferrule F2, for example, is provided at the end of the optical fiber 2 opposite to the output end 261 and is disposed inside the housing 251.
  • the laser light L1 emitted from the end of the optical fiber 2A is coupled to the end of the optical fiber 2 after propagating in the space inside the housing 251. That is, in the optical isolator 250, the optical transmission line P2 is formed in space.
  • the lens 252, the polarizer 253, the polarization rotation element 254, the polarizer 255, the beam sampler 257, and the lens 256 are provided in the optical transmission line P2 in this order from the optical fiber 2A toward the optical fiber 2.
  • the lens 252 collimates the light emitted from the optical fiber 2A.
  • the polarizer 253 transmits only the first polarized light.
  • the polarization rotator 254 is, for example, a Faraday rotator that utilizes the Faraday effect, which is a phenomenon in which the polarization of light traveling in a magnetic field rotates.
  • the polarization rotation element 254 rotates the polarization direction by 45 ° when the light of the first polarization traveling in the first direction (the direction from the end of the optical fiber 2A to the end of the optical fiber 2) is input.
  • the second polarized light is output.
  • the polarization rotation element 254 rotates the polarization direction by 45 ° and outputs the light of the third polarized light. To do.
  • the polarizer 255 allows only the light of the second polarization to pass. As a result, the light traveling in the second direction is blocked in the optical isolator 250. That is, the optical isolator is configured as a polarization dependent type isolator.
  • the lens 256 condenses and couples the laser light L1 emitted from the polarizer 255 to the end of the optical fiber 2.
  • the beam sampler 257 is provided on the optical transmission line P2 between the polarizer 255 and the lens 256. As a result, the beam sampler 257 splits a part of the laser light L1 propagating in the space inside the optical isolator 250 (housing 251).
  • the output window 258 is provided in the housing 251, and is for outputting the branched light branched by the beam sampler 257 to the outside of the optical isolator 250 (the housing 251).
  • the amplification unit 240 is provided with a detector 245 optically connected to the output window 258, and the laser light L1 amplified by the amplification unit 242 can be monitored by the detector 245. [Action / effect]
  • the output unit 260 that outputs the laser light L1 to the outside is configured separately from the light source unit 210 and the amplification units 220 and 240.
  • the respective units are optically connected via optical transmission lines P1 and P2 including optical fibers.
  • An optical isolator 250 for blocking return light from the outside is provided on the optical transmission line P2 between the amplification section 242 and the output unit 260. Therefore, the propagation of the return light from the outside is blocked by the optical isolator 250 before reaching the amplification unit 242. Therefore, it is possible to suppress the influence of the return light from the outside on the amplification section 242.
  • the optical isolator 250 is provided closer to the amplification section 242 than the output unit 260 as described above. Therefore, upsizing of the output unit 260 can be avoided.
  • FIG. 8 is a diagram showing a beam profile of output light in a laser device according to a comparative example.
  • the laser device according to the comparative example is an example in which an optical isolator is provided at the final stage of the output unit, that is, further after the collimator lens.
  • 8A shows the case where the output value is 2 W
  • FIG. 8B shows the case where the output value is 30 W.
  • the beam diameter of the laser light may become smaller than that when the output value is small.
  • the laser device 200 can solve such a problem. That is, in the laser device 200, the optical isolator 250 is connected to one optical fiber 2A of the plurality of optical fibers and another optical fiber 2 of the plurality of optical fibers. Then, the optical isolator 250 inputs the laser light L1 amplified by the amplification unit 242 from the amplification unit 242 via the optical fiber 2A and outputs the laser light L1 toward the output unit 260 via the optical fiber 2.
  • FIG. 9 is a diagram showing a beam profile of output light in the laser device 200.
  • 9A shows the case where the output value is 2 W
  • FIG. 9B shows the case where the output value is 30 W.
  • the optical isolator 250 outputs the beam sampler 257 for branching a part of the laser light L1 propagating in the space inside the optical isolator 250 and the branched light branched by the beam sampler 257 to the outside.
  • Output window 258 for Therefore, the output of the laser light L1 can be monitored through the output window 258.
  • the beam sampler 257 splits the laser light L1 propagating in the space inside the optical isolator 250.
  • the amplification unit 240 is provided in the pumping light source 243 that outputs the pumping light for pumping the amplification unit 242, and the optical transmission line P2 on the output unit 260 side of the amplification unit 242, and the pumping light source 243 is provided.
  • the optical isolator 250 may be provided on the optical transmission line P2 between the optical combiner 244 and the output unit 260. As described above, when the pumping light coupling section for the amplification section 242 is provided closer to the output unit 260 than the amplification section 242, the optical isolator 250 is provided between the coupling section and the output unit 260. You can
  • the laser processing apparatus 1 is a laser processing apparatus for forming a modified region in the target object 100 by irradiating the target object 100 with the laser beam L1, and includes the laser device 200 and the target object 100.
  • the laser processing head 10A (or laser processing) for irradiating the object 100 with the laser beam L1 from the laser device 200 is mounted with the support unit 7 for supporting the output unit 260 and the output unit 260.
  • the head 10B and the moving mechanism 6 for moving the laser processing head 10A.
  • the laser processing device 1 it is possible to obtain the same effects as the above-mentioned effects.
  • the laser processing head 10A to which the output unit 260 is attached can be easily moved.
  • the laser processing apparatus 1 includes a plurality of sets of laser devices 200 and laser processing heads 10A and 10B.
  • the laser processing heads 10A and 10B can be brought close to each other. Therefore, as compared with the case where the output unit 260 is upsized, the area that can be processed by using the plurality of laser processing heads 10A and 10B at the same time is expanded.
  • the present disclosure is not limited to the laser processing device 1 and the laser device 200 described above, and may be modified arbitrarily.
  • the optical isolator 250 is not limited to the polarization-dependent type described above, and may be configured as a polarization-independent type isolator.
  • the optical transmission lines P1 and P2 may be composed of only optical fibers or may be composed of spaces.
  • the output window 258 is provided in the optical isolator 250 as an output unit for outputting the branched light from the beam sampler 257 to the outside so as to be monitored by the detector 245 is illustrated.
  • the fiber end (ferrule) of the optical fiber (fiber for output monitoring) connected to the detector 245 may be arranged in the optical isolator 250 and the branched light may be coupled to the fiber end.
  • a lens can be provided between the beam sampler 257 and the fiber end, and the branched light can be condensed and coupled to the fiber end.
  • a laser device and a laser processing device that can suppress the influence of return light from the outside while avoiding an increase in the size of the laser output part.
  • SYMBOLS 1 Laser processing device, 2 ... Optical fiber, 6 ... Moving mechanism, 7 ... Support part, 10A, 10B ... Laser processing head, 200 ... Laser device, 210 ... Light source unit, 240 ... Amplification unit, 242 ... Amplification part, 250 ... Optical isolator, 260... Output unit.

Abstract

This laser device is provided with: a light source unit which outputs laser light; an amplification unit which has an amplification part that amplifies the laser light output from the light source unit; an output unit which outputs the laser light that has been amplified by the amplification part to the outside; and an optical isolator for blocking return light to the amplification part from the outside. The output unit is configured separately from the light source unit and the amplification unit; the light source unit, the amplification unit and the output unit are optically connected to each other by means of an optical transmission line that comprises a plurality of optical fibers; and the optical isolator is provided on the optical transmission line between the amplification part and the output unit.

Description

レーザ装置、及び、レーザ加工装置Laser device and laser processing device
 本開示は、レーザ装置、及びレーザ加工装置に関する。 The present disclosure relates to a laser device and a laser processing device.
 特許文献1には、ワークを保持する保持機構と、保持機構に保持されたワークにレーザ光を照射するレーザ照射機構と、を備えるレーザ加工装置が記載されている。特許文献1に記載のレーザ加工装置では、集光レンズを有するレーザ照射機構が基台に対して固定されており、集光レンズの光軸に垂直な方向に沿ったワークの移動が保持機構によって実施される。 Patent Document 1 describes a laser processing apparatus that includes a holding mechanism that holds a work, and a laser irradiation mechanism that irradiates the work held by the holding mechanism with laser light. In the laser processing device described in Patent Document 1, a laser irradiation mechanism having a condenser lens is fixed to a base, and movement of a work along a direction perpendicular to the optical axis of the condenser lens is performed by a holding mechanism. Be implemented.
特許第5456510号公報Japanese Patent No. 5456510
上記のようなレーザ加工装置にあっては、集光レンズを介してワークに照射されたレーザ光の反射光の一部が、集光レンズを介してレーザ照射機構側に戻されるおそれがある。そのような戻り光がレーザ発振器等へ至ることを防止するためには、レーザ加工装置に光アイソレータを設けることが考えられる。その場合、レーザ光の損失抑制の観点からは、レーザ照射機構といったレーザ出力部の最終段、すなわち、集光レンズよりも後段側(ワーク側)に光アイソレータを設けることができるこれにより、ワークからの反射光の戻りが抑制される。 In the laser processing apparatus as described above, there is a possibility that part of the reflected light of the laser light applied to the workpiece via the condenser lens may be returned to the laser irradiation mechanism side via the condenser lens. In order to prevent such return light from reaching the laser oscillator or the like, it is conceivable to provide an optical isolator in the laser processing apparatus. In that case, from the viewpoint of suppressing the loss of the laser light, the optical isolator can be provided at the final stage of the laser output unit such as the laser irradiation mechanism, that is, at the rear side (work side) of the condenser lens. The return of reflected light is suppressed.
 一方で、レーザ出力部に光アイソレータを設置すると、レーザ出力部が大型化する。上記のレーザ加工装置にあってはレーザ出力部が固定されているが、レーザ出力部を移動させる要求があり、この場合にはレーザ出力部の大型化を避けることが必要となる。 On the other hand, if an optical isolator is installed in the laser output section, the laser output section will become larger. Although the laser output unit is fixed in the above laser processing apparatus, it is required to move the laser output unit. In this case, it is necessary to avoid increasing the size of the laser output unit.
 そこで、本開示は、レーザ出力部の大型化を避けつつ外部からの戻り光の影響を抑制可能なレーザ装置、及び、レーザ加工装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a laser device and a laser processing device that can suppress the influence of return light from the outside while avoiding an increase in the size of the laser output unit.
 本開示に係るレーザ装置は、レーザ光を出力する光源ユニットと、光源ユニットから出力されたレーザ光を増幅する増幅部を有する増幅ユニットと、増幅部により増幅されたレーザ光を外部に出力する出力ユニットと、外部から増幅部への戻り光を遮断するための光アイソレータと、を備え、出力ユニットは、光源ユニット及び増幅ユニットと別体に構成され、光源ユニットと増幅ユニットと出力ユニットとは、複数の光ファイバを含む光伝送路によって互いに光学的に接続されており、光アイソレータは、増幅部と出力ユニットとの間において、光伝送路に設けられている。 A laser device according to the present disclosure includes a light source unit that outputs laser light, an amplification unit that includes an amplification unit that amplifies the laser light output from the light source unit, and an output that outputs the laser light amplified by the amplification unit to the outside. A unit and an optical isolator for blocking return light from the outside to the amplification unit are provided, the output unit is configured separately from the light source unit and the amplification unit, and the light source unit, the amplification unit, and the output unit, The optical isolators are optically connected to each other by an optical transmission line including a plurality of optical fibers, and the optical isolator is provided on the optical transmission line between the amplification unit and the output unit.
 このレーザ装置においては、レーザ光を外部に出力する出力ユニットが、光源ユニット及び増幅ユニットと別体に構成されている。それぞれのユニットは、光ファイバを含む光伝送路を介して光学的に接続されている。そして、外部からの戻り光を遮断するための光アイソレータが、増幅部と出力ユニットとの間において当該光伝送路に設けられている。したがって、外部からの戻り光の進行は、増幅部に至る前に光アイソレータによって阻止される。よって、外部からの戻り光の増幅部への影響を抑制可能である。特に、光アイソレータは、上記のとおり出力ユニットよりも増幅部側に設けられている。よって、出力ユニット(レーザ出力部)の大型化が避けられる。 In this laser device, the output unit that outputs the laser light to the outside is configured separately from the light source unit and the amplification unit. Each unit is optically connected via an optical transmission line including an optical fiber. An optical isolator for blocking return light from the outside is provided in the optical transmission line between the amplification section and the output unit. Therefore, the propagation of the return light from the outside is blocked by the optical isolator before reaching the amplification unit. Therefore, it is possible to suppress the influence of the return light from the outside on the amplification section. In particular, the optical isolator is provided closer to the amplification section than the output unit as described above. Therefore, it is possible to avoid increasing the size of the output unit (laser output unit).
 ところで、光アイソレータを通過したレーザ光のビームプロファイルは、レーザ光の出力値に応じて変化する場合がある。一例として、レーザ光の出力値が大きくなると、出力値が小さい場合と比較してレーザ光のビーム径が小さくなる場合がある。これは、光アイソレータを構成する光学素子での熱レンズ効果が一因と考えられる。このため、光アイソレータがレーザ出力部の最終段に設けられていると、レーザ光の出力値に応じて異なるビームプロファイルのレーザ光が外部に出力されることとなるおそれがある。これに対して、本開示に係るレーザ装置は、このような問題を解決し得る。 By the way, the beam profile of the laser light that has passed through the optical isolator may change depending on the output value of the laser light. As an example, when the output value of the laser light is large, the beam diameter of the laser light may be smaller than that when the output value is small. It is considered that this is partly due to the thermal lens effect in the optical element forming the optical isolator. Therefore, if the optical isolator is provided at the final stage of the laser output section, there is a possibility that laser light having a different beam profile may be output to the outside depending on the output value of the laser light. On the other hand, the laser device according to the present disclosure can solve such a problem.
 すなわち、本開示に係るレーザ装置においては、光アイソレータには、複数の光ファイバのうちの一の光ファイバと、複数の光ファイバのうちの別の光ファイバと、が接続されており、光アイソレータは、増幅部によって増幅されたレーザ光を一の光ファイバを介して増幅部から入力すると共に、別の光ファイバを介して出力ユニットに向けて出力するものとすることができる。この場合、一の光ファイバによって伝送されたレーザ光は、光アイソレータを通過した後に、出力ユニットに向けて別の光ファイバによってさらに伝送される。このように、光アイソレータを通過したレーザ光が光ファイバを再度伝搬することにより、ビームプロファイルの変化が抑制される。よって、レーザ光の出力値に応じて異なるビームプロファイルのレーザ光が外部に出力されることが避けられる。さらに、この効果によって、ビームプロファイルの機差が小さくなる。 That is, in the laser device according to the present disclosure, the optical isolator is connected to one optical fiber of the plurality of optical fibers and another optical fiber of the plurality of optical fibers. Can input the laser light amplified by the amplification unit from the amplification unit via one optical fiber and output the laser light to the output unit via another optical fiber. In this case, the laser light transmitted by one optical fiber is further transmitted by another optical fiber toward the output unit after passing through the optical isolator. In this way, the laser light that has passed through the optical isolator propagates through the optical fiber again, so that the change in the beam profile is suppressed. Therefore, it is possible to prevent the laser beam having a different beam profile depending on the output value of the laser beam from being output to the outside. Further, this effect reduces the machine difference of the beam profile.
 また、本開示に係るレーザ装置においては、光アイソレータは、当該光アイソレータ内の空間を伝搬するレーザ光の一部を分岐する光分岐部と、光分岐部により分岐された分岐光を外部に出力するための出力部と、を有してもよい。この場合、出力部を介してレーザ光の出力をモニタ可能となる。特に、この分岐部は、光アイソレータ内の空間を伝搬するレーザ光を分岐する。よって、例えば、光ファイバの融着部分や、光ファイバに設けられた光カプラ等を用いてレーザ光の出力をモニタする場合と比較して、光ファイバ内で生じる高次モードの光の影響が抑制され、高精度のモニタが可能である。 Further, in the laser device according to the present disclosure, the optical isolator outputs an optical branching unit that branches a part of the laser light propagating in the space inside the optical isolator and a branched light that is branched by the optical branching unit to the outside. And an output unit for doing so. In this case, the output of the laser light can be monitored via the output section. In particular, this branching part branches the laser light propagating in the space inside the optical isolator. Therefore, for example, compared with the case where the output of the laser light is monitored using the fused portion of the optical fiber or the optical coupler provided in the optical fiber, the influence of the higher-order mode light generated in the optical fiber is Suppressed, high-precision monitoring is possible.
 さらに、本開示に係るレーザ装置においては、増幅ユニットは、増幅部を励起するための励起光を出力する励起光源と、増幅部よりも出力ユニット側において光伝送路に設けられ、励起光を光伝送路に結合するための光結合部と、を有し、光アイソレータは、光結合部と出力ユニットとの間において光伝送路に設けられていてもよい。このように、増幅部のための励起光の結合部が、増幅部よりも出力ユニット側に設けられる場合には、当該結合部と出力ユニットとの間に光アイソレータを設けることができる。 Further, in the laser device according to the present disclosure, the amplification unit is provided in the optical transmission line on the output unit side of the pumping light source that outputs the pumping light for pumping the amplification unit, and outputs the pumping light to the optical unit. The optical isolator may be provided in the optical transmission line between the optical coupling unit and the output unit. In this way, when the pumping light coupling section for the amplification section is provided closer to the output unit than the amplification section, an optical isolator can be provided between the coupling section and the output unit.
 ここで、本開示に係るレーザ加工装置は、対象物にレーザ光を照射することによって対象物に改質領域を形成するためのレーザ加工装置であって、上記のいずれかに記載のレーザ装置と、対象物を支持する支持部と、出力ユニットが取り付けられると共に支持部に臨むように配置され、レーザ装置からのレーザ光を対象物に照射するためのレーザ加工ヘッドと、レーザ加工ヘッドを移動させる移動機構と、を備える。 Here, the laser processing apparatus according to the present disclosure is a laser processing apparatus for forming a modified region on an object by irradiating the object with laser light, and the laser apparatus according to any one of the above. A laser processing head for irradiating the object with the laser beam from the laser device, the supporting section supporting the object and the output unit being attached and arranged so as to face the supporting section, and the laser processing head being moved. And a moving mechanism.
 このレーザ加工装置によれば、上述した効果と同様の効果を得ることができる。特に、上述したように、出力ユニットの大型化が避けられるため、出力ユニットが取り付けられたレーザ加工ヘッドの移動が容易となる。 With this laser processing device, it is possible to obtain the same effects as those described above. In particular, as described above, since it is possible to avoid increasing the size of the output unit, it is easy to move the laser processing head to which the output unit is attached.
 また、レーザ加工装置においては、レーザ装置及びレーザ加工ヘッドを複数組備えてもよい。このように、複数のレーザ加工ヘッドを移動させて用いる場合には、出力ユニットの大型化が避けられる結果、レーザ加工ヘッド同士を近接させることができる。このため、出力ユニットが大型化される場合と比較して、複数のレーザ加工ヘッドを同時に用いて加工可能なエリアが拡大される。 Also, the laser processing apparatus may include a plurality of sets of laser devices and laser processing heads. As described above, when a plurality of laser processing heads are moved and used, the size of the output unit can be prevented from increasing, and as a result, the laser processing heads can be brought close to each other. Therefore, as compared with the case where the output unit is upsized, the area that can be processed by using a plurality of laser processing heads simultaneously is expanded.
 本開示によれば、レーザ出力部の大型化を避けつつ外部からの戻り光の影響を抑制可能なレーザ装置、及び、レーザ加工装置を提供することができる。 According to the present disclosure, it is possible to provide a laser device and a laser processing device that can suppress the influence of return light from the outside while avoiding an increase in the size of the laser output unit.
一実施形態のレーザ加工装置の斜視図である。It is a perspective view of the laser processing apparatus of one embodiment. 図1に示されるレーザ加工装置の一部分の正面図である。It is a front view of a part of laser processing apparatus shown by FIG. 図1に示されるレーザ加工装置のレーザ加工ヘッドの正面図である。It is a front view of the laser processing head of the laser processing apparatus shown by FIG. 図3に示されるレーザ加工ヘッドの側面図である。4 is a side view of the laser processing head shown in FIG. 3. FIG. 図3に示されるレーザ加工ヘッドの光学系の構成図である。It is a block diagram of the optical system of the laser processing head shown in FIG. 一実施形態に係るレーザ装置を示す模式図である。It is a schematic diagram which shows the laser apparatus which concerns on one Embodiment. 光アイソレータの構成を示す模式図である。It is a schematic diagram which shows the structure of an optical isolator. 比較例に係るレーザ装置における出力光のビームプロファイルを示す図である。It is a figure which shows the beam profile of the output light in the laser apparatus which concerns on a comparative example. 図6に示されたレーザ装置における出力光のビームプロファイルを示す図である。It is a figure which shows the beam profile of the output light in the laser apparatus shown in FIG.
 以下、一実施形態について図面を参照して詳細に説明する。なお、各図において、同一又は相当する要素には同一の符号を付し、重複する説明を主略する場合がある。 Hereinafter, one embodiment will be described in detail with reference to the drawings. In each drawing, the same or corresponding elements may be denoted by the same reference symbols, and redundant description may be omitted.
 図1に示されるように、レーザ加工装置1は、複数の移動機構5,6と、支持部7と、複数の(ここでは1対)レーザ加工ヘッド10A,10Bと、光源部8と、制御部9と、を備えている。以下、第1方向をX方向、第1方向に垂直な第2方向をY方向、第1方向及び第2方向に垂直な第3方向をZ方向という。本実施形態では、X方向及びY方向は水平方向であり、Z方向は鉛直方向である。 As shown in FIG. 1, the laser processing apparatus 1 includes a plurality of moving mechanisms 5 and 6, a supporting unit 7, a plurality (here, a pair) of laser processing heads 10A and 10B, a light source unit 8, and a control unit. And a part 9. Hereinafter, the first direction will be referred to as the X direction, the second direction perpendicular to the first direction will be referred to as the Y direction, and the third direction perpendicular to the first and second directions will be referred to as the Z direction. In this embodiment, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction.
 移動機構5は、固定部51と、移動部53と、取付部55と、を有している。固定部51は、装置フレーム1aに取り付けられている。移動部53は、固定部51に設けられたレールに取り付けられており、Y方向に沿って移動することができる。取付部55は、移動部53に設けられたレールに取り付けられており、X方向に沿って移動することができる。 The moving mechanism 5 has a fixed portion 51, a moving portion 53, and a mounting portion 55. The fixed portion 51 is attached to the device frame 1a. The moving unit 53 is attached to a rail provided on the fixed unit 51, and can move along the Y direction. The attachment portion 55 is attached to a rail provided on the moving portion 53 and can move along the X direction.
 移動機構6は、固定部61と、1対の移動部(第1移動部、第2移動部)63,64と、1対の取付部(第1取付部、第2取付部)65,66と、を有している。固定部61は、装置フレーム1aに取り付けられている。1対の移動部63,64のそれぞれは、固定部61に設けられたレールに取り付けられており、それぞれが独立して、Y方向に沿って移動することができる。取付部65は、移動部63に設けられたレールに取り付けられており、Z方向に沿って移動することができる。取付部66は、移動部64に設けられたレールに取り付けられており、Z方向に沿って移動することができる。つまり、装置フレーム1aに対しては、1対の取付部65,66のそれぞれが、Y方向及びZ方向のそれぞれに沿って移動することができる。 The moving mechanism 6 includes a fixed part 61, a pair of moving parts (first moving part, second moving part) 63, 64, and a pair of mounting parts (first mounting part, second mounting part) 65, 66. And have. The fixed portion 61 is attached to the device frame 1a. Each of the pair of moving portions 63 and 64 is attached to a rail provided on the fixed portion 61, and each of them can move independently along the Y direction. The attachment portion 65 is attached to a rail provided on the moving portion 63 and can move along the Z direction. The attachment portion 66 is attached to a rail provided on the moving portion 64 and can move along the Z direction. That is, with respect to the device frame 1a, each of the pair of mounting portions 65 and 66 can move along the Y direction and the Z direction.
 支持部7は、移動機構5の取付部55に設けられた回転軸に取り付けられており、Z方向に平行な軸線を中心線として回転することができる。つまり、支持部7は、X方向及びY方向のそれぞれに沿って移動することができ、Z方向に平行な軸線を中心線として回転することができる。支持部7は、X方向及びY方向に沿って対象物100を支持する。対象物100は、例えば、ウェハである。 The support portion 7 is attached to a rotary shaft provided on the attachment portion 55 of the moving mechanism 5, and can rotate about an axis parallel to the Z direction as a center line. That is, the support part 7 can move along each of the X direction and the Y direction, and can rotate about the axis parallel to the Z direction as the center line. The support unit 7 supports the object 100 along the X direction and the Y direction. The object 100 is, for example, a wafer.
 図1及び図2に示されるように、レーザ加工ヘッド10Aは、移動機構6の取付部65に取り付けられている。レーザ加工ヘッド10Aは、Z方向において支持部7と対向した状態で(支持部7に臨むように配置され)、支持部7に支持された対象物100にレーザ光L1を照射するためのものである。レーザ加工ヘッド10Bは、移動機構6の取付部66に取り付けられている。レーザ加工ヘッド10Bは、Z方向において支持部7と対向した状態で(支持部7に臨むように配置され)、支持部7に支持された対象物100にレーザ光L2を照射するためのものである。 As shown in FIGS. 1 and 2, the laser processing head 10A is attached to the attachment portion 65 of the moving mechanism 6. The laser processing head 10A is for irradiating the object 100 supported by the supporting portion 7 with the laser light L1 while facing the supporting portion 7 in the Z direction (arranged so as to face the supporting portion 7). is there. The laser processing head 10B is attached to the attachment portion 66 of the moving mechanism 6. The laser processing head 10B is for irradiating the object 100 supported by the support 7 with the laser beam L2 while facing the support 7 in the Z direction (arranged so as to face the support 7). is there.
 光源部8は、1対の光源81,82を有している。光源81は、レーザ光L1を出力する。レーザ光L1は、光源81の出射部81aから出射され、光ファイバ2によってレーザ加工ヘッド10Aに導光される。光源82は、レーザ光L2を出力する。レーザ光L2は、光源82の出射部82aから出射され、別の光ファイバ2によってレーザ加工ヘッド10Bに導光される。 The light source unit 8 has a pair of light sources 81 and 82. The light source 81 outputs laser light L1. The laser light L1 is emitted from the emitting portion 81a of the light source 81 and guided to the laser processing head 10A by the optical fiber 2. The light source 82 outputs laser light L2. The laser light L2 is emitted from the emitting portion 82a of the light source 82, and is guided to the laser processing head 10B by another optical fiber 2.
 制御部9は、レーザ加工装置1の各部(複数の移動機構5,6、1対のレーザ加工ヘッド10A,10B、及び光源部8等)を制御する。制御部9は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部9では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部9は、各種機能を実現する。 The control unit 9 controls each unit of the laser processing apparatus 1 (a plurality of moving mechanisms 5, 6, a pair of laser processing heads 10A, 10B, a light source unit 8, etc.). The control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the control unit 9, the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 9 realizes various functions.
 以上のように構成されたレーザ加工装置1による加工の一例について説明する。当該加工の一例は、ウェハである対象物100を複数のチップに切断するために、格子状に設定された複数のラインのそれぞれに沿って対象物100の内部に改質領域を形成する例である。すなわち、レーザ加工装置1は、一例として、対象物100にレーザ光L1,L2を照射することによって対象物100に改質領域を形成するためのものである。 An example of processing by the laser processing apparatus 1 configured as above will be described. An example of the processing is an example in which a modified region is formed inside the object 100 along each of a plurality of lines set in a grid pattern in order to cut the object 100, which is a wafer, into a plurality of chips. is there. That is, the laser processing apparatus 1 is, for example, for forming a modified region on the object 100 by irradiating the object 100 with the laser beams L1 and L2.
 まず、対象物100を支持している支持部7がZ方向において1対のレーザ加工ヘッド10A,10Bと対向するように、移動機構5が、X方向及びY方向のそれぞれに沿って支持部7を移動させる。続いて、対象物100において一方向に延在する複数のラインがX方向に沿うように、移動機構5が、Z方向に平行な軸線を中心線として支持部7を回転させる。 First, the moving mechanism 5 moves the supporting portion 7 along the X direction and the Y direction so that the supporting portion 7 supporting the object 100 faces the pair of laser processing heads 10A and 10B in the Z direction. To move. Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in one direction on the object 100 are along the X direction.
 続いて、一方向に延在する一のライン上にレーザ光L1の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、一方向に延在する他のライン上にレーザ光L2の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Bを移動させる。続いて、対象物100の内部にレーザ光L1の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、対象物100の内部にレーザ光L2の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Bを移動させる。 Next, the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser beam L1 is located on one line extending in one direction. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focal point of the laser light L2 is located on the other line extending in one direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
 続いて、光源81がレーザ光L1を出力してレーザ加工ヘッド10Aが対象物100にレーザ光L1を照射すると共に、光源82がレーザ光L2を出力してレーザ加工ヘッド10Bが対象物100にレーザ光L2を照射する。それと同時に、一方向に延在する一のラインに沿ってレーザ光L1の集光点が相対的に移動し(レーザ光L1がスキャンされ)且つ一方向に延在する他のラインに沿ってレーザ光L2の集光点が相対的に移動する(レーザ光L2がスキャンされる)ように、移動機構5が、X方向に沿って支持部7を移動させる。このようにして、レーザ加工装置1は、対象物100において一方向に延在する複数のラインのそれぞれに沿って、対象物100の内部に改質領域を形成する。 Subsequently, the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100. The light L2 is emitted. At the same time, the condensing point of the laser light L1 relatively moves along one line extending in one direction (the laser light L1 is scanned), and the laser beam extends along another line extending in one direction. The moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in one direction on the object 100.
 続いて、対象物100において一方向と直交する他方向に延在する複数のラインがX方向に沿うように、移動機構5が、Z方向に平行な軸線を中心線として支持部7を回転させる。 Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in the other direction orthogonal to the one direction in the object 100 are along the X direction. ..
 続いて、他方向に延在する一のライン上にレーザ光L1の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、他方向に延在する他のライン上にレーザ光L2の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Bを移動させる。続いて、対象物100の内部にレーザ光L1の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、対象物100の内部にレーザ光L2の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Bを移動させる。 Subsequently, the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser light L1 is located on one line extending in the other direction. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focus point of the laser light L2 is located on another line extending in the other direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
 続いて、光源81がレーザ光L1を出力してレーザ加工ヘッド10Aが対象物100にレーザ光L1を照射すると共に、光源82がレーザ光L2を出力してレーザ加工ヘッド10Bが対象物100にレーザ光L2を照射する。それと同時に、他方向に延在する一のラインに沿ってレーザ光L1の集光点が相対的に移動し(レーザ光L1がスキャンされ)且つ他方向に延在する他のラインに沿ってレーザ光L2の集光点が相対的に移動する(レーザ光L2がスキャンされる)ように、移動機構5が、X方向に沿って支持部7を移動させる。このようにして、レーザ加工装置1は、対象物100において一方向と直交する他方向に延在する複数のラインのそれぞれに沿って、対象物100の内部に改質領域を形成する。 Subsequently, the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100. The light L2 is emitted. At the same time, the focal point of the laser light L1 relatively moves along one line extending in the other direction (the laser light L1 is scanned), and the laser beam extends along the other line extending in the other direction. The moving mechanism 5 moves the support portion 7 along the X direction so that the focal point of the light L2 moves relatively (the laser light L2 is scanned). In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in the other direction orthogonal to the one direction in the object 100.
 なお、上述した加工の一例では、光源81は、例えばパルス発振方式によって、対象物100に対して透過性を有するレーザ光L1を出力し、光源82は、例えばパルス発振方式によって、対象物100に対して透過性を有するレーザ光L2を出力する。そのようなレーザ光が対象物100の内部に集光されると、レーザ光の集光点に対応する部分においてレーザ光が特に吸収され、対象物100の内部に改質領域が形成される。改質領域は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。 In the example of the above-described processing, the light source 81 outputs the laser light L1 that is transmissive to the target object 100, for example, by the pulse oscillation method, and the light source 82 outputs the laser light L1 to the target object 100, for example, by the pulse oscillation method. On the other hand, the laser beam L2 having transparency is output. When such laser light is condensed inside the object 100, the laser light is particularly absorbed in a portion corresponding to the condensing point of the laser light, and a modified region is formed inside the object 100. The modified region is a region where the density, refractive index, mechanical strength, and other physical properties are different from the surrounding unmodified region. The modified region includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
 パルス発振方式によって出力されたレーザ光が対象物100に照射され、対象物100に設定されたラインに沿ってレーザ光の集光点が相対的に移動させられると、複数の改質スポットがラインに沿って1列に並ぶように形成される。1つの改質スポットは、1パルスのレーザ光の照射によって形成される。1列の改質領域は、1列に並んだ複数の改質スポットの集合である。隣り合う改質スポットは、対象物100に対するレーザ光の集光点の相対的な移動速度及びレーザ光の繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。
[レーザ加工ヘッドの構成]
When the object 100 is irradiated with the laser light output by the pulse oscillation method and the condensing point of the laser light is relatively moved along the line set on the object 100, a plurality of modified spots are lined up. Are formed so as to be lined up in a row along the line. One modified spot is formed by irradiation with one pulse of laser light. The one-row reforming region is a set of a plurality of reforming spots arranged in one row. Adjacent modified spots may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point of the laser light with respect to the object 100 and the repetition frequency of the laser light.
[Configuration of laser processing head]
 図3及び図4に示されるように、レーザ加工ヘッド10Aは、筐体11と、入射部12と、調整部13と、集光部14と、を備えている。 As shown in FIGS. 3 and 4, the laser processing head 10A includes a housing 11, an incident section 12, an adjusting section 13, and a condensing section 14.
 筐体11は、第1壁部21及び第2壁部22、第3壁部23及び第4壁部24、並びに、第5壁部25及び第6壁部26を有している。第1壁部21及び第2壁部22は、X方向において互いに対向している。第3壁部23及び第4壁部24は、Y方向において互いに対向している。第5壁部25及び第6壁部26は、Z方向において互いに対向している。 The housing 11 has a first wall portion 21 and a second wall portion 22, a third wall portion 23 and a fourth wall portion 24, and a fifth wall portion 25 and a sixth wall portion 26. The first wall portion 21 and the second wall portion 22 face each other in the X direction. The third wall portion 23 and the fourth wall portion 24 face each other in the Y direction. The fifth wall portion 25 and the sixth wall portion 26 face each other in the Z direction.
 第3壁部23と第4壁部24との距離は、第1壁部21と第2壁部22との距離よりも小さい。第1壁部21と第2壁部22との距離は、第5壁部25と第6壁部26との距離よりも小さい。なお、第1壁部21と第2壁部22との距離は、第5壁部25と第6壁部26との距離と等しくてもよいし、或いは、第5壁部25と第6壁部26との距離よりも大きくてもよい。 The distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22. The distance between the first wall portion 21 and the second wall portion 22 is smaller than the distance between the fifth wall portion 25 and the sixth wall portion 26. The distance between the first wall portion 21 and the second wall portion 22 may be equal to the distance between the fifth wall portion 25 and the sixth wall portion 26, or alternatively, the fifth wall portion 25 and the sixth wall portion 26. It may be larger than the distance to the portion 26.
 レーザ加工ヘッド10Aでは、第1壁部21は、移動機構6の固定部61側に位置しており、第2壁部22は、固定部61とは反対側に位置している。第3壁部23は、移動機構6の取付部65側に位置しており、第4壁部24は、取付部65とは反対側であってレーザ加工ヘッド10B側に位置している(図2参照)。すなわち、第4壁部24は、レーザ加工ヘッド10Bの筐体(第2筐体)にY方向に沿って対向する対向壁部である。第5壁部25は、支持部7とは反対側に位置しており、第6壁部26は、支持部7側に位置している。 In the laser processing head 10A, the first wall portion 21 is located on the fixed portion 61 side of the moving mechanism 6, and the second wall portion 22 is located on the opposite side to the fixed portion 61. The third wall portion 23 is located on the mounting portion 65 side of the moving mechanism 6, and the fourth wall portion 24 is located on the side opposite to the mounting portion 65 and on the laser processing head 10B side (FIG. 2). That is, the fourth wall portion 24 is a facing wall portion that faces the housing (second housing) of the laser processing head 10B along the Y direction. The fifth wall portion 25 is located on the side opposite to the support portion 7, and the sixth wall portion 26 is located on the support portion 7 side.
 筐体11は、第3壁部23が移動機構6の取付部65側に配置された状態で筐体11が取付部65に取り付けられるように、構成されている。具体的には、次のとおりである。取付部65は、ベースプレート65aと、取付プレート65bと、を有している。ベースプレート65aは、移動部63に設けられたレールに取り付けられている(図2参照)。取付プレート65bは、ベースプレート65aにおけるレーザ加工ヘッド10B側の端部に立設されている(図2参照)。筐体11は、第3壁部23が取付プレート65bに接触した状態で、台座27を介してボルト28が取付プレート65bに螺合されることで、取付部65に取り付けられている。台座27は、第1壁部21及び第2壁部22のそれぞれに設けられている。筐体11は、取付部65に対して着脱可能である。 The housing 11 is configured such that the housing 11 is attached to the mounting portion 65 with the third wall portion 23 arranged on the mounting portion 65 side of the moving mechanism 6. Specifically, it is as follows. The mounting portion 65 has a base plate 65a and a mounting plate 65b. The base plate 65a is attached to a rail provided on the moving unit 63 (see FIG. 2). The mounting plate 65b is erected on the end of the base plate 65a on the laser processing head 10B side (see FIG. 2). The casing 11 is attached to the attachment portion 65 by screwing the bolt 28 to the attachment plate 65b via the pedestal 27 while the third wall portion 23 is in contact with the attachment plate 65b. The pedestal 27 is provided on each of the first wall portion 21 and the second wall portion 22. The housing 11 is attachable to and detachable from the mounting portion 65.
 入射部12は、第5壁部25に取り付けられている。入射部12は、筐体11内にレーザ光L1を入射させる。入射部12は、X方向においては第2壁部22側(一方の壁部側)に片寄っており、Y方向においては第4壁部24側に片寄っている。つまり、X方向における入射部12と第2壁部22との距離は、X方向における入射部12と第1壁部21との距離よりも小さく、Y方向における入射部12と第4壁部24との距離は、X方向における入射部12と第3壁部23との距離よりも小さい。 The incident part 12 is attached to the fifth wall part 25. The incident unit 12 causes the laser light L1 to enter the housing 11. The incident portion 12 is offset to the second wall portion 22 side (one wall portion side) in the X direction and is offset to the fourth wall portion 24 side in the Y direction. That is, the distance between the incident portion 12 and the second wall portion 22 in the X direction is smaller than the distance between the incident portion 12 and the first wall portion 21 in the X direction, and the incident portion 12 and the fourth wall portion 24 in the Y direction. Is smaller than the distance between the incident portion 12 and the third wall portion 23 in the X direction.
 入射部12は、光ファイバ2の接続端部2aが接続可能となるように構成されている。光ファイバ2の接続端部2aには、ファイバの出射端から出射されたレーザ光L1をコリメートするコリメータレンズが設けられており、戻り光を抑制するアイソレータが設けられていない。当該アイソレータは、接続端部2aよりも光源81側であるファイバの途中に設けられている。これにより、接続端部2aの小型化、延いては、入射部12の小型化が図られている。接続端部2aは、後述するレーザ装置200の出力ユニット260である。 The incident portion 12 is configured so that the connection end portion 2a of the optical fiber 2 can be connected. The connection end portion 2a of the optical fiber 2 is provided with a collimator lens that collimates the laser light L1 emitted from the emission end of the fiber, and is not provided with an isolator that suppresses return light. The isolator is provided in the middle of the fiber on the light source 81 side with respect to the connection end portion 2a. As a result, the connection end portion 2a is downsized, and the incident portion 12 is downsized. The connection end portion 2a is an output unit 260 of the laser device 200 described later.
 調整部13は、筐体11内に配置されている。調整部13は、入射部12から入射したレーザ光L1を調整する。調整部13の詳細については後述する。 The adjusting unit 13 is arranged in the housing 11. The adjusting unit 13 adjusts the laser light L1 incident from the incident unit 12. Details of the adjusting unit 13 will be described later.
 集光部14は、第6壁部26に配置されている。具体的には、集光部14は、第6壁部26に形成された孔26aに挿通された状態で、第6壁部26に配置されている。集光部14は、調整部13によって調整されたレーザ光L1を集光しつつ筐体11外に出射させる。集光部14は、X方向においては第2壁部22側(一方の壁部側)に片寄っており、Y方向においては第4壁部24側に片寄っている。すなわち、集光部14は、Z方向からみて、筐体11における第4壁部(対向壁部)24側に偏って配置されている。つまり、X方向における集光部14と第2壁部22との距離は、X方向における集光部14と第1壁部21との距離よりも小さく、Y方向における集光部14と第4壁部24との距離は、X方向における集光部14と第3壁部23との距離よりも小さい。 The light collector 14 is arranged on the sixth wall 26. Specifically, the light collecting section 14 is arranged in the sixth wall section 26 in a state of being inserted into the hole 26 a formed in the sixth wall section 26. The condensing unit 14 condenses the laser light L1 adjusted by the adjusting unit 13 and emits it to the outside of the housing 11. The light collecting section 14 is offset to the second wall section 22 side (one wall section side) in the X direction and is biased to the fourth wall section 24 side in the Y direction. That is, the light condensing unit 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction. That is, the distance between the light collecting section 14 and the second wall section 22 in the X direction is smaller than the distance between the light collecting section 14 and the first wall section 21 in the X direction, and the light collecting section 14 and the fourth wall in the Y direction are fourth. The distance from the wall portion 24 is smaller than the distance between the light collecting portion 14 and the third wall portion 23 in the X direction.
 図5に示されるように、調整部13は、アッテネータ31と、ビームエキスパンダ32と、ミラー33と、を有している。入射部12、並びに、調整部13のアッテネータ31、ビームエキスパンダ32及びミラー33は、Z方向に沿って延在する直線(第1直線)A1上に配置されている。アッテネータ31及びビームエキスパンダ32は、直線A1上において、入射部12とミラー33との間に配置されている。アッテネータ31は、入射部12から入射したレーザ光L1の出力を調整する。ビームエキスパンダ32は、アッテネータ31で出力が調整されたレーザ光L1の径を拡大する。ミラー33は、ビームエキスパンダ32で径が拡大されたレーザ光L1を反射する。 As shown in FIG. 5, the adjusting unit 13 has an attenuator 31, a beam expander 32, and a mirror 33. The incident unit 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting unit 13 are arranged on a straight line (first straight line) A1 extending along the Z direction. The attenuator 31 and the beam expander 32 are arranged between the incident part 12 and the mirror 33 on the straight line A1. The attenuator 31 adjusts the output of the laser light L1 incident from the incident unit 12. The beam expander 32 expands the diameter of the laser light L1 whose output is adjusted by the attenuator 31. The mirror 33 reflects the laser light L1 whose diameter has been expanded by the beam expander 32.
 調整部13は、反射型空間光変調器34と、結像光学系35と、を更に有している。調整部13の反射型空間光変調器34及び結像光学系35、並びに、集光部14は、Z方向に沿って延在する直線(第2直線)A2上に配置されている。反射型空間光変調器34は、ミラー33で反射されたレーザ光L1を変調する。反射型空間光変調器34は、例えば、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。結像光学系35は、反射型空間光変調器34の反射面34aと集光部14の入射瞳面14aとが結像関係にある両側テレセントリック光学系を構成している。結像光学系35は、3つ以上のレンズによって構成されている。 The adjusting unit 13 further includes a reflective spatial light modulator 34 and an image forming optical system 35. The reflective spatial light modulator 34 of the adjustment unit 13, the imaging optical system 35, and the condensing unit 14 are arranged on a straight line (second straight line) A2 extending along the Z direction. The reflective spatial light modulator 34 modulates the laser light L1 reflected by the mirror 33. The reflective spatial light modulator 34 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The image forming optical system 35 constitutes a double-sided telecentric optical system in which the reflecting surface 34a of the reflective spatial light modulator 34 and the entrance pupil surface 14a of the condensing unit 14 are in an image forming relationship. The image forming optical system 35 is composed of three or more lenses.
 直線A1及び直線A2は、Y方向に垂直な平面上に位置している。直線A1は、直線A2に対して第2壁部22側(一方の壁部側)に位置している。レーザ加工ヘッド10Aでは、レーザ光L1は、入射部12から筐体11内に入射して直線A1上を進行し、ミラー33及び反射型空間光変調器34で順次に反射された後、直線A2上を進行して集光部14から筐体11外に出射する。なお、アッテネータ31及びビームエキスパンダ32の配列の順序は、逆であってもよい。また、アッテネータ31は、ミラー33と反射型空間光変調器34との間に配置されていてもよい。また、調整部13は、他の光学部品(例えば、ビームエキスパンダ32の前に配置されるステアリングミラー等)を有していてもよい。 The straight line A1 and the straight line A2 are located on a plane perpendicular to the Y direction. The straight line A1 is located on the second wall portion 22 side (one wall portion side) with respect to the straight line A2. In the laser processing head 10A, the laser beam L1 enters the housing 11 from the incident part 12, travels on the straight line A1, is sequentially reflected by the mirror 33 and the reflective spatial light modulator 34, and then the straight line A2. The light travels upward and is emitted from the light collecting unit 14 to the outside of the housing 11. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed. Further, the attenuator 31 may be arranged between the mirror 33 and the reflective spatial light modulator 34. Further, the adjusting unit 13 may have other optical components (for example, a steering mirror arranged in front of the beam expander 32).
 レーザ加工ヘッド10Aは、ダイクロイックミラー15と、測定部16と、観察部17と、駆動部18と、回路部19と、を更に備えている。 The laser processing head 10A further includes a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19.
 ダイクロイックミラー15は、直線A2上において、結像光学系35と集光部14との間に配置されている。つまり、ダイクロイックミラー15は、筐体11内において、調整部13と集光部14との間に配置されている。ダイクロイックミラー15は、第4壁部24側において光学ベース29に取り付けられている。ダイクロイックミラー15は、レーザ光L1を透過させる。ダイクロイックミラー15は、非点収差を抑制する観点では、例えば、キューブ型、又は、ねじれの関係を有するように配置された2枚のプレート型とすることができる。 The dichroic mirror 15 is arranged on the straight line A2 between the imaging optical system 35 and the condensing unit 14. That is, the dichroic mirror 15 is arranged in the housing 11 between the adjusting unit 13 and the light collecting unit 14. The dichroic mirror 15 is attached to the optical base 29 on the side of the fourth wall portion 24. The dichroic mirror 15 transmits the laser light L1. From the viewpoint of suppressing astigmatism, the dichroic mirror 15 may be, for example, a cube type or two plate types arranged so as to have a twist relationship.
 測定部16は、筐体11内において、調整部13に対して第1壁部21側(一方の壁部側とは反対側)に配置されている。測定部16は、第4壁部24側において光学ベース29に取り付けられている。測定部16は、対象物100の表面(例えば、レーザ光L1が入射する側の表面)と集光部14との距離を測定するための測定光L10を出力し、集光部14を介して、対象物100の表面で反射された測定光L10を検出する。つまり、測定部16から出力された測定光L10は、集光部14を介して対象物100の表面に照射され、対象物100の表面で反射された測定光L10は、集光部14を介して測定部16で検出される。 The measuring unit 16 is arranged inside the housing 11 with respect to the adjusting unit 13 on the first wall 21 side (the side opposite to the one wall side). The measuring unit 16 is attached to the optical base 29 on the fourth wall 24 side. The measurement unit 16 outputs measurement light L10 for measuring the distance between the surface of the object 100 (for example, the surface on the side on which the laser light L1 is incident) and the light condensing unit 14, and through the light condensing unit 14. The measurement light L10 reflected by the surface of the object 100 is detected. That is, the measurement light L10 output from the measurement unit 16 is applied to the surface of the object 100 via the light condensing unit 14, and the measurement light L10 reflected on the surface of the object 100 passes through the light condensing unit 14. And is detected by the measuring unit 16.
 より具体的には、測定部16から出力された測定光L10は、第4壁部24側において光学ベース29に取り付けられたビームスプリッタ20及びダイクロイックミラー15で順次に反射され、集光部14から筐体11外に出射する。対象物100の表面で反射された測定光L10は、集光部14から筐体11内に入射してダイクロイックミラー15及びビームスプリッタ20で順次に反射され、測定部16に入射し、測定部16で検出される。 More specifically, the measurement light L10 output from the measurement unit 16 is sequentially reflected by the beam splitter 20 and the dichroic mirror 15 attached to the optical base 29 on the side of the fourth wall 24, and then the light collection unit 14 outputs the light. It goes out of the housing 11. The measurement light L10 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is sequentially reflected by the dichroic mirror 15 and the beam splitter 20, enters the measuring unit 16, and then the measuring unit 16 Detected in.
 観察部17は、筐体11内において、調整部13に対して第1壁部21側(一方の壁部側とは反対側)に配置されている。観察部17は、第4壁部24側において光学ベース29に取り付けられている。観察部17は、対象物100の表面(例えば、レーザ光L1が入射する側の表面)を観察するための観察光L20を出力し、集光部14を介して、対象物100の表面で反射された観察光L20を検出する。つまり、観察部17から出力された観察光L20は、集光部14を介して対象物100の表面に照射され、対象物100の表面で反射された観察光L20は、集光部14を介して観察部17で検出される。 The observing unit 17 is arranged in the housing 11 on the first wall 21 side (the side opposite to the one wall side) with respect to the adjusting unit 13. The observation section 17 is attached to the optical base 29 on the side of the fourth wall section 24. The observation unit 17 outputs the observation light L20 for observing the surface of the object 100 (for example, the surface on the side where the laser light L1 is incident), and is reflected by the surface of the object 100 via the light condensing unit 14. The observation light L20 thus generated is detected. That is, the observation light L20 output from the observation unit 17 is applied to the surface of the object 100 via the light condensing unit 14, and the observation light L20 reflected by the surface of the object 100 passes through the light condensing unit 14. And is detected by the observation unit 17.
 より具体的には、観察部17から出力された観察光L20は、ビームスプリッタ20を透過してダイクロイックミラー15で反射され、集光部14から筐体11外に出射する。対象物100の表面で反射された観察光L20は、集光部14から筐体11内に入射してダイクロイックミラー15で反射され、ビームスプリッタ20を透過して観察部17に入射し、観察部17で検出される。なお、レーザ光L1、測定光L10及び観察光L20のそれぞれの波長は、互いに異なっている(少なくともそれぞれの中心波長が互いにずれている)。 More specifically, the observation light L20 output from the observation unit 17 passes through the beam splitter 20, is reflected by the dichroic mirror 15, and is emitted from the condensing unit 14 to the outside of the housing 11. The observation light L20 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is reflected by the dichroic mirror 15, passes through the beam splitter 20, and enters the observation unit 17, Detected at 17. The wavelengths of the laser light L1, the measurement light L10, and the observation light L20 are different from each other (at least the respective central wavelengths are deviated from each other).
 駆動部18は、第4壁部24側において光学ベース29に取り付けられている。駆動部18は、例えば圧電素子の駆動力によって、第6壁部26に配置された集光部14をZ方向に沿って移動させる。 The drive section 18 is attached to the optical base 29 on the side of the fourth wall section 24. The driving unit 18 moves the condensing unit 14 arranged on the sixth wall unit 26 along the Z direction by the driving force of the piezoelectric element, for example.
 回路部19は、筐体11内において、光学ベース29に対して第3壁部23側に配置されている。つまり、回路部19は、筐体11内において、調整部13、測定部16及び観察部17に対して第3壁部23側に配置されている。回路部19は、例えば、複数の回路基板である。回路部19は、測定部16から出力された信号、及び反射型空間光変調器34に入力する信号を処理する。回路部19は、測定部16から出力された信号に基づいて駆動部18を制御する。一例として、回路部19は、測定部16から出力された信号に基づいて、対象物100の表面と集光部14との距離が一定に維持されるように(すなわち、対象物100の表面とレーザ光L1の集光点との距離が一定に維持されるように)、駆動部18を制御する。なお、筐体11には、回路部19を制御部9(図1参照)等に電気的に接続するための配線が接続されるコネクタ(図示省略)が設けられている。 The circuit portion 19 is arranged on the third wall portion 23 side with respect to the optical base 29 in the housing 11. That is, the circuit unit 19 is arranged on the third wall 23 side with respect to the adjustment unit 13, the measurement unit 16, and the observation unit 17 in the housing 11. The circuit unit 19 is, for example, a plurality of circuit boards. The circuit unit 19 processes the signal output from the measurement unit 16 and the signal input to the reflective spatial light modulator 34. The circuit unit 19 controls the drive unit 18 based on the signal output from the measurement unit 16. As an example, the circuit unit 19 maintains the distance between the surface of the object 100 and the light condensing unit 14 constant based on the signal output from the measurement unit 16 (that is, the surface of the object 100). The drive unit 18 is controlled so that the distance from the condensing point of the laser light L1 is kept constant). The housing 11 is provided with a connector (not shown) to which wiring for electrically connecting the circuit unit 19 to the control unit 9 (see FIG. 1) and the like is connected.
 レーザ加工ヘッド10Bは、レーザ加工ヘッド10Aと同様に、筐体11と、入射部12と、調整部13と、集光部14と、ダイクロイックミラー15と、測定部16と、観察部17と、駆動部18と、回路部19と、を備えている。ただし、一例として、レーザ加工ヘッド10Bの各構成は、図2に示されるように、1対の取付部65,66間の中点を通り且つY方向に垂直な仮想平面に関して、レーザ加工ヘッド10Aの各構成と面対称の関係を有するように、配置されている。 Similar to the laser processing head 10A, the laser processing head 10B includes a housing 11, an incident section 12, an adjusting section 13, a condensing section 14, a dichroic mirror 15, a measuring section 16, and an observing section 17, The drive unit 18 and the circuit unit 19 are provided. However, as an example, as shown in FIG. 2, each configuration of the laser processing head 10B has a laser processing head 10A with respect to a virtual plane that passes through the midpoint between the pair of mounting portions 65 and 66 and is perpendicular to the Y direction. Are arranged so as to have a plane-symmetrical relationship with each of the components.
 例えば、レーザ加工ヘッド10Aの筐体11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10B側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部65に取り付けられている。これに対し、レーザ加工ヘッド10Bの筐体11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10A側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部66に取り付けられている。すなわち、レーザ加工ヘッド10Bにおいても、第4壁部24は、レーザ加工ヘッド10Aの筐体にY方向に沿って対向する対向壁部である。またレーザ加工ヘッド10Bにおいても、集光部14は、Z方向からみて、その筐体11における第4壁部(対向壁部)24側に偏って配置されている。 For example, in the housing 11 of the laser processing head 10A, the fourth wall portion 24 is located on the laser processing head 10B side with respect to the third wall portion 23, and the sixth wall portion 26 is supported with respect to the fifth wall portion 25. It is attached to the attachment portion 65 so as to be located on the side of the portion 7. On the other hand, in the housing 11 of the laser processing head 10B, the fourth wall portion 24 is located on the laser processing head 10A side with respect to the third wall portion 23, and the sixth wall portion 26 is with respect to the fifth wall portion 25. Is attached to the attachment portion 66 so as to be located on the support portion 7 side. That is, also in the laser processing head 10B, the fourth wall portion 24 is a facing wall portion that faces the housing of the laser processing head 10A along the Y direction. Also in the laser processing head 10B, the light converging portion 14 is arranged so as to be biased toward the fourth wall portion (opposing wall portion) 24 side of the housing 11 when viewed from the Z direction.
 レーザ加工ヘッド10Bの筐体11は、第3壁部23が取付部66側に配置された状態で筐体11が取付部66に取り付けられるように、構成されている。具体的には、次のとおりである。取付部66は、ベースプレート66aと、取付プレート66bと、を有している。ベースプレート66aは、移動部63に設けられたレールに取り付けられている。取付プレート66bは、ベースプレート66aにおけるレーザ加工ヘッド10A側の端部に立設されている。レーザ加工ヘッド10Bの筐体11は、第3壁部23が取付プレート66bに接触した状態で、取付部66に取り付けられている。レーザ加工ヘッド10Bの筐体11は、取付部66に対して着脱可能である。
[レーザ装置の構成]
The housing 11 of the laser processing head 10B is configured such that the housing 11 is attached to the mounting portion 66 with the third wall portion 23 arranged on the mounting portion 66 side. Specifically, it is as follows. The mounting portion 66 has a base plate 66a and a mounting plate 66b. The base plate 66a is attached to a rail provided on the moving unit 63. The mounting plate 66b is erected at the end of the base plate 66a on the laser processing head 10A side. The housing 11 of the laser processing head 10B is attached to the attachment portion 66 with the third wall portion 23 in contact with the attachment plate 66b. The housing 11 of the laser processing head 10B can be attached to and detached from the mounting portion 66.
[Configuration of laser device]
 引き続いて、本実施形態に係るレーザ装置について説明する。図6は、一実施形態に係るレーザ装置を示す模式図である。図6に示されるように、レーザ装置200は、光源ユニット210、増幅ユニット220、増幅ユニット240、光アイソレータ250、及び、出力ユニット260(接続端部2a)を備えている。光源ユニット210、増幅ユニット220,240、及び、光アイソレータ250は、上述した光源部8の光源81及び光源82のそれぞれに対応している。したがって、上述したレーザ加工装置1は、このレーザ装置200を複数(ここでは一対)備えている。すなわち、レーザ加工装置1は、レーザ装置200及びレーザ加工ヘッド(レーザ加工ヘッド10A,10B)を複数組(ここでは2組)備えている。なお、図6,7においては、光源81に対応するレーザ装置200を図示する。 Subsequently, the laser device according to the present embodiment will be described. FIG. 6 is a schematic diagram showing a laser device according to one embodiment. As shown in FIG. 6, the laser device 200 includes a light source unit 210, an amplification unit 220, an amplification unit 240, an optical isolator 250, and an output unit 260 (connection end portion 2a). The light source unit 210, the amplification units 220 and 240, and the optical isolator 250 correspond to the light source 81 and the light source 82 of the light source unit 8 described above, respectively. Therefore, the laser processing device 1 described above includes a plurality (here, a pair) of the laser devices 200. That is, the laser processing apparatus 1 includes a plurality of sets (two sets here) of the laser device 200 and the laser processing heads (laser processing heads 10A and 10B). 6 and 7 show the laser device 200 corresponding to the light source 81.
 光源ユニット210は、種光源211を有している。種光源211は、例えばレーザダイオードである。種光源211は、パルスジェネレータによって駆動され、種光であるレーザ光L1をパルス発振する。種光源211から出射されたレーザ光L1は、例えば光ファイバにより構成された光伝送路P1に結合される。レーザ光L1は、光伝送路P1を伝搬して光源ユニット210から出力される。 The light source unit 210 has a seed light source 211. The seed light source 211 is, for example, a laser diode. The seed light source 211 is driven by a pulse generator and pulse-oscillates the laser light L1 that is seed light. The laser light L1 emitted from the seed light source 211 is coupled to the optical transmission line P1 formed of, for example, an optical fiber. The laser light L1 propagates through the optical transmission line P1 and is output from the light source unit 210.
 増幅ユニット220は、例えばプリアンプ部である。増幅ユニット220は、光アイソレータ221、クラッドモードストリッパ222、増幅部223、光カプラ224,228、光コンバイナ225、励起光源226、バンドパスフィルタ229、及び、光アイソレータ230を有している。増幅ユニット220においては、複数の光ファイバを含むと共に光伝送路P1と光学的に接続された光伝送路P2が構成されており、上記の各光学要素が光伝送路P2に配置されている。すなわち、光源ユニット210と増幅ユニット220とは、光伝送路P1,P2によって互いに光学的に接続されている。レーザ光L1は、光伝送路P2を伝播しつつ増幅された後に増幅ユニット220から出力される。 The amplification unit 220 is, for example, a preamplifier unit. The amplification unit 220 includes an optical isolator 221, a cladding mode stripper 222, an amplification unit 223, optical couplers 224 and 228, an optical combiner 225, a pumping light source 226, a bandpass filter 229, and an optical isolator 230. In the amplification unit 220, an optical transmission line P2 that includes a plurality of optical fibers and is optically connected to the optical transmission line P1 is configured, and the above optical elements are arranged in the optical transmission line P2. That is, the light source unit 210 and the amplification unit 220 are optically connected to each other by the optical transmission lines P1 and P2. The laser light L1 is output from the amplification unit 220 after being amplified while propagating through the optical transmission path P2.
 増幅部223は、例えばファイバレーザである。励起光源226は、例えばレーザダイオードであって、増幅部223を励起するための励起光を出力する。光コンバイナ225は、増幅部223の後段において光伝送路P2に設けられており、励起光源226から出力された励起光を光伝送路P2に結合する。これにより、励起光源226から出力された励起光が増幅部223に入力される。すなわち、増幅ユニット220においては、励起光がレーザ光L1の進行方向とは逆方向に進行する後方励起の構成が採用されている。これにより、増幅部223は、光伝送路P1,P2を介して光源ユニット210からのレーザ光L1を入力し、増幅して出力する。 The amplification unit 223 is, for example, a fiber laser. The pumping light source 226 is a laser diode, for example, and outputs pumping light for pumping the amplifying unit 223. The optical combiner 225 is provided on the optical transmission line P2 in the latter stage of the amplification unit 223, and couples the pumping light output from the pumping light source 226 to the optical transmission line P2. As a result, the pumping light output from the pumping light source 226 is input to the amplification unit 223. That is, the amplification unit 220 employs a backward pumping configuration in which the pumping light travels in the direction opposite to the traveling direction of the laser light L1. Accordingly, the amplification unit 223 inputs the laser light L1 from the light source unit 210 via the optical transmission paths P1 and P2, amplifies and outputs the laser light L1.
 光アイソレータ221は、光源ユニット210と増幅部223との間において光伝送路P2に設けられており、種光源211への戻り光を遮断する。クラッドモードストリッパ222は、増幅部223の前段において光伝送路P2に設けられており、増幅部223で吸収されなかった励起光を除去する。光カプラ224は、光アイソレータ221とクラッドモードストリッパ222との間において光伝送路P2に設けられている。光カプラ224には、光ファイバを介してフォトダイオード等の検出器が接続されている。これにより、種光であるレーザ光L1を検出器によって検出してモニタ可能となる。 The optical isolator 221 is provided on the optical transmission line P2 between the light source unit 210 and the amplification unit 223, and blocks the return light to the seed light source 211. The clad mode stripper 222 is provided in the optical transmission line P2 in the preceding stage of the amplification section 223, and removes the pumping light not absorbed by the amplification section 223. The optical coupler 224 is provided on the optical transmission line P2 between the optical isolator 221 and the cladding mode stripper 222. A detector such as a photodiode is connected to the optical coupler 224 via an optical fiber. As a result, the laser light L1 that is the seed light can be detected and monitored by the detector.
 光アイソレータ230は、光コンバイナ225の後段において光伝送路P2に設けられており、増幅部223への戻り光を遮断する。バンドパスフィルタ229は、増幅部223で発生したASE(Amplified Spontaneous Emission)光を除去する。光カプラ228は、バンドパスフィルタ229の後段において光伝送路P2に設けられている。光カプラ224には、光ファイバを介してフォトダイオード等の検出器が接続されている。これにより、増幅部223で増幅されたレーザ光L1を検出器によって検出してモニタ可能となる。 The optical isolator 230 is provided on the optical transmission line P2 in the latter stage of the optical combiner 225, and blocks the return light to the amplification unit 223. The bandpass filter 229 removes ASE (Amplified Spontaneous Emission) light generated in the amplification unit 223. The optical coupler 228 is provided on the optical transmission line P2 at a stage subsequent to the bandpass filter 229. A detector such as a photodiode is connected to the optical coupler 224 via an optical fiber. As a result, the laser light L1 amplified by the amplifier 223 can be detected and monitored by the detector.
 増幅ユニット240は、例えばパワーアンプ部であり、レーザ装置200のうちの最も出力ユニット260側に設けられた増幅手段である。増幅ユニット240は、クラッドモードストリッパ241、増幅部242、複数の励起光源243、光コンバイナ(光結合部)244、及び、検出器245を有している。増幅ユニット240においては、複数の光ファイバを含む光伝送路P2が増幅ユニット220から続いて構成されており、上記の各光学要素が光伝送路P2に配置されている。すなわち、光源ユニット210及び増幅ユニット220と増幅ユニット240とは、光伝送路P1,P2によって互いに光学的に接続されている。増幅ユニット240は、光伝送路P2を介して増幅ユニット220からのレーザ光L1を入力し、増幅して出力する。 The amplifying unit 240 is, for example, a power amplifier unit, and is an amplifying unit provided closest to the output unit 260 side of the laser device 200. The amplification unit 240 has a cladding mode stripper 241, an amplification section 242, a plurality of pumping light sources 243, an optical combiner (optical coupling section) 244, and a detector 245. In the amplification unit 240, an optical transmission line P2 including a plurality of optical fibers is formed continuously from the amplification unit 220, and the above optical elements are arranged in the optical transmission line P2. That is, the light source unit 210, the amplification unit 220, and the amplification unit 240 are optically connected to each other by the optical transmission lines P1 and P2. The amplification unit 240 inputs the laser beam L1 from the amplification unit 220 via the optical transmission line P2, amplifies and outputs the laser beam L1.
 増幅部242は、例えばファイバレーザである。励起光源243は、例えばレーザダイオードであり、増幅部242を励起するための励起光を出力する。光コンバイナ244は、増幅部242の後段において光伝送路P2に設けられており、励起光源243から出力された励起光を光伝送路P2に結合する。これにより、励起光源243から出力された励起光が増幅部242に入力される。すなわち、増幅ユニット240においても、励起光がレーザ光L1の進行方向とは逆方向に進行する後方励起の構成が採用されている。 The amplifier 242 is, for example, a fiber laser. The pumping light source 243 is, for example, a laser diode and outputs pumping light for pumping the amplifying unit 242. The optical combiner 244 is provided on the optical transmission line P2 in the latter stage of the amplification unit 242, and couples the pumping light output from the pumping light source 243 to the optical transmission line P2. As a result, the pumping light output from the pumping light source 243 is input to the amplification unit 242. That is, the amplification unit 240 also employs a backward pumping configuration in which the pumping light travels in the direction opposite to the traveling direction of the laser light L1.
 これにより、増幅部242は、光伝送路P2を介して増幅ユニット220(すなわち光源ユニット210)からのレーザ光L1を入力し、増幅して出力する。クラッドモードストリッパ241は、増幅部242の前段において光伝送路P2に設けられており、増幅部242で吸収されなかった励起光を除去する。 Accordingly, the amplification unit 242 inputs, amplifies and outputs the laser light L1 from the amplification unit 220 (that is, the light source unit 210) via the optical transmission line P2. The clad mode stripper 241 is provided in the optical transmission line P2 in the preceding stage of the amplification section 242, and removes the pumping light not absorbed by the amplification section 242.
 出力ユニット260は、増幅ユニット220から出力されたレーザ光L1(すなわち、増幅部223及び増幅部242により増幅されたレーザ光L1)を外部に出力する。上述したように、出力ユニット260は、レーザ装置200をレーザ加工ヘッド10A,10Bに接続するための接続端部2aを構成している。したがって、出力ユニット260は、レーザ光L1をレーザ加工ヘッド10A,10Bに提供する。 The output unit 260 outputs the laser beam L1 output from the amplification unit 220 (that is, the laser beam L1 amplified by the amplification section 223 and the amplification section 242) to the outside. As described above, the output unit 260 constitutes the connection end portion 2a for connecting the laser device 200 to the laser processing heads 10A and 10B. Therefore, the output unit 260 provides the laser light L1 to the laser processing heads 10A and 10B.
 出力ユニット260においては、増幅ユニット240から続いて光伝送路P2が構成されている。すなわち、光源ユニット210及び増幅ユニット220,240と出力ユニット260とは、光伝送路によって互いに光学的に接続されている。出力ユニット260は、光伝送路P2の最終段の光ファイバ2の出力端部261を含む。また、出力ユニット260は、出力端部261から出力されたレーザ光L1をコリメートするコリメートレンズ262を含む。コリメートレンズ262から出射されたレーザ光L1は、レーザ加工ヘッド10A,10B(レーザ装置200の外部)に出力される。 In the output unit 260, an optical transmission line P2 is formed following the amplification unit 240. That is, the light source unit 210, the amplification units 220 and 240, and the output unit 260 are optically connected to each other by an optical transmission path. The output unit 260 includes the output end 261 of the optical fiber 2 at the final stage of the optical transmission line P2. The output unit 260 also includes a collimator lens 262 that collimates the laser light L1 output from the output end 261. The laser beam L1 emitted from the collimator lens 262 is output to the laser processing heads 10A and 10B (outside the laser device 200).
 出力ユニット260は、光源ユニット210及び増幅ユニット220,240と別体に構成されている。ここでは、光源ユニット210及び増幅ユニット220,240が光源81(或いは光源82)として1つの筐体に収容されると共に、出力ユニット260が別の筐体に収容される。各筐体間は、光伝送路P2の一部を構成する光ファイバ2によって互いに接続されている。 The output unit 260 is configured separately from the light source unit 210 and the amplification units 220 and 240. Here, the light source unit 210 and the amplification units 220 and 240 are housed as the light source 81 (or the light source 82) in one housing, and the output unit 260 is housed in another housing. The respective housings are connected to each other by an optical fiber 2 forming a part of the optical transmission line P2.
 光アイソレータ250は、外部から増幅部242(最も出力ユニット260側の増幅部)への戻り光を遮断するためのものである。外部からの戻り光とは、ここでは、対象物100に照射されたレーザ光の反射光である。光アイソレータ250は、増幅部242と出力ユニット260との間において光伝送路P2に設けられている。より具体的には、光アイソレータ250は、光コンバイナ244と出力ユニット260との間に設けられている。一例として、光アイソレータ250は、増幅ユニット240と共通の筐体内に設けられている。 The optical isolator 250 is for blocking the return light from the outside to the amplification section 242 (the amplification section on the side of the output unit 260 closest). The return light from the outside is here the reflected light of the laser light with which the object 100 is irradiated. The optical isolator 250 is provided on the optical transmission line P2 between the amplification unit 242 and the output unit 260. More specifically, the optical isolator 250 is provided between the optical combiner 244 and the output unit 260. As an example, the optical isolator 250 is provided in the same housing as the amplification unit 240.
 図7は、光アイソレータの構成を示す模式図である。図7に示されるように、光アイソレータ250は、筐体251、レンズ252,256、偏光子253,255、偏光回転素子254、ビームサンプラ(光分岐部)257、及び、出力窓(出力部)258を有している。光アイソレータ250には、光伝送路P2を構成する複数の光ファイバのうちの一の光ファイバ2Aと、複数の光ファイバのうちの別の光ファイバ2と、が接続されている。光ファイバ2Aの端部には、例えばフェルールF2Aが設けられており、光アイソレータ250の筐体251内に配置されている。また、光ファイバ2の出力端部261と反対側の端部には、例えばフェルールF2が設けられており、筐体251内に配置されている。 FIG. 7 is a schematic diagram showing the configuration of the optical isolator. As shown in FIG. 7, the optical isolator 250 includes a housing 251, lenses 252, 256, polarizers 253, 255, a polarization rotation element 254, a beam sampler (optical branching unit) 257, and an output window (output unit). Has 258. The optical isolator 250 is connected to one optical fiber 2A of the plurality of optical fibers forming the optical transmission line P2 and another optical fiber 2 of the plurality of optical fibers. A ferrule F2A, for example, is provided at the end of the optical fiber 2A, and is disposed inside the housing 251 of the optical isolator 250. A ferrule F2, for example, is provided at the end of the optical fiber 2 opposite to the output end 261 and is disposed inside the housing 251.
 光ファイバ2Aの端部から出射されたレーザ光L1は、筐体251内の空間を伝搬した後に光ファイバ2の端部に結合される。すなわち、光アイソレータ250内には、空間中に光伝送路P2が形成されている。レンズ252、偏光子253、偏光回転素子254、偏光子255、ビームサンプラ257、及び、レンズ256は、光ファイバ2Aから光ファイバ2に向かってこの順に光伝送路P2に設けられている。 The laser light L1 emitted from the end of the optical fiber 2A is coupled to the end of the optical fiber 2 after propagating in the space inside the housing 251. That is, in the optical isolator 250, the optical transmission line P2 is formed in space. The lens 252, the polarizer 253, the polarization rotation element 254, the polarizer 255, the beam sampler 257, and the lens 256 are provided in the optical transmission line P2 in this order from the optical fiber 2A toward the optical fiber 2.
 レンズ252は、光ファイバ2Aから出射された光をコリメートする。偏光子253は、第1偏光の光のみを通過させる。偏光回転素子254は、例えば、磁場中を進行する光の偏光が回転する現象であるファラデー効果を利用したファラデーローテータである。偏光回転素子254は、第1方向(光ファイバ2Aの端部から光ファイバ2の端部に向かう方向)に進行する第1偏光の光を入力した場合、その偏光方向を45°回転して、第2偏光の光を出力する。また、偏光回転素子254は、第1方向と逆方向の第2方向に進行する第2偏光の光を入力した場合には、その偏光方向を45°回転して、第3偏光の光を出力する。偏光子255は、第2偏光の光のみを通過させる。これにより、光アイソレータ250において第2方向に進行する光が遮断される。すなわち、光アイソレータは、偏光依存タイプのアイソレータとして構成されている。レンズ256は、偏光子255から出射されたレーザ光L1を光ファイバ2の端部に集光して結合する。 The lens 252 collimates the light emitted from the optical fiber 2A. The polarizer 253 transmits only the first polarized light. The polarization rotator 254 is, for example, a Faraday rotator that utilizes the Faraday effect, which is a phenomenon in which the polarization of light traveling in a magnetic field rotates. The polarization rotation element 254 rotates the polarization direction by 45 ° when the light of the first polarization traveling in the first direction (the direction from the end of the optical fiber 2A to the end of the optical fiber 2) is input. The second polarized light is output. Further, when inputting the light of the second polarized light traveling in the second direction opposite to the first direction, the polarization rotation element 254 rotates the polarization direction by 45 ° and outputs the light of the third polarized light. To do. The polarizer 255 allows only the light of the second polarization to pass. As a result, the light traveling in the second direction is blocked in the optical isolator 250. That is, the optical isolator is configured as a polarization dependent type isolator. The lens 256 condenses and couples the laser light L1 emitted from the polarizer 255 to the end of the optical fiber 2.
 ビームサンプラ257は、偏光子255とレンズ256との間において光伝送路P2に設けられている。これにより、ビームサンプラ257は、光アイソレータ250(筐体251)内の空間を伝搬するレーザ光L1の一部を分岐する。出力窓258は、筐体251に設けられており、ビームサンプラ257により分岐された分岐光を光アイソレータ250(筐体251)の外部に出力するためのものである。増幅ユニット240には、この出力窓258に光学的に接続された検出器245が設けられており、増幅部242によって増幅されたレーザ光L1を検出器245によってモニタ可能とされている。
[作用・効果]
The beam sampler 257 is provided on the optical transmission line P2 between the polarizer 255 and the lens 256. As a result, the beam sampler 257 splits a part of the laser light L1 propagating in the space inside the optical isolator 250 (housing 251). The output window 258 is provided in the housing 251, and is for outputting the branched light branched by the beam sampler 257 to the outside of the optical isolator 250 (the housing 251). The amplification unit 240 is provided with a detector 245 optically connected to the output window 258, and the laser light L1 amplified by the amplification unit 242 can be monitored by the detector 245.
[Action / effect]
 レーザ装置200においては、レーザ光L1を外部に出力する出力ユニット260が、光源ユニット210及び増幅ユニット220,240と別体に構成されている。それぞれのユニットは、光ファイバを含む光伝送路P1,P2を介して光学的に接続されている。そして、外部からの戻り光を遮断するための光アイソレータ250が、増幅部242と出力ユニット260との間において当該光伝送路P2に設けられている。したがって、外部からの戻り光の進行は、増幅部242に至る前に光アイソレータ250によって阻止される。よって、外部からの戻り光の増幅部242への影響を抑制可能である。特に、光アイソレータ250は、上記のとおり、出力ユニット260よりも増幅部242側に設けられている。よって、出力ユニット260の大型化が避けられる。 In the laser device 200, the output unit 260 that outputs the laser light L1 to the outside is configured separately from the light source unit 210 and the amplification units 220 and 240. The respective units are optically connected via optical transmission lines P1 and P2 including optical fibers. An optical isolator 250 for blocking return light from the outside is provided on the optical transmission line P2 between the amplification section 242 and the output unit 260. Therefore, the propagation of the return light from the outside is blocked by the optical isolator 250 before reaching the amplification unit 242. Therefore, it is possible to suppress the influence of the return light from the outside on the amplification section 242. In particular, the optical isolator 250 is provided closer to the amplification section 242 than the output unit 260 as described above. Therefore, upsizing of the output unit 260 can be avoided.
 ところで、光アイソレータを通過したレーザ光のビームプロファイルは、レーザ光の出力値に応じて変化する場合がある。図8は、比較例に係るレーザ装置における出力光のビームプロファイルを示す図である。比較例に係るレーザ装置は、出力ユニットの最終段、すなわち、コリメートレンズのさらに後段に光アイソレータを設けた例である。図8の(a)は、出力値を2Wとした場合を示し、図8の(b)は、出力値を30Wとした場合を示す。図8に示されるように、レーザ光の出力値が大きくなると、出力値が小さい場合と比較してレーザ光のビーム径が小さくなる場合がある。これは、光アイソレータを構成する光学素子での熱レンズ効果が一因と考えられる。このため、光アイソレータがレーザ出力部の最終段に設けられていると、レーザ光の出力値に応じて異なるビームプロファイルのレーザ光が外部に出力されることとなるおそれがある。 By the way, the beam profile of the laser light that has passed through the optical isolator may change depending on the output value of the laser light. FIG. 8 is a diagram showing a beam profile of output light in a laser device according to a comparative example. The laser device according to the comparative example is an example in which an optical isolator is provided at the final stage of the output unit, that is, further after the collimator lens. 8A shows the case where the output value is 2 W, and FIG. 8B shows the case where the output value is 30 W. As shown in FIG. 8, when the output value of the laser light becomes large, the beam diameter of the laser light may become smaller than that when the output value is small. It is considered that this is partly due to the thermal lens effect in the optical element forming the optical isolator. Therefore, if the optical isolator is provided at the final stage of the laser output section, there is a possibility that laser light having a different beam profile may be output to the outside depending on the output value of the laser light.
 これに対して、本実施形態に係るレーザ装置200は、このような問題を解決し得る。すなわち、レーザ装置200においては、光アイソレータ250には、複数の光ファイバのうちの一の光ファイバ2Aと、複数の光ファイバのうちの別の光ファイバ2と、が接続されている。そして、光アイソレータ250は、増幅部242によって増幅されたレーザ光L1を光ファイバ2Aを介して増幅部242から入力すると共に、光ファイバ2を介して出力ユニット260に向けて出力する。 On the other hand, the laser device 200 according to the present embodiment can solve such a problem. That is, in the laser device 200, the optical isolator 250 is connected to one optical fiber 2A of the plurality of optical fibers and another optical fiber 2 of the plurality of optical fibers. Then, the optical isolator 250 inputs the laser light L1 amplified by the amplification unit 242 from the amplification unit 242 via the optical fiber 2A and outputs the laser light L1 toward the output unit 260 via the optical fiber 2.
 このため、光ファイバ2Aによって伝送されたレーザ光L1は、光アイソレータ250を通過した後に、出力ユニット260に向けて光ファイバ2によってさらに伝送される。このように、光アイソレータ250を通過したレーザ光L1が光ファイバ2を再度伝搬することにより、ビームプロファイルの変化が抑制される。よって、レーザ光の出力値に応じて異なるビームプロファイルのレーザ光が外部に出力されることが避けられる。このことは、図9に示されたビームプロファイルから明確に把握される。図9は、レーザ装置200における出力光のビームプロファイルを示す図である。図9の(a)は、出力値を2Wとした場合を示し、図9の(b)は、出力値を30Wとした場合を示す。 Therefore, the laser light L1 transmitted by the optical fiber 2A is further transmitted by the optical fiber 2 toward the output unit 260 after passing through the optical isolator 250. In this way, the laser light L1 that has passed through the optical isolator 250 is propagated again in the optical fiber 2, whereby the change in the beam profile is suppressed. Therefore, it is possible to prevent the laser beam having a different beam profile depending on the output value of the laser beam from being output to the outside. This is clearly understood from the beam profile shown in FIG. FIG. 9 is a diagram showing a beam profile of output light in the laser device 200. 9A shows the case where the output value is 2 W, and FIG. 9B shows the case where the output value is 30 W.
 また、レーザ装置200においては、光アイソレータ250は、当該光アイソレータ250内の空間を伝搬するレーザ光L1の一部を分岐するビームサンプラ257と、ビームサンプラ257により分岐された分岐光を外部に出力するための出力窓258と、を有している。このため、出力窓258を介してレーザ光L1の出力をモニタ可能となる。特に、このビームサンプラ257は、光アイソレータ250内の空間を伝搬するレーザ光L1を分岐する。よって、例えば、光ファイバの融着部分や、光ファイバに設けられた光カプラ等を用いてレーザ光L1の出力をモニタする場合と比較して、光ファイバ内で生じる高次モードの光の影響が抑制され、高精度のモニタが可能である。 Further, in the laser device 200, the optical isolator 250 outputs the beam sampler 257 for branching a part of the laser light L1 propagating in the space inside the optical isolator 250 and the branched light branched by the beam sampler 257 to the outside. Output window 258 for Therefore, the output of the laser light L1 can be monitored through the output window 258. In particular, the beam sampler 257 splits the laser light L1 propagating in the space inside the optical isolator 250. Therefore, for example, as compared with the case where the output of the laser light L1 is monitored by using the fused portion of the optical fiber or the optical coupler provided in the optical fiber, the influence of the higher-order mode light generated in the optical fiber Is suppressed, and high-precision monitoring is possible.
 さらに、レーザ装置200においては、増幅ユニット240は、増幅部242を励起するための励起光を出力する励起光源243と、増幅部242よりも出力ユニット260側において光伝送路P2に設けられ、励起光を光伝送路P2に結合するための光コンバイナ244と、を有する。そして、光アイソレータ250は、光コンバイナ244と出力ユニット260との間において光伝送路P2に設けられていてもよい。このように、増幅部242のための励起光の結合部が、増幅部242よりも出力ユニット260側に設けられる場合には、当該結合部と出力ユニット260との間に光アイソレータ250を設けることができる。 Further, in the laser device 200, the amplification unit 240 is provided in the pumping light source 243 that outputs the pumping light for pumping the amplification unit 242, and the optical transmission line P2 on the output unit 260 side of the amplification unit 242, and the pumping light source 243 is provided. An optical combiner 244 for coupling light into the optical transmission line P2. The optical isolator 250 may be provided on the optical transmission line P2 between the optical combiner 244 and the output unit 260. As described above, when the pumping light coupling section for the amplification section 242 is provided closer to the output unit 260 than the amplification section 242, the optical isolator 250 is provided between the coupling section and the output unit 260. You can
 ここで、レーザ加工装置1は、対象物100にレーザ光L1を照射することによって対象物100に改質領域を形成するためのレーザ加工装置であって、上記のレーザ装置200と、対象物100を支持する支持部7と、出力ユニット260が取り付けられると共に支持部7に臨むように配置され、レーザ装置200からのレーザ光L1を対象物100に照射するためのレーザ加工ヘッド10A(或いはレーザ加工ヘッド10B)と、レーザ加工ヘッド10Aを移動させる移動機構6と、を備える。 Here, the laser processing apparatus 1 is a laser processing apparatus for forming a modified region in the target object 100 by irradiating the target object 100 with the laser beam L1, and includes the laser device 200 and the target object 100. The laser processing head 10A (or laser processing) for irradiating the object 100 with the laser beam L1 from the laser device 200 is mounted with the support unit 7 for supporting the output unit 260 and the output unit 260. The head 10B) and the moving mechanism 6 for moving the laser processing head 10A.
 レーザ加工装置1によれば、上述した効果と同様の効果を得ることができる。特に、上述したように、出力ユニット260の大型化が避けられるため、出力ユニット260が取り付けられたレーザ加工ヘッド10Aの移動が容易となる。 According to the laser processing device 1, it is possible to obtain the same effects as the above-mentioned effects. In particular, as described above, since the output unit 260 is prevented from becoming large, the laser processing head 10A to which the output unit 260 is attached can be easily moved.
 また、レーザ加工装置1においては、複数組のレーザ装置200及びレーザ加工ヘッド10A,10Bを備えている。この場合、出力ユニット260の大型化が避けられる結果、レーザ加工ヘッド10A,10B同士を近接させることができる。このため、出力ユニット260が大型化される場合と比較して、複数のレーザ加工ヘッド10A,10Bを同時に用いて加工可能なエリアが拡大される。 Further, the laser processing apparatus 1 includes a plurality of sets of laser devices 200 and laser processing heads 10A and 10B. In this case, as a result of avoiding the size increase of the output unit 260, the laser processing heads 10A and 10B can be brought close to each other. Therefore, as compared with the case where the output unit 260 is upsized, the area that can be processed by using the plurality of laser processing heads 10A and 10B at the same time is expanded.
 以上の実施形態は、一実施形態を説明したものである。したがって、本開示は、上述したレーザ加工装置1及びレーザ装置200に限定されず、任意の変形がされ得る。例えば、光アイソレータ250は、上述した偏光依存タイプに限らず、偏光無依存タイプのアイソレータとして構成されていてもよい。なお、光伝送路P1,P2は、光ファイバのみで構成される場合もあるし空間を含んで構成される場合もある。 The above embodiment describes one embodiment. Therefore, the present disclosure is not limited to the laser processing device 1 and the laser device 200 described above, and may be modified arbitrarily. For example, the optical isolator 250 is not limited to the polarization-dependent type described above, and may be configured as a polarization-independent type isolator. The optical transmission lines P1 and P2 may be composed of only optical fibers or may be composed of spaces.
 また、上記の実施形態においては、ビームサンプラ257からの分岐光を検出器245によるモニタに供すべく外部に出力するための出力部として、光アイソレータ250に出力窓258を設ける場合を例示した。しかしながら、例えば、検出器245に接続された光ファイバ(出力モニタ用ファイバ)のファイバ端(フェルール)を光アイソレータ250に配置し、分岐光を当該ファイバ端に結合させてもよい。この場合、一例として、ビームサンプラ257と当該ファイバ端との間にレンズを設け、分岐光を当該ファイバ端に集光して結合することができる。この場合であっても、出力窓258を設ける場合と同様に、光ファイバ内で生じる高次モードの光の影響が抑制され、高精度のモニタが可能である。 In the above embodiment, the case where the output window 258 is provided in the optical isolator 250 as an output unit for outputting the branched light from the beam sampler 257 to the outside so as to be monitored by the detector 245 is illustrated. However, for example, the fiber end (ferrule) of the optical fiber (fiber for output monitoring) connected to the detector 245 may be arranged in the optical isolator 250 and the branched light may be coupled to the fiber end. In this case, as an example, a lens can be provided between the beam sampler 257 and the fiber end, and the branched light can be condensed and coupled to the fiber end. Even in this case, similarly to the case where the output window 258 is provided, the influence of the higher-order mode light generated in the optical fiber is suppressed, and high-precision monitoring is possible.
 レーザ出力部の大型化を避けつつ外部からの戻り光の影響を抑制可能なレーザ装置、及び、レーザ加工装置が提供される。 Provided are a laser device and a laser processing device that can suppress the influence of return light from the outside while avoiding an increase in the size of the laser output part.
 1…レーザ加工装置、2…光ファイバ、6…移動機構、7…支持部、10A,10B…レーザ加工ヘッド、200…レーザ装置、210…光源ユニット、240…増幅ユニット、242…増幅部、250…光アイソレータ、260…出力ユニット。 DESCRIPTION OF SYMBOLS 1 ... Laser processing device, 2 ... Optical fiber, 6 ... Moving mechanism, 7 ... Support part, 10A, 10B ... Laser processing head, 200 ... Laser device, 210 ... Light source unit, 240 ... Amplification unit, 242 ... Amplification part, 250 … Optical isolator, 260… Output unit.

Claims (6)

  1.  レーザ光を出力する光源ユニットと、
     前記光源ユニットから出力された前記レーザ光を増幅する増幅部を有する増幅ユニットと、
     前記増幅部により増幅された前記レーザ光を外部に出力する出力ユニットと、
     外部から前記増幅部への戻り光を遮断するための光アイソレータと、
     を備え、
     前記出力ユニットは、前記光源ユニット及び前記増幅ユニットと別体に構成され、
     前記光源ユニットと前記増幅ユニットと前記出力ユニットとは、複数の光ファイバを含む光伝送路によって互いに光学的に接続されており、
     前記光アイソレータは、前記増幅部と前記出力ユニットとの間において、前記光伝送路に設けられている、
     レーザ装置。
    A light source unit that outputs laser light,
    An amplification unit having an amplification unit for amplifying the laser light output from the light source unit,
    An output unit that outputs the laser light amplified by the amplification unit to the outside,
    An optical isolator for blocking return light from the outside to the amplification unit,
    Equipped with
    The output unit is configured separately from the light source unit and the amplification unit,
    The light source unit, the amplification unit, and the output unit are optically connected to each other by an optical transmission path including a plurality of optical fibers,
    The optical isolator is provided in the optical transmission line between the amplification unit and the output unit,
    Laser device.
  2.  前記光アイソレータには、前記複数の光ファイバのうちの一の光ファイバと、前記複数の光ファイバのうちの別の光ファイバと、が接続されており、
     前記光アイソレータは、前記増幅部によって増幅された前記レーザ光を前記一の光ファイバを介して前記増幅部から入力すると共に、前記別の光ファイバを介して前記出力ユニットに向けて出力する、
     請求項1に記載のレーザ装置。
    The optical isolator, one optical fiber of the plurality of optical fibers, and another optical fiber of the plurality of optical fibers, is connected,
    The optical isolator inputs the laser light amplified by the amplification unit from the amplification unit via the one optical fiber, and outputs the laser light toward the output unit via the another optical fiber,
    The laser device according to claim 1.
  3.  前記光アイソレータは、当該光アイソレータ内の空間を伝搬する前記レーザ光の一部を分岐する光分岐部と、前記光分岐部により分岐された分岐光を外部に出力するための出力部と、を有する、
     請求項1又は2に記載のレーザ装置。
    The optical isolator, an optical branching unit for branching a part of the laser light propagating in the space inside the optical isolator, and an output unit for outputting the branched light branched by the optical branching unit to the outside. Have,
    The laser device according to claim 1.
  4.  前記増幅ユニットは、前記増幅部を励起するための励起光を出力する励起光源と、前記増幅部よりも前記出力ユニット側において前記光伝送路に設けられ、前記励起光を前記光伝送路に結合するための光結合部と、を有し、
     前記光アイソレータは、前記光結合部と前記出力ユニットとの間において前記光伝送路に設けられている、
     請求項1~3のいずれか一項に記載のレーザ装置。
    The amplification unit is provided in the optical transmission line on the output unit side with respect to the excitation light source that outputs the excitation light for exciting the amplification unit, and couples the excitation light to the optical transmission line. And an optical coupling part for
    The optical isolator is provided in the optical transmission line between the optical coupling section and the output unit,
    The laser device according to any one of claims 1 to 3.
  5.  対象物にレーザ光を照射することによって前記対象物に改質領域を形成するためのレーザ加工装置であって、
     請求項1~4のいずれか一項に記載のレーザ装置と、
     前記対象物を支持する支持部と、
     前記出力ユニットが取り付けられると共に前記支持部に臨むように配置され、前記レーザ装置からの前記レーザ光を前記対象物に照射するためのレーザ加工ヘッドと、
     前記レーザ加工ヘッドを移動させる移動機構と、
     を備える、
     レーザ加工装置。
    A laser processing apparatus for forming a modified region on the object by irradiating the object with laser light,
    A laser device according to any one of claims 1 to 4,
    A support portion that supports the object,
    A laser processing head for irradiating the object with the laser light from the laser device, which is arranged so as to face the supporting portion with the output unit attached,
    A moving mechanism for moving the laser processing head,
    With
    Laser processing equipment.
  6.  前記レーザ装置及び前記レーザ加工ヘッドを複数組備える、
     請求項5に記載のレーザ加工装置。
    A plurality of sets of the laser device and the laser processing head,
    The laser processing apparatus according to claim 5.
PCT/JP2019/042584 2018-10-30 2019-10-30 Laser device and laser processing device WO2020090889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553978A JP7402813B2 (en) 2018-10-30 2019-10-30 Laser equipment and laser processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-204114 2018-10-30
JP2018204114 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090889A1 true WO2020090889A1 (en) 2020-05-07

Family

ID=70463712

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/042584 WO2020090889A1 (en) 2018-10-30 2019-10-30 Laser device and laser processing device
PCT/JP2019/042616 WO2020090909A1 (en) 2018-10-30 2019-10-30 Laser machining device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042616 WO2020090909A1 (en) 2018-10-30 2019-10-30 Laser machining device

Country Status (7)

Country Link
US (1) US11833611B2 (en)
JP (7) JP7285067B2 (en)
KR (6) KR20210080510A (en)
CN (6) CN113165119B (en)
DE (2) DE112019005451T5 (en)
TW (5) TWI814930B (en)
WO (2) WO2020090889A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129558B2 (en) * 2019-04-19 2022-09-01 東京エレクトロン株式会社 Processing equipment and processing method
KR20210153091A (en) * 2019-04-19 2021-12-16 도쿄엘렉트론가부시키가이샤 Processing device and processing method
JP7460377B2 (en) * 2020-01-28 2024-04-02 浜松ホトニクス株式会社 Laser processing device and laser processing method
JPWO2022014104A1 (en) * 2020-07-15 2022-01-20
KR20230038462A (en) * 2020-07-15 2023-03-20 하마마츠 포토닉스 가부시키가이샤 Laser processing device and laser processing method
CN116075389A (en) * 2020-07-15 2023-05-05 浜松光子学株式会社 Laser processing device and laser processing method
CN112059416A (en) * 2020-08-13 2020-12-11 浙江摩多巴克斯科技股份有限公司 Energy-saving double-station laser processing equipment with high speed, high precision and circumferential processing
TWI787933B (en) 2021-08-02 2022-12-21 錼創顯示科技股份有限公司 Mass transfer equipment
CN113594308A (en) * 2021-08-02 2021-11-02 錼创显示科技股份有限公司 Mass transfer apparatus
KR102654236B1 (en) * 2022-03-07 2024-04-03 주식회사 코윈디에스티 Laser processing system with improved homogeneity of laser beam
WO2023209904A1 (en) * 2022-04-27 2023-11-02 ヤマハ発動機株式会社 Dicing apparatus, semiconductor chip manufacturing method, and semiconductor chip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167433A (en) * 2009-01-21 2010-08-05 Omron Corp Laser beam applying device and laser beam machining apparatus
JP2013055084A (en) * 2011-08-31 2013-03-21 Panasonic Industrial Devices Sunx Co Ltd Laser processing device, and laser oscillating device
JP2016168606A (en) * 2015-03-12 2016-09-23 オムロン株式会社 Method for manufacturing joined structure, and joined structure

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067979A (en) 1992-06-25 1994-01-18 Mitsubishi Heavy Ind Ltd Automatic focus device for laser beam machine
JPH07157816A (en) 1993-12-07 1995-06-20 Kawasaki Steel Corp Method for refining moltenmetal
JP3748148B2 (en) 1997-03-14 2006-02-22 株式会社アマダ Laser processing defect detection method and apparatus
JP2002131559A (en) * 2000-10-27 2002-05-09 Ykk Corp Method for manufacturing core enlarged optical fiber
WO2003015976A1 (en) * 2001-08-10 2003-02-27 Mitsuboshi Diamond Industrial Co., Ltd. Brittle material substrate chamfering method and chamfering device
JP3993630B2 (en) * 2001-11-30 2007-10-17 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4110219B2 (en) * 2002-08-30 2008-07-02 株式会社東京精密 Laser dicing equipment
JP2004111606A (en) 2002-09-18 2004-04-08 Tokyo Seimitsu Co Ltd Method of processing wafer
JP4509578B2 (en) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP4838982B2 (en) 2004-01-30 2011-12-14 株式会社 日立ディスプレイズ Laser annealing method and laser annealing apparatus
US7804864B2 (en) * 2004-03-31 2010-09-28 Imra America, Inc. High power short pulse fiber laser
JP2005294656A (en) 2004-04-02 2005-10-20 Sharp Corp Substrate manufacturing method and apparatus thereof
KR20070005604A (en) 2004-04-27 2007-01-10 미쓰보시 다이야몬도 고교 가부시키가이샤 Method for forming vertical crack on brittle board and vertical crack forming apparatus
JP4856931B2 (en) * 2004-11-19 2012-01-18 キヤノン株式会社 Laser cleaving method and laser cleaving apparatus
JP2006315033A (en) * 2005-05-12 2006-11-24 Fuji Photo Film Co Ltd System and method for laser beam cutting-off operation of master carrier for magnetic transfer
US9138913B2 (en) 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP5135542B2 (en) 2005-11-01 2013-02-06 新日鐵住金株式会社 Method and apparatus for producing grain-oriented electrical steel sheets having excellent magnetic properties
JP4816390B2 (en) 2005-11-16 2011-11-16 株式会社デンソー Semiconductor chip manufacturing method and semiconductor chip
CN101024260A (en) 2006-02-24 2007-08-29 三芳化学工业股份有限公司 Polishign cushion with surface grains and its making method and apparatus
JP2007229773A (en) 2006-03-02 2007-09-13 Toyota Auto Body Co Ltd Laser beam welding method and laser beam welding device
JP2007235069A (en) 2006-03-03 2007-09-13 Tokyo Seimitsu Co Ltd Wafer machining method
JP5037082B2 (en) 2006-10-02 2012-09-26 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
US8604381B1 (en) * 2006-10-12 2013-12-10 Purdue Research Foundation Integrated laser material processing cell
JP5054496B2 (en) 2007-11-30 2012-10-24 浜松ホトニクス株式会社 Processing object cutting method
JP2009172668A (en) 2008-01-28 2009-08-06 Toray Eng Co Ltd Laser scribing apparatus and laser scribing method
CN101251725B (en) * 2008-03-31 2010-09-15 上海微电子装备有限公司 Aligning system, mark, method for lithographic device and lithographic device thereof
JP5198203B2 (en) 2008-09-30 2013-05-15 株式会社ディスコ Processing equipment
JP2010153590A (en) 2008-12-25 2010-07-08 Hamamatsu Photonics Kk Processing method for cutting
JP5352331B2 (en) * 2009-04-15 2013-11-27 ダイトエレクトロン株式会社 Wafer chamfering method
JP5491761B2 (en) 2009-04-20 2014-05-14 浜松ホトニクス株式会社 Laser processing equipment
JP5446631B2 (en) * 2009-09-10 2014-03-19 アイシン精機株式会社 Laser processing method and laser processing apparatus
JP5441111B2 (en) * 2009-09-14 2014-03-12 株式会社ディスコ Processing method of plate
JP5148575B2 (en) * 2009-09-15 2013-02-20 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP5410250B2 (en) 2009-11-25 2014-02-05 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP5614739B2 (en) * 2010-02-18 2014-10-29 国立大学法人埼玉大学 Substrate internal processing apparatus and substrate internal processing method
JP5456510B2 (en) 2010-02-23 2014-04-02 株式会社ディスコ Laser processing equipment
TWI543264B (en) 2010-03-31 2016-07-21 應用材料股份有限公司 Laser beam positioning system
US8730568B2 (en) * 2010-09-13 2014-05-20 Calmar Optcom, Inc. Generating laser pulses based on chirped pulse amplification
RU2459691C2 (en) 2010-11-29 2012-08-27 Юрий Георгиевич Шретер Method of separating surface layer of semiconductor chip (versions)
US8415587B2 (en) * 2010-12-03 2013-04-09 Uvtech Systems, Inc. Fiber-optic beam delivery system for wafer edge processing
JP5771391B2 (en) * 2010-12-22 2015-08-26 浜松ホトニクス株式会社 Laser processing method
JP5819644B2 (en) * 2011-06-10 2015-11-24 株式会社アマダミヤチ Laser processing equipment
JP5917862B2 (en) 2011-08-30 2016-05-18 浜松ホトニクス株式会社 Processing object cutting method
JP5255109B2 (en) * 2011-12-05 2013-08-07 浜松ホトニクス株式会社 Laser processing method, laser processing apparatus and manufacturing method thereof
JP5899513B2 (en) 2012-01-12 2016-04-06 パナソニックIpマネジメント株式会社 Substrate manufacturing method and modified layer forming apparatus
JP6053381B2 (en) 2012-08-06 2016-12-27 株式会社ディスコ Wafer dividing method
JP5947172B2 (en) 2012-09-19 2016-07-06 浜松ホトニクス株式会社 Wavelength conversion type spatial light modulator
JP6064519B2 (en) 2012-10-29 2017-01-25 三星ダイヤモンド工業株式会社 Laser processing apparatus and processing condition setting method for patterned substrate
JP6127526B2 (en) 2012-10-29 2017-05-17 三星ダイヤモンド工業株式会社 Laser processing apparatus and processing condition setting method for patterned substrate
JP2014091642A (en) 2012-11-01 2014-05-19 Hamamatsu Photonics Kk Laser processing method, and manufacturing method of electronic device
DE102012110971A1 (en) * 2012-11-14 2014-05-15 Schott Ag Separating transparent workpieces
CN102990230B (en) 2012-12-12 2015-08-12 京东方科技集团股份有限公司 A kind of laser cutting machine
KR20150110707A (en) 2013-02-04 2015-10-02 뉴포트 코포레이션 Method and apparatus for laser cutting transparent and semitransparent substrates
DE112014001688T5 (en) 2013-03-27 2015-12-17 Hamamatsu Photonics K.K. Laser processing device and laser processing method
KR102226815B1 (en) * 2013-03-27 2021-03-11 하마마츠 포토닉스 가부시키가이샤 Laser machining device and laser machining method
JP6071775B2 (en) 2013-06-26 2017-02-01 株式会社ディスコ Wafer processing method
JP6241174B2 (en) 2013-09-25 2017-12-06 三星ダイヤモンド工業株式会社 Laser processing apparatus and processing condition setting method for patterned substrate
JP2015074003A (en) * 2013-10-07 2015-04-20 信越ポリマー株式会社 Internal processing layer-forming single crystal member, and manufacturing method for the same
DE102013016682A1 (en) 2013-10-08 2015-04-09 Siltectra Gmbh Generation of a crack trigger or a crack guide for improved cleavage of a solid layer of a solid
DE102013223637B4 (en) * 2013-11-20 2018-02-01 Trumpf Laser- Und Systemtechnik Gmbh A method of treating a laser transparent substrate for subsequently separating the substrate
DE102014204347A1 (en) 2014-03-10 2015-09-10 Siemens Aktiengesellschaft Spark plasma sintering with improved joining zone strength
EP2965853B2 (en) * 2014-07-09 2020-03-25 High Q Laser GmbH Processing of material using elongated laser beams
JP6295154B2 (en) * 2014-07-18 2018-03-14 株式会社ディスコ Wafer dividing method
JP6483974B2 (en) 2014-07-31 2019-03-13 浜松ホトニクス株式会社 Processing object cutting method
JP6390898B2 (en) 2014-08-22 2018-09-19 アイシン精機株式会社 Substrate manufacturing method, workpiece cutting method, and laser processing apparatus
KR20200006641A (en) 2014-11-27 2020-01-20 실텍트라 게엠베하 Splitting of a solid using conversion of material
JP6494991B2 (en) * 2014-12-10 2019-04-03 株式会社ディスコ Wafer processing method
DE102015003193A1 (en) 2015-03-12 2016-09-15 Siltectra Gmbh Apparatus and method for continuously treating a solid by means of laser beams
KR102546692B1 (en) 2015-03-24 2023-06-22 코닝 인코포레이티드 Laser Cutting and Processing of Display Glass Compositions
JP6494467B2 (en) 2015-08-06 2019-04-03 株式会社ディスコ Wafer processing method
CN107995996B (en) * 2015-08-18 2021-10-15 浜松光子学株式会社 Laser processing device and laser processing method
JP6594699B2 (en) 2015-08-18 2019-10-23 浜松ホトニクス株式会社 Processing object cutting method and processing object cutting apparatus
JP6680494B2 (en) 2015-09-15 2020-04-15 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP6531345B2 (en) 2015-09-29 2019-06-19 株式会社東京精密 Laser processing apparatus and laser processing method
JP2017071074A (en) * 2015-10-05 2017-04-13 国立大学法人埼玉大学 Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate
JP6602207B2 (en) 2016-01-07 2019-11-06 株式会社ディスコ Method for generating SiC wafer
JP6661394B2 (en) 2016-01-28 2020-03-11 浜松ホトニクス株式会社 Laser processing equipment
JP6661392B2 (en) 2016-01-28 2020-03-11 浜松ホトニクス株式会社 Laser processing equipment
KR20180110018A (en) 2016-03-09 2018-10-08 미쓰비시덴키 가부시키가이샤 A heat treatment apparatus, a heat treatment method, a laser annealing apparatus, and a laser annealing method
JP6995465B2 (en) * 2016-03-18 2022-01-14 浜松ホトニクス株式会社 Laser oscillator and laser processing equipment
JP2017204574A (en) 2016-05-12 2017-11-16 株式会社ディスコ Processing method and laser processing apparatus of sapphire wafer
JP6636384B2 (en) 2016-05-13 2020-01-29 株式会社ディスコ Wafer processing method
JP6807662B2 (en) * 2016-06-14 2021-01-06 浜松ホトニクス株式会社 Method for manufacturing laser oscillator and excitation light detection structure
KR102566170B1 (en) * 2016-09-12 2023-08-10 삼성전자주식회사 Wafer perforating device
JP6908464B2 (en) * 2016-09-15 2021-07-28 株式会社荏原製作所 Substrate processing method and substrate processing equipment
JP6775880B2 (en) 2016-09-21 2020-10-28 株式会社ディスコ Wafer processing method
JP6786374B2 (en) * 2016-12-16 2020-11-18 株式会社スミテック Laser processing equipment and laser processing method
KR101884429B1 (en) 2016-12-22 2018-08-01 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP6858586B2 (en) 2017-02-16 2021-04-14 株式会社ディスコ Wafer generation method
JP6797481B2 (en) 2017-03-01 2020-12-09 株式会社ディスコ Semiconductor ingot inspection method, inspection equipment and laser processing equipment
JP7032050B2 (en) 2017-03-14 2022-03-08 株式会社ディスコ Laser processing equipment
CN107123588A (en) 2017-06-26 2017-09-01 镓特半导体科技(上海)有限公司 A kind of gallium nitride wafer piece border processing method
JP6994852B2 (en) * 2017-06-30 2022-01-14 株式会社ディスコ Laser processing equipment and laser processing method
JP2019025539A (en) * 2017-08-04 2019-02-21 株式会社ディスコ Laser processing device
KR20200130816A (en) 2018-03-14 2020-11-20 도쿄엘렉트론가부시키가이샤 Substrate processing system, substrate processing method and computer storage medium
US10388526B1 (en) 2018-04-20 2019-08-20 Semiconductor Components Industries, Llc Semiconductor wafer thinning systems and related methods
WO2020054504A1 (en) 2018-09-13 2020-03-19 東京エレクトロン株式会社 Processing system and processing method
CN112868089A (en) 2018-10-23 2021-05-28 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
WO2020129730A1 (en) 2018-12-21 2020-06-25 東京エレクトロン株式会社 Substrate processing device and substrate processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167433A (en) * 2009-01-21 2010-08-05 Omron Corp Laser beam applying device and laser beam machining apparatus
JP2013055084A (en) * 2011-08-31 2013-03-21 Panasonic Industrial Devices Sunx Co Ltd Laser processing device, and laser oscillating device
JP2016168606A (en) * 2015-03-12 2016-09-23 オムロン株式会社 Method for manufacturing joined structure, and joined structure

Also Published As

Publication number Publication date
CN112996628A (en) 2021-06-18
CN113039035B (en) 2023-11-10
JP2020069530A (en) 2020-05-07
WO2020090909A1 (en) 2020-05-07
KR20210080510A (en) 2021-06-30
JP7352372B2 (en) 2023-09-28
DE112019005436T5 (en) 2021-07-22
KR20210080513A (en) 2021-06-30
DE112019005451T5 (en) 2021-07-22
CN113165119A (en) 2021-07-23
TW202027893A (en) 2020-08-01
CN113165119B (en) 2023-07-28
TW202025579A (en) 2020-07-01
JP2020069531A (en) 2020-05-07
JP7301067B2 (en) 2023-06-30
JPWO2020090909A1 (en) 2021-10-07
KR20210080512A (en) 2021-06-30
JP7285067B2 (en) 2023-06-01
CN112930244B (en) 2023-10-13
TW202033303A (en) 2020-09-16
CN113165120B (en) 2023-03-28
TW202023724A (en) 2020-07-01
CN113039038B (en) 2023-10-20
TW202023723A (en) 2020-07-01
KR20210082484A (en) 2021-07-05
KR20210080508A (en) 2021-06-30
JP7134909B2 (en) 2022-09-12
JP7402813B2 (en) 2023-12-21
TW202031401A (en) 2020-09-01
CN113039035A (en) 2021-06-25
KR20210081404A (en) 2021-07-01
JP2020069529A (en) 2020-05-07
CN112930244A (en) 2021-06-08
CN113165120A (en) 2021-07-23
JP2020069532A (en) 2020-05-07
US20210402516A1 (en) 2021-12-30
JPWO2020090889A1 (en) 2021-10-07
CN113039038A (en) 2021-06-25
TWI819132B (en) 2023-10-21
CN112996628B (en) 2023-06-09
US11833611B2 (en) 2023-12-05
TWI814930B (en) 2023-09-11
TW202023732A (en) 2020-07-01
JP7120904B2 (en) 2022-08-17
JP7120903B2 (en) 2022-08-17
JP2020069533A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2020090889A1 (en) Laser device and laser processing device
KR102127030B1 (en) A 193nm laser and an inspection system using a 193nm laser
US9042006B2 (en) Solid state illumination source and inspection system
US5355249A (en) Optical passive components
JP2010522998A (en) Beam stabilized fiber laser
JP2011524259A (en) Reduction method of back reflection in laser processing system
WO2002010835A1 (en) Fiber-coupled, angled-dual-axis confocal scanning microscopes for imaging in a scattering medium
JP6807662B2 (en) Method for manufacturing laser oscillator and excitation light detection structure
JP2009195976A (en) Method and apparatus for measuring return light, and laser beam machining method
JP7038323B2 (en) How to inspect a laser oscillator, a laser processing device using it, and a laser oscillator
JPWO2019221034A1 (en) Laser equipment and laser processing equipment using it
JP2009116181A (en) Optical isolator for laser machining and laser machining device
JPWO2020090893A1 (en) Laser processing method
EP3754396A1 (en) Alignment of an entangled photon source
JP7108517B2 (en) Laser processing equipment
JP2910452B2 (en) Laser distance measuring device
JP7402814B2 (en) Laser processing head and laser processing equipment
TW202027892A (en) Laser machining device
JP4375659B2 (en) Polarization separator / synthesizer
JP2005037632A (en) Joining method of optical fibers and its device
JP2022148205A (en) Beam formation device and measurement device
JPH11264921A (en) Fiber light guiding method for laser beam and laser beam guide fiber device
KR20230119143A (en) A device for amplifying a laser beam
JPH07301763A (en) Optocoupler and optical fiber amplifier
JP2002072141A (en) Polarized light-synthesizing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879088

Country of ref document: EP

Kind code of ref document: A1