JPS61136613A - Vacuum decarburization method of molten steel - Google Patents

Vacuum decarburization method of molten steel

Info

Publication number
JPS61136613A
JPS61136613A JP25645184A JP25645184A JPS61136613A JP S61136613 A JPS61136613 A JP S61136613A JP 25645184 A JP25645184 A JP 25645184A JP 25645184 A JP25645184 A JP 25645184A JP S61136613 A JPS61136613 A JP S61136613A
Authority
JP
Japan
Prior art keywords
molten steel
decarburization
powder
ladle
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25645184A
Other languages
Japanese (ja)
Inventor
Hiroyuki Katayama
裕之 片山
Hideki Ishikawa
英毅 石川
Masatoshi Kuwabara
桑原 正年
Hiroyuki Kajioka
梶岡 博幸
Tsutomu Saito
力 斎藤
Yoshio Sato
佐藤 宣雄
Hiroyuki Aoki
青木 裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25645184A priority Critical patent/JPS61136613A/en
Publication of JPS61136613A publication Critical patent/JPS61136613A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To decarburize efficiently a molten steel and to produce economically the low-carbon molten steel by evacuating the inside of an immersion pipe immersed into the molten steel and blowing gaseous oxygen and powder contg. iron oxide, etc., from a top blowing lance to the molten steel risen in the pipe. CONSTITUTION:The immersion pipe 2 which has the inside diameter of preferably about >=30% of the inside diameter of a ladle 1 contg. the molten steel A such as rough molten high-chrome steel subjected to primary decarburization under atmospheric pressure and is coated with refractories on the inside surface is inserted into said ladle 1 and is partly immersed into the molten steel A. The pipe 2 is connected to a vacuum pump and the inside thereof is evacuated to suck up the molten steel A, at the same time, the powder 6. contg. iron oxide such as iron ore powder or nickel oxide such as NiO powder is blown together with the gaseous oxygen by the top blowing lance 4 into the molten steel A in the pipe. Gaseous Ar is further blown through a bottom blowing porous plug 3 provided in the bottom of the ladle 1 to stir the molten steel A. The molten steel A is thus efficiently decarburized and refined.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶鋼、例えば高クロム溶鋼の脱炭を効率的
に行い、ステンレス鋼などの低炭素溶鋼を量産工程で経
済的に製造するための減圧脱炭方法に関する・ (従来の技術) 10チ以上のクロムを含有する溶鋼は大気圧下で通常条
件で吹酸して低炭素域まで脱炭しようとすると、クロム
分の酸化がおこりやすい。クロム酸化を抑制して低次域
まで優先的に脱炭する方式としては、Arなとの稀釈ガ
スとともに酸素ガスを溶鋼中に吹込む方法(AOD法な
ど)と、真空(減圧下)で酸素ガスを溶鋼に吹付け、あ
るいは吹込む方法(鉄鋼便覧■、第3版、718頁以降
)がある。
[Detailed Description of the Invention] (Industrial Application Field) This invention is for efficiently decarburizing molten steel, for example, high chromium molten steel, and economically producing low carbon molten steel such as stainless steel in a mass production process. Concerning vacuum decarburization method (Prior technology) When attempting to decarburize molten steel containing 10 or more chromium to a low carbon range by blowing acid under normal conditions at atmospheric pressure, the chromium content tends to oxidize. . Methods to suppress chromium oxidation and preferentially decarburize down to the lower order range include a method in which oxygen gas is injected into molten steel together with a diluting gas such as Ar (AOD method, etc.), and a method in which oxygen gas is injected into molten steel together with a diluting gas such as Ar (AOD method, etc.), and a method in which oxygen gas is injected into molten steel in a vacuum (under reduced pressure). There is a method of blowing or blowing gas into molten steel (Steel Handbook ■, 3rd edition, p. 718 onwards).

このうち、減圧下で取鍋内の溶鋼に酸素ガスを上吹する
方式(VOD法など)は、低炭素域までクロム酸化が抑
制されることから、極低炭鋼の溶製が。
Among these methods, methods (such as the VOD method) in which oxygen gas is top-blown into molten steel in a ladle under reduced pressure suppress chromium oxidation down to the low carbon range, making it possible to produce ultra-low carbon steel.

行いやすいこと、スラグ還元剤として7エロシリコンな
どが不要であることなどの特長があり、量産工程設備と
して広く用いられている。
It is widely used as mass production process equipment because it is easy to perform and does not require 7erosilicon as a slag reducing agent.

この方法の問題点は、酸素供給律速で脱炭が進行する9
領域(9≧0.21)での脱炭速度を大にしにくいこと
である。すなわち、酸素源としての酸素ガス供給量を増
加しようとすると、fスジエツトによって生成するスデ
ラッシ、の飛散量および飛散高さが増加するので、酸素
fス供給量が制約される。たとえ、吹酸用ノズル形状の
改善などによってfスラグ、トによる飛散量を減少させ
て吹酸絶対量をふやすことができても、溶鋼表面でおこ
ろ脱炭反応だけでは攪拌強さくすなわち、反応サイトへ
の9の移動量)の制約によりクロム酸化がおこりやすく
なフ、やはり脱炭速度が制約される。
The problem with this method is that decarburization progresses depending on the rate of oxygen supply.
It is difficult to increase the decarburization rate in the region (9≧0.21). In other words, if an attempt is made to increase the amount of oxygen gas supplied as an oxygen source, the amount and height of scattering of the snails produced by the f-strain will increase, so the amount of oxygen gas supplied will be restricted. Even if it is possible to increase the absolute amount of blown acid by reducing the amount of slag and slag scattered by improving the shape of the blowing acid nozzle, the decarburization reaction occurring on the molten steel surface alone will not increase the stirring intensity, i.e., the reaction. Although chromium oxidation tends to occur due to the restriction on the amount of movement of 9 to the site, the decarburization rate is also restricted.

仕上げ脱炭工程の脱炭速度が制約されると、後工程(例
えば鋳造工程)から溶鋼供給ピッチが規定されている場
合、仕上げ脱炭工程は処理前のCチを低下せざるを得な
くなる。その結果、通常は大気圧下で行われる一次脱炭
工程の終点9チを低くせざるを得ないことから、クロム
駿化量が増加し、一貫工程としては問題を生ずる。
When the decarburization speed of the final decarburization process is restricted, and the molten steel supply pitch is defined from a subsequent process (for example, a casting process), the final decarburization process has no choice but to lower the C before the process. As a result, the end point of the primary decarburization step, which is normally carried out under atmospheric pressure, has to be lowered, which increases the amount of chromium silane, which poses a problem as an integrated process.

この発明者中の2人は、さきに「取鍋内の溶鋼を浸漬管
を介して真空槽内に吸上げ、上部ランスを介して醸化性
ガスを吹付ける溶鋼の真空精錬法」(特願昭5’9−1
57598)を提案しているが、その方法を用いても、
必要な脱炭速度を得るという目的に対しては不十分であ
る。
Two of these inventors previously developed a ``vacuum refining method for molten steel in which molten steel in a ladle is sucked up into a vacuum tank through an immersion tube, and fermenting gas is blown through an upper lance'' (special Gansho 5'9-1
57598), but even if you use that method,
This is insufficient for the purpose of obtaining the required decarburization rate.

(発明が解決しよりとする問題点) この発明は、減圧下での脱炭速度を上昇するための方法
であって、その結果として、大気圧下−次脱炭と減圧下
での仕上げ脱炭での脱炭負荷の適正化をはかることを可
能ならしめるものである。
(Problems to be solved by the invention) This invention is a method for increasing the decarburization rate under reduced pressure, and as a result, it is possible to perform secondary decarburization under atmospheric pressure and final decarburization under reduced pressure. This makes it possible to optimize the decarburization load with coal.

(問題点を解決するための手段) この発明の特徴とするところは、取鍋内の溶鋼中に内面
を耐火物で被覆した管の一部を浸漬し、浸漬管内を減圧
にして溶鋼を吸い上げるとともに管内溶鋼に上吹ランス
により鉄酸化物あるいはニッケル酸化物を含む粉体を吹
き付けること、あるいは、上記の方法に加えて、浸漬管
に誘導コイルを巻いて電力を加えることにより、浸漬管
内の溶鋼を誘導攪拌することである。
(Means for Solving the Problems) The present invention is characterized by immersing a part of a pipe whose inner surface is coated with a refractory material into molten steel in a ladle, and sucking up the molten steel by reducing the pressure inside the immersed pipe. At the same time, the molten steel in the immersion tube can be sprayed with powder containing iron oxide or nickel oxide using a top blowing lance, or in addition to the above method, by winding an induction coil around the immersion tube and applying electric power, the molten steel in the immersion tube can be The method is to induce stirring.

(作用) 本発明を実施するのに用いる設備の一例を第1図に示す
(Function) An example of equipment used to carry out the present invention is shown in FIG.

第1図において、1は取鍋、2は浸漬管であって、取鍋
l内の溶鋼Aにその開口下端部が浸漬される如く配設さ
れる。浸漬管2は、その円面を耐火物で内張すされ、他
の開口部は、真空Iンデヘ連結される。3はポーラスプ
ラグであって、この実施例では取鍋1の底面中央部に配
設され、Ar、?スを取鍋自溶鋼A内に吹込み、その気
泡5によって溶鋼を攪拌するのに用いられる。4は上吹
ランスでありて、浸漬管2内に上昇した溶鋼表面に指向
して酸素含有ガスおよび金属酸化物6を吹付けるべく機
能する。
In FIG. 1, 1 is a ladle, and 2 is an immersion tube, which are disposed so that their open lower ends are immersed in molten steel A in the ladle l. The immersion tube 2 has a circular surface lined with a refractory material, and the other opening is connected to a vacuum inlet. Reference numeral 3 denotes a porous plug, which in this embodiment is arranged at the center of the bottom of the ladle 1 and is connected to Ar, ? The bubbles 5 are used to stir the molten steel by blowing into the ladle self-molten steel A. Reference numeral 4 denotes a top blowing lance, which functions to blow oxygen-containing gas and metal oxide 6 toward the surface of the molten steel rising into the immersion tube 2.

大気圧下での一次脱炭された高クロム粗溶鋼が収められ
た取鍋K、内径が取鍋内径(溶鋼底面と溶鋼表面の平均
径であられす)の30%以上の浸漬管を挿入する。浸漬
管内径がこれよりも小さすぎると、取鍋内溶鋼の均一混
合が阻害される。また、後述のように脱炭反応促進のた
めに鉄酸化物などを含む粉体を吹き付けた時、その影響
で浸漬管内面耐火物が損傷されやすくなるので好ましく
ない。浸漬管は真空排気ポンプに連結されており、浸漬
管内を減圧することができる。また、たとえばポーラス
プラグを通して溶鋼中にArガスを吹込むことによりて
、取鍋内の溶鋼を攪拌する。減圧度に応じて取鍋内の溶
鋼は浸漬管内に吸い上げられる。この溶鋼面に対して、
浸漬管の上方から管内に挿入された上吹ランス全通して
、醗素fスと、鉄酸化物あるいはニッケル酸化物を含む
粉体が吹付けられる。鉄酸化物を含む粉体とは、鉄鉱石
粉、焼結鉱粉、鉄クロム鉱石粉、鉄マンガン鉱石粉など
を指す。また、ニッケル酸化物を含む粉体とはNIO粉
などを指す。これらは溶鋼面に吹き付けられると溶鋼中
に侵入し、溶鋼中のCと反応してCOガスを発生する。
Insert into the ladle K containing the high chromium crude molten steel that has been primary decarburized under atmospheric pressure, and insert the immersion tube whose inner diameter is 30% or more of the ladle inner diameter (the average diameter of the bottom of the molten steel and the surface of the molten steel). . If the inner diameter of the immersion tube is smaller than this, uniform mixing of the molten steel in the ladle will be inhibited. Further, as will be described later, when powder containing iron oxide or the like is sprayed to promote the decarburization reaction, the inner refractory material of the immersion tube is likely to be damaged due to its influence, which is not preferable. The immersion tube is connected to a vacuum evacuation pump, and the pressure inside the immersion tube can be reduced. Further, the molten steel in the ladle is stirred by, for example, blowing Ar gas into the molten steel through a porous plug. The molten steel in the ladle is sucked up into the immersion pipe depending on the degree of pressure reduction. For this molten steel surface,
A powder containing fluorine f-sulfur and iron oxide or nickel oxide is sprayed from above the immersion tube through a top blowing lance inserted into the tube. Powder containing iron oxide refers to iron ore powder, sintered ore powder, iron-chromium ore powder, iron-manganese ore powder, and the like. Further, the powder containing nickel oxide refers to NIO powder and the like. When these are sprayed onto the molten steel surface, they penetrate into the molten steel and react with C in the molten steel to generate CO gas.

これらの経過を通して浸漬管内の溶鋼の攪拌を促進し、
かつ供給された粉体のうち鉄酸化物あるいはニッケル酸
化物は大半、脱炭用陵素源として用いられることから、
吹酸速度一定でも脱炭速度をそれだけ高めることができ
る。
Through these processes, the stirring of molten steel in the immersion tube is promoted,
In addition, most of the supplied powder is iron oxide or nickel oxide, which is used as a raw material source for decarburization.
Even if the blowing acid rate is constant, the decarburization rate can be increased accordingly.

粉体中の脈石分はスラグを形成するので、内張耐火物侵
食などの点から、多すぎることは好ましくない、また、
クロ゛ム酸化物は鉄酸化物に比して還元速度が小さいこ
とから、特に溶鋼9チが低くなると未還元のtま浮上す
るものの比率がふえる傾向がある。したがって、最も好
ましいのは脈石分の少ない鉄鉱石あるいは焼結鉱粉また
はNIO粉である。ニッケル酸化物は、ニッケルを含む
溶鋼(例えば18’1Cr−8%Niステンレス鋼)を
溶製する場合のみ有効に用いられる。
Since the gangue content in the powder forms slag, it is undesirable to have too much gangue from the viewpoint of corrosion of the lining refractories, etc.
Since the reduction rate of chromium oxide is lower than that of iron oxide, the ratio of unreduced steel floating to the surface tends to increase especially when the molten steel becomes low. Therefore, the most preferred are iron ore, sintered ore powder, or NIO powder with a low gangue content. Nickel oxide is effectively used only when melting molten steel containing nickel (for example, 18'1Cr-8%Ni stainless steel).

これらの酸化物の供給は、上吹ランスを通して酸素ガス
あるいはArなどの不活性ガスをキャリヤとして行う。
These oxides are supplied through a top blowing lance using oxygen gas or an inert gas such as Ar as a carrier.

ランス先端でのガス流速は80 m/aec以上、望ま
しくは130 m、/+se以上となるようにする。ラ
ンスは溶鋼面に対して、斜めではなく、はぼ垂直である
ことが望ましい。その理由は、(1)粉体による、上吹
ランス内面の摩耗が大幅に減少できる、 (11)浸漬管内張耐火物の局部損傷を防止できる、(
iiI)後述のような、粉体吹付けによる溶鋼飛散減少
、溶鋼攪拌促進などの効果が得られやすい、からである
The gas flow velocity at the tip of the lance is set to be 80 m/aec or more, preferably 130 m/+se or more. It is desirable that the lance be perpendicular to the surface of the molten steel, rather than being diagonal. The reasons for this are: (1) abrasion of the inner surface of the top blowing lance due to powder can be significantly reduced; (11) local damage to the refractory lining of the immersion pipe can be prevented;
iii) This is because it is easy to obtain effects such as reducing molten steel scattering and promoting molten steel stirring by powder spraying, as described below.

溶鋼脱炭用の酸素源として鉄酸化物あるいはニッケル酸
化物を含む粉体を用いた場合の効果としては次のような
ものがある。
The effects of using powder containing iron oxide or nickel oxide as an oxygen source for decarburizing molten steel are as follows.

(1)気体酸素の供給量が一定でも、酸化物から供給さ
れる酸素量がふえるほど、脱炭速度を大にすることかで
きる。これは気体酸素の供給量がスプラッシュの発生、
その他によって制約される場合に効果的な解決策である
(1) Even if the amount of gaseous oxygen supplied is constant, the decarburization rate can be increased as the amount of oxygen supplied from the oxide increases. This is because the amount of gaseous oxygen supplied causes a splash,
This is an effective solution when constrained by other factors.

(2)脱炭速度が犬になると、処理前の(C1)が高く
なジ、脱炭幅を大にできる。第2図に示すように、気体
酸素だけを用いた場合、脱炭幅が大きいほど脱炭処理後
の溶鋼温度が高くなる。それに対して、酸化物から供給
される脱炭用酸素量の比 −率をかえることによって処
理後の溶鋼温度を調整することができる。
(2) When the decarburization rate becomes high, (C1) before treatment is high, and the decarburization width can be increased. As shown in FIG. 2, when only gaseous oxygen is used, the larger the width of decarburization, the higher the temperature of molten steel after decarburization. On the other hand, the temperature of molten steel after treatment can be adjusted by changing the ratio of the amount of oxygen for decarburization supplied from the oxide.

(3)粉体を溶鋼面に吹き付けると、特に火点部の温度
上昇を調整することにより、第3図に示すようにメタル
成分の蒸発量を減少することができる。
(3) When powder is sprayed onto the molten steel surface, the amount of evaporation of metal components can be reduced as shown in FIG. 3, especially by adjusting the temperature rise at the hot spot.

これは、特に鉄に比べて蒸気圧が高い。クロムやマンガ
ンを多tに含む溶鋼を減圧脱炭する時に効果的である。
It has a high vapor pressure, especially compared to iron. It is effective when decarburizing molten steel containing a large amount of chromium and manganese under reduced pressure.

(4)溶鋼を浸漬管に吸い上げて精錬する方式の最大の
欠点は、溶鋼の均一混合が阻害されやすいことである。
(4) The biggest drawback of the method of refining molten steel by sucking it up into a dipping tube is that uniform mixing of the molten steel is likely to be hindered.

脱炭用酸素として気体酸素だけを用いた時は、脱炭反応
は発熱反応であるため浸漬管上部の溶鋼温度の方がバル
クに比して高くなり、対流による混合が阻害される。こ
れに対して、金属酸化物を酸素源として用いる場合には
脱炭反応は吸熱反応であるから、脱炭の進行とともに対
流による混合促進がおこる。
When only gaseous oxygen is used as oxygen for decarburization, since the decarburization reaction is an exothermic reaction, the temperature of the molten steel at the top of the immersion tube is higher than that of the bulk, and mixing by convection is inhibited. On the other hand, when a metal oxide is used as an oxygen source, since the decarburization reaction is an endothermic reaction, mixing is promoted by convection as decarburization progresses.

(5)酸化性ガスを高クロム溶鋼に吹付けた場合、一旦
、クロム酸化物被覆ができ、それが溶鋼中の“ 炭素と
反応することによって脱炭反応がおこる。
(5) When oxidizing gas is sprayed onto high-chromium molten steel, a chromium oxide coating is formed, which reacts with carbon in the molten steel, causing a decarburization reaction.

酸化物被膜が溶鋼中に捲き込まれる速度がおそいと、酸
化物の蓄積、塊状化がおこり、ますます溶鋼脱炭が進み
にくくなる。これに対して酸化物を吹付けた時には慣性
力によって酸化物が溶鋼中に侵入するが、その時に溶鋼
表面に生成した酸化物を一緒に溶鋼中にたたき込むとい
う効果、及び溶鋼中で脱炭反応がおこることにより発生
したCOガスが溶鋼を攪拌することの相乗効果により、
再酸化物の蓄積なく脱炭反応を効率的に進めることがで
きる。
If the rate at which the oxide film is engulfed into the molten steel is slow, the oxides will accumulate and form agglomerates, making it increasingly difficult to decarburize the molten steel. On the other hand, when oxides are sprayed, the oxides enter the molten steel due to inertial force, but the oxides generated on the surface of the molten steel are also knocked into the molten steel, and the decarburization reaction occurs in the molten steel. Due to the synergistic effect of the CO gas generated by the stirring of molten steel,
The decarburization reaction can proceed efficiently without accumulation of re-oxides.

(6)浸漬管内で精錬を行う方式では、飛散メタルによ
る浸漬管内地金付着が想念される。第4図は溶鋼脱炭用
に酸化物から供給される酸素の比率(F・0あるいはN
IOが脱炭に関与すると仮定)と、浸漬管内への地金付
着量指数の関係を示す。本発明による酸化物吹付けを併
用する減圧脱炭法は、地金付を減少する点でも効果が大
きいことがわかる。
(6) In the method of refining in a dipping tube, it is possible that metal particles may adhere to the inside of the dipping tube due to scattered metal. Figure 4 shows the ratio of oxygen supplied from oxides for decarburizing molten steel (F・0 or N
(assuming that IO is involved in decarburization) and the index of the amount of metal deposited inside the immersion pipe. It can be seen that the vacuum decarburization method combined with oxide spraying according to the present invention is highly effective in reducing metal build-up.

醸化物の吹付は量の最適条件は次のようにして決定され
る。第3図〜第4図に示すように、脱炭用酸素として酸
化物から供給される酸素の比率が8チ以上の場合に、前
述したよりな各種の効果が顕著になる。酸化物供給量の
上限は、脱炭にともなう溶鋼温度降下によって規定され
る。すなわちこの値は、処理前の溶鋼温度EC) 1、
処理中の放散熱量(すなわち溶鋼規模)などによって変
るが、第2図に見られるように、外部からの熱供給がな
い場合には、酸化物使用量には上限がある。この熱的な
制約を取り除くための方法が浸漬管2に誘導加熱コイル
7を捲いて浸漬管内の溶鋼を誘導加熱することを併用す
ることである(第5図)。第5図において、7は誘導コ
イル、8は遮熱物である。
The optimum conditions for spraying the brewing material are determined as follows. As shown in FIGS. 3 and 4, when the ratio of oxygen supplied from the oxide as decarburization oxygen is 8 or more, the various effects described above become more noticeable. The upper limit of the oxide supply amount is determined by the drop in molten steel temperature accompanying decarburization. In other words, this value is the molten steel temperature EC before treatment) 1.
Although it varies depending on the amount of heat dissipated during processing (that is, the scale of the molten steel), as shown in FIG. 2, there is an upper limit to the amount of oxide used when there is no external heat supply. A method for removing this thermal restriction is to wind the induction heating coil 7 around the immersion tube 2 and to inductively heat the molten steel in the immersion tube (FIG. 5). In FIG. 5, 7 is an induction coil, and 8 is a heat shield.

このように吸い上げた溶鋼を誘導攪拌(同時に誘導加熱
)する方式は、 (i)他の加熱方法と異なり取鍋としては特殊なものを
用いる必要がないこと、 (ii)浸漬管には内向きの力が作用するので、クラッ
クや目地開きが生じにくく、溶鋼がしみ込んで誘導コイ
ルのトラブルをおこすおそれがないこと、(io)浸漬
管内の溶鋼が誘導攪拌されるので酸化物の溶鋼中のCと
の反応を促進できる、 などの利点がある。
This method of induction stirring (simultaneously induction heating) the molten steel sucked up has the following advantages: (i) Unlike other heating methods, there is no need to use a special ladle; (ii) the immersion tube has an inward-facing (io) Since the molten steel in the immersion tube is stirred by induction, cracks and joint openings are less likely to occur, and there is no risk of molten steel seeping in and causing problems with the induction coil. It has the advantage of being able to promote reactions with

誘導加熱を併用することにより、熱的および反応速度的
制約をとりのぞくことができ、酸化物として供給される
駿素源の比率を任意の値まで高めることができる。
By using induction heating in combination, thermal and reaction rate constraints can be removed, and the ratio of the sulfur source supplied as an oxide can be increased to an arbitrary value.

なお、精錬中は、取鍋内の大気圧に接している溶鋼面か
ら適宜、測温、サンプリングを行い、その状況に応じて
、吹酸速度、粉体供給速度(誘導コイルを用いた場合に
は誘導電力負荷)などを調整でき、最適条件で減圧脱炭
を行うことが可能である。
During refining, temperatures are measured and samples are taken from the molten steel surface in contact with atmospheric pressure in the ladle, and depending on the situation, the blowing acid rate and powder supply rate (when using an induction coil) It is possible to adjust the induction power load) and perform vacuum decarburization under optimal conditions.

(実施例) (1)転炉で溶製した18悌Cr−0,796Cの溶鋼
(1650℃)を取鍋に受鋼し、第1図に示した設備を
用いて、0□と鉄酸化物を含む粉体を上吹する方法で減
圧脱炭した。用いた鉄酸化物を含む粉体は1m〜0、 
l wmに粉砕したスケール(T、Fe : 74%)
で、内管と外管からなる二重管ランスを用いて内部の管
から計をキャリヤ(先端ガス流速130 m/sea 
)として溶鋼面に吹付ける。外側の管は酸素ガスを供給
する。
(Example) (1) 18°Cr-0,796C molten steel (1650°C) produced in a converter was received in a ladle, and 0□ and iron oxidation were carried out using the equipment shown in Figure 1. The powder containing solids was decarburized under reduced pressure by top blowing. The powder containing iron oxide used was 1 m to 0,
Scale ground to l wm (T, Fe: 74%)
Then, a double pipe lance consisting of an inner tube and an outer tube was used to carry the meter from the inner tube (tip gas flow rate 130 m/sea).
) onto the molten steel surface. The outer tube supplies oxygen gas.

脱炭を行いつつ、取鍋内から溶鋼のサンプリング及び測
温を行いつつ、吹識量、浸漬管内の雰囲慨圧力、スケー
ル粉吹込み速度を次のように調整して、所定の低炭域ま
で脱炭を行った。
While decarburizing, sampling the molten steel from inside the ladle and measuring its temperature, the amount of blowing tip, atmospheric pressure in the immersion pipe, and scale powder injection speed are adjusted as follows to achieve a specified low carbon content. Decarburization was carried out up to the area.

脱炭所要時間は20分である。脱炭後の溶鋼温度は16
10℃であった。これを成分調整して鋳造した。
The time required for decarburization is 20 minutes. Molten steel temperature after decarburization is 16
The temperature was 10°C. The composition was adjusted and cast.

(ii)転炉で溶製した1 B’1iCr −7,79
11Nl −1,0チCの溶鋼(1630℃)を取鍋に
受鋼し、第5図に示した設備を用いて、溶鋼を誘導攪拌
しつつ、0□と装置化物、ニッケル酸化物を含む粉体を
上吹する方法で減圧脱炭した。第5図において、第1図
と同一符号は第1図と同一の部分を示し、7は誘導加熱
コイル、8は遮熱物である。
(ii) 1 B'1iCr -7,79 melted in a converter
11Nl -1,0C molten steel (1630℃) was received in a ladle, and using the equipment shown in Fig. 5, the molten steel was stirred by induction, containing 0□, equipment oxides, and nickel oxides. The powder was decarburized under reduced pressure by top blowing. In FIG. 5, the same reference numerals as in FIG. 1 indicate the same parts as in FIG. 1, 7 is an induction heating coil, and 8 is a heat shield.

ニッケル酸化物としてはNIO粉の0.5■以下を用い
た。その他の方法は(i)で述べたのと同様である。
As the nickel oxide, 0.5 μm or less of NIO powder was used. The other methods are the same as those described in (i).

所要時間18分でc:o、os%まで脱炭し、1605
℃の18%Cr −7,99JNI溶鋼を得た。これを
成分調整して鋳造した。
Decarburization to c:o, os% in 18 minutes, 1605
C. 18% Cr-7,99JNI molten steel was obtained. The composition was adjusted and cast.

以上、高クロム溶鋼の脱炭を例にして説明したが、この
発明は他の成分の溶鋼の減圧脱炭にもそのまま応用する
ことができる。
Although the decarburization of high-chromium molten steel has been described above as an example, the present invention can be directly applied to vacuum decarburization of molten steel with other components.

(発明の効果) この発明は、溶鋼、特に高クロム溶鋼の減圧脱炭法のう
ち、浸漬管内を減圧にして溶鋼を吸い上げて、浸漬管内
で精錬する方法の問題点を解決して機能を大幅に拡大す
ることを可能にするものであって、経済的な効果が大き
い。
(Effects of the Invention) This invention solves the problems of the vacuum decarburization method for molten steel, especially high-chromium molten steel, in which the pressure inside the immersion tube is reduced, the molten steel is sucked up, and the molten steel is refined in the immersion tube. This makes it possible to expand into other countries, and has a large economic effect.

【図面の簡単な説明】[Brief explanation of drawings]

第111Wは本発明を実施するために用いる設備の1例
を示す説明図、第2図は脱炭用に供給される酸素のうち
、鉄酸化物(F@Oとして計算)としての酸素が占める
比率と、脱炭に伴う溶鋼の温度変化の関係の1例を示す
図、第3図は脱炭用に供給される酸素のうち、鉄酸化物
(F・0として計算)としての酸素が占める比率と、溶
鋼中クロム分の蒸発量(相対値)の関係の1例を示す図
、第4図は脱炭用に供給される酸素のうち、鉄陵化物(
F・0として計算)としての酸素が占める比率と、付着
地金(相対値)の関係の1例を示す図、1lEs図は本
発明を実施するために用いる設備のうち、誘導加熱を併
用する場合の1例を示す説明図である。 特許出顯人 新日本製鐵株式貴社 第1図 E  Ar底軟ボ−ラスアラク゛ 第2図 脱炭用1【イパ給さ虐る縣の55金欠酸化物(Feθヒ
し7計算)とLZのfjBf占め2比阜第3図 第4図
Figure 111W is an explanatory diagram showing an example of equipment used to carry out the present invention, and Figure 2 is an explanatory diagram showing an example of equipment used to carry out the present invention. Figure 2 shows that oxygen as iron oxide (calculated as F@O) accounts for the oxygen supplied for decarburization. A diagram showing an example of the relationship between the ratio and the temperature change of molten steel due to decarburization. Figure 3 shows how oxygen in the form of iron oxides (calculated as F 0) accounts for the oxygen supplied for decarburization. Figure 4 shows an example of the relationship between the ratio and the amount of evaporation (relative value) of chromium in molten steel.
A diagram showing an example of the relationship between the proportion occupied by oxygen (calculated as F. It is an explanatory view showing an example of the case. Patent issued by Nippon Steel Corporation Fig. 1 E Ar-bottom soft bolus aluminum Fig. 2 For decarburization 1 Occupancy 2 Hifu Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)取鍋内の溶鋼中に、内面を耐火物で被覆した管の
一部を浸漬し、該浸漬管内を減圧にして溶鋼を吸い上げ
るとともに、管内溶鋼に上吹ランスにより酸素ガスと鉄
酸化物あるいはニッケル酸化物を含む粉体を吹き付ける
ことを特徴とする溶鋼の減圧脱炭法。
(1) A part of the tube whose inner surface is coated with refractory is immersed in the molten steel in the ladle, the inside of the immersed tube is depressurized and the molten steel is sucked up, and the molten steel inside the tube is exposed to oxygen gas and iron oxidation using a top blowing lance. A vacuum decarburization method for molten steel characterized by spraying powder containing nickel oxide or nickel oxide.
(2)浸漬管内の溶鋼を誘導加熱することを特徴とする
特許請求の範囲(1)記載の方法。
(2) The method according to claim (1), characterized in that the molten steel in the immersion tube is heated by induction.
JP25645184A 1984-12-06 1984-12-06 Vacuum decarburization method of molten steel Pending JPS61136613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25645184A JPS61136613A (en) 1984-12-06 1984-12-06 Vacuum decarburization method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25645184A JPS61136613A (en) 1984-12-06 1984-12-06 Vacuum decarburization method of molten steel

Publications (1)

Publication Number Publication Date
JPS61136613A true JPS61136613A (en) 1986-06-24

Family

ID=17292829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25645184A Pending JPS61136613A (en) 1984-12-06 1984-12-06 Vacuum decarburization method of molten steel

Country Status (1)

Country Link
JP (1) JPS61136613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439315A (en) * 1987-08-03 1989-02-09 Daido Steel Co Ltd Steel refining method
JPS6439314A (en) * 1987-08-03 1989-02-09 Daido Steel Co Ltd Method for refining steel
JPH06212241A (en) * 1991-06-19 1994-08-02 Nippon Steel Corp Method for vacuum-refining molten steel by using large diameter immersion tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113314A (en) * 1981-12-25 1983-07-06 Sumitomo Metal Ind Ltd Decarburizing and refining method for steel
JPS60181217A (en) * 1984-02-24 1985-09-14 Sumitomo Metal Ind Ltd Production of low-nitrogen high-chromium alloy steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113314A (en) * 1981-12-25 1983-07-06 Sumitomo Metal Ind Ltd Decarburizing and refining method for steel
JPS60181217A (en) * 1984-02-24 1985-09-14 Sumitomo Metal Ind Ltd Production of low-nitrogen high-chromium alloy steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439315A (en) * 1987-08-03 1989-02-09 Daido Steel Co Ltd Steel refining method
JPS6439314A (en) * 1987-08-03 1989-02-09 Daido Steel Co Ltd Method for refining steel
JPH06212241A (en) * 1991-06-19 1994-08-02 Nippon Steel Corp Method for vacuum-refining molten steel by using large diameter immersion tube

Similar Documents

Publication Publication Date Title
JP3903580B2 (en) Method of melting high cleanliness steel
JPS61136613A (en) Vacuum decarburization method of molten steel
JPS6159376B2 (en)
JPH06240338A (en) Method for desulfurizing molten steel
JP3843589B2 (en) Melting method of high nitrogen stainless steel
US3867134A (en) Method for producing stainless steel in a basic oxygen furnace
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP2767674B2 (en) Refining method of high purity stainless steel
CN101942597B (en) Production method of gear steel
JPS5956514A (en) Method for deoxidizing and desulfurizing molten stainless steel
JP2724035B2 (en) Vacuum decarburization of molten steel
JP2778335B2 (en) Decarburization refining method for high Mn steel
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
KR900002572B1 (en) Method of refining molten steel by arc process
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JPH0125370B2 (en)
JPH01156416A (en) Method for decarburizing high-chromium steel having excellent decarburizing characteristic under reduced pressure
JPH01100216A (en) Ladle refining method for molten steel
JP2940358B2 (en) Melting method for clean steel
JP2889901B2 (en) Liquid steel bath reheating method
JPH02133510A (en) Vacuum treating apparatus
JPS63216917A (en) Method for refining molten steel in molten metal vessel
JP3297765B2 (en) Desulfurization method of molten steel
JPH059552A (en) Top blowing lance type ladle refining apparatus
JPS5941415A (en) Decarburization of high-chromium steel