JPH06212241A - Method for vacuum-refining molten steel by using large diameter immersion tube - Google Patents

Method for vacuum-refining molten steel by using large diameter immersion tube

Info

Publication number
JPH06212241A
JPH06212241A JP31A JP17340591A JPH06212241A JP H06212241 A JPH06212241 A JP H06212241A JP 31 A JP31 A JP 31A JP 17340591 A JP17340591 A JP 17340591A JP H06212241 A JPH06212241 A JP H06212241A
Authority
JP
Japan
Prior art keywords
molten steel
refining
refining agent
large diameter
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31A
Other languages
Japanese (ja)
Other versions
JP2808197B2 (en
Inventor
Shinya Kitamura
信也 北村
Hiroyuki Aoki
裕幸 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15959819&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06212241(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3173405A priority Critical patent/JP2808197B2/en
Publication of JPH06212241A publication Critical patent/JPH06212241A/en
Application granted granted Critical
Publication of JP2808197B2 publication Critical patent/JP2808197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To promote the effective contact of a refining agent with molten steel and to improve the refining effect by supplying stirring gas from a fixed depth from the molten steel surface and adding the refining agent on bubble activating surface. CONSTITUTION:A large diameter immersion tube 2 reducing the pressure is dipped into the molten steel 4 in a ladle 1 and stirring gas 5 is supplied from a porous plug 3 at the bottom part of the ladle 1. Then the stirring gas is supplied from the position being deeper than 0.5 H to the molten steel height H. Further, the bubble activating area (a) formed in the range diameter immersion tube 2 is made to be 40-95% and also, the flux for refining is added onto the molten steel surface in the large diameter immersion tube from a refining agent blowing lance 6. The refining agent grains are sufficiently stirred together with the molten steel in the large diameter immersion tube 2 and floated up and separated to the outer part from the lower end of the immersion tube 2 in order. Therefore, the refining agent for dephosphorization is added in the non-oxidizing condition, and after passing the several time, the deoxidizer is added and successively, even if the refining agent for desulfurization is added, without developing rephosphorization, the sulfurizing reaction can be progressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大径浸漬管を用いた取鍋
精錬における溶鋼の脱硫及び脱燐方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for desulfurizing and dephosphorizing molten steel in ladle refining using a large diameter immersion pipe.

【0002】[0002]

【従来の技術】従来、極低炭・極低硫及び極低燐鋼を溶
製するに際して、特に脱硫の場合には溶銑の脱硫処理の
みによっては、極低硫鋼を得ることは困難である。その
ため製鋼炉からの出鋼後、二次精錬段階で脱硫処理を行
う必要がある。そこで極低炭・極低硫鋼を製造する場合
に、例えば転炉にて精錬された溶鋼をRH法等の真空脱
ガス処理により脱炭後、Al,Siなどを添加して脱酸
し、引き続いてCaOとCaF2を主成分とするフラッ
クスを同一の設備内で添加して撹拌処理し、極低炭・極
低硫溶鋼が製造されている。ところが、上記のフラック
スの添加により真空脱ガス槽内の耐火物の溶損が増大
し、耐火物コストが上昇するのみならず、溶損により安
定操業が困難となり、結果として極低硫鋼の製造が困難
となるという問題がある。また、一般にRH法での精錬
剤添加法は、基本的には下降流が弱いとされているが、
それはRH法においては上昇管側と下降管側の気泡密度
差に基づくヘッド差を駆動力とした気泡ポンプのため、
環流用ガス量を増加させても下降流の流速には限界があ
るためである。そのために、真空槽内で添加したフラッ
クスが取鍋内溶鋼の深い位置まで到達しないこととな
る。このための効率を上げる方法として、例えば、特開
昭61−30618号公報のように、上昇管下部に設け
たJ字型浸漬ランスより逆液防止ガスを噴出させつつキ
ャリア−ガスと共に脱硫剤を吹き込み真空処理を開始
し、ノズル孔径への溶鋼飛散を防ぎ、真空脱ガスインジ
ェクション操業を高能力で行うことにある。また、特開
昭61−12815号公報にあっては、RH真空槽下部
に設けた羽口より、不活性ガスのキャリア−ガスと共に
脱硫剤を吹き込むことにより効率良く溶鋼に粉体精錬剤
と接触反応させ高品質の不純物精錬が出来るというもの
である。更には、特開昭60−184618号公報並び
に実開昭57−150545号公報には、RH装置にて
減圧下におき、この減圧時に酸化剤粉末を上吹きして、
これを脱炭せしめ、このとき生じる脱窒を促進させ、処
理時間の短縮、これによる溶鋼温度の低下を防ぐこと、
及び溶解槽付き減圧装置を設け、この減圧装置の上方か
ら溶解槽に上下動可能な長尺の粉体吹き込みランスを設
けて精錬剤を吹き込む減圧精錬装置が示されている。
2. Description of the Related Art Conventionally, it has been difficult to obtain an ultra-low sulfur steel only by desulfurizing hot metal in producing ultra-low carbon / ultra-low sulfur and ultra-low phosphorus steel, especially in the case of desulfurization. . Therefore, it is necessary to perform desulfurization at the secondary refining stage after tapping steel from the steelmaking furnace. Therefore, when manufacturing ultra-low carbon / ultra-low sulfur steel, for example, molten steel refined in a converter is decarburized by vacuum degassing treatment such as RH method, and then deoxidized by adding Al, Si, etc., Subsequently, a flux containing CaO and CaF 2 as main components is added in the same equipment and stirred to produce ultra-low carbon / ultra-low sulfur molten steel. However, the addition of the above-mentioned flux not only increases the melting loss of the refractory material in the vacuum degassing tank, but also increases the refractory cost, and the melting loss makes stable operation difficult, resulting in the production of ultra-low sulfur steel. There is a problem that it becomes difficult. Further, in general, the refining agent addition method by the RH method is basically considered to have a weak downflow,
In the RH method, this is a bubble pump that uses the head difference based on the bubble density difference between the ascending pipe side and the descending pipe side as the driving force.
This is because the flow velocity of the downflow is limited even if the amount of gas for circulation is increased. Therefore, the flux added in the vacuum tank does not reach the deep position of the molten steel in the ladle. As a method of increasing the efficiency for this purpose, for example, as in JP-A-61-30618, while a reverse liquid preventing gas is jetted from a J-shaped immersion lance provided in the lower portion of the rising pipe, a desulfurizing agent is added together with a carrier gas. It is to start the blow-in vacuum treatment, prevent the molten steel from scattering to the nozzle hole diameter, and perform the vacuum degassing injection operation with high capacity. Further, in JP-A-61-1815, by blowing a desulfurizing agent together with a carrier gas of an inert gas from a tuyere provided in a lower portion of an RH vacuum chamber, a molten steel is efficiently contacted with a powder refining agent. It is possible to refine the impurities by reacting them. Further, in JP-A-60-184618 and JP-A-57-150545, a RH apparatus is used under a reduced pressure, and at the time of this pressure reduction, an oxidizer powder is blown up.
Decarburize this, promote denitrification that occurs at this time, shorten the processing time, prevent the molten steel temperature from lowering due to this,
And a decompression refining device for injecting a refining agent by providing a decompression device with a dissolution tank, and providing a long-powder lance capable of moving up and down in the dissolution tank from above the decompression device.

【0003】[0003]

【発明が解決しようとする課題】このように減圧精錬装
置内に精錬剤を吹き込まれた場合には、一般には、キャ
リア−ガスによる気泡内に精錬剤が捕捉されたまま浮上
する確率が極めて高く、しかも、特にRH法の場合に
は、槽内浮上後のフラックスは循環流に乗り、短時間の
内に槽外へ排出されるため、有効に溶鋼と精錬剤が接触
しない。例えば特開昭61−30618号公報及び特開
昭61−12815号公報にあっては、激しいスプラッ
シュの発生する問題がある。このためRH法で槽内溶鋼
に粉体を吹き付ける効果は、表面直下で瞬時に反応する
ことから効果が上がる脱窒に利用できる特開昭60−1
84618号公報のような技術もあるが、脱硫精錬には
適用出来ない欠点がある。また、実開昭57−1505
45号公報の如き取鍋での精錬剤吹き込みは、スプラッ
シュが多い上に吹き込み位置と撹拌用ガス供給孔が同一
のためガス供給位置が浅く、浮上したフラックスは、再
度溶鋼中に懸濁しにくく効果が悪い種々の欠点がある。
When the refining agent is blown into the vacuum refining apparatus as described above, the probability that the refining agent floats while being trapped in the bubbles formed by the carrier gas is extremely high. Moreover, particularly in the case of the RH method, the flux after floating in the tank rides on the circulating flow and is discharged to the outside of the tank within a short time, so that the molten steel and the refining agent do not contact effectively. For example, in JP-A-61-30618 and JP-A-61-12815, there is a problem that a violent splash occurs. Therefore, the effect of spraying the powder on the molten steel in the tank by the RH method can be utilized for denitrification, in which the reaction is instantaneously performed immediately below the surface and thus the effect is improved.
Although there is a technique like Japanese Patent No. 84618, there is a drawback that it cannot be applied to desulfurization refining. Also, the actual exploitation Sho 57-1505
When the refining agent is blown in a ladle as disclosed in Japanese Patent No. 45, the gas feed position is shallow because there are many splashes and the blowing position and the stirring gas feed hole are the same, and the floated flux is less likely to be suspended in molten steel again, which is effective. There are various drawbacks that are bad.

【0004】[0004]

【課題を解決するための手段】本発明者らは、これら従
来の溶鋼の脱ガス方法の欠点を解消すべき詳細な検討と
実験を重ねた結果、真空精錬装置において、溶鋼の槽内
での溶鋼高さに対して一定の深さを持つ、深い位置から
撹拌ガスを供給し、かつ、浸漬管内に一定の気泡活性面
を形成させながら、真空槽内での溶鋼の表面に精錬剤を
添加することにより、精錬剤が溶鋼と効果的に接触し精
錬効果を向上することを新しく見い出したものである。
その要旨とするところは、 (1)取鍋内の溶鋼に大径浸漬管を浸漬し、該大径浸漬
管内を減圧すると共に、取鍋低部より撹拌用ガスを供給
する真空精錬法において、取鍋内の溶鋼高さ(H)に対
して0.5Hよりも深い位置から撹拌用ガスを供給し、
かつ、該大径浸漬管内に形成される気泡活性面積を40
〜95%とすると共に該大径浸漬管内溶鋼表面に精錬用
フラックスを添加する大径浸漬管による溶鋼の真空精錬
法。 (2)未脱酸状態の溶鋼に脱燐用精錬剤を添加して脱燐
反応を進行させた後、脱酸剤を添加して脱酸し、引続い
て脱硫精錬剤を添加して脱硫を行う請求項1記載の大径
浸漬管による溶鋼の真空精錬法にある。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made detailed investigations and experiments to eliminate the drawbacks of the conventional degassing methods for molten steel, and as a result, in a vacuum refining apparatus, A refining agent is added to the surface of the molten steel in the vacuum tank while supplying a stirring gas from a deep position with a certain depth to the height of the molten steel and forming a certain bubble activation surface in the immersion pipe. By doing so, it has been newly found that the refining agent effectively contacts the molten steel and improves the refining effect.
The gist is (1) in a vacuum refining method in which a large-diameter immersion pipe is immersed in molten steel in a ladle to decompress the large-diameter immersion pipe, and a stirring gas is supplied from the bottom of the ladle. The stirring gas is supplied from a position deeper than 0.5H with respect to the molten steel height (H) in the ladle,
In addition, the bubble activation area formed in the large diameter immersion pipe is 40
A vacuum refining method for molten steel using a large-diameter dip tube in which the refining flux is added to the surface of the molten steel in the large-diameter dip tube while adjusting to 95%. (2) Add a dephosphorizing refining agent to the undeoxidized molten steel to proceed the dephosphorization reaction, then add a deoxidizing agent to deoxidize it, and then add a desulfurizing refining agent to desulfurize The method of vacuum refining molten steel using a large-diameter immersion pipe according to claim 1 for carrying out.

【0005】[0005]

【作用】以下本発明について図面に従って詳細に説明す
る。図1は本発明の一実施例の説明図であり、溶鋼4
は、取鍋1に収容され、大径浸漬管2は取鍋1内の溶鋼
4に浸漬静止される。大径浸漬管2は排気管と連通し、
大径浸漬管2内の真空度に応じて、大径浸漬管2内に溶
鋼4が吸い上げられる。そして大径浸漬管2の下部断面
が垂直下方に当る取鍋1の底部に配設されたポ−ラスプ
ラグ3より不活性ガス5が溶鋼中に吹き込まれ、溶鋼4
が撹拌混合される。一方、大径浸漬管2の上方からは精
錬剤吹き込みランス6を設け、この精錬剤吹き込みラン
スより粉体及びキャリア−ガスが吹き込まれる。この場
合に、取鍋内溶鋼の深い位置からのガス撹拌下での流動
状況について、水モデルや数値計算により実験を重ねた
結果、溶鋼ヘッドが高いと気泡の浮力による溶鋼循環力
が極めて大きく逆に強い下降流が形成される新しい知見
を得た。従って、この下降流の形成に伴う真空槽内溶鋼
表面に添加した精錬剤は殆ど全てが溶鋼内に懸濁し、吹
き込まれた場合と同等の効果を有することが判明した。
更にこの場合にはキャリア−ガスによる精錬剤の捕捉が
起らないので、精錬剤と溶鋼の接触が良く、そのために
脱硫効率が向上するものである。しかも、酸化鉄濃度の
高い転炉スラグは短時間の撹拌で、浸漬槽と取鍋との間
隙へ流出し、たとえ脱硫反応をした後の精錬剤が大径浸
漬槽外へ流出しても、この間隙部分は殆ど撹拌を受けて
いないため、反応速度が遅くそのため復硫反応が起らな
い。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is an explanatory view of an embodiment of the present invention, in which molten steel 4
Is accommodated in the ladle 1, and the large-diameter dip tube 2 is immersed in the molten steel 4 in the ladle 1 and stopped. The large diameter immersion pipe 2 communicates with the exhaust pipe,
The molten steel 4 is sucked up into the large diameter immersion pipe 2 according to the degree of vacuum in the large diameter immersion pipe 2. Then, the inert gas 5 is blown into the molten steel from the porous plug 3 arranged at the bottom of the ladle 1 in which the lower cross section of the large diameter immersion pipe 2 hits vertically downward, and the molten steel 4
Are mixed by stirring. On the other hand, a refining agent blowing lance 6 is provided from above the large-diameter immersion pipe 2, and powder and carrier gas are blown from the refining agent blowing lance. In this case, as a result of repeated experiments using a water model and numerical calculations on the flow condition of molten steel in a ladle from a deep position under gas agitation, when the molten steel head is high, the molten steel circulating force due to the buoyancy of the bubbles is extremely opposite. We obtained a new finding that a strong downward flow is formed in the water. Therefore, it was found that almost all of the refining agent added to the surface of the molten steel in the vacuum tank due to the formation of this downward flow was suspended in the molten steel and had the same effect as when it was blown.
Further, in this case, since the refining agent is not trapped by the carrier gas, the refining agent and molten steel are in good contact with each other, which improves desulfurization efficiency. Moreover, the converter slag with a high iron oxide concentration flows out into the gap between the dipping tank and the ladle by stirring for a short time, even if the refining agent after the desulfurization reaction flows out of the large diameter dipping tank. Since this gap portion is hardly agitated, the reaction speed is slow, and therefore the vulcanization reaction does not occur.

【0006】そこで上述のような強い下降流を生成させ
るための撹拌用ガスの供給位置を種々実験した結果、取
鍋内溶鋼高さ(H)としたときに、その取鍋内溶鋼高さ
の0.5Hよりも深い位置からの撹拌用ガスの供給が必
要であること、並びにガス量を0.6〜1.5Nl(m
in・ton)とする必要があることを確認した。更
に、真空面上の精錬剤が溶鋼内に巻き込まれるために
は、気泡活性面積が40〜95%とする必要がある。こ
こで、気泡活性面積とは、吹き込まれたガス気泡が表面
に浮上する領域であると定義される。この気泡活性面積
については、水モデルや水銀モデル、あるいは実機での
観察結果により、垂直方向に吹き込まれたガスに対する
気泡活性面積(An)は(1)式で、水平方向に吹き込
まれたガスに対する気泡活性面積(Au)は(2)式で
与えられる。 An=3.14×(0.212×H)2 ‥‥‥‥(1) Au=3.14×(7×Q0672/2 ‥‥‥‥(2) ここで、Hは吹き込み位置から溶鋼面までの距離(m)
であり、Qはノズル1個当りのガス吹き込み量(Nm3
/s)である。このように、気泡活性面積を(1)
(2)で表わすことが出来る。また、気泡活性面積比は
(気泡活性面積/真空表面積)×100%で表示する。
ここで真空表面積とは図1ないし図2に示す真空表面積
Aの面積を意味し、気泡活性面積は取鍋低部より撹拌用
ガ吹き込まれたガスが浮上して真空溶鋼表面に浮上する
領域をaで表示する。この気泡活性面積が40〜95%
を必要とする。この理由は気泡活性面積においては真空
表面上の精錬用フラックスが気泡の破裂時に微細粒子と
して分離されて溶鋼内に巻き込まれるためである。これ
によって微細なフラックスと溶鋼中のS及びPが活発に
接触しフラックスとの反応を促進させるものである。こ
の関係を図3に示す。図3は気泡活性面積比と脱S率と
の関係を示すもので、この場合に気泡活性面積比が40
%未満であると気泡活性面が少なくフラックスの微細化
とその巻き込みが少ないため脱S効率が極めて悪い。ま
た、逆に気泡活性面積比があまり大きく95%を超える
と巻き込み下降流が小さくなってしまい、そのために反
応が進行しないことになる故、脱S効果を考慮して40
%〜〜95%の範囲と定めた。
Therefore, as a result of various experiments on the supply position of the stirring gas for generating the strong downward flow as described above, when the molten steel height in the ladle (H) is set, the molten steel height in the ladle is determined. It is necessary to supply the stirring gas from a position deeper than 0.5H, and the gas amount is 0.6 to 1.5 Nl (m
It has been confirmed that it is necessary to set in. Further, in order for the refining agent on the vacuum surface to be caught in the molten steel, the bubble active area needs to be 40 to 95%. Here, the bubble active area is defined as a region where blown gas bubbles float on the surface. Regarding the bubble active area, the bubble active area (An) for the gas blown in the vertical direction is expressed by the equation (1) according to the observation result in the water model, the mercury model, or the actual machine. The bubble active area (Au) is given by the equation (2). An = 3.14 × (0.212 × H ) 2 ‥‥‥‥ (1) Au = 3.14 × (7 × Q 0 · 67) 2/2 ‥‥‥‥ (2) where, H is Distance from injection position to molten steel surface (m)
And Q is the gas injection amount per nozzle (Nm 3
/ S). Thus, the bubble active area is (1)
It can be represented by (2). Further, the bubble active area ratio is expressed as (bubble active area / vacuum surface area) × 100%.
Here, the vacuum surface area means the area of the vacuum surface area A shown in FIGS. 1 and 2, and the bubble active area is the area where the gas blown by the stirring gas from the bottom of the ladle floats and floats on the surface of the vacuum molten steel. Display with a. This bubble active area is 40-95%
Need. The reason for this is that in the bubble active area, the refining flux on the vacuum surface is separated as fine particles when the bubbles burst and is caught in the molten steel. As a result, the fine flux and S and P in the molten steel come into active contact with each other to promote the reaction with the flux. This relationship is shown in FIG. FIG. 3 shows the relationship between the bubble active area ratio and the S removal rate. In this case, the bubble active area ratio is 40%.
If it is less than%, the bubble activating surface is small, and the flux is made finer and the entrainment thereof is small, so that the S removal efficiency is extremely poor. On the other hand, if the bubble active area ratio is too large and exceeds 95%, the entrained downflow becomes small, and therefore the reaction does not proceed.
% To 95%.

【0007】更に、好ましい条件としては真空槽表面よ
りも下の位置を境として、それよりも上部の大径浸漬槽
内を拡げることで、その部分に小さな反転流を生じさ
せ、巻き込まれたフラックスの溶鋼内滞留時間を増加さ
せるとより一層の良好な効果的反応が得られることがわ
かった。また、溶鋼の流れの状態については、真空槽表
面で壁に向かう水平方向の流れがあり、それが壁面に当
って下向きの流れとなる。この下向きの流れに乗って精
錬剤は溶鋼内に分散される。このようにして巻き込まれ
た精錬剤粒子は大径浸漬槽下端を通過する際に、流れに
乗って取鍋底部へ、さらに巻き込まれるものと、浮力で
大径浸漬槽外部へと浮上する粒子に分かれる。しかし、
この場合に下向きの流れが極端に弱いと、大径浸漬槽外
に出る確率が高くはなるが、ガス流量を低下させて下向
きの流れを弱めると急に精錬剤は巻き込まれにくくなる
結果を生じる。図2は本発明に係る他の実施例を示す説
明図である。基本的には図1と同じであるが大径浸漬管
2の上部拡がり部7を設けたことに特徴がある。すなわ
ち、このように大径浸漬管2の上部をやや拡げること
で、この部分の壁面近傍に反転流の渦を作り精錬剤を巻
き込むための流れを弱めることなく下向きの流れを弱く
して大径浸漬管外へ流出する確率を小さくすることが出
来る。また、精錬剤がこの反転流の中に捕捉されるた
め、溶鋼と効率的に接触することが出来、さらに精錬効
率が向上するものである。なお、本発明に係る精錬用フ
ラックスとしては生石灰や生石灰と螢石の混合物を用い
ることが好ましい。また、精錬用フラックスの供給方法
としては上からの投入、好ましくは微粒フラックスをス
プラッシュの発生なしに添加できる上吹きランスからの
吹き付け法がある。
Further, as a preferable condition, a position below the surface of the vacuum chamber is taken as a boundary, and the inside of the large-diameter immersion tank above the vacuum chamber is expanded to cause a small reversal flow at that portion, and the entrained flux is involved. It was found that a better and better effective reaction can be obtained by increasing the residence time in molten steel. Regarding the flow state of the molten steel, there is a horizontal flow toward the wall on the surface of the vacuum chamber, which hits the wall surface and becomes a downward flow. The refining agent is dispersed in the molten steel by riding on this downward flow. When the refining agent particles thus entrained pass through the lower end of the large-diameter dipping tank, they are carried by the flow to the bottom of the ladle, and are further entrained and particles that float to the outside of the large-diameter dipping tank by buoyancy. Divide. But,
In this case, if the downward flow is extremely weak, the probability of going out of the large diameter immersion tank increases, but if the gas flow rate is reduced to weaken the downward flow, the refining agent suddenly becomes difficult to be involved. . FIG. 2 is an explanatory view showing another embodiment according to the present invention. It is basically the same as that of FIG. 1, but is characterized in that an upper expanded portion 7 of the large diameter immersion pipe 2 is provided. That is, by slightly expanding the upper part of the large-diameter immersion pipe 2 in this way, a downward flow is weakened without weakening the flow for entraining the refining agent by creating a vortex of a reversal flow near the wall surface of this part and increasing the large diameter. The probability of flowing out of the immersion pipe can be reduced. Further, since the refining agent is trapped in this reversal flow, the refining agent can efficiently contact with the molten steel, and the refining efficiency is further improved. As the refining flux according to the present invention, it is preferable to use quick lime or a mixture of quick lime and fluorite. Further, as a method of supplying the refining flux, there is a method of charging from above, preferably a method of spraying from a top blowing lance which can add fine particle flux without generation of splash.

【0008】上述したように、本発明の場合は一旦巻き
込まれた精錬剤粒子は大径浸漬管下端を通過する際にあ
る確率で大径浸漬管外部へ浮上分離される。従って、精
錬剤添加後、ある時間を経過すれば大部分の精錬剤は大
径浸漬管外部へ流出されることになる。一方、大径浸漬
管外部と取鍋の間隙の部分は撹拌が少ないので反応の進
行は極めて遅い。このため、未脱酸状態で脱燐用精錬剤
を添加し、その後ある時間経過後に脱酸剤を添加するこ
とにより脱酸を行い、引き続いて脱硫用精錬剤を添加し
ても、先に添加された脱燐用精錬剤は殆んどが大径浸漬
管外部へ浮上されているために、復燐を起こすことな
く、脱硫反応が進行できるものである。ここで未脱酸状
態とは、溶鋼中の溶解酸素濃度が200ppm以上の状
態を定義する。また、脱燐用精錬剤としては、生石灰と
酸化鉄あるいは、生石灰、螢石と酸化鉄の混合物があ
る。
As described above, in the case of the present invention, the refining agent particles once caught are floated and separated to the outside of the large diameter immersion pipe with a certain probability when passing through the lower end of the large diameter immersion pipe. Therefore, most of the refining agent will flow out of the large-diameter dip pipe after a certain time has passed after the addition of the refining agent. On the other hand, the progress of the reaction is extremely slow because there is little stirring in the gap between the outside of the large diameter dip tube and the ladle. For this reason, the dephosphorizing refining agent is added in an undeoxidized state, and after a certain period of time, deoxidizing is performed by adding the deoxidizing agent, and even if the desulfurizing refining agent is subsequently added, it is added first. Most of the refining agents for desulfurization thus obtained are floated to the outside of the large-diameter immersion pipe, and therefore, the desulfurization reaction can proceed without causing rephosphorization. Here, the undeoxidized state defines a state in which the concentration of dissolved oxygen in the molten steel is 200 ppm or more. As the dephosphorizing refining agent, there are quicklime and iron oxide, or quicklime, and a mixture of fluorite and iron oxide.

【0009】なお、上記の具体的な工程としては、次の
2つがある。第1は真空状態で脱燐用精錬剤添加後、大
径浸漬管内の脱燐精錬剤が槽外へ排出されただけの時間
撹拌し、その後、Al,Si,Mnといった脱酸剤を添
加し、さらに真空状態のまま、脱硫精錬剤を添加する工
程と、第2は真空状態で脱燐用精錬剤を添加し、脱燐反
応を充分進行させた後、真空度を低下させ、大径浸漬管
内真空下溶鋼面と大径浸漬下端との距離を小さくした状
態で撹拌し、脱燐剤をより大径浸漬管外へ流出し易くさ
せた後、再び真空状態とし、脱酸剤添加による脱酸と、
引き続き脱硫剤添加による脱硫工程を行う方法がある。
There are the following two specific steps described above. First, after adding the dephosphorization refining agent in a vacuum state, the dephosphorization refining agent in the large-diameter immersion pipe is stirred for a period of time just discharged to the outside of the tank, and then deoxidizing agents such as Al, Si, and Mn are added. The step of adding the desulfurization refining agent in a vacuum state, and the second step is to add the refining agent for dephosphorization in a vacuum state to allow the dephosphorization reaction to proceed sufficiently, then reduce the degree of vacuum and dip it in a large diameter. Stir in a state where the distance between the molten steel surface and the lower end of the large diameter immersion under vacuum in the pipe is agitated to make it easier for the dephosphorizing agent to flow out of the large diameter immersion pipe, and then make the vacuum state again to remove it by adding a deoxidizing agent. With acid,
There is a method of subsequently performing a desulfurization step by adding a desulfurizing agent.

【0010】[0010]

【実施例】【Example】

実施例1 175トン取鍋を用いて、図1に示す真空精錬炉におい
て実施した。いずれの場合も脱炭処理前の炭素濃度40
0ppmであり、脱炭処理後の炭素濃度が5〜20pp
mの範囲の溶鋼に対し、Alを添加して脱酸後、撹拌用
ガス吹き込み位置を種々変えて生石灰と螢石の重量比
8:2〜5:5に混合したフラックスを粉体吹き付け、
粉体インジェクションないし塊状品投入した結果の各脱
硫率について表1に比較例と共に掲げた。その結果、比
較例である撹拌用ガス吹き込み位置0.5H未満ないし
RH法並びに気泡活性面積40%未満の条件の場合の比
較例に対して本発明法による場合には、脱硫率が非常に
高いことがわかる。
Example 1 Using a 175 ton ladle, the vacuum refining furnace shown in FIG. 1 was used. In any case, the carbon concentration before decarburization is 40
It is 0 ppm, and the carbon concentration after decarburization is 5 to 20 pp.
After deoxidizing by adding Al to the molten steel in the range of m, various fluxes of the stirring gas were changed and the flux mixed with quick lime and fluorite at a weight ratio of 8: 2 to 5: 5 was sprayed on the powder,
Table 1 shows the desulfurization rates as a result of the powder injection or the injection of the lumps together with the comparative examples. As a result, the desulfurization rate is very high in the case of the method of the present invention as compared with the comparative example in which the stirring gas blowing position is less than 0.5H or the RH method and the conditions in which the bubble active area is less than 40%. I understand.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例2 実施例1と同様、175トン取鍋を用いて、図2に示す
真空精錬炉において実施した。いずれの場合も処理前の
炭素濃度400ppmであり、溶解酸素濃度500pp
m、処理後の炭素濃度が5〜20ppmの範囲で、撹拌
用ガス吹き込み位置を1.0Hとし、溶鋼に対して生石
灰と螢石と酸化鉄の混合粉体を吹き付け脱燐処理を行な
った後に、Alを添加して脱酸した。次いで脱酸前槽内
溶鋼面と大径浸漬管下端との距離を種々変えて生石灰と
螢石の重量比8:2〜5:5に混合したフラックスを粉
体吹き付けしたときの脱硫率及び脱燐率について表2に
比較例と共に示す。その結果、比較例である撹拌用ガス
吹き込み位置0.5H未満のもの、及び取鍋脱ガス法並
びに気泡活性面積40%未満の条件の場合の比較例に対
して本発明法による脱硫率及び脱燐率はそれぞれ非常に
高いことがわかる。
Example 2 As in Example 1, using a 175-ton ladle, the operation was carried out in the vacuum refining furnace shown in FIG. In each case, the carbon concentration before treatment was 400 ppm, and the dissolved oxygen concentration was 500 pp.
m, the carbon concentration after the treatment was in the range of 5 to 20 ppm, the stirring gas blowing position was 1.0H, and the mixed powder of quick lime, fluorite, and iron oxide was blown to the molten steel to perform dephosphorization treatment. , Al were added for deoxidation. Then, the desulfurization rate and the desulfurization rate when the flux mixed with the weight ratio of quicklime and fluorite at a weight ratio of 8: 2 to 5: 5 was sprayed while changing the distance between the molten steel surface in the tank before deoxidation and the lower end of the large diameter immersion pipe The phosphorus ratio is shown in Table 2 together with the comparative example. As a result, the desulfurization rate and the desulfurization rate according to the method of the present invention were compared with those of the comparative example in which the stirring gas blowing position was less than 0.5H, and the ladle degassing method and the comparative example in the case where the bubble active area was less than 40%. It can be seen that the phosphorus rates are very high.

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【発明の効果】以上述べたように、本発明を実施するこ
とによって、激しいスプラッシュの発生による操業上の
問題を引き起こすことなしに、極めて高い効率で脱硫反
応及び脱燐反応を進行させることが可能となり、従って
効率的な精錬方法として工業上極めて優れた効果を奏す
るものである。
As described above, by carrying out the present invention, it is possible to proceed desulfurization reaction and dephosphorization reaction with extremely high efficiency without causing a problem in operation due to violent splash generation. Therefore, it has an extremely excellent industrial effect as an efficient refining method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例を示す説明図、FIG. 1 is an explanatory view showing an embodiment according to the present invention,

【図2】同、本発明に係る他の実施例を示す説明図、FIG. 2 is an explanatory view showing another embodiment according to the present invention,

【図3】気泡活性面積比と脱S率との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a bubble active area ratio and a de-S rate.

【符号の説明】[Explanation of symbols]

1 取鍋、 2 大径浸漬管、 3 ポ−ラスプラグ、 4 溶鋼、 5 不活性ガス、 6 精錬剤吹き込みランス、 7 大径浸漬管下部拡がり部、 A 真空表面積、 a 気泡活性面積。 1 ladle, 2 large diameter immersion pipe, 3 porous plug, 4 molten steel, 5 inert gas, 6 refining agent blowing lance, 7 large diameter immersion pipe lower spreading part, A vacuum surface area, a bubble active area.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 取鍋内の溶鋼に大径浸漬管を浸漬し、該
大径浸漬管内を減圧すると共に、取鍋低部より撹拌用ガ
スを供給する真空精錬法において、取鍋内の溶鋼高さ
(H)に対して0.5Hよりも深い位置から撹拌用ガス
を供給し、かつ、該大径浸漬管内に形成される気泡活性
面積を40〜95%とすると共に該大径浸漬管内溶鋼表
面に精錬用フラックスを添加することを特徴とする大径
浸漬管による溶鋼の真空精錬法。
1. A molten steel in a ladle in a vacuum refining method in which a large-diameter immersion pipe is immersed in molten steel in the ladle to decompress the large-diameter immersion pipe, and a stirring gas is supplied from a lower portion of the ladle. The stirring gas is supplied from a position deeper than 0.5H with respect to the height (H), and the bubble active area formed in the large diameter immersion pipe is set to 40 to 95% and the inside of the large diameter immersion pipe is A vacuum refining method for molten steel using a large diameter immersion pipe, characterized in that a refining flux is added to the surface of the molten steel.
【請求項2】 未脱酸状態の溶鋼に脱燐用精錬剤を添加
して脱燐反応を進行させた後、脱酸剤を添加して脱酸
し、引続いて脱硫精錬剤を添加して脱硫を行うことを特
徴とする請求項1記載の大径浸漬管による溶鋼の真空精
錬法。
2. A dephosphorizing refining agent is added to undeoxidized molten steel to allow the dephosphorization reaction to proceed, and then a deoxidizing agent is added to deoxidize, and subsequently a desulfurizing refining agent is added. The method for vacuum refining molten steel with a large-diameter dip tube according to claim 1, wherein desulfurization is performed.
JP3173405A 1991-06-19 1991-06-19 Vacuum refining of molten steel using large diameter immersion tube Expired - Lifetime JP2808197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173405A JP2808197B2 (en) 1991-06-19 1991-06-19 Vacuum refining of molten steel using large diameter immersion tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173405A JP2808197B2 (en) 1991-06-19 1991-06-19 Vacuum refining of molten steel using large diameter immersion tube

Publications (2)

Publication Number Publication Date
JPH06212241A true JPH06212241A (en) 1994-08-02
JP2808197B2 JP2808197B2 (en) 1998-10-08

Family

ID=15959819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173405A Expired - Lifetime JP2808197B2 (en) 1991-06-19 1991-06-19 Vacuum refining of molten steel using large diameter immersion tube

Country Status (1)

Country Link
JP (1) JP2808197B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902374A (en) * 1995-08-01 1999-05-11 Nippon Steel Corporation Vacuum refining method for molten steel
JP2015232157A (en) * 2014-06-09 2015-12-24 新日鐵住金株式会社 Dephosphorization method of molten steel using vacuum degasification facility
CN107498068A (en) * 2017-09-22 2017-12-22 大连理工大学 A kind of preparation method of flower-like nanometer copper
CN111928651A (en) * 2020-07-09 2020-11-13 山西汾西重工有限责任公司 Environment-friendly refining method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137912A (en) * 1984-07-30 1986-02-22 Nippon Steel Corp Method for vacuum-refining molten steel
JPS61136613A (en) * 1984-12-06 1986-06-24 Nippon Steel Corp Vacuum decarburization method of molten steel
JPH02135551A (en) * 1988-11-16 1990-05-24 Fuji Electric Co Ltd Address selecting method for slot position designation
JPH02177028A (en) * 1988-12-27 1990-07-10 Daicel Chem Ind Ltd Optical information recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137912A (en) * 1984-07-30 1986-02-22 Nippon Steel Corp Method for vacuum-refining molten steel
JPS61136613A (en) * 1984-12-06 1986-06-24 Nippon Steel Corp Vacuum decarburization method of molten steel
JPH02135551A (en) * 1988-11-16 1990-05-24 Fuji Electric Co Ltd Address selecting method for slot position designation
JPH02177028A (en) * 1988-12-27 1990-07-10 Daicel Chem Ind Ltd Optical information recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902374A (en) * 1995-08-01 1999-05-11 Nippon Steel Corporation Vacuum refining method for molten steel
JP2015232157A (en) * 2014-06-09 2015-12-24 新日鐵住金株式会社 Dephosphorization method of molten steel using vacuum degasification facility
CN107498068A (en) * 2017-09-22 2017-12-22 大连理工大学 A kind of preparation method of flower-like nanometer copper
CN111928651A (en) * 2020-07-09 2020-11-13 山西汾西重工有限责任公司 Environment-friendly refining method and device

Also Published As

Publication number Publication date
JP2808197B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
EP0785284B1 (en) Process for vacuum refining of molten steel
EP0328677B1 (en) PROCESS FOR MELT REDUCTION OF Cr STARTING MATERIAL AND MELT REDUCTION FURNACE
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JP5855477B2 (en) Hot metal refining method
JP2000073116A (en) Production of high clean extra-low sulfur steel
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2767674B2 (en) Refining method of high purity stainless steel
JP6848437B2 (en) Desulfurization method and desulfurization equipment for molten steel
JP3377325B2 (en) Melting method of high cleanness ultra low carbon steel
JP2648769B2 (en) Vacuum refining method for molten steel
JP3290794B2 (en) Molten steel refining method under reduced pressure
JP2915631B2 (en) Vacuum refining of molten steel in ladle
JP2005146335A (en) Method for dephosphorizing molten pig iron
JP3153048B2 (en) Melting method of low nitrogen steel by low vacuum refining
JPH0665625A (en) Desulphurization method for molten steel
JPH09287016A (en) Method for melting stainless steel
JPH08109410A (en) Finish decarburization refining of stainless steel
JPS6326169B2 (en)
JP6623933B2 (en) Desulfurization method of molten steel
JP2819440B2 (en) Method for decarburizing molten steel containing extremely low carbon chromium
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JPH0448027A (en) Method and device for reduced pressure and vacuum refining of molten steel
JPH11293331A (en) Refining of molten steel
JPH1060518A (en) Production of high cleanliness molten steel
JP2001172715A (en) Method of manufacturing molten ultra-low carbon stainless steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

EXPY Cancellation because of completion of term