JPH07157816A - Method for refining moltenmetal - Google Patents

Method for refining moltenmetal

Info

Publication number
JPH07157816A
JPH07157816A JP30631693A JP30631693A JPH07157816A JP H07157816 A JPH07157816 A JP H07157816A JP 30631693 A JP30631693 A JP 30631693A JP 30631693 A JP30631693 A JP 30631693A JP H07157816 A JPH07157816 A JP H07157816A
Authority
JP
Japan
Prior art keywords
blowing
refining
carrier gas
lance
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30631693A
Other languages
Japanese (ja)
Inventor
Masato Mikuni
正人 三国
Kiyoshi Takahashi
清志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30631693A priority Critical patent/JPH07157816A/en
Publication of JPH07157816A publication Critical patent/JPH07157816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To improve the reaction efficiency of powdery material for refining by arranging plural blowing nozzles toward the direction crossed to the axis in a lance for blowing the powdery material and dispersing the powdery material for refining with carrier gas having different pressure from each nozzle into molten metal. CONSTITUTION:Desulfurizing agent in tanks 1a, 1b is discharged into guide pipes 4a, 4b, respectively and the carrier gas is fed to pressure adjusting valves 12, 13 through the guide pipe 4 and the carrier gas for high pressure blowing is introduced into the guide pipe 4a and the carrier gas for low pressure blowing is introduced into the guide pipe 4b. Successively, the desulfurizing agent in the guide pipes 4a, 4b is fed into the inner pipe 6a and the outer pipe 6b in the blowing lance 6 through flexible hoses 5a, 5b with the high pressure gas and the low pressure gas, respectively and blown into molten iron 8 in a ladle 10 from each blowing nozzle 14, 15 extended to the horizontal direction. As the pressure of the blowing carrier gas from the blowing nozzles 14, 15 are different, the horizontally arrival distances L2, L3 of the desulfurizing agent can be adjusted and the desulfurizing agent can uniformly be dispersed into the molten iron 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】高炉で作られた溶銑中には、S、
P等の不純物元素が多量に含まれているが、かかる不純
物元素は次の製鋼工程における精錬能率や鋼の品質に大
きく影響することから、一般に製鋼処理に先立ち、かよ
うな不純物を除去するため溶銑の予備処理が行われる。
[Industrial application] S,
Although a large amount of impurity elements such as P are contained, since such impurity elements greatly affect the refining efficiency and the quality of steel in the next steelmaking process, in general, such impurities are removed prior to the steelmaking process. Pretreatment of hot metal is performed.

【0002】また、転炉精錬などの一時精錬後において
も、必要に応じ、脱Sや鋼中Oの低減を図る目的で、二
次精錬が行われる。この発明は、上記したような溶銑の
予備処理や二次精錬に用いて好適な溶融金属の精錬方法
に関し、とくに精錬用粉体の反応効率を向上させること
により、精錬用粉体原単位の低減と共に生産性の向上を
図ろうとするものである。
Further, even after temporary refining such as converter refining, secondary refining is carried out if necessary for the purpose of removing S and reducing O in steel. The present invention relates to a molten metal refining method suitable for use in the pretreatment and secondary refining of molten pig iron as described above, and particularly by improving the reaction efficiency of the refining powder, the reduction of the refining powder unit consumption At the same time, it aims to improve productivity.

【0003】[0003]

【従来の技術】溶銑の予備処理法や溶鋼の二次精錬法の
一つとして粉体吹込用ランスを用いて溶融金属中に精錬
用粉体をキャリアガスと共に吹込み、かかる粉体を含む
気泡が溶湯中に上昇する過程で、気液反応を行わせるこ
とによって脱硫等を行ういわゆるインジェクション方式
がある。
2. Description of the Related Art As one of the methods for pretreatment of molten pig iron and secondary refining of molten steel, a refining powder is blown into a molten metal together with a carrier gas by using a powder blowing lance, and bubbles containing the powder are contained. There is a so-called injection method in which desulfurization and the like are performed by causing a gas-liquid reaction in the process of rising in the molten metal.

【0004】一般にインジェクション方式では溶融金属
への精錬用粉体の吹込みには吹込みランスを用いてい
る。たとえば溶銑脱硫では、図4に示すように、吹込み
タンク1内の脱硫剤は粉体切出し弁2を開き導管4に供
給される。同時にN2 等のキャリアガスは、流調弁3を
経て導管4に送られ、脱硫剤と共にフレキシブルホース
5を経て吹込みランス6から取鍋10内の溶銑8中に吹込
まれる。
Generally, in the injection system, a blowing lance is used to blow the refining powder into the molten metal. For example, in hot metal desulfurization, as shown in FIG. 4, the desulfurizing agent in the blowing tank 1 opens the powder cut-out valve 2 and is supplied to the conduit 4. At the same time, a carrier gas such as N 2 is sent to the conduit 4 through the flow control valve 3 and is blown together with the desulfurizing agent through the blowing hose 6 into the hot metal 8 in the ladle 10 through the blowing lance 6.

【0005】吹込みランス6には軸中心にガス通路22が
設けてあり、このガス通路22は、軸線と交又する方向に
形成してある2孔(単孔のものもある)の吹込みノズル
7に連通している。このような吹込みランス6先端の吹
込みノズル7から溶銑8中に吹込まれた脱硫剤はキャリ
アガスの気泡11と共に浮上する間に気液反応により溶銑
の脱硫が行われることになる。
The blowing lance 6 is provided with a gas passage 22 at the center of the shaft. The gas passage 22 is formed by two holes (some of which are single holes) formed in a direction intersecting with the axis. It communicates with the nozzle 7. The desulfurizing agent blown into the hot metal 8 from the blowing nozzle 7 at the tip of the blowing lance 6 is desulfurized by the gas-liquid reaction while floating with the bubbles 11 of the carrier gas.

【0006】このような吹込みランス6を用いて脱硫剤
をキャリアガスと共に吹込み中は、キャリアガスの圧力
は一定であるため、2孔の吹込みノズル7から水平方向
に吹き出す気泡到達距離L1 はほぼ一定である。また吹
込みノズル7の位置が変化しないため溶銑8内を浮上す
る気泡11は脱硫剤と共に溶銑8内の同位置でかつ限られ
た範囲を浮上し続けることになる。
Since the pressure of the carrier gas is constant while the desulfurizing agent is being blown together with the carrier gas using the blowing lance 6 as described above, the bubble reaching distance L that is blown horizontally from the two-hole blowing nozzle 7 is reached. 1 is almost constant. Further, since the position of the blowing nozzle 7 does not change, the bubbles 11 floating in the hot metal 8 continue to float at the same position in the hot metal 8 and in a limited range together with the desulfurizing agent.

【0007】このため取鍋10内の溶銑8には脱硫剤が直
接供給されない領域が広範囲になる。とくに吹込みラン
ス6からの吹込み当初には脱硫剤と共に吹込まれるキャ
リアガスによる取鍋10内の溶銑8の攪拌が少ないので脱
硫剤が未反応のまま浮上しスラグ9に吸着される割合が
大きい。キャリアガスによる溶銑8の攪拌が全体に及ぶ
段階からは脱硫剤が全体に供給されることになるが、そ
れに至るまでは溶銑8内の脱硫剤濃度は均一でなく、そ
の反応効率には改善の余地があった。
Therefore, the hot metal 8 in the ladle 10 has a wide area where the desulfurizing agent is not directly supplied. In particular, since the amount of stirring of the hot metal 8 in the ladle 10 by the carrier gas blown together with the desulfurizing agent is small at the beginning of the blowing from the blowing lance 6, the desulfurizing agent floats up unreacted and is adsorbed on the slag 9. large. The desulfurizing agent is supplied to the whole from the stage where the stirring of the hot metal 8 by the carrier gas reaches the whole, but until that time, the concentration of the desulfurizing agent in the hot metal 8 is not uniform, and the reaction efficiency is not improved. There was room.

【0008】精錬用粉体の反応効率を向上させるものと
して特開昭58−34126 号公報には、回転攪拌装置にて吹
込みランスをその軸線を中心にして回転しながら先端部
に設けた吹込みノズルから不活性ガスをキャリアガスと
してフラックス等を吹込み、溶鋼の脱ガス、脱介在物を
行う方法が開示されている。また特公昭63−26169 号公
報には、吹込みランスから精錬用粉体を吹込む一方、取
鍋内下部溶鋼に回転または移動磁界と浸漬攪拌体とによ
って 0.8m/s以上の溶鋼流速を得て溶鋼を清浄化する
方法が開示されている。
In order to improve the reaction efficiency of the refining powder, Japanese Patent Application Laid-Open No. 58-34126 discloses a blowing stirrer which is provided at the tip of a rotating stirrer while rotating the blowing lance about its axis. A method is disclosed in which a flux or the like is blown from an injection nozzle using an inert gas as a carrier gas to degas molten steel and remove inclusions. Further, in Japanese Examined Patent Publication No. 63-26169, while refining powder is blown from a blowing lance, a molten steel flow velocity of 0.8 m / s or more is obtained by a rotating or moving magnetic field and a dipping stirrer in the lower molten steel in the ladle. There is disclosed a method for cleaning molten steel by using the above method.

【0009】[0009]

【発明が解決しようとする課題】前記特開昭58−34126
号公報に開示されているように吹込みランスを軸中心に
回転させることにより、精錬用粉体をキャリアガスと共
に吹込む際に生成される気泡を剪断して微細化すると共
に、精錬用粉体の円周方向の均一化を図ることができ
る。このため反応界面積が増大し精錬用粉体の反応効率
向上を図ることができるが、溶融金属中に吹込みノズル
から水平方向に吹き出す気泡到達距離L1 が一定である
ため、溶融金属内の水平方向における精錬用粉体の分散
が局部的で不均一になるという問題点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention JP-A-58-34126
By rotating the blowing lance about the axis as disclosed in Japanese Patent Publication No. JP-A-2004-242242, the bubbles generated when the refining powder is blown together with the carrier gas are sheared and refined, and the refining powder is also used. Can be made uniform in the circumferential direction. Therefore, the reaction interfacial area is increased and the reaction efficiency of the refining powder can be improved. However, since the bubble reaching distance L 1 blown horizontally from the blowing nozzle into the molten metal is constant, There is a problem that the refining powder is dispersed locally in the horizontal direction and becomes uneven.

【0010】また前記特公昭63−26169 号公報に開示さ
れた従来技術は、移動磁界および浸漬攪拌体を組み合わ
せた溶融金属の攪拌効果により吹込まれた精錬粉体の反
応効率向上を図ることができる。しかしながらこの装置
は構造が複雑であり、設備費およびメンテナンスの面で
不利であった。本発明は前記従来技術の問題点を有利に
解決するもので精錬用粉体の吹込みによる精錬反応の効
率を効果的に向上させ、これによって精錬用粉体の原単
位低減および溶融金属の生産性向上を達成することがで
きる溶融金属の精錬方法を提供することを目的とするも
のである。
Further, the prior art disclosed in the above Japanese Patent Publication No. 63-26169 can improve the reaction efficiency of the refined powder blown by the stirring effect of the molten metal in which the moving magnetic field and the immersion stirrer are combined. . However, this device has a complicated structure and is disadvantageous in terms of equipment cost and maintenance. The present invention advantageously solves the above problems of the prior art and effectively improves the efficiency of the refining reaction by blowing the refining powder, thereby reducing the basic unit of the refining powder and producing molten metal. It is an object of the present invention to provide a method for refining molten metal capable of achieving improved properties.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
の請求項1記載の本発明は、粉体吹込用ランスを溶融金
属中に浸漬し、当該ランス先端の吹込みノズルから精錬
用粉体をキャリアガスを用いて溶融金属中に吹込み不純
物元素を除去する溶融金属の精錬方法において、前記粉
体吹込用ランスにはその軸線と交又する方向に少くとも
2箇所に吹込みノズルを配設し、各々の吹込みノズルか
ら精錬用粉体を吹込み圧力が異なるキャリアガスを用い
て溶融金属中に分散させて吹込むことを特徴とする溶融
金属の精錬方法である。
In order to achieve the above object, the present invention according to claim 1 immerses a powder blowing lance in a molten metal, and a refining powder is injected from a blowing nozzle at the tip of the lance. In the method for refining molten metal in which the impurity element is blown into the molten metal by using a carrier gas, the powder injection lance is provided with at least two injection nozzles in a direction intersecting with the axis of the powder injection lance. A refining powder is provided from each of the blowing nozzles, and the refining powder is dispersed in the molten metal by using carrier gases having different blowing pressures and then blown.

【0012】また請求項2記載の本発明は、粉体吹込用
ランスをその軸線を中心として回転させることを特徴と
する請求項1記載の溶融金属の精錬方法である。
The present invention according to claim 2 is the method for refining molten metal according to claim 1, characterized in that the powder injection lance is rotated about its axis.

【0013】[0013]

【作用】粉体吹込み用ランスに配設した軸線と交又する
方向に向け配設した少くとも2箇所の吹込みノズルから
精錬用粉体を吹込み圧力が異なるキャリアガスを用いて
溶融金属中に吹込むので、吹込みノズルから水平方向に
吹き出す溶融金属内の気泡到達距離を調整することがで
きる。その結果、溶融金属内の水平方向における精錬用
粉体の分散範囲を広くすることができる。
Operation: Refining powder is blown from at least two blowing nozzles arranged in the direction intersecting with the axis of the powder blowing lance, and the molten metal is melted by using carrier gases having different pressures. Since the air is blown in, it is possible to adjust the bubble arrival distance in the molten metal blown out horizontally from the blow nozzle. As a result, it is possible to widen the dispersion range of the refining powder in the horizontal direction in the molten metal.

【0014】また粉体吹込用ランス自身をその軸線を中
心にして回転すれば、溶融金属内の円周方向における精
錬用粉体の分散範囲を広げることが可能になる。図1を
参照して本発明の構成を脱硫設備に適用した場合につい
て説明する。2基の吹込みタンクは1a、1b内の脱硫
剤( CaO、Na2CO3、Mgなど)はそれぞれ粉体切出し弁2
a、2bを開き導管4a、4bに供給される。同時にN
2 等のキャリアガスは、導管4を経て分岐した導管4
a、4bにそれぞれ配設された圧力調節弁12、13に至
る。ここでたとえば圧力調節弁12を高圧吹込用とし、圧
力調節弁13を低圧吹込用としてキャリアガスをそれぞれ
所定の圧力に調節すると2系統の導管4a、4bに供給
された脱硫剤はキャリアガスと共にフレキシブルホース
5a、5bを経て吹込みランス6に至る。吹込みランス
6は支持アーム20を介して昇降装置21に支持されてお
り、昇降装置21が昇降用ポスト17に沿って昇降すること
により、吹込みランス6を取鍋10内の溶銑8中に浸漬す
る深さを調整することが可能である。
By rotating the powder blowing lance itself about its axis, it is possible to widen the dispersion range of the refining powder in the circumferential direction in the molten metal. A case where the configuration of the present invention is applied to desulfurization equipment will be described with reference to FIG. The desulfurizing agents (CaO, Na 2 CO 3 , Mg, etc.) in 1a and 1b of the two injection tanks are powder cutoff valves 2 respectively.
a and 2b are opened and supplied to the conduits 4a and 4b. At the same time N
The carrier gas such as 2 is branched from the conduit 4 through the conduit 4.
The pressure control valves 12 and 13 are respectively provided at a and b. Here, for example, when the pressure control valve 12 is used for high pressure injection and the pressure control valve 13 is used for low pressure injection and the carrier gas is adjusted to a predetermined pressure, the desulfurizing agent supplied to the two conduits 4a and 4b is flexible together with the carrier gas. It reaches the blowing lance 6 through the hoses 5a and 5b. The blowing lance 6 is supported by an elevating device 21 via a support arm 20, and the elevating device 21 moves up and down along an elevating post 17 to move the blowing lance 6 into the hot metal 8 in the ladle 10. It is possible to adjust the immersion depth.

【0015】取鍋10内の溶銑8中に浸漬する吹込みラン
ス6は内管6aと外管6bとからなる同心二体構造にな
っていて、図2(a)、(b)に示すように内管6aと
外管6bとは補強リブ16を用いて補強されている。内管
6aの下端部には高圧側の吹込みノズル14が水平方向に
向け1箇所配設してあり、また外管6bの下端部には低
圧側の吹込みノズル15が吹込みノズル14のわずか上方で
水平方向に向け1箇所に配設してある。さらに内管6a
の上端部は高圧側のフレキシブルホース5aに接続さ
れ、外管6bの上端部は低圧側のフレキシブルホース5
bに接続されている。なお吹込みノズル6が高温にさら
される部分は耐火物6cで被覆してある。
The blowing lance 6 immersed in the hot metal 8 in the ladle 10 has a concentric two-piece structure consisting of an inner pipe 6a and an outer pipe 6b, as shown in FIGS. 2 (a) and 2 (b). The inner pipe 6a and the outer pipe 6b are reinforced by using the reinforcing ribs 16. At the lower end of the inner pipe 6a, a high-pressure side blowing nozzle 14 is arranged horizontally at one position, and at the lower end of the outer pipe 6b, a low-pressure side blowing nozzle 15 is provided. It is arranged at one place in the horizontal direction slightly above. Furthermore, the inner pipe 6a
Is connected to the high pressure side flexible hose 5a, and the outer tube 6b is connected to the low pressure side flexible hose 5a.
connected to b. The part of the blowing nozzle 6 exposed to high temperature is covered with a refractory material 6c.

【0016】このため高圧側のフレキシブルホース5a
から内管6aに供給された脱硫剤はキャリアガスと共に
内管6a内を通過した後、1個の吹込みノズル14から取
鍋10内の溶銑8内に吹出す。また低圧側のフレキシブル
ホース5bから外管6bに供給された脱硫剤はキャリア
ガスと共に外管6b内を通過した後、1個の吹込みノズ
ル15から取鍋10内の溶銑8内に吹出す。
Therefore, the flexible hose 5a on the high pressure side
The desulfurizing agent supplied to the inner pipe 6a from the inside passes through the inner pipe 6a together with the carrier gas, and then is blown out from the single blowing nozzle 14 into the hot metal 8 in the ladle 10. Further, the desulfurizing agent supplied from the low pressure side flexible hose 5b to the outer pipe 6b passes through the outer pipe 6b together with the carrier gas, and then is blown out from the single blowing nozzle 15 into the hot metal 8 in the ladle 10.

【0017】吹込みノズル14および15から吹出すキャリ
アガスの吹込み圧力が異なり、図1で示すものでは吹込
みノズル14からの吹込み圧力P1 が吹込みノズル15から
の吹込圧力P2 よりも高いP1 >P2 のため、脱硫剤が
キャリアガスと共に水平方向に到達する距離が異なる。
すなわち高圧側の吹込みノズル14からの水平方向到達距
離をL2 、低圧側の吹込みノズル15からの水平方向到達
距離をL3 (L2 >L3 >0)とすると各々の吹込みノ
ズル14、15から水平方向にL2 、L3 の地点で脱硫剤お
よびキャリアガスの水平方向の運動量はほぼ失われ浮上
を開始する。
The blowing pressures of the carrier gas blown from the blowing nozzles 14 and 15 are different, and in the case shown in FIG. 1, the blowing pressure P 1 from the blowing nozzle 14 is larger than the blowing pressure P 2 from the blowing nozzle 15. Since P 1 > P 2 is also high, the distance that the desulfurizing agent reaches in the horizontal direction with the carrier gas is different.
That is, assuming that the horizontal reach from the high-pressure side blow nozzle 14 is L 2 and the horizontal reach from the low-pressure side blow nozzle 15 is L 3 (L 2 > L 3 > 0), each blow nozzle. The horizontal momentum of the desulfurizing agent and the carrier gas is almost lost from 14 and 15 at the points L 2 and L 3 in the horizontal direction, and the floating starts.

【0018】各々の吹込みノズル14、15から吹込まれた
脱硫剤、キャリアガスが浮上中に混合し合わないよう
に、水平到達距離L2 、L3 を調整することによって溶
銑8中に脱硫剤を均一に分散させることが可能になる。
たとえば溶銑脱硫処理では、溶銑8内の硫黄移動律速に
よる未反応領域の減少、脱硫剤の反応効率向上が達成で
きる。
The desulfurizing agent and carrier gas blown from the respective blowing nozzles 14 and 15 are adjusted so that the horizontal reaching distances L 2 and L 3 are adjusted so that the carrier gases are not mixed with each other during the floating. Can be uniformly dispersed.
For example, in the hot metal desulfurization treatment, it is possible to reduce the unreacted region due to the sulfur transfer rate control in the hot metal 8 and to improve the reaction efficiency of the desulfurizing agent.

【0019】なお、吹込みノズル14、15からの気泡到達
距離LH は次の関係式を用いて求めることができる。 LH =3.7 ・dn r 1/3r =ρg ・νO 2 /g(ρl −ρg )・dnn :ノズル径 Fr :フルート数 ρl :液体密度 ρg :気体密度 νO :気体流速 図3は、内管6aと外管6bとからなる二重管構造の吹
込みランス6を軸線を中心にして回転するタイプの本発
明の構成を示している。
The bubble reaching distance L H from the blowing nozzles 14 and 15 can be obtained by using the following relational expression. L H = 3.7 · d n F r 1/3 F r = ρ g · ν O 2 / g (ρ l -ρ g) · d n d n: Nozzle diameter F r: Flute Number [rho l: liquid density [rho g : Gas Density ν O : Gas Velocity FIG. 3 shows a configuration of the present invention of a type in which a blow lance 6 having a double pipe structure composed of an inner pipe 6a and an outer pipe 6b is rotated about an axis.

【0020】この場合、吹込みランス6は支持アーム20
上にベアリング22を介して支持されていると共に、吹込
みランス6に装着した歯車19aは減速機付き電動機18に
連結された歯車19bと噛み合っている。電動機18を回転
すると歯車19a、19bを介して吹込みランス6が所定の
回転速度で回転される。この場合、図3に示すように吹
きノズル6の内管6aおよび外管6bにそれぞれ連通す
る高圧側の吹込みノズル14および低圧側の吹込みノズル
15は1個づつ配設してある。必要に応じ2個づつ対称に
配設してもよい。
In this case, the blowing lance 6 is supported by the support arm 20.
The gear 19a mounted on the blow-in lance 6 is supported above the bearing 22 and meshes with the gear 19b connected to the electric motor 18 with a reduction gear. When the electric motor 18 is rotated, the blowing lance 6 is rotated at a predetermined rotation speed via the gears 19a and 19b. In this case, as shown in FIG. 3, the high-pressure side blowing nozzle 14 and the low-pressure side blowing nozzle 14 which communicate with the inner pipe 6a and the outer pipe 6b of the blowing nozzle 6, respectively.
15 are arranged one by one. You may arrange | position two pieces symmetrically as needed.

【0021】図3に示す構成においては、図1に示すも
のと同様に高圧側の吹込みノズル14および低圧側の吹込
みノズル15から吹出すキャリアガスの圧力が異なるの
で、各々の吹込みノズル14、15からの水平方向にL2
3 の地点で脱硫剤およびキャリアガスの水平方向運動
量はほぼ失われ、浮上を開始する。この水平到達距離L
2 、L3 を調整することによって溶銑8中に吹き込まれ
る脱硫剤を水平方向に分散させると共に吹込みランス6
を軸線を中心にして回転させることにより、円周方向へ
の分散を図ることによって溶銑8内への脱硫剤とキャリ
アガスとの分散領域の拡大を達成するものである。
In the configuration shown in FIG. 3, the pressure of the carrier gas blown out from the high-pressure side blowing nozzle 14 and the low-pressure side blowing nozzle 15 is different as in the case of FIG. 1, so that the respective blowing nozzles are different. L 2 in the horizontal direction from 14, 15
Horizontal momentum of the desulfurizing agent and a carrier gas at a point of L 3 is almost lost and starts floating. This horizontal reach L
2 , the desulfurizing agent blown into the hot metal 8 is dispersed in the horizontal direction by adjusting L 3 and L 3
Is rotated about the axis to achieve dispersion in the circumferential direction, thereby expanding the dispersion region of the desulfurizing agent and the carrier gas in the hot metal 8.

【0022】[0022]

【実施例】【Example】

実施例1 トピードカーで溶銑の脱燐(酸化鉄、 CaO)処理後、取
鍋に払い出したC含有量 4.5重量%、温度1300℃の溶銑
に図1に示した精錬装置を用いて高圧側、低圧側各1孔
型の吹込みランスにより CaO、Mgによる脱硫処理を行っ
た。
Example 1 After hot metal dephosphorization (iron oxide, CaO) treatment with a tope car, the molten iron with a C content of 4.5% by weight and a temperature of 1300 ° C. discharged to a ladle was subjected to high pressure and low pressure using the refining apparatus shown in FIG. Desulfurization treatment with CaO and Mg was performed by using a one-hole side injection lance.

【0023】その他の条件は次の通りである。 取鍋容量:200 t、内径4m 溶銑深さ:2.94m 浴面から高圧側の吹込みランスまでの距離:2.1 m 浴面から低圧側の吹込みランスまでの距離:2.0 m ランス直径:30cm 高圧側のキャリアガス吹込み圧力:20kg/cm2 水平方向到達距離L2 :0.3 m 低圧側のキャリアガス吹込み圧力:10kg/cm2 水平方向到達距離L3 :0.15m 脱硫剤の吹込み速度:100 kg/min 実施例2 実施例1と同じ溶銑に図3に示した精錬装置を用いて、
高圧側、低圧側各1孔型の吹込みランスを回転させつつ
CaO、MgO により脱硫処理を行った。
Other conditions are as follows. Ladle capacity: 200 t, inner diameter 4 m Hot metal depth: 2.94 m Distance from bath surface to high-pressure side injection lance: 2.1 m Distance from bath surface to low-pressure side injection lance: 2.0 m Lance diameter: 30 cm High pressure Side carrier gas injection pressure: 20 kg / cm 2 Horizontal direction reach L 2 : 0.3 m Low pressure side carrier gas injection pressure: 10 kg / cm 2 Horizontal direction reach L 3 : 0.15 m Desulfurizing agent injection speed: 100 kg / min Example 2 Using the same refining apparatus as shown in FIG.
While rotating the high-pressure side and low-pressure side one-hole blow lances
Desulfurization treatment was performed with CaO and MgO.

【0024】その他の条件としては、ランス回転速度を
6rpm とした他は前記実施例と同様とした。本発明の実
施例1、実施例2および図4に示す従来例による溶銑の
脱硫処理をキャリアガス量、脱硫剤吹込み速度の条件を
同じにして行った。溶銑の処理前Sおよび、処理後のS
の濃度等を表1に比較して示す。
Other conditions were the same as those in the above-mentioned embodiment except that the lance rotation speed was 6 rpm. The desulfurization treatment of hot metal according to Examples 1 and 2 of the present invention and the conventional example shown in FIG. 4 was performed under the same conditions of the carrier gas amount and the desulfurizing agent blowing rate. S before the hot metal treatment and S after the hot metal treatment
And the like are shown in Table 1 in comparison.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように本発明によれば、処理前
S濃度および処理後S濃度が同レベルとした場合に、従
来に比較して処理時間が2〜3分短縮されると共に、脱
硫剤の反応効率(指標)を 1.0から 2.8、2.9 に大幅に
向上することができ、良好な結果が得られた。なお、本
発明の前記実施例では、脱硫処理設備に適用した場合に
ついて述べたが、本発明は、これに限るものではなく、
精錬用粉体を吹込む各種ガス吹込み設備に適用すること
ができる。
As shown in Table 1, according to the present invention, when the S concentration before treatment and the S concentration after treatment are at the same level, the treatment time is shortened by 2 to 3 minutes as compared with the conventional case, and desulfurization is performed. The reaction efficiency (index) of the agent was significantly improved from 1.0 to 2.8 and 2.9, and good results were obtained. In addition, in the embodiment of the present invention, the case where it is applied to the desulfurization treatment equipment is described, but the present invention is not limited to this,
It can be applied to various gas blowing equipments for blowing refining powder.

【0027】[0027]

【発明の効果】本発明は溶融金属中への粉体吹込みにお
いて、高圧吹込みノズル、低圧吹込みノズルと、吹込み
圧力の異なるノズルから精錬用粉体を溶銑へ供給するこ
とにより、溶融金属中での精錬用粉体の吹込みノズルか
らの水平方向到達距離を異ならしめ、精錬用粉体を溶融
金属中の広範囲に均一な濃度で供給することが可能とな
る。これにより精錬用粉体の反応効率向上が達成でき、
精錬用粉体使用量の削減、処理時間の短縮が達成され
る。
INDUSTRIAL APPLICABILITY According to the present invention, when the powder is blown into the molten metal, the refining powder is supplied to the hot metal from a high-pressure blowing nozzle, a low-pressure blowing nozzle, and a nozzle having a different blowing pressure to melt the molten metal. It is possible to supply the refining powder in a wide range in the molten metal in a uniform concentration by making the horizontal reaching distance of the refining powder in the metal from the blowing nozzle different. This can improve the reaction efficiency of the refining powder,
A reduction in the amount of refining powder used and a reduction in processing time are achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of an apparatus according to the present invention.

【図2】本発明に係る粉体吹込みランスを示し、(a)
は側面図であり、(b)は(a)のA−A矢視を示す断
面図である。
FIG. 2 shows a powder injection lance according to the present invention, (a)
Is a side view, and (b) is a cross-sectional view showing AA arrow of (a).

【図3】本発明に係る装置の他の構成を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing another configuration of the device according to the present invention.

【図4】従来例に係る装置の構成を示す断面図である。FIG. 4 is a cross-sectional view showing a configuration of a device according to a conventional example.

【符号の説明】[Explanation of symbols]

1 吹込みタンク 2 粉体切り出し弁 3 流調弁 4 導管 5 フレキシブルホース 6 吹込みランス 7 吹込みノズル 8 溶銑 9 スラグ 10 取鍋 11 浮上中のキャリアガス及び粉体 12 圧力調節弁(高圧用) 13 圧力調節弁(低圧用) 14 吹込みノズル(高圧用) 15 吹込みノズル(低圧用) 16 補強リブ 17 昇降用ポスト 18 減速機付き電動機 19 回転用歯車 20 支持アーム 21 昇降装置 22 ベアリング 1 Blow Tank 2 Powder Cutoff Valve 3 Flow Control Valve 4 Conduit 5 Flexible Hose 6 Blow Lance 7 Blow Nozzle 8 Hot Metal 9 Slag 10 Ladle 11 Floating Carrier Gas and Powder 12 Pressure Control Valve (for High Pressure) 13 Pressure control valve (for low pressure) 14 Blow nozzle (for high pressure) 15 Blow nozzle (for low pressure) 16 Reinforcing rib 17 Lifting post 18 Motor with reduction gear 19 Rotating gear 20 Support arm 21 Lifting device 22 Bearing

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉体吹込用ランスを溶融金属中に浸漬
し、当該ランス先端の吹込みノズルから精錬用粉体をキ
ャリアガスを用いて溶融金属中に吹込み不純物元素を除
去する溶融金属の精錬方法において、前記粉体吹込用ラ
ンスにはその軸線と交又する方向に少くとも2箇所に吹
込みノズルを配設し、各々の吹込みノズルから精錬用粉
体を吹込み圧力が異なるキャリアガスを用いて溶融金属
中に分散させて吹込むことを特徴とする溶融金属の精錬
方法。
1. A molten metal for immersing a powder blowing lance in a molten metal, and blowing a refining powder from a blowing nozzle at the tip of the lance into the molten metal by using a carrier gas to remove impurity elements. In the refining method, the powder blowing lance is provided with blowing nozzles at least at two positions in a direction intersecting with the axis thereof, and carriers for blowing the refining powder from the respective blowing nozzles have different pressures. A refining method for molten metal, which comprises using gas to disperse and blow in molten metal.
【請求項2】 粉体吹込用ランスをその軸線を中心とし
て回転させることを特徴とする請求項1記載の溶融金属
の精錬方法。
2. The method for refining molten metal according to claim 1, wherein the powder blowing lance is rotated about its axis.
JP30631693A 1993-12-07 1993-12-07 Method for refining moltenmetal Pending JPH07157816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30631693A JPH07157816A (en) 1993-12-07 1993-12-07 Method for refining moltenmetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30631693A JPH07157816A (en) 1993-12-07 1993-12-07 Method for refining moltenmetal

Publications (1)

Publication Number Publication Date
JPH07157816A true JPH07157816A (en) 1995-06-20

Family

ID=17955644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30631693A Pending JPH07157816A (en) 1993-12-07 1993-12-07 Method for refining moltenmetal

Country Status (1)

Country Link
JP (1) JPH07157816A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121072A (en) * 2006-11-13 2008-05-29 Tokyo Yogyo Co Ltd Lance pipe
WO2012149551A3 (en) * 2011-04-29 2012-12-27 Berry Metal Company Gas and particulate delivery system and method for metallurgical vessel
US11833611B2 (en) 2018-10-30 2023-12-05 Hamamatsu Photonics K.K. Laser machining device
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121072A (en) * 2006-11-13 2008-05-29 Tokyo Yogyo Co Ltd Lance pipe
WO2012149551A3 (en) * 2011-04-29 2012-12-27 Berry Metal Company Gas and particulate delivery system and method for metallurgical vessel
US11833611B2 (en) 2018-10-30 2023-12-05 Hamamatsu Photonics K.K. Laser machining device
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method

Similar Documents

Publication Publication Date Title
CN107190122B (en) Dephosphorization device and dephosphorization method for refining rotary blowing
CN112501378A (en) Top-bottom combined blown converter and steelmaking method
JPH07157816A (en) Method for refining moltenmetal
JPH11279630A (en) Method for smelting highly cleaned steel
JPH07331313A (en) Method and apparatus for refining molten metal
JP2000073116A (en) Production of high clean extra-low sulfur steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JPH08157940A (en) Blowing of refining power into molten metal
JP2000212641A (en) High speed vacuum refining of molten steel
CN109724413B (en) Repairing equipment for refining furnace
KR100422886B1 (en) Refining method and refining apparatus of molten steel
JPH07126736A (en) Method for blowing powdery material into molten metal and device therefor
JPH0741825A (en) Top blowing lange device in vacuum degassing equipment
JPH0665625A (en) Desulphurization method for molten steel
JPH09287016A (en) Method for melting stainless steel
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JPH08120324A (en) Apparatus and method for vacuum-refining molten steel
WO2021229263A1 (en) Stirring method of liquid metal and associated device
JPH06212241A (en) Method for vacuum-refining molten steel by using large diameter immersion tube
JP3550039B2 (en) Powder desulfurization method of molten steel under reduced pressure and reaction vessel for powder desulfurization under reduced pressure
JP3290794B2 (en) Molten steel refining method under reduced pressure
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JPH0696738B2 (en) Vacuum degassing apparatus for ultra-low carbon steel production and operating method
JP3282530B2 (en) Method for producing high cleanliness low Si steel