JP3903580B2 - Method of melting high cleanliness steel - Google Patents

Method of melting high cleanliness steel Download PDF

Info

Publication number
JP3903580B2
JP3903580B2 JP07972398A JP7972398A JP3903580B2 JP 3903580 B2 JP3903580 B2 JP 3903580B2 JP 07972398 A JP07972398 A JP 07972398A JP 7972398 A JP7972398 A JP 7972398A JP 3903580 B2 JP3903580 B2 JP 3903580B2
Authority
JP
Japan
Prior art keywords
steel
molten steel
ton
stirring
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07972398A
Other languages
Japanese (ja)
Other versions
JPH11279630A (en
Inventor
悟郎 奥山
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP07972398A priority Critical patent/JP3903580B2/en
Publication of JPH11279630A publication Critical patent/JPH11279630A/en
Application granted granted Critical
Publication of JP3903580B2 publication Critical patent/JP3903580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高清浄度鋼の溶製方法に係わり、詳しくは、VOD等の底吹きガス撹拌機能を有する減圧製錬装置を用いた所謂二次精錬の末期に、脱炭済みの溶鋼を脱酸剤で脱酸するにあたり、溶鋼中へのスラグの巻き込み量を低減し、非金属介在物の少ない鋼を溶製する技術に関する。
【0002】
【従来の技術】
溶鋼中の酸素は、溶鋼に溶解した所謂フリー酸素、脱酸剤と反応して生成した脱酸生成物系介在物及び精錬で生じたスラグの巻き込みによって生じたスラグ系介在物のいずれかの形態で存在する。そして、この溶鋼中の酸素は、該溶鋼を鋳造、圧延して製造する製品鋼材の品質に悪影響を及ぼすので、通常は、転炉精錬の後に二次精錬を行って、できるだけ低くするようにしている。なお、この二次精錬に用いられる装置の一つに、図3に示すようなVOD(Vacuum Oxygen Decarburization ノ 略) 方式の減圧精錬装置7がある。それは、溶鋼1を収容した取鍋2の周囲を密封容器3で囲み、該容器3内を減圧できるようになっている。また、その容器3内には、ランス4を介して酸素ガス5を溶鋼1に吹き付け、脱炭を行う機能と、取鍋2の底から不活性ガス6を吹込み、該底吹きガス6で溶鋼1を撹拌する機能とを備えている。
【0003】
従来、かかるVOD精錬装置を用いた溶鋼中酸素の低減方法としては、溶鋼表面上に形成するスラグの塩基度(CaO/SiO2 )を高くし、そのスラグとメタル間の反応で決まる溶鋼中の平衡酸素濃度が低いことを利用して、所謂フリー酸素を低減する方法と共に、底吹きガス撹拌を強化して、脱酸生成物を浮上分離する方法が採用されていた。
【0004】
しかしながら、このような減圧精錬処理では、溶鋼1の表面上に溶融したスラグ8が存在するので、底吹きガス6で溶鋼1を過度に強撹拌すると、該スラグ8が必ず溶鋼1中に巻き込まれる。その際、巻き込まれたスラグ8の粒子が大きい時は、溶鋼1中で再度浮上し、容易に除去される。ところが、数10μm以下の大きさの粒子は、浮上し難く除去できないことが多いので、溶鋼1中の酸素濃度を増加し、製品鋼材に欠陥をもたらす原因となる。それでも、底吹きガス6による撹拌は、スラグ−メタル反応によるスラグ8の還元促進やフリー酸素低下には欠かすことができないので、減圧精錬では、溶鋼1へのスラグ8の巻き込みを如何に改善するかが問題となっていた。
【0005】
【発明が解決しようとする課題】
本発明は、かかる状況に鑑み、VODのような減圧精錬装置を用い、溶鋼中の脱酸生成物及びスラグ巻き込みに起因した非金属介在物を従来より低減できる高清浄度鋼の溶製方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
発明者は、上記目的を達成するため、VOD減圧精錬装置を用い、溶鋼のフリー酸素濃度が低く、且つ脱酸生成物やスラグの巻き込み量の少ない鋼の製造をいかにすれば良いか研究を重ねた。そして、該二次精錬のうちの末期、つまり金属Al,Fe−Si等での脱酸還元処理時における、溶鋼の撹拌方法に着眼し、本発明を完成させた。
【0007】
すなわち、本発明は、底吹きガス撹拌機能を有する減圧錬装置内で脱炭した溶鋼に、引き続き脱酸剤を投入して脱酸処理する溶鋼の精錬方法において、前記脱酸剤の投入から5分間以上30分以下は、前記溶鋼を下記(1)式で定義される撹拌動力密度(ε)が300ワット/トン−steel以上500ワット/トン−steel以下となる条件で撹拌し、その後は、前記撹拌動力密度が10ワット/トン−steel以上250ワット/トン−steel以下となる条件での撹拌を5分間以上30分以下行うことを特徴とする高清浄度鋼の溶製方法である。
【0008】
ε=0.0285・Q・T/W・log(1+Z/148×760/P) …(1)
ε:撹拌動力密度(ワット/トン−steel)
Q:底吹きガス流量(ノルマル・リットル/分)
T:鋼浴温度(K°)
W:鋼浴重量(トン)
Z:浴深さ(cm)
P:真空度(torr)
また、本発明は、前記減圧製錬装置をVODとすることを特徴とする高清浄度鋼の溶製方法である。
【0009】
本発明では、脱酸生成物ができ、スラグに十分に吸収される間は強撹拌し、脱酸生成物が十分浮上し、スラグが均一化した後は弱撹拌するようにしたので、溶鋼への脱酸生成物やスラグの巻き込みが抑制できるようになる。その結果、従来より清浄な溶鋼が得られるようになる。
【0010】
【発明の実施の形態】
以下、図面を参照し、本発明の実施の形態を説明する。
まず、転炉等の製鋼炉(図示せず)で粗脱炭された溶鋼1を取鍋2に出鋼し、該取鍋2を、底吹きガス6による撹拌機能を有する減圧精錬装置7に移行する。
なお、ここでは、該減圧精錬装置7として、図3に示したVODを採用している。
【0011】
このVODでは、減圧精錬の第一段階として、密封容器3内を減圧すると共に、ランス4を介して酸素ガス5を溶鋼に吹き付け、目標炭素濃度まで脱炭が行われる。この酸素吹錬脱炭に引き続き、上吹酸素を停止して、溶鋼中の溶存酸素による所謂「C−O脱炭」を行うこともある。そして、脱炭が終了してから、第二段階として、溶鋼1中に金属Al,SiあるいはFe−Si等の脱酸剤を投入し、脱酸処理が実施される。本発明は、この脱酸処理中の溶鋼1の撹拌を、従来とは異なる方法で行い、得られる溶鋼1の酸素濃度を従来より低減し、非金属介在物の溶鋼への混入を抑制するものである。
【0012】
具体的には、脱酸剤の投入から少なくとも5分間を強く撹拌し、その後少なくとも5分間を弱く撹拌して、スラグ8の巻き込みを抑制する。その一例を、時間と撹拌動力密度との関係として図1に示す。図1では、撹拌動力密度を一度だけ階段状に変更しているが、本発明は、この変更方法はこの例に限るものではない。つまり、複数回の変更を行っても良いし、また該動力密度を連続的に低下させても良い。
【0013】
脱酸剤の投入から少なくとも5分間を、撹拌動力密度300ワット/トン−steel以上とする理由は、次の通りである。脱酸剤投入直後には、非金属介在物の浮上分離もさることながら、まず、脱酸剤によってスラグ自体を十分に且つ均一に還元することが肝要である。この段階でスラグの還元が不十分であると、たとえ介在物を浮上分離させても、スラグ中の酸化クロム、酸化鉄、マンガン酸化物などの低級酸化物が解離して溶鋼中にフリー酸素を供給し続けることになり、精錬の終了後に溶鋼を再酸化し、新たに非金属酸化物が生成する原因となる。この反応は、すべて溶鋼の撹拌の強さに依存しており、とりわけ300ワット/トン−steel以上という強撹拌条件で、その効果が顕著となる。この強撹拌処理を少なくとも5分間行うのは、脱酸剤とスラグの反応を十分に行わせ、スラグを均一化しておくためである。なお、撹拌動力密度の上限は、特に設けないが、あまりに撹拌が激しいと、溶鋼容器から外に溶鋼が噴出したり、容器の蓋に地金が付着したりして操業を阻害するので、500ワット/トン−steel程度にとどめておくのが望ましい。また、処理時間の上限は、特に定めないが、あまり長時間になると、スラグによる溶鋼容器の内張り耐火物の溶損が発生するので、30分程度、より好ましくは20分程度にとどめるのが好ましい。
【0014】
一方、上記の処理後に、撹拌動力密度で250ワット/トン−steel以下の撹拌処理を少なくとも5分間以上行うのは、次の理由による。この時期には、もはやスラグの還元や均一化は重要でなく、溶鋼中の非金属介在物及び上記強撹拌の際に溶鋼中に巻き込まれたスラグの浮上をはかり、溶鋼を清浄化することが大切である。そして、鋼浴面上のスラグが新たに溶鋼中に巻き込まれることは、極力避けなければならない。撹拌動力密度が250ワット/トン−steelを超えると、上記スラグ巻き込みの速度が、スラグや介在物の浮上速度より勝ってしまうので、この時期の撹拌動力密度は、250ワット/トン−steelを上限とする。撹拌動力密度の下限は、特に設けるものではないが、撹拌によるスラグや非金属介在物の浮上分離が所定時間内に十分なされることが必要であるから、10ワット/トン−steel以上で行うのが良い。
【0015】
この相対的に弱撹拌の時期は、少なくとも5分間行うが、これは、介在物や巻き込みスラグを十分に浮上分離させるために最低限5分間の処理が必要だからである。この処理時間も特に上限を定めるものではないが、前述の処理と同様に、あまり長時間になると、スラグによる溶鋼容器の内張り耐火物の溶損が発生するので、30分程度、より好ましくは20分程度にとどめるのが望ましい。なお、前記(1)式の撹拌動力密度は、真空下でのガス撹拌エネルギーを表わすものとして公知であるので、説明を省略する。
【0016】
次に、発明者は、かかる本発明の実施効果をSUS304のステンレス鋼で確認した。当該鋼種は、Ca処理を実施しないため、溶鋼中にCa成分は元来存在しないが、スラグ中にはCaOが含まれていることを利用した。つまり、溶鋼中へのスラグの巻き込み量を、溶鋼中のTotal.Caの濃度で比較したのである。
【0017】
その結果を図2に示す。図2に示す従来法とは、脱酸・還元処理期間中を300ワット/トン・steelと一定で強撹拌した場合であり、本発明法とは、十数分の強撹拌後に250ワット/トン・steel以下にした場合である。図2より、本発明法の適用で、従来法の強撹拌で一定に処理する場合よりも還元・脱酸処理終了後の溶鋼中のT.Ca濃度が低下する。この鋼種の精錬条件では、溶鋼中のTotal Ca源としては、スラグ中のCaOしかありえない。従って、この結果から、スラグ8の溶鋼1への巻き込みが減ることが明らかである。
【0018】
【実施例】
(実施例1)
転炉で粗脱炭を行った溶鋼160トンを取鍋2に出鋼し、その後VOD真空精錬装置で酸素吹錬を行い、C:0.055重量%、Cr:18.2重量%の溶鋼1を得た。しかる後、該溶鋼1にFe−Si合金を950kg添加し、装置内の真空度を3torrに減圧し、底吹きガス6としてArガスを500ノルマル・リットル/分で吹込み、所謂脱酸・還元処理を開始した。従って、開始当初の撹拌動力密度は、420ワット/トン−steelである。
【0019】
この状態を15分間続けた後、装置内の真空度を40torrにまで下げ、Arガスを100Nリットル/分に変更して、撹拌動力密度を47ワット/トン・steelとして7分間の弱撹拌を行った。
その結果、C:0.052重量%、Cr:18.3重量%、Si:0.35重量%、O:45ppm、およびT.Ca:1ppmのスラグ巻き込みの少ないステンレス溶鋼を得ることができた。また、この溶鋼で得た鋳片を切断し、断面を顕微鏡観察で調査したが、存在する非金属介在物の面積率は、極めて少なかった。
【0020】
(実施例2)
実施例1と同様に、転炉で粗脱炭を行った溶鋼160トンを取鍋2に出鋼し、その後VOD真空精錬装置で酸素吹錬を行い、C:0.06重量%、Cr:18.1重量%の溶鋼を得た。しかる後、該溶鋼1にFe−Si合金1000kgを添加し、該装置内の真空度を3torrに減圧し、底吹きガス6のArガスを500ノルマル・リットル/分で吹込み、撹拌動力密度を420ワット/トン・steelの脱酸・還元処理を開始した。
【0021】
この状態を15分間継続した後、装置内の真空度を3torrとしたまま、Arガスを60ノルマル・リットル/分に変更し、撹拌動力密度を50ワット/トン・steelで8分間の弱撹拌を行った。その結果、C:0.056重量%、Cr:18.2重量%、Si:0.38重量%、O:47ppm、およびT.Ca:1ppmのスラグ巻き込みの少ないステンレス溶鋼を得ることができた。また、この溶鋼で得た鋳片を切断し、断面を顕微鏡観察で調査したが、非金属介在物の面積率は、実施例と同程度であり、極めて少なかった。
【0022】
(従来例)
実施例1と同様に、転炉で粗脱炭を行った溶鋼160トンを取鍋2に出鋼し、その後VOD真空精錬装置で酸素吹錬を行い、C:0.06重量%、Cr:18.1重量%の溶鋼を得た。しかる後、該溶鋼1にFe−Si合金1000kgを添加し、該装置内の真空度を3torrに減圧し、底吹きガス6のArガスを500ノルマル・リットル/分で吹込み、撹拌動力密度を420ワット/トン・steelの脱酸・還元処理を開始した。そして、この状態を15分間継続した後、出鋼した。その結果、溶鋼成分は、C:0.056重量%、Cr:18.2重量%、Si:0.38重量%、O:50ppm、およびT.Ca:7ppmであり、そのTotal Ca濃度からスラグ起因の介在物の巻き込みがあることが明らかになった。また、この溶鋼で得た鋳片を切断し、断面を顕微鏡観察で調査したところ、非金属介在物の面積率は、実施例1、2の5倍であり、清浄度が劣るものであった。
【0023】
【発明の効果】
以上述べたように、本発明では、脱酸生成物ができ、スラグに十分に吸収される間は強撹拌し、スラグが溶鋼に巻き込まれ易くなってからは弱撹拌するようにしたので、溶鋼への脱酸生成物やスラグの巻き込みが抑制できるようになる。その結果、非金属介在物が従来より少ない、つまり清浄な溶鋼が安定して得られるようになった。
【図面の簡単な説明】
【図1】従来法と本発明法とで、還元・脱酸処理中の撹拌動力密度パターンを比較した図であり、(a)が本発明法、(b)が従来法のものである。
【図2】還元・脱酸処理中の溶鋼の撹拌動力密度と処理後の溶鋼中Total.Ca濃度との関係図である。
【図3】VOD減圧精錬装置を示す図である。
【符号の説明】
1 溶鋼
2 取鍋
3 密封容器
4 ランス
5 酸素ガス
6 不活性ガス(底吹きガス)
7 減圧精錬装置(二次精錬装置)
8 スラグ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for melting high cleanliness steel, and more specifically, decarburized molten steel is removed at the end of so-called secondary refining using a vacuum smelting apparatus having a bottom blowing gas stirring function such as VOD. In deoxidation with an acid agent, the present invention relates to a technique for reducing the amount of slag entrained in molten steel and melting steel with less non-metallic inclusions.
[0002]
[Prior art]
Oxygen in molten steel is any form of so-called free oxygen dissolved in molten steel, deoxidation product inclusions produced by reaction with a deoxidizing agent, and slag inclusions produced by slag entrainment produced by refining Exists. The oxygen in the molten steel adversely affects the quality of the product steel produced by casting and rolling the molten steel. Usually, secondary refining is performed after converter refining so that it is as low as possible. Yes. One of the apparatuses used for the secondary refining is a vacuum refining apparatus 7 of a VOD (Vacuum Oxygen Decarburization) system as shown in FIG. It surrounds the ladle 2 containing the molten steel 1 with a sealed container 3 so that the inside of the container 3 can be depressurized. Further, an oxygen gas 5 is blown into the molten steel 1 through the lance 4 in the container 3 and a decarburizing function is blown, and an inert gas 6 is blown from the bottom of the ladle 2. And a function of stirring the molten steel 1.
[0003]
Conventionally, as a method for reducing oxygen in molten steel using such a VOD refining apparatus, the basicity (CaO / SiO 2 ) of the slag formed on the molten steel surface is increased, and in the molten steel determined by the reaction between the slag and the metal. In addition to a method of reducing so-called free oxygen by utilizing the low equilibrium oxygen concentration, a method of levitating and separating the deoxidized product by enhancing the bottom blowing gas stirring has been adopted.
[0004]
However, in such a vacuum refining process, there is a molten slag 8 on the surface of the molten steel 1. Therefore, if the molten steel 1 is excessively agitated with the bottom blowing gas 6, the slag 8 is always caught in the molten steel 1. . At that time, when the particles of the slag 8 involved are large, they float up again in the molten steel 1 and are easily removed. However, particles having a size of several tens of μm or less are difficult to float and cannot be removed in many cases, so that the oxygen concentration in the molten steel 1 is increased and causes defects in the product steel. Nevertheless, since stirring with the bottom blowing gas 6 is indispensable for promoting the reduction of the slag 8 by the slag-metal reaction and reducing free oxygen, how to improve the entrainment of the slag 8 into the molten steel 1 in the refining under reduced pressure Was a problem.
[0005]
[Problems to be solved by the invention]
In view of this situation, the present invention provides a high-cleanness steel melting method that can reduce deoxidation products in molten steel and non-metallic inclusions caused by slag entrainment using a vacuum refining apparatus such as VOD. It is intended to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor repeatedly researched how to produce a steel having a low free oxygen concentration of molten steel and a small amount of deoxidation products and slag by using a VOD vacuum refining apparatus. It was. Further, the present invention was completed by focusing on the molten steel stirring method at the end of the secondary refining, that is, at the time of deoxidation reduction treatment with metal Al, Fe-Si or the like.
[0007]
That is, the present invention is the vacuum spinning smelting molten steel decarburized in a device having a bottom-blown gas stirring function, in refining process of the molten steel for deoxidation treatment by introducing the deoxidizer subsequently, or introduction of the acid acceptor From 5 minutes to 30 minutes , the molten steel is stirred under the condition that the stirring power density (ε) defined by the following formula (1) is 300 watts / ton-steel or more and 500 watts / tonne-steel or less. Is a melting method of high cleanliness steel characterized in that stirring is performed for 5 minutes to 30 minutes under conditions where the stirring power density is 10 watts / ton-steel to 250 watts / ton-steel. .
[0008]
ε = 0.0285 · Q · T / W · log (1 + Z / 148 × 760 / P) (1)
ε: Stirring power density (Watt / ton-steel)
Q: Bottom blowing gas flow rate (normal liters / minute)
T: Steel bath temperature (K °)
W: Steel bath weight (tons)
Z: Bath depth (cm)
P: Degree of vacuum (torr)
Moreover, this invention is a melting method of the high cleanliness steel characterized by using the said vacuum smelting apparatus as VOD.
[0009]
In the present invention, a deoxidation product is formed, and the mixture is vigorously stirred while being sufficiently absorbed by the slag, and the deoxidation product is sufficiently floated, and after the slag has become uniform, the mixture is weakly stirred. Entrainment of deoxidation products and slag can be suppressed. As a result, a molten steel cleaner than before can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First, the molten steel 1 roughly decarburized in a steelmaking furnace (not shown) such as a converter is put into a ladle 2, and the ladle 2 is put into a vacuum refining device 7 having a stirring function by a bottom blowing gas 6. Transition.
Here, the VOD shown in FIG. 3 is adopted as the reduced pressure refining apparatus 7.
[0011]
In this VOD, as the first stage of vacuum refining, the inside of the sealed vessel 3 is depressurized, and oxygen gas 5 is blown onto the molten steel through the lance 4 to decarburize to the target carbon concentration. Subsequent to this oxygen blown decarburization, the top blown oxygen is stopped, and so-called “C—O decarburization” with dissolved oxygen in the molten steel may be performed. Then, after the decarburization is completed, as a second stage, a deoxidizer such as metal Al, Si or Fe—Si is introduced into the molten steel 1 to perform a deoxidation treatment. The present invention stirs the molten steel 1 during the deoxidation treatment by a method different from the conventional method, reduces the oxygen concentration of the obtained molten steel 1 from the conventional method, and suppresses the mixing of nonmetallic inclusions into the molten steel. It is.
[0012]
Specifically, the slag 8 is restrained from being entrained by vigorously stirring for at least 5 minutes from the introduction of the deoxidizer and then weakly stirring for at least 5 minutes. One example is shown in FIG. 1 as the relationship between time and stirring power density. In FIG. 1, the stirring power density is changed in a staircase shape only once, but the present invention is not limited to this example. That is, the change may be performed a plurality of times, or the power density may be continuously reduced.
[0013]
The reason why the stirring power density is 300 watts / ton-steel or more for at least 5 minutes after the deoxidizer is charged is as follows. Immediately after adding the deoxidizer, it is important to reduce the slag itself sufficiently and uniformly by the deoxidizer, in addition to the floating separation of nonmetallic inclusions. If the reduction of slag is insufficient at this stage, even if the inclusions are floated and separated, lower oxides such as chromium oxide, iron oxide and manganese oxide in the slag dissociate and free oxygen is introduced into the molten steel. It will continue to be supplied, and after the refining is finished, the molten steel is re-oxidized, which causes new non-metal oxides to be generated. This reaction all depends on the strength of stirring of the molten steel, and the effect becomes remarkable especially under strong stirring conditions of 300 watt / ton-steel or more. The reason why this strong stirring treatment is performed for at least 5 minutes is to allow the deoxidizer and the slag to sufficiently react and to make the slag uniform. The upper limit of the stirring power density is not particularly set. However, if the stirring is too intense, the molten steel is ejected from the molten steel container, or the metal is attached to the lid of the container and the operation is hindered. It is desirable to keep it at about watt / ton-steel. The upper limit of the treatment time is not particularly defined, but if it is too long, the refractory of the inner refractory of the molten steel container due to slag is generated, so it is preferable to keep it for about 30 minutes, more preferably about 20 minutes. .
[0014]
On the other hand, after the above treatment, the stirring treatment at a stirring power density of 250 watt / ton-steel or less is performed for at least 5 minutes for the following reason. At this time, reduction and homogenization of slag is no longer important, and non-metallic inclusions in the molten steel and slag entrained in the molten steel at the time of the above-mentioned strong stirring are measured to clean the molten steel. It is important. And it must avoid as much as possible that the slag on a steel bath surface is newly wound in molten steel. If the stirring power density exceeds 250 watts / ton-steel, the slag entrainment speed is higher than the slag and inclusion floating speed, so the stirring power density at this time is limited to 250 watts / ton-steel. And The lower limit of the stirring power density is not particularly provided, but it is necessary that the floating separation of slag and non-metallic inclusions by stirring is sufficiently performed within a predetermined time, so that the stirring power density is performed at 10 watt / ton-steel or more. Is good.
[0015]
This relatively weak stirring is performed for at least 5 minutes, because a minimum of 5 minutes of treatment is required to sufficiently float and separate inclusions and entrained slag. Although this treatment time is not particularly limited, as in the above-described treatment, if the treatment time is too long, the refractory of the lining refractory of the molten steel container is caused by slag, so about 30 minutes, more preferably 20 It is desirable to keep it to about a minute. Note that the stirring power density of the formula (1) is well known as representing gas stirring energy in a vacuum, and therefore the description thereof is omitted.
[0016]
Next, the inventor confirmed the implementation effect of the present invention with SUS304 stainless steel. Since the steel type does not carry out Ca treatment, the Ca component originally does not exist in the molten steel, but the fact that CaO is contained in the slag was used. That is, the amount of slag involved in the molten steel is set to Total. The comparison was made by the Ca concentration.
[0017]
The result is shown in FIG. The conventional method shown in FIG. 2 is a case where constant agitation is performed at a constant 300 watts / ton · steel during the deoxidation / reduction treatment period. -This is the case where the value is below steel. FIG. 2 shows that the T.V. in the molten steel after completion of the reduction / deoxidation treatment is higher than that in the case of constant treatment with the strong stirring of the conventional method. The Ca concentration decreases. Under the refining conditions of this steel type, only the CaO in the slag can be the total Ca source in the molten steel. Therefore, from this result, it is clear that the entrainment of the slag 8 into the molten steel 1 is reduced.
[0018]
【Example】
Example 1
160 tons of molten steel that has undergone rough decarburization in the converter is put into the ladle 2 and then oxygen blown in the VOD vacuum refining equipment. C: 0.055 wt%, Cr: 18.2 wt% 1 was obtained. Thereafter, 950 kg of Fe—Si alloy is added to the molten steel 1, the degree of vacuum in the apparatus is reduced to 3 torr, and Ar gas is blown as the bottom blowing gas 6 at 500 normal liters / minute, so-called deoxidation / reduction. Processing has started. Therefore, the initial stirring power density is 420 watts / ton-steel.
[0019]
After this state was continued for 15 minutes, the degree of vacuum in the apparatus was lowered to 40 torr, the Ar gas was changed to 100 N liters / minute, and the stirring power density was 47 watts / ton · steel for 7 minutes. It was.
As a result, C: 0.052 wt%, Cr: 18.3 wt%, Si: 0.35 wt%, O: 45 ppm, and T.I. Ca: 1 ppm molten stainless steel with less slag entrainment could be obtained. Further, the slab obtained from this molten steel was cut and the cross section was examined by microscopic observation, but the area ratio of the nonmetallic inclusions present was very small.
[0020]
(Example 2)
In the same manner as in Example 1, 160 tons of molten steel that had been coarsely decarburized in a converter was tapped into the ladle 2, and then oxygen blown in a VOD vacuum refining apparatus. C: 0.06 wt%, Cr: 18.1% by weight of molten steel was obtained. Thereafter, 1000 kg of Fe—Si alloy is added to the molten steel 1, the degree of vacuum in the apparatus is reduced to 3 torr, Ar gas of the bottom blowing gas 6 is blown at 500 normal liters / minute, and the stirring power density is increased. A deoxidation / reduction treatment of 420 watt / ton · steel was started.
[0021]
After maintaining this state for 15 minutes, with the vacuum inside the apparatus kept at 3 torr, the Ar gas was changed to 60 normal liters / minute, and the stirring power density was 50 watts / ton · steel for 8 minutes. went. As a result, C: 0.056 wt%, Cr: 18.2 wt%, Si: 0.38 wt%, O: 47 ppm, and T.I. Ca: 1 ppm molten stainless steel with less slag entrainment could be obtained. Further, the slab obtained from the molten steel was cut and the cross section was examined by microscopic observation, but the area ratio of the nonmetallic inclusions was almost the same as that of the example and was very small.
[0022]
(Conventional example)
In the same manner as in Example 1, 160 tons of molten steel that had been coarsely decarburized in a converter was tapped into the ladle 2, and then oxygen blown in a VOD vacuum refining apparatus. C: 0.06 wt%, Cr: 18.1% by weight of molten steel was obtained. Thereafter, 1000 kg of Fe—Si alloy is added to the molten steel 1, the degree of vacuum in the apparatus is reduced to 3 torr, Ar gas of the bottom blowing gas 6 is blown at 500 normal liters / minute, and the stirring power density is increased. A deoxidation / reduction treatment of 420 watt / ton · steel was started. Then, after this state was continued for 15 minutes, steel was produced. As a result, the molten steel components were C: 0.056% by weight, Cr: 18.2% by weight, Si: 0.38% by weight, O: 50 ppm, and T.I. Ca: 7 ppm, and it was revealed from the total Ca concentration that inclusions due to slag were involved. Moreover, when the slab obtained by this molten steel was cut | disconnected and the cross section was investigated by microscopic observation, the area ratio of a nonmetallic inclusion was 5 times of Example 1, 2, and the cleanliness was inferior. .
[0023]
【The invention's effect】
As described above, in the present invention, a deoxidation product is formed, and while being sufficiently absorbed by the slag, strong stirring is performed, and after the slag is easily caught in the molten steel, weak stirring is performed. It becomes possible to suppress the deoxidation product and slag from entraining. As a result, non-metallic inclusions are smaller than before, that is, clean molten steel can be obtained stably.
[Brief description of the drawings]
FIG. 1 is a diagram comparing the stirring power density patterns during reduction / deoxidation treatment between the conventional method and the method of the present invention, where (a) is the method of the present invention and (b) is the method of the conventional method.
[Fig. 2] Stirring power density of molten steel during reduction / deoxidation treatment and Total. It is a relationship figure with Ca density | concentration.
FIG. 3 is a view showing a VOD vacuum refining apparatus.
[Explanation of symbols]
1 Molten steel 2 Ladle 3 Sealed container 4 Lance 5 Oxygen gas 6 Inert gas (bottom blowing gas)
7 Vacuum refining equipment (secondary refining equipment)
8 Slag

Claims (2)

底吹きガス撹拌機能を有する減圧錬装置内で脱炭した溶鋼に、引き続き脱酸剤を投入して脱酸処理する溶鋼の精錬方法において、
前記脱酸剤の投入から5分間以上30分以下は、前記溶鋼を下記(1)式で定義される撹拌動力密度(ε)が300ワット/トン−steel以上500ワット/トン−steel以下となる条件で撹拌し、その後は、前記撹拌動力密度が10ワット/トン−steel以上250ワット/トン−steel以下となる条件での撹拌を5分間以上30分以下行うことを特徴とする高清浄度鋼の溶製方法。
ε=0.0285・Q・T/W・log(1+Z/148×760/P)・・(1)
ε:撹拌動力密度(ワット/トン−steel)
Q:底吹きガス流量(ノルマル・リットル/分)
T:鋼浴温度(K°)
W:鋼浴重量(トン)
Z:浴深さ(cm)
P:真空度(torr)
A vacuum rectification smelting molten steel decarburized in a device having a bottom-blown gas stirring function, in refining process of the molten steel for deoxidation treatment by introducing the deoxidizer subsequently,
The 30 minutes or less or more charged, 4, and 5 minutes of deoxidizer, and the molten steel below (1) stirring power density (epsilon) defined by the equation of 300 W / ton -steel 500 Watts / ton -steel or less And after that, stirring is performed for 5 minutes to 30 minutes under conditions where the stirring power density is 10 watts / ton-steel to 250 watts / ton-steel. Steel melting method.
ε = 0.0285 · Q · T / W · log (1 + Z / 148 × 760 / P) (1)
ε: Stirring power density (Watt / ton-steel)
Q: Bottom blowing gas flow rate (normal liters / minute)
T: Steel bath temperature (K °)
W: Steel bath weight (tons)
Z: Bath depth (cm)
P: Degree of vacuum (torr)
前記減圧精錬装置をVODとすることを特徴とする請求項1記載の高清浄度鋼の溶製方法。  The method for melting high cleanliness steel according to claim 1, wherein the vacuum refining apparatus is VOD.
JP07972398A 1998-03-26 1998-03-26 Method of melting high cleanliness steel Expired - Fee Related JP3903580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07972398A JP3903580B2 (en) 1998-03-26 1998-03-26 Method of melting high cleanliness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07972398A JP3903580B2 (en) 1998-03-26 1998-03-26 Method of melting high cleanliness steel

Publications (2)

Publication Number Publication Date
JPH11279630A JPH11279630A (en) 1999-10-12
JP3903580B2 true JP3903580B2 (en) 2007-04-11

Family

ID=13698130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07972398A Expired - Fee Related JP3903580B2 (en) 1998-03-26 1998-03-26 Method of melting high cleanliness steel

Country Status (1)

Country Link
JP (1) JP3903580B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480353B2 (en) * 1999-02-25 2003-12-15 Jfeスチール株式会社 Method for melting Ag-containing steel
JP4884802B2 (en) * 2006-03-03 2012-02-29 株式会社神戸製鋼所 Manufacturing method of high clean steel
JP2008240126A (en) * 2007-03-28 2008-10-09 Jfe Steel Kk Method for refining molten stainless steel
JP5453751B2 (en) * 2008-09-19 2014-03-26 Jfeスチール株式会社 Ladle for refining molten steel and method for refining molten steel
JP5800465B2 (en) * 2010-03-31 2015-10-28 株式会社神戸製鋼所 Manufacturing method of high cleanliness steel
JP5299447B2 (en) * 2011-02-23 2013-09-25 新日鐵住金株式会社 Melting method of low Al steel
TWI593803B (en) * 2012-01-27 2017-08-01 杰富意鋼鐵股份有限公司 Melting method of high cleanness steel
WO2013172613A1 (en) 2012-05-14 2013-11-21 주식회사 포스코 High cleanliness molten steel production method and refining device
CN102748578B (en) * 2012-07-09 2016-02-24 巩义市众鑫钙业有限公司 Seamless ferroaluminum wire and preparation method thereof
CN106995868B (en) * 2017-05-27 2018-11-27 马鞍山华盛冶金科技发展有限公司 A method of using agent for purifying molten steel refining liquid steel
WO2021177021A1 (en) * 2020-03-06 2021-09-10 Jfeスチール株式会社 Method for producing low-carbon ferromanganese

Also Published As

Publication number Publication date
JPH11279630A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
JP3903580B2 (en) Method of melting high cleanliness steel
AU619488B2 (en) Process for decarburizing high-cr molten pig iron
TWI685577B (en) Smelting method of high manganese steel
JP3473388B2 (en) Refining method of molten stainless steel
JP3843589B2 (en) Melting method of high nitrogen stainless steel
KR101045972B1 (en) Refining method of highly clean ultra low carbon steel for soft two-piece can
KR20130014924A (en) Manufacturing method of duplex stainless steel
KR970004990B1 (en) Decarburizing method of stainless steel
JP3719056B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JPH10298631A (en) Method for melting clean steel
JP2009191290A (en) Method for producing ingot of extra-low carbon steel
JPH06306442A (en) Production of extra low sulfur steel
WO2022259805A1 (en) Molten steel denitrification method and steel production method
JP2880842B2 (en) How to make clean steel
KR910006640B1 (en) Making process for high pure steel
JP2855334B2 (en) Modification method of molten steel slag
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP2000087131A (en) Method for melting extra-low carbon steel
JP3277763B2 (en) Refining method of ultra clean low carbon steel
JP2001098316A (en) Production of highly clean extra low carbon steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP2001172715A (en) Method of manufacturing molten ultra-low carbon stainless steel
JPH05247522A (en) Refining method of highly clean stainless steel
JPH0625731A (en) Deoxidation method of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees